eBiltegia

    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak

Con la colaboración de:

Euskara | Español | English
  • Kontaktua
  • Zientzia Irekia
  • eBiltegiari buruz
  • Hasi saioa
Ikusi itema 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Kongresuetara ekarpenak
  • Kongresuetara ekarpenak - Ingeniaritza
  • Ikusi itema
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Kongresuetara ekarpenak
  • Kongresuetara ekarpenak - Ingeniaritza
  • Ikusi itema
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ikusi/Ireki
MetamorphicTestSelection_embeddedfonts.pdf (466.4Kb)
Erregistro osoa
Eragina

Web of Science   

Google Scholar
Partekatu
EmailLinkedinFacebookTwitter
Gorde erreferentzia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Izenburua
Multi-Objective Metamorphic Follow-up Test Case Selection for Deep Learning Systems
Egilea
Arrieta, Aitor cc
Argitalpen data
2022
Ikerketa taldea
Ingeniería del software y sistemas
Beste erakundeak
https://ror.org/00wvqgd19
Bertsioa
Postprinta
Dokumentu-mota
Kongresu-ekarpena
Hizkuntza
Ingelesa
Eskubideak
© 2022 Association for Computing Machinery
Sarbidea
Sarbide irekia
URI
https://hdl.handle.net/20.500.11984/13983
Argitaratzailearen bertsioa
https://doi.org/10.1145/3512290.3528697
Non argitaratua
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO)  Boston, Massachusetts, July 2022
Argitaratzailea
ACM
Laburpena
Deep Learning (DL) components are increasing their presence in safety and mission-critical software systems. To ensure a high dependability of DL systems, robust verification methods are required, for ... [+]
Deep Learning (DL) components are increasing their presence in safety and mission-critical software systems. To ensure a high dependability of DL systems, robust verification methods are required, for which automation is highly beneficial (e.g., more test cases can be executed). Metamorphic Testing (MT) is a technique that has shown to alleviate the test oracle problem when testing DL systems, and therefore, increasing test automation. However, a drawback of this technique lies into the need of multiple test executions to obtain the test verdict (named as the source and the follow-up test cases), requiring additional testing cost. In this paper we propose an approach based on multi-objective search to select follow-up test cases. Our approach makes use of source test cases to measure the uncertainty provoked by such test inputs in the DL model, and based on that, select failure-revealing follow-up test cases. We integrate our approach with the NSGA-II algorithm. An empirical evaluation on three DL models tackling the image classification problem, along with five different metamorphic relations demonstrates that our approach outperformed the baseline algorithm between 17.09 to 59.20% on average when considering the revisited Hypervolume quality indicator. [-]
Bildumak
  • Kongresuetara ekarpenak - Ingeniaritza [443]

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratuaBilduma hauArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Estatistikak

Ikusi erabilearen inguruko estatistikak

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace