Simple record

dc.contributor.authorLaskurain, Unai
dc.contributor.authorAguirre, Aitor
dc.contributor.authorZurutuza, Urko
dc.date.accessioned2025-11-12T09:58:26Z
dc.date.available2025-11-12T09:58:26Z
dc.date.issued2025
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=191481en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/13975
dc.description.abstractFederated Learning (FL) is an emerging machine learning paradigm that enables multiple parties to collaboratively train models without sharing raw data, ensuring data privacy. In Vertical FL (VFL), where each party holds different features for the same users, a key challenge is to evaluate the feature contribution of each party before any model is trained, particularly in the early stages when no model exists. To address this, the Shapley- CMI method was recently proposed as a model-free, informationtheoretic approach to feature valuation using Conditional Mutual Information (CMI). However, its original formulation did not provide a practical implementation capable of computing the required permutations and intersections securely. This paper presents a novel privacy-preserving implementation of Shapley-CMI for VFL. Our system introduces a private set intersection (PSI) server that performs all necessary feature permutations and computes encrypted intersection sizes across discretized and encrypted ID groups, without the need for raw data exchange. Each party then uses these intersection results to compute Shapley-CMI values, computing the marginal utility of their features. Initial experiments confirm the correctness and privacy of the proposed system, demonstrating its viability for secure and efficient feature contribution estimation in VFL. This approach ensures data confidentiality, scales across multiple parties, and enables fair data valuation without requiring the sharing of raw data or training models.en
dc.language.isoengen
dc.publisherIEEEen
dc.rights© 2025 IEEEen
dc.subjectFederated Learningen
dc.subjectSecurity and privacyen
dc.subjectODS 9 Industria, innovación e infraestructuraes
dc.titlePrivacy-Preserving Feature Valuation in Vertical Federated Learning Using Shapley-CMI and PSI Permutationen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceIEEE International Conference on Federated Learning Technologies and Applicationsen
local.contributor.groupAnálisis de datos y ciberseguridades
local.description.peerreviewedtrueen
local.contributor.otherinstitutionhttps://ror.org/00wvqgd19es
local.source.details3. Dubrovnik (Croatia), 15-17 october, 2025en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept1147en
oaire.funderNameGobierno Vascoen
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.fundingStreamIkertalde Convocatoria 2022-2025en
oaire.awardNumberIT1676-22en
oaire.awardTitleGrupo de sistemas inteligentes para sistemas industriales (IKERTALDE 2022-2025)en
oaire.awardURISin informaciónen
dc.unesco.clasificacionhttp://skos.um.es/unesco6/120903en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Simple record