Simple record

dc.contributor.authorGezala Rodero, Haitz
dc.contributor.authorGarrido, David
dc.contributor.authorBaraia-Etxaburu Zubiaurre, Igor
dc.contributor.authorAizpuru, Iosu
dc.contributor.authorPaniagua Amillano, Julen
dc.date.accessioned2025-11-18T07:40:29Z
dc.date.available2025-11-18T07:40:29Z
dc.date.issued2025
dc.identifier.issn1941-0107en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=191540en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/13979
dc.description.abstractThe adoption of GaN-based devices in power converters offers significant improvements in efficiency and power density, but also intensifies thermal challenges by concentrating heat in smaller volumes. High current and compact surface-mount device packaging in GaN-based designs increase localised temperatures on printed circuit boards (PCBs), creating hotspots that can degrade materials, damage components, and compromise overall reliability. Traditional computational fluid dynamics (CFD)-based thermal analysis has been used to model PCB thermal behaviour, but its high computational cost and long setup times make it unsuitable for early-stage design. This paper introduces a MATLAB®-implemented thermal analysis tool that models PCBs as electro-thermal networks based on their hardware configuration. The tool operates in two stages: (1) an electrical network computes the current distribution and Joule heating losses across traces and vias, and (2) a thermal network uses these losses, together with power dissipation from electronic components, to calculate the temperature distribution across the PCB. The networks are coupled iteratively to account for temperature-dependent effects. The tool supports flexible configurations for layers, materials (e.g., FR4, copper, thermal vias), and heat sink (HS) integration. Validation against CFD simulations and experimental measurements confirm the accuracy of the tool in estimating temperature distributions, ensuring more effective thermal management in high-density power converters. This approach provides a fast and reliable alternative to CFD, significantly accelerating the design optimisation process.en
dc.language.isoengen
dc.publisherIEEEen
dc.rights© 2025 IEEEen
dc.subjectElectro-thermal modellingen
dc.subjectODS 4 Educación de calidades
dc.subjectODS 7 Energía asequible y no contaminantees
dc.subjectODS 9 Industria, innovación e infraestructuraes
dc.titleSteady-state temperature calculation tool for multilayer PCBsen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceIEEE Transactions on Power Electronicsen
local.contributor.groupSistemas electrónicos de potencia aplicados al control de la energía eléctricaes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1109/TPEL.2025.3626813en
local.contributor.otherinstitutionhttps://ror.org/00wvqgd19es
local.contributor.otherinstitutionhttps://ror.org/002xeeh02es
local.source.detailsEarly Accessen
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept622en
dc.unesco.clasificacion http://skos.um.es/unesco6/3307en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Simple record