Título
Steady-state temperature calculation tool for multilayer PCBsAutor-a
Fecha de publicación
2025Grupo de investigación
Sistemas electrónicos de potencia aplicados al control de la energía eléctricaOtras instituciones
https://ror.org/00wvqgd19Ingeteam (Spain)
Versión
PostprintTipo de documento
ArtículoIdioma
InglésDerechos
© 2025 IEEEAcceso
Acceso abiertoVersión de la editorial
https://doi.org/10.1109/TPEL.2025.3626813Publicado en
IEEE Transactions on Power Electronics Early AccessEditorial
IEEEPalabras clave
Electro-thermal modellingODS 4 Educación de calidad
ODS 7 Energía asequible y no contaminante
ODS 9 Industria, innovación e infraestructura
Clasificación UNESCO
http://skos.um.es/unesco6/3307Resumen
The adoption of GaN-based devices in power converters offers significant improvements in efficiency and power density, but also intensifies thermal challenges by concentrating heat in smaller volumes. ... [+]
The adoption of GaN-based devices in power converters offers significant improvements in efficiency and power density, but also intensifies thermal challenges by concentrating heat in smaller volumes. High current and compact surface-mount device packaging in GaN-based designs increase localised temperatures on printed circuit boards (PCBs), creating hotspots that can degrade materials, damage components, and compromise overall reliability. Traditional computational fluid dynamics (CFD)-based thermal analysis has been used to model PCB thermal behaviour, but its high computational cost and long setup times make it unsuitable for early-stage design. This paper introduces a MATLAB®-implemented thermal analysis tool that models PCBs as electro-thermal networks based on their hardware configuration. The tool operates in two stages: (1) an electrical network computes the current distribution and Joule heating losses across traces and vias, and (2) a thermal network uses these losses, together with power dissipation from electronic components, to calculate the temperature distribution across the PCB. The networks are coupled iteratively to account for temperature-dependent effects. The tool supports flexible configurations for layers, materials (e.g., FR4, copper, thermal vias), and heat sink (HS) integration. Validation against CFD simulations and experimental measurements confirm the accuracy of the tool in estimating temperature distributions, ensuring more effective thermal management in high-density power converters. This approach provides a fast and reliable alternative to CFD, significantly accelerating the design optimisation process. [-]
Colecciones
- Artículos - Ingeniería [759]


















