eBiltegia

    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
    • Euskara
    • Español
    • English

Laguntzailea:

  • Kontaktua
  • Euskara 
    • Euskara
    • Español
    • English
  • eBiltegia buruz  
    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
  • Hasi saioa
Bilatu 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Bilatu
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Bilatu
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bilatu

Show Advanced FiltersHide Advanced Filters

Iragazkiak

Muga ezazu bilaketa iragazkiak erabiliz

6-tik 1-6 emaitza erakusten

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

Interpreting Remaining Useful Life estimations combining Explainable Artificial Intelligence and domain knowledge in industrial machinery 

Serradilla, Oscar; Zugasti, Ekhi; Cernuda, Carlos; Zurutuza, Urko (IEEE, 2020)
This paper presents the implementation and explanations of a remaining life estimator model based on machine learning, applied to industrial data. Concretely, the model has been applied to a bushings testbed, where fatigue ...
Thumbnail

Methodology for data-driven predictive maintenance models design, development and implementation on manufacturing guided by domain knowledge 

Serradilla, Oscar; Zugasti, Ekhi; Zurutuza, Urko (Taylor and Francis, 2022)
The 4th industrial revolution has connected machines and industrial plants, facilitating process monitoring and the implementation of predictive maintenance (PdM) systems that can save up to 60% of maintenance costs. ...
Thumbnail

Design and validation of a methodology to implement data-driven predictive maintenance in industrial environments 

Serradilla, Oscar (Mondragon Unibertsitatea. Goi Eskola Politeknikoa, 2021)
New trends in manufacturing and industry lead to digitalise all processes, machines and communicate them forming Cyber Physical Systems (CPS), facilitating process monitoring and data acquisition. The analysis of that ...
Thumbnail

Adaptable and Explainable Predictive Maintenance: Semi-Supervised Deep Learning for Anomaly Detection and Diagnosis in Press Machine Data 

Serradilla, Oscar; Zugasti, Ekhi; Zurutuza, Urko (MDPI, 2021)
Predictive maintenance (PdM) has the potential to reduce industrial costs by anticipating failures and extending the work life of components. Nowadays, factories are monitoring their assets and most collected data belong ...
Thumbnail

Deep learning models for predictive maintenance: a survey, comparison, challenges and prospects 

Serradilla, Oscar; Zugasti, Ekhi; Zurutuza, Urko (Springer Science+Business Media, LLC, 2022)
Given the growing amount of industrial data in the 4th industrial revolution, deep learning solutions have become popular for predictive maintenance (PdM) tasks, which involve monitoring assets to anticipate their requirements ...
Thumbnail

Best Practice Data Sharing Guidelines for Wind Turbine Fault Detection Model Evaluation 

Izagirre, Unai; Serradilla, Oscar; Olaizola, Jon; Zugasti, Ekhi; Aizpurua Unanue, Jose Ignacio (MDPI, 2023)
In this paper, a set of best practice data sharing guidelines for wind turbine fault detection model evaluation is developed, which can help practitioners overcome the main challenges of digitalisation. Digitalisation is ...

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Arakatu

EgileaSerradilla, Oscar (6)Zugasti, Ekhi (5)Zurutuza, Urko (4)Aizpurua Unanue, Jose Ignacio (1)Cernuda, Carlos (1)Izagirre, Unai (1)Olaizola, Jon (1)Materiapredictive maintenance (3)domain knowledge (2)Explainable Artificial Intelligence (2)autoencoder (1)best practice (1)data sharing (1)data-driven (1)data-driven model (1)deep learning (1)diagnosis (1)... View MoreDate Issued2021 (2)2022 (2)2020 (1)2023 (1)Has File(s)Yes (6)

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace