| dc.contributor.author | Arrieta, Aitor | |
| dc.date.accessioned | 2025-11-18T09:23:41Z | |
| dc.date.available | 2025-11-18T09:23:41Z | |
| dc.date.issued | 2022 | |
| dc.identifier.isbn | 978-1-4503-9237-2 | en |
| dc.identifier.other | https://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=167746 | en |
| dc.identifier.uri | https://hdl.handle.net/20.500.11984/13983 | |
| dc.description.abstract | Deep Learning (DL) components are increasing their presence in safety and mission-critical software systems. To ensure a high dependability of DL systems, robust verification methods are required, for which automation is highly beneficial (e.g., more test cases can be executed). Metamorphic Testing (MT) is a technique that has shown to alleviate the test oracle problem when testing DL systems, and therefore, increasing test automation. However, a drawback of this technique lies into the need of multiple test executions to obtain the test verdict (named as the source and the follow-up test cases), requiring additional testing cost. In this paper we propose an approach based on multi-objective search to select follow-up test cases. Our approach makes use of source test cases to measure the uncertainty provoked by such test inputs in the DL model, and based on that, select failure-revealing follow-up test cases. We integrate our approach with the NSGA-II algorithm. An empirical evaluation on three DL models tackling the image classification problem, along with five different metamorphic relations demonstrates that our approach outperformed the baseline algorithm between 17.09 to 59.20% on average when considering the revisited Hypervolume quality indicator. | en |
| dc.language.iso | eng | en |
| dc.publisher | ACM | en |
| dc.rights | © 2022 Association for Computing Machinery | en |
| dc.title | Multi-Objective Metamorphic Follow-up Test Case Selection for Deep Learning Systems | en |
| dcterms.accessRights | http://purl.org/coar/access_right/c_abf2 | en |
| dcterms.source | Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) | en |
| local.contributor.group | Ingeniería del software y sistemas | es |
| local.description.peerreviewed | true | en |
| local.description.publicationfirstpage | 1327 | en |
| local.description.publicationlastpage | 1335 | en |
| local.identifier.doi | https://doi.org/10.1145/3512290.3528697 | en |
| local.contributor.otherinstitution | https://ror.org/00wvqgd19 | es |
| local.source.details | Boston, Massachusetts, July 2022 | en |
| oaire.format.mimetype | application/pdf | en |
| oaire.file | $DSPACE\assetstore | en |
| oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | en |
| oaire.version | http://purl.org/coar/version/c_ab4af688f83e57aa | en |
| oaire.funderName | Comisión Europea | en |
| oaire.funderIdentifier | https://ror.org/00k4n6c32 / http://data.crossref.org/fundingdata/funder/10.13039/501100000780 | en |
| oaire.fundingStream | H2020 | en |
| oaire.awardNumber | 871319 | en |
| oaire.awardTitle | Design-Operation Continuum Methods for Testing and Deployment under Unforeseen Conditions for Cyber-Physical Systems of Systems (ADEPTNESS) | en |
| oaire.awardURI | https://doi.org/10.3030/871319 | en |