Erregistro soila

dc.contributor.authorArrieta, Aitor
dc.date.accessioned2025-11-18T09:23:41Z
dc.date.available2025-11-18T09:23:41Z
dc.date.issued2022
dc.identifier.isbn978-1-4503-9237-2en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=167746en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/13983
dc.description.abstractDeep Learning (DL) components are increasing their presence in safety and mission-critical software systems. To ensure a high dependability of DL systems, robust verification methods are required, for which automation is highly beneficial (e.g., more test cases can be executed). Metamorphic Testing (MT) is a technique that has shown to alleviate the test oracle problem when testing DL systems, and therefore, increasing test automation. However, a drawback of this technique lies into the need of multiple test executions to obtain the test verdict (named as the source and the follow-up test cases), requiring additional testing cost. In this paper we propose an approach based on multi-objective search to select follow-up test cases. Our approach makes use of source test cases to measure the uncertainty provoked by such test inputs in the DL model, and based on that, select failure-revealing follow-up test cases. We integrate our approach with the NSGA-II algorithm. An empirical evaluation on three DL models tackling the image classification problem, along with five different metamorphic relations demonstrates that our approach outperformed the baseline algorithm between 17.09 to 59.20% on average when considering the revisited Hypervolume quality indicator.en
dc.language.isoengen
dc.publisherACMen
dc.rights© 2022 Association for Computing Machineryen
dc.titleMulti-Objective Metamorphic Follow-up Test Case Selection for Deep Learning Systemsen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceProceedings of the Genetic and Evolutionary Computation Conference (GECCO)en
local.contributor.groupIngeniería del software y sistemases
local.description.peerreviewedtrueen
local.description.publicationfirstpage1327en
local.description.publicationlastpage1335en
local.identifier.doihttps://doi.org/10.1145/3512290.3528697en
local.contributor.otherinstitutionhttps://ror.org/00wvqgd19es
local.source.detailsBoston, Massachusetts, July 2022en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
oaire.funderNameComisión Europeaen
oaire.funderIdentifierhttps://ror.org/00k4n6c32 / http://data.crossref.org/fundingdata/funder/10.13039/501100000780en
oaire.fundingStreamH2020en
oaire.awardNumber871319en
oaire.awardTitleDesign-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for Cyber-Physical Systems of Systems (ADEPTNESS)en
oaire.awardURIhttps://doi.org/10.3030/871319en


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila