Erregistro soila

dc.contributor.authorZubieta Ansorregi, Jon
dc.contributor.authorEtxeberria Garcia, Mikel
dc.contributor.authorZamalloa, Maider
dc.contributor.authorArana-Arexolaleiba, Nestor
dc.date.accessioned2025-11-26T08:36:23Z
dc.date.available2025-11-26T08:36:23Z
dc.date.issued2021
dc.identifier.isbn978-1-5386-1757-1en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=165119en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/13993
dc.description.abstractDrones, mobile robots, and autonomous vehicles use Visual Odometry (VO) to move around complex environments. ORB-SLAM or deep learning-based approaches like DF-VO are two of the state-of-the-art technics for monocular VO. Those two technics perform correctly in outdoor scenarios but show some limitations in indoor environments. The extreme lighting conditions, non-Lambertian surfaces, or occlusion of indoor environments can disturb the visual information, and so the odometry information. Generative Adversarial Network (GAN) architectures recently proposed in the literature can help to overcome image low-light and blurring limitations. This research study aims to assess image enhancement's impact using GANS on the Visual Odometry algorithm DF-VO. Since DF-VO is also based on visual geometric information, the paper first considers the effect of two different GAN architectures in the camera's calibration. Then, the impact in the odometry information computed by DF-VO is evaluated. The preliminary results show that the reprojection error and the uncertainty of the calibration of a pin-hole-based camera do not increase significantly, and DF-VO's performance is improved.en
dc.language.isoengen
dc.publisherIEEEen
dc.rights© 2021 IEEEen
dc.subjectImage enhancementen
dc.subjectCalibration methodsen
dc.subjectVisual odometryen
dc.subjectDeep learningen
dc.titleImage Enhancement using GANs for Monocular Visual Odometryen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceIEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM)en
local.contributor.groupRobótica y automatizaciónes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1109/ECMSM51310.2021.9468831en
local.contributor.otherinstitutionhttps://ror.org/03hp1m080es
local.contributor.otherinstitutionhttps://ror.org/00wvqgd19es
local.contributor.otherinstitutionhttps://ror.org/04m5j1k67es
local.source.details15. Liberec (República Checa), 21-22 junio 2021en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila