Simple record

dc.contributor.authorArrieta, Aitor
dc.contributor.authorValle Entrena, Pablo
dc.contributor.authorIriarte, Asier
dc.contributor.authorIllarramendi, Miren
dc.date.accessioned2025-09-19T14:53:19Z
dc.date.available2025-09-19T14:53:19Z
dc.date.issued2023
dc.identifier.isbn978-1-6654-5223-6en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=174051en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/13948
dc.description.abstractCyber-Physical Systems (CPSs) combine digital cyber technologies with physical processes. As in any other software system, in the case of CPSs, the use of Artificial Intelligence (AI) techniques in general, and Deep Neural Networks (DNNs) in particular, is contantly increasing. While recent studies have considerably advanced the field of testing AI-enabled systems, it has not yet been investigated how different Deep Learning (DL) bugs affect AI-enabled CPSs in operation. This work-in-progress paper presents a preliminary evaluation on how such bugs can affect CPSs in operation by using a mobile robot as a case study system. For that, we generated DL mutants by using operators proposed by Humbatova et al., which are operators based on real-world DL faults. Our preliminary investigation suggests that such bugs are more difficult to detect when they are deployed in operation rather than when testing their DNN in an off-line setup, which contrast with related studies.en
dc.language.isoengen
dc.publisherIEEEen
dc.rights© 2023 IEEEen
dc.subjectDeep learningen
dc.subjectArtificial Neural Networksen
dc.subjectCyber Physical Systemsen
dc.subjectODS 9 Industria, innovación e infraestructuraes
dc.titleHow Do Deep Learning Faults Affect AI-Enabled Cyber-Physical Systems in Operation? A Preliminary Study Based on DeepCrime Mutation Operatorsen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM)en
local.contributor.groupIngeniería del software y sistemases
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1109/ESEM56168.2023.10304794en
local.source.detailsNew Orleans, 26-27 October, 2023en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept450en
oaire.funderNameGobierno Vascoen
oaire.funderNameGobierno Vascoen
oaire.funderNameGobierno Vascoen
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.funderIdentifierhttps://ror.org/05bvkb649 = http://data.crossref.org/fundingdata/funder/10.13039/501100019124en
oaire.funderIdentifierhttps://ror.org/038jjxj40 / http://data.crossref.org/fundingdata/funder/10.13039/501100010198en
oaire.fundingStreamElkartek 2022en
oaire.fundingStreamElkartek 2022en
oaire.fundingStreamIkertalde Convocatoria 2022-2023en
oaire.awardNumberKK-2022-00119en
oaire.awardNumberKK-2022-00007en
oaire.awardNumberIT1519-22en
oaire.awardTitleEdge Technologies for Industrial Distributed AI Applications (EGIA)en
oaire.awardTitleSIIRSE project (SIIRSE)en
oaire.awardTitleIngeniería de Software y Sistemas (IKERTALDE 2022-2023)en
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen
dc.unesco.clasificacionhttp://skos.um.es/unesco6/120317en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Simple record