eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   The Library compiles and disseminates your publications

Con la colaboración de:

Euskara | Español | English
  • Contact Us
  • Open Science
  • About eBiltegia
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Research - Articles
  • Articles - Engineering
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Research - Articles
  • Articles - Engineering
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
Modeling and analysis of design parameters and interactions in 3D-printed components using response surface methodolog.pdf (612.7Kb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
Modeling and analysis of design parameters and interactions in 3D-printed components using response surface methodology
Author
Raghavendra, B. V.
Annigeri R., Anandkumar
Srikantamurthy, J. S.
Unzueta, Gorka cc
Publication Date
2025
Research Group
Dirección de operaciones logístico productivas
Other institutions
JSS Academy of Technical Education (Bengaluru, India)
Version
Published version
Document type
Journal Article
Language
English
Rights
©2006-2025 Asian Research Publishing Network (ARPN). All rights reserved.
Access
Embargoed access
Embargo end date
2145-12-31
URI
https://hdl.handle.net/20.500.11984/13988
Publisher’s version
https://doi.org/10.59018/042557
Published at
ARPN Journal of Engineering and Applied Sciences  Vol. 20. N. 8. April 2025
Publisher
ARPN
Keywords
Mathematical model
3D printing
Surface
UNESCO Classification
Production organization
Abstract
This study focuses on optimizing key design parameters in the Fused Deposition Modeling (FDM) process, a widely used method in 3D printing. Using response surface methodology (RSM), a regression model ... [+]
This study focuses on optimizing key design parameters in the Fused Deposition Modeling (FDM) process, a widely used method in 3D printing. Using response surface methodology (RSM), a regression model was developed to analyze the effects of six critical variables: temperature, nozzle movement speed, layer thickness, extrusion width, test tube positioning, and internal infill angle. Each variable was investigated at two levels to evaluate its influence on the mechanical properties of 3D-printed materials. A comprehensive set of 64 experimental tests was conducted to examine three key objective functions: Young's modulus, which measures material stiffness; breakage tension, indicative of the material's tensile strength; and breakage deformation, representing its flexibility under stress. The findings revealed that nozzle movement speed, temperature, and positioning were primary contributors to variations in Young’s modulus. For breakage tension, speed, layer thickness, and positioning emerged as significant factors. Similarly, nozzle speed, extrusion width, and positioning were found to strongly influence breakage deformation. Statistical analysis highlighted the significance of the process for optimizing Young’s modulus and breakage tension, with a p-value < 0.05 indicating strong evidence against the null hypothesis. However, the process's impact on breakage deformation was not statistically significant, suggesting the need for further investigation or potential inclusion of additional variables. These insights underline the criticality of parameter optimization in enhancing the structural integrity and mechanical performance of 3D-printed components. The study demonstrates the effectiveness of RSM in systematically identifying and quantifying interactions between variables, providing a pathway for improving FDM outputs. By fine-tuning the process parameters, manufacturers can achieve desired mechanical properties tailored to specific applications, advancing the potential of FDM in diverse industries. [-]
Collections
  • Articles - Engineering [763]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace