Izenburua
Comparative Analysis of TSD and NTC-Based Temperature Measurement for Power Semiconductor ModulesArgitalpen data
2025Beste erakundeak
https://ror.org/00wvqgd19Bertsioa
PostprintaDokumentu-mota
Kongresu-ekarpenaHizkuntza
IngelesaEskubideak
© 2025 IEEESarbidea
Sarbide irekiaArgitaratzailearen bertsioa
https://doi.org/10.1109/IECON58223.2025.11221266Non argitaratua
Annual Conference of the IEEE Industrial Electronics Society (IECON) 51. Madrid, 14-17 octubre 2025Argitaratzailea
IEEEGako-hitzak
Temperature sensorsTemperature measurement
Laburpena
Accurate temperature estimation is essential for ensuring the reliability and performance of power semiconductor devices. This paper presents various techniques used in the industry and focuses on a c ... [+]
Accurate temperature estimation is essential for ensuring the reliability and performance of power semiconductor devices. This paper presents various techniques used in the industry and focuses on a comparative analysis of two temperature measurement methods: temperature sensing diodes (TSD) and negative temperature coefficient (NTC) resistors. TSDs provide direct and fast junction temperature (Tj) measurements, while NTCs, being external to the junction, can approximate steady-state Tj through calibration. An experimental test bench based on a back-to-back topology is developed to evaluate both methods under real operating conditions. The paper analyzes the performance of TSD under constant current pulses, demonstrating its ability to represent the transient thermal behavior, with a response time of 5 ms after the pulse. Furthermore, the study investigates the ability of NTC and TSD to detect thermal ripple at different fundamental frequencies, revealing that NTC fails to capture thermal dynamics, while TSD accurately tracks temperature fluctuations across all tested frequencies. The findings highlight the strengths and limitations of each method, providing insights into the selection of an appropriate temperature measurement approach for power electronic applications. [-]


















