eBiltegia

    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak

Con la colaboración de:

Euskara | Español | English
  • Kontaktua
  • Zientzia Irekia
  • eBiltegiari buruz
  • Hasi saioa
Ikusi itema 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ekoizpen zientifikoa - Kongresuak
  • Kongresuak - Ingeniaritza
  • Ikusi itema
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ekoizpen zientifikoa - Kongresuak
  • Kongresuak - Ingeniaritza
  • Ikusi itema
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ikusi/Ireki
Privacy-Preserving Feature Valuation in Vertical Federated Learning Using Shapley-CMI and PSI Permutation.pdf (708.6Kb)
Erregistro osoa
Eragina
Google Scholar
Partekatu
EmailLinkedinFacebookTwitter
Gorde erreferentzia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Izenburua
Privacy-Preserving Feature Valuation in Vertical Federated Learning Using Shapley-CMI and PSI Permutation
Egilea
Laskurain, Unai
Aguirre, Aitor cc
Zurutuza, Urko cc
Argitalpen data
2025
Ikerketa taldea
Análisis de datos y ciberseguridad
Beste erakundeak
https://ror.org/00wvqgd19
Bertsioa
Postprinta
Dokumentu-mota
Kongresu-ekarpena
Hizkuntza
Ingelesa
Eskubideak
© 2025 IEEE
Sarbidea
Sarbide irekia
URI
https://hdl.handle.net/20.500.11984/13975
Non argitaratua
IEEE International Conference on Federated Learning Technologies and Applications  3. Dubrovnik (Croatia), 15-17 october, 2025
Argitaratzailea
IEEE
Gako-hitzak
Federated Learning
Security and privacy
ODS 9 Industria, innovación e infraestructura
Laburpena
Federated Learning (FL) is an emerging machine learning paradigm that enables multiple parties to collaboratively train models without sharing raw data, ensuring data privacy. In Vertical FL (VFL), wh ... [+]
Federated Learning (FL) is an emerging machine learning paradigm that enables multiple parties to collaboratively train models without sharing raw data, ensuring data privacy. In Vertical FL (VFL), where each party holds different features for the same users, a key challenge is to evaluate the feature contribution of each party before any model is trained, particularly in the early stages when no model exists. To address this, the Shapley- CMI method was recently proposed as a model-free, informationtheoretic approach to feature valuation using Conditional Mutual Information (CMI). However, its original formulation did not provide a practical implementation capable of computing the required permutations and intersections securely. This paper presents a novel privacy-preserving implementation of Shapley-CMI for VFL. Our system introduces a private set intersection (PSI) server that performs all necessary feature permutations and computes encrypted intersection sizes across discretized and encrypted ID groups, without the need for raw data exchange. Each party then uses these intersection results to compute Shapley-CMI values, computing the marginal utility of their features. Initial experiments confirm the correctness and privacy of the proposed system, demonstrating its viability for secure and efficient feature contribution estimation in VFL. This approach ensures data confidentiality, scales across multiple parties, and enables fair data valuation without requiring the sharing of raw data or training models. [-]
Bildumak
  • Kongresuak - Ingeniaritza [437]

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratuaBilduma hauArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Estatistikak

Ikusi erabilearen inguruko estatistikak

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace