Erregistro soila

dc.rights.licenseAttribution-ShareAlike 4.0 International*
dc.rights.licenseAttribution-ShareAlike 4.0 International*
dc.contributor.authorSáez Eizagirre, Igor
dc.contributor.authorSegura Querol, Sara
dc.contributor.authorGago, Mónica
dc.date.accessioned2025-11-26T12:28:54Z
dc.date.available2025-11-26T12:28:54Z
dc.date.issued2025
dc.identifier.issn2722-2586en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=200374en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/13994
dc.description.abstractBusiness exceptions interrupt robotic process automation (RPA) workflows and oblige costly human intervention. This paper explores the application of machine learning (ML) time series forecasting techniques to predict business exceptions in RPA. Using RPA robot logs from a financial service company, we employ ARIMA, SARIMAX,and Prophet statistical models, comparing their performance with ML models such as XGBoost and LightGBM. Furthermore, we explore hybrid approaches that combine the strengths of statistical models with ML techniques, specifically integrating Prophet with XGBoost and LightGBM. Our findings reveal that a hybrid LightGBM model substantially outperforms traditional methods, achieving a 40% reduction in the weighted absolute percentage error (WAPE) when compared to the top-performing statistical model. These results suggest the potential of ML forecasting in optimizing RPA operations through the analysis of log-generated data.en
dc.language.isoengen
dc.rights© Egileaken
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.subjectArtificial intelligenceen
dc.subjectBusiness exceptionsen
dc.subjectMachine learningen
dc.subjectRobotic process automationen
dc.titleForecasting business exceptions in robotic process automation with machine learningen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceInternational Journal of Robotics and Automation, Vol. 14, No. 4en
local.contributor.departmentDesarrollo de Talento y Gestión de Personases
local.description.peerreviewedtrueen
local.description.publicationfirstpage450en
local.description.publicationlastpage458en
local.identifier.doi10.11591/ijra.v14i4.pp450-458en
local.source.details2025en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept3055en
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept3401en
dc.unesco.clasificacionhttp://skos.um.es/unesco6/331101en


Item honetako fitxategiak

Thumbnail
Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila

Attribution-ShareAlike 4.0 International
Bestelakorik adierazi ezean, itemaren baimena horrela deskribatzen da: Attribution-ShareAlike 4.0 International