Izenburua
Forecasting business exceptions in robotic process automation with machine learningArgitalpen data
2025Departamentua
Desarrollo de Talento y Gestión de PersonasBertsioa
Bertsio argitaratuaDokumentu-mota
ArtikuluaHizkuntza
IngelesaEskubideak
© EgileakSarbidea
Sarbide irekiaArgitaratzailearen bertsioa
10.11591/ijra.v14i4.pp450-458Non argitaratua
International Journal of Robotics and Automation, Vol. 14, No. 4 2025Gako-hitzak
Artificial intelligenceBusiness exceptions
Machine learning
Robotic process automation
UNESCO Sailkapena
Automatizazioaren teknologiaLaburpena
Business exceptions interrupt robotic process automation (RPA) workflows and oblige costly human intervention. This paper explores the application of machine learning (ML) time series forecastin ... [+]
Business exceptions interrupt robotic process automation (RPA) workflows and oblige costly human intervention. This paper explores the application of machine learning (ML) time series forecasting techniques to predict business exceptions in RPA. Using RPA robot logs from a financial service company, we employ ARIMA, SARIMAX,and Prophet statistical models, comparing their performance with ML models such as XGBoost and LightGBM. Furthermore, we explore hybrid approaches that combine the strengths of statistical models with ML techniques, specifically integrating Prophet with XGBoost and LightGBM. Our findings reveal that a hybrid LightGBM model substantially outperforms traditional methods, achieving a 40% reduction in the weighted absolute percentage error (WAPE) when compared to the top-performing statistical model. These results suggest the potential of ML forecasting in optimizing RPA operations through the analysis of log-generated data. [-]
Bildumak
Item honek honako baimen-fitxategi hauek dauzka asoziatuta:



















