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A B S T R A C T

Many daily tasks exhibit a periodic nature, necessitating that robots possess the ability to execute them either
alone or in collaboration with humans. A widely used approach to encode and learn such periodic patterns from
human demonstrations is through periodic Dynamic Movement Primitives (DMPs). Periodic DMPs encode cyclic
data independently across multiple dimensions of multi-degree of freedom systems. This method is effective
for simple data, like Cartesian or joint position trajectories. However, it cannot account for various geometric
constraints imposed by more complex data, such as orientation and stiffness. To bridge this gap, we propose
a novel periodic DMP formulation that enables the encoding of periodic orientation trajectories and varying
stiffness matrices while considering their geometric constraints. Our geometry-aware approach exploits the
properties of the Riemannian manifold and Lie group to directly encode such periodic data while respecting
its inherent geometric constraints. We initially employed simulation to validate the technical aspects of the
proposed method thoroughly. Subsequently, we conducted experiments with two different real-world robots
performing daily tasks involving periodic changes in orientation and/or stiffness, i.e., operating a drilling
machine using a rotary handle and facilitating collaborative human–robot sawing.
1. Introduction

A fundamental aspect that enables robots to perform their intended
tasks is their capability to control movements and physical interactions.
The robotic control system demands a task-specific reference behavior,
typically encoded and represented by desired trajectories of motion,
force, and/or impedance. Consequently, having a robust and reliable
method for trajectory generation is crucial for attaining practically
applicable robots.

Among the most common trajectory encoding strategies is the Dy-
namic Movement Primitive (DMP) [1]. DMPs encode discrete and
periodic trajectories in stable second-order dynamics. In addition, they
may include different types of coupling terms for various functionalities
such as obstacle avoidance [2,3]. Discrete (point-to-point) motions are
effectively used in many daily activities, such as picking and plac-
ing, because they have different starting and ending points. However,
there exist several daily activities demanding the execution of peri-
odic trajectories. Periodic trajectories involve repetitive movements
at regular intervals, suitable for tasks requiring continuous and well-
timed actions. Modeling these trajectories accurately is challenging
due to their periodic nature and the need for smooth cycle transitions
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while interacting with the environment (e.g., periodic drilling in Fig. 1-
left). This challenge is further amplified in collaborative tasks where
continuous periodic coordination between multiple agents needs to
be achieved (e.g., collaborative sawing in Fig. 1-right). To cope with
these characteristics, Ijspeert et al. [1] reformulated DMPs to handle
rhythmic/periodic motions. Since then, periodic DMPs have been suc-
cessfully applied to various periodic tasks, such as surface wiping [3],
sawing [4], bolt screwing [5], and locomotion [6,7].

The original design intent of DMPs was to encode one Degree of
Freedom (DoF) trajectories, with the approach being highly suitable
for depicting independent signals such as Cartesian or joint positions.
While synchronization between DoFs can be achieved by exploiting a
common phase variable, several robotic skills belong to spaces where
the DoFs are interrelated through geometric constraints. This is the case
in common orientation representations and in SPD matrices. Achieving
effective embedding of these kinds of skills is only possible if the
underlying geometric structure of the space is properly considered
and the constraints arising from this structure are fulfilled during
both training and execution. For example, since stiffness matrices must
satisfy positiveness and definiteness constraints or UQs have to fulfill a
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Fig. 1. Experimental setups involving Panda and Kuka IIWA equipped with qb
SoftHand. Left : Panda operates a drilling machine using a rotary handle, which requires
adjustments of periodic pose and stiffness. Right : Kuka performs collaborative sawing
with a human that requires periodic stiffness modulation.

unit-norm constraint, the use of classical Euclidean operators, as used in
previous periodic DMP methods, to operate such variables is inadequate
as such data (SPD and UQs) do not lie on a vector space. While the
existing methods [8–10] can encode discrete (point-to-point) robotic
skills, an approach for effectively encoding manipulation skills with
specific geometric constraints in a periodic manner is still missing.

To address this critical gap in periodic DMPs, we propose a novel
formulation that allows us to encode general periodic manipulation
skills with specific geometric constraints. Our Riemannian periodic DMP
(R-pDMP) exploits tools from Riemannian geometry to properly handle
periodic manipulation data with specific geometric types. The proposed
approach is tested on synthetic data and then used, with two different
robots, to operate a drilling machine using the rotary handle and do
collaborative human–robot sawing (see Fig. 1).

We explored encoding periodic orientation DMPs in a short pre-
liminary study [11]. However, that method lacked generality and was
limited to encoding quaternion type of data. This work adds several
significant novel contributions:

• We propose a novel periodic DMP formulation that extends the
classical formulation by incorporating tools from Riemannian
geometry for encoding and reproducing periodic robotic skills
with geometric constraints.

• We introduce a novel state-to-action collaborative model that
dynamically adjusts end-effector stiffness, enhancing safety and
efficiency in human–robot interactions.

• We validate our method through simulation and experiments on
Franka Emika Panda and Kuka IIWA platforms, demonstrating
superior performance compared to state-of-the-art methods.

The empirical validation of our approach is demonstrated through
extensive experiments on Franka Emika Panda and Kuka IIWA robotic
platforms. These experiments involve tasks requiring precise orienta-
tion control and varying stiffness, such as operating a drilling ma-
chine and collaborative human–robot sawing. We provide a compre-
hensive comparison to state-of-the-art methods, showing that our Rie-
mannian periodic DMPs outperforms existing techniques in terms of
accuracy, stability, and computational efficiency. The experimental
results clearly illustrate the advantages of our approach in real-world
robotic applications.

2. Related work

Learning from Demonstration (LfD) enables an effective way of
transferring human manipulation skills to robots. By using human
demonstrations, relevant motion patterns, can be extracted and gen-
eralized to different situations. The community developed various
LfD including: DMPs [10,12–14], Probabilistic Movement Primitives
(ProMP) [15], Dynamical Regressive Models [16], stable modeling
for dynamical systems [17], Gaussian Mixture Model (GMM) and
Task-Parameterized GMM (TP-GMM) [18], and Kernelized Movement
Primitive (KMP) [19]. Many of these approaches treat training data as
2 
Euclidean vectors arranged as time series. Alternative methods learn
quaternion trajectories [20,21], but often do so without enforcing the
unit norm constraint, leading to improper quaternions that require
additional renormalization steps.

Learning of manipulation skills subject to specific geometric con-
straints has been investigated by several works in the literature to some
degree. Prominent examples of such skills are orientations, impedance,
and manipulability matrices. We examine the state-of-the-art for each
category in the following paragraphs.

Orientation: UQs are powerful for representing orientations, over-
coming the limitations of others like Euler angles [22]. Some ap-
proaches extend DMPs to encode UQs. For example, the DMP formula-
tion in [8] uses the vector part of the quaternion product to estimate
the error between the current and target orientations, which can lead to
slow convergence, to the goal, due to incomplete consideration of geo-
metric constraints. Other methods [9,13] use geometrically consistent
rotation error by estimating the angular velocity needed to rotate the
robot tip, from its current to the goal orientation, in one unit of time.
While these approaches learn point-to-point orientation trajectories, our
focus is on periodic profiles.

Although DMPs have several favorable properties and are widely
applied [14], there are alternative LfD approaches for learning point-
to-point UQ trajectories. For instance, Kim et al. [23] modeled UQ
displacements using GMM. This probabilistic encoding is combined
with Riemannian metrics in [24] for learning point-to-point orientation
trajectories with TP-GMM. In [19], KMP is trained in the tangent space
of UQs, where periodic orientation trajectories were tested. Neverthe-
less, the orientation-KMP does not solve this problem for periodic-DMP
formulation, since it is an alternative approach. Many existing robotic
systems are based on DMPs due to the popularity of their formulation,
therefore there is still a significant functionality gap for the existing
DMP-based systems and for future applications of the DMP approach.
Furthermore, the computation time of KMPs is higher and they need
a separate approach to encode the distribution. Finally, the approach
in [19] works on periodic UQ trajectories, while our approach applies
to other manifolds.

SPD profiles: SPD matrices are useful in storing data in various ap-
plications, e.g., brain–computer interfaces [25], transfer learning [26],
and robotics [27]. Recently, Abu-Dakka and Kyrki [10] reformulated
discrete (point-to-point) DMPs to learn SPD profiles directly in the
𝑚
++ manifold, allowing adaptation to a new SPD-goal-point. Alterna-

tively to DMP, the method in [28] used a tensor-based formulation
of GMM and Gaussian Mixture Regression (GMR) on the SPD man-
ifold to learn and reproduce skills involving SPD matrices without
the need of extra pre-/post-processing of data. To enable adaptation
to new start-/goal-points, Zeestraten et al. [24] extended TP-GMM
to the 3 manifold, embedding orientation data, which and can be
straightforwardly extended to 𝑚

++.
Physical interaction tasks often require adjusting the stiffness matrix

of the robot EEF [5,29,30]. The stiffness matrix is an SPD matrix,
and several works in the literature have investigated learning it. For
example, Kronander et al. [30] used GMM in Euclidean space to learn
the vectorization of the Cholesky factor from the decomposition of full
stiffness matrices. This approach relies on physical wiggling of the robot
EEF to demonstrate the stiffness skill, which is not always feasible
when in contact with the environment. A possible solution is teleop-
eration with various impedance command interfaces to demonstrate
the desired stiffness [5]. Nevertheless, to make teleoperation intuitive
and immersive for the human teacher, the setup typically becomes
complex and expensive, which is not always a viable option. Among the
presented approaches, only [5] considers periodic stiffness behaviors,
but it only encodes diagonal stiffness matrices with independent DMPs.

State-to-Action Collaborative Model: While some tasks in a shared
human–robot workspace require robots to avoid physical collisions
with humans, other collaborative tasks involve direct physical inter-
actions and coordinated variable stiffness skills [4,31]. This allows
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for more adaptive and responsive interactions. Existing methods often
use Electromyography (EMG) [4,32] or Electrical Impedance Tomog-
raphy (EIT) [33] to infer human intent, which can be complex and
intrusive. Unlike these approaches, our state-to-action collaborative
model eliminates the need for such measurements by directly using
task state (e.g., position and velocity) to determine appropriate actions.
Furthermore, while previous approaches [4,32] could implicitly learn
some collaborative actions in a semi-black-box fashion, they offered
no explicit formalization of periodic collaboration in terms of the
collaborative states and actions.

The specific advantages of our state-to-action approach include (i)
improved safety and efficiency, (ii) simplicity and practicality, and (iii)
versatility. By dynamically adjusting stiffness based on task-specific
states, the robot can more effectively manage physical interactions
with humans, improving adaptability and coordination. Our approach
simplifies the setup by removing the need for additional sensors and
measurements, making it easier to implement and more practical for
real-world applications. Additionally, the state-to-action model is gen-
eralizable to various collaborative tasks beyond sawing, providing a
framework for encoding and reproducing a wide range of periodic
behaviors in human–robot collaboration. It is also important to note
that none of the existing collaborative sawing approaches [4,32,33]
enabled encoding of rotated stiffness matrices.

Presented approaches exploit different LfD techniques (DMPs and
others) for learning point-to-point orientation, stiffness, and manip-
ulability trajectories. To the best of our knowledge, this is the first
work addressing the learning of periodic DMPs for encoding general
rhythmic manipulation skills with specific geometric constraints. A
clear and separate formulation for periodic Riemannian DMPs is valu-
able for communities familiar with periodic DMPs and those who use
them exclusively, and may not be so familiar with point-to-point ones.
Additionally, the different applications of periodic DMPs compared
to point-to-point ones require different types of tasks and problems
for experimental analysis. Thus, this paper contributes a periodic for-
mulation of Riemannian DMPs and the accompanying experimental
analysis in periodic tasks. Another contribution is the state-to-action
collaborative model to help encode periodic human–robot interaction
tasks, demonstrated in collaborative sawing.

3. Background

Here, we briefly go over the formulation of the classical periodic
DMP. Moreover, we give basic notations and operations for quaternion,
rotation matrix, and SPD matrix that are used throughout the paper.

3.1. Classical periodic DMP formulation

Periodic DMPs encode repetitive movements by a system of non-
linear differential equations that convergences to a specified rhythmic
cycle [1]. For a single DoF, the DMP is

�̇� = 𝛺
(

𝛼𝑧
(

𝛽𝑧 (𝑔 − 𝑦) − 𝑧
)

+ 𝑓 (𝜙)
)

, (1)

�̇� = 𝛺𝑧, (2)

�̇� = 𝛺, (3)

where 𝑦 is a variable that is being encoded (often a periodic position),
𝑧 is an auxiliary state variable, and the derivative of 𝑦, namely �̇�,
is 𝑧 scaled by the frequency of the movement 𝛺. The 𝜙 defines the
state of the movement and its change over time is determined by the
frequency. The phase-variable is obtained by integrating (3). This is
a simple and effective choice for a canonical system to learn limit
cycle attractors. The phase oscillator ensures that the phase variable
𝜙 progresses smoothly and consistently over time, guiding the system
along the desired limit cycle trajectory.

In periodic DMPs there is no specific goal 𝑔 due to its repetitive

nature, thus in the periodic case 𝑔 can be either set to zero, or to

3 
the average value of the demonstrated trajectory. 𝛼𝑧 and 𝛽𝑧 are con-
trol gains of the second-order basis. Since the basis itself does not
encode the shape, a phase-dependent function 𝑓 (𝜙) is added to learn
an arbitrary shape. The forcing term function 𝑓 (𝜙) contains 𝑁 weights
𝐰 = [𝑤1,… , 𝑤𝑁 ] that determine the local shape of the trajectory and
re uniformly distributed over the entire phase of the cycle. Each
eight has one Gaussian kernel 𝛹 linked to it that determines the

ocality. Weights are adjusted during the learning stage to encode the
esired shape of the trajectory. The shape function is defined as

𝑓 (𝜙) =
∑𝑁

𝑖=1 𝛹𝑖(𝜙)𝑤𝑖
∑𝑁

𝑖=1 𝛹𝑖(𝜙)
𝑟, (4)

𝛹𝑖(𝜙) = exp
(

ℎ
(

cos
(

𝜙 − 𝑐𝑖
)

− 1
))

, (5)

where 𝑟 is the amplitude modulator of the periodic signal [1,34] (as a
default value 𝑟 = 1).

Periodic and discrete DMPs differ in a way that the frequency of
trajectory execution replaces the time constant related to trajectory
duration [1,12]. The periodic DMPs also has an additional constraint
where the initial and final phases (𝜙 = 0 and 𝜙 = 2𝜋) must coincide
to guarantee smooth transitions during the repetitions. The frequency
and phase of periodic DMPs can be controlled by an adaptive oscillator,
which estimates them [34,35].

To derive the weights of the DMP in (4) that encode a particular
demonstration, one can minimize the difference between the DMP
shape and the demonstrated shape. Locally Weighted Regression (LWR)
based on recursive least squares [36] is commonly applied for this
purpose [1,5,34], which we also used in this paper.

3.2. Riemannian manifold

A manifold is a topological space that resembles an Euclidean space
in the vicinity of a certain point, i.e., properties of the Euclidean space
apply locally. If this manifold is smooth, differentiable, and equipped
with a Riemannian metric then it is called a Riemannian manifold .
We can compute a tangent space 𝜞 for every point 𝜞 on a manifold
, i.e., 𝜞 ∈ ,. The key advantage is that we can employ classical
arithmetic tools since the metric in the tangent space is flat. Thus,
typical Euclidean operations can be performed in the tangent space,
and then the result can be projected back to the manifold.

To project the data back and forth between  and 𝜞, we can
employ the following two mapping systems.
Exponential map projects data from the 𝜞 to the :

Exp𝜞 (⋅) ∶ 𝜞 ↦ , (6)

Logarithmic map projects data from the  to the 𝜞:

Log𝜞 (⋅) ∶  ↦ 𝜞. (7)

These two maps depend on a specific manifold, thus in the following
sections, we provide the expressions for UQ, rotation matrix, and SPD
matrix.
The Riemannian geometric mean: Given a set of points

{

𝜞 𝑖
}𝑛
𝑖=1 ∈

 and a geodesic distance d
(

𝜞 𝑗 ,𝜞 𝑖
)

between two points in , the
Fréchet mean [37] is estimated by minimizing the sum of squared
geodesic distances

𝜞 = arg min
𝜞∈

𝑛
∑

𝑖=1
d2

(

𝜞 ,𝜞 𝑖
)

, (8)

This estimation can be efficiently computed iteratively by following
Algorithm 1 [37].
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Algorithm 1 Intrinsic mean

Initialization: 𝜞 = 𝜞 1

1: while ‖𝜸‖ < 𝛿 do
2: 𝜸 = 1

𝑛
∑𝑛

𝑖=1 Log𝜞
(

𝜞 𝑖
)

3: 𝜞 = Exp𝜞 (𝜖𝜸) ; 𝜖 ≤ 1
4: end while

3.3. The unit 𝑚-sphere manifold 𝑚

The manifold 𝑚 is a topological space embedded in 𝑚+1 Cartesian
space, where 𝑚 =

{

𝐐 ∈ 𝑚+1 ∶ ‖𝐐‖ = 1
}

. For 𝐐1,𝐐2 ∈ 𝑚 and 𝐪 ∈
𝐐2

𝑚 then, the logarithmic and exponential maps (6) and (7) are
defined as in [38]

𝐪 = Log𝑞𝐐2

(

𝐐1
)

=
𝐐1 −

(

𝐐2
⊤𝐐1

)

𝐐2
‖

‖

‖

𝐐1 −
(

𝐐2
⊤𝐐1

)

𝐐2
‖

‖

‖

d
(

𝐐2,𝐐1
)

, (9)

𝐐1 = Exp𝑞
𝐐2

(𝐪) = 𝐐2 cos (‖𝐪‖) +
𝐪

‖𝐪‖
sin (‖𝐪‖) , (10)

here d
(

𝐐2,𝐐1
)

≡ arccos
(

𝐐1
⊤𝐐2

)

defines the geodesic distance be-
ween 𝐐1 and 𝐐2.

In robotics, 𝑚 are used to represent directions and orientations.
or example, the robot’s EEF orientation, in 3D-space, can be described
sing the space of unit quaternions 3. A quaternion is an element
f the quaternion algebra H, where H is isomorph to 4. A UQ is a
uaternion with a unit norm, where 𝐐 and −𝐐 represent the same
otation. Its norm is obtained by ‖𝐐‖ =

√

𝜈2 + 𝑢2𝑥 + 𝑢2𝑦 + 𝑢2𝑧 while its
conjugate is formulated as �̄� = 𝜈+(−𝐮). The multiplications of 𝐐1,𝐐2 ∈
3 is defined as

1 ∗ 𝐐2 =
(

𝜈1𝜈2 − 𝐮1⊤𝐮2
)

+
(

𝜈1𝐮2 + 𝜈2𝐮1 + 𝐮1 × 𝐮2
)

.

It is worth mentioning that UQs are often computed numerically
rom rotation matrices, for instance when robot’s EEF poses are col-
ected via kinesthetic teaching. In these cases, it may happen that the
lgorithm returns a quaternion at step 𝑡 and an antipodal at 𝑡 + 1. To
nsure that the UQs demonstrated trajectory is discontinuity-free, we
an check that the dot product between each adjacent UQ is greater
han zero. Otherwise, we flip 𝐐𝑡+1 such as 𝐐𝑡+1 = −𝐐𝑡+1.

.4. The special orthogonal group  (𝑚)

 (𝑚) is a subgroup of the orthogonal group (𝑚) where its de-
erminant is 1.  (𝑚) represents rotations around an origin in 𝑚-
imensional space. Let us define 𝐑1,𝐑2 ∈  (𝑚) and 𝐯 ∈ 𝐑1

 (𝑚),
then the logarithmic and exponential maps (6) and (7) are defined as
in [38]

[𝝎]× = Log𝑅𝐑1

(

𝐑2
)

= logm
(

𝐑1
⊤𝐑2

)

, (11)

𝐑2 = Exp𝑅
𝐑1

(

[𝝎]×
)

= expm
(

[𝝎]×
)

𝐑1. (12)

where [𝝎]× is a skew symmetric matrix
(

[𝝎]⊤× = −[𝝎]×
)

built from the
angular velocity 𝝎. The function to pass from [𝝎]× to 𝝎 is [𝝎]∨×.

In robotics,  (3) is used to describe the robot’s EEF orientation,
in 3D-space, by means of rotation matrices 𝐑. An 𝐑 ∈ R3×3 has 9 real
parameters and belongs to the special orthogonal group (3). Thus, it
has the following properties: (i) 𝐑−1 = 𝐑⊤, (ii) 𝐑⊤𝐑 = 𝐈, where 𝐈 is the
identity, and (iii) det(𝐑) = 1.

3.5. SPD matrix

In mathematics, a real 𝑚×𝑚 matrix 𝐒 is Symmetric Positive Definite
if it is symmetric (i.e., 𝐒 = 𝐒⊤) and 𝐯⊤𝐒𝐯 > 0, ∀ nonzero vectors 𝐯. The
space of 𝑚×𝑚 SPD matrices is known as SPD manifold 𝑚

++. Its tangent
𝑚
space is the space of 𝑚 × 𝑚 symmetric matrices 𝐒𝐲𝐦 .

4 
In order to map data from 𝑚
++ to 𝐒𝑚

++ and vice versa, we need to
redefine (6) and (7). For 𝐒,𝐀 ∈ 𝑚

++ and 𝐁 ∈ 𝐒𝑚
++ ⊂ 𝐒𝐲𝐦𝑚, then [39]

Exp+
𝐒 (𝐁) = 𝐒

1
2 expm

(

𝐒−
1
2 𝐁𝐒−

1
2
)

𝐒
1
2 , (13)

og+𝐒 (𝐀) = 𝐒
1
2 logm

(

𝐒−
1
2 𝐀𝐒−

1
2
)

𝐒
1
2 , (14)

where expm(⋅) and logm(⋅) are the matrix exponential and logarithm,
espectively. Note that previous expressions for logarithmic and ex-
onential maps correspond to the affine-invariant distance on SPD
anifold

(𝐒,𝐀) =
‖

‖

‖

‖

logm
(

𝐒−
1
2 𝐀𝐒−

1
2
)

‖

‖

‖

‖F
. (15)

To reduce data space dimensionality, we vectorize the resulting
symmetric matrix Log+𝐒 (𝐀) such that 𝜻 = vec(Log+𝐒 (𝐀)), where vec(⋅)
is a function that transforms symmetric matrices into vectors using
Mandel’s notation.

3.6. Double diagonalization design

The double diagonalization design [40] is a method used to compute
the damping matrix 𝐃 from the stiffness matrix 𝐊 to ensure dynamic
stability. It involves two main steps:

1. Diagonalization of the Stiffness Matrix: The stiffness matrix 𝐊
is diagonalized as 𝐊 = 𝐕𝜦𝐾𝐕⊤, where 𝐕 is the matrix of
eigenvectors and 𝜦𝐾 is the diagonal matrix of eigenvalues.

2. Construction of the Damping Matrix: The damping matrix 𝐃
is then constructed as 𝐃 = 𝐕𝜦𝐷𝐕⊤, where 𝜦𝐷 is a diagonal
matrix of eigenvalues with elements 𝜆𝐷 = 2

√

𝜆𝐾 , and 𝜆𝐾 are
the eigenvalues of 𝐊. This ensures that the system has critical
damping, leading to a stable dynamic response.

4. Proposed approach

Traditionally, one DMP for each DoF can be used to encode mul-
tidimensional periodic variables, which are then synchronized by a
common phase. This is applicable for variables such as Cartesian or
joint positions, forces, joint torques, etc, since every DoF of a certain
variable can be encoded and integrated independently to still reproduce
the desired combined behavior of the robot. However, the elements of
orientations or SPD-based variables are interdependent and subject to
additional constraints (i.e., the orthogonality in the case of orientations,
and definiteness and positiveness in the case of SPD data). Thus,
the traditional approach cannot successfully encode these variables,
without pre- and/or post-processing the data.

To be able to learn periodic orientation movements and SPD data,
we propose the Riemannian periodic DMP (R-pDMP). Let us consider a
periodic demonstration of length 𝑇 as the trajectory 𝑑𝑒𝑚𝑜 = {𝜞 𝑡}𝑇𝑡=1,
where 𝜞 𝑡 contains the data of the trajectory (e.g., UQs, rotation matri-
ces, stiffness matrices, etc.). In this case, we assume that the 𝜞 𝑡 are of
rhythmic nature and are collected from a single demonstration in order
to be used to train a periodic DMP.

4.1. Riemannian periodic DMP (R-pDMP)

Approaches presented in this section exploit operations on Rie-
mannian manifolds, like distance and interpolation, to modify the
structure of the DMP and satisfy the geometric constraints during
learning and generation. We first present a general DMP formulation to
encode periodic data from an arbitrary Riemannian manifold and then
particularize the general approach to quaternions as well as rotation
and SPD matrices. In order to encode a Riemannian trajectory, we
consider the expression of a general second-order system evolving on a
manifold [41]

∇ 𝐳 = 𝜴𝐧 𝐳,𝜞 , 𝜙 , (16)
𝐳 ( )
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�̇� = 𝜴𝐳, (17)

where �̇� represents the time derivative of 𝜞 , specifically the Rieman-
ian logarithm of the change in 𝜞 over a small time step 𝛿𝑡, such that;
̇ = Log𝜞 (𝑡)(𝜞 (𝑡+ 𝛿𝑡))∕𝛿𝑡. 𝜴 is a frequency scaling matrix similar to the

used in (1) and (2). The dimension of 𝜴 depends on the specific man-
fold. ∇𝐳𝐳 is the covariant derivative, which can be defined from the total
erivative �̇� using parallel transport [10,41]. However, computing the
arallel transport is, in general, time-consuming. Assuming that con-
ecutive points on the manifold are sufficiently close (i.e., the geodesic
etween them is almost a straight line), the covariant derivative is
ell approximated by manifold-valued finite differences [42,43]. This
pproximation greatly simplifies the computation while introducing
egligible errors, as shown in Section 5. Therefore, in this work, we
ssume that the covariant derivative in (16) can be approximated as:

𝐳𝐳 = 𝜴𝐧 (𝐳,𝜞 , 𝜙) ≈ �̇�, (18)

where 𝐧(⋅) may consists of several additive contributions. In this paper,
e assume that

(𝐳,𝜞 , 𝜙) = 𝛼𝑧
(

𝛽𝑧 Log𝜞 () − 𝐳
)

+ 𝐟 (𝜙), (19)

here  ∈  is the goal point, Log𝜞 (⋅) is defined in (7), and 𝛼𝑧 and
𝑧 are positive gains. The term −𝛼𝑧𝐳 is a dissipative force (playing the
ole of damping in a mechanical system). The term 𝛼𝑧(𝛽𝑧 Log𝜞 ()) is a
onservative force, i.e., it is the negative gradient of a potential. This is
asy to show recalling that − 1

2∇𝜞 d2 (𝜞 ,) = Log𝜞 () [41], where d(⋅, ⋅)
is the Riemannian distance. The term 𝐟 (𝜙) is a phase-dependent forcing
term and it is learned from the demonstration as discussed later in this
section.

As a result, we can reformulate the dynamic system in (1) and (2)
as

�̇� = 𝜴
(

𝛼𝑧
(

𝛽𝑧 Log𝜞 () − 𝐳
)

+ 𝐟 (𝜙)
)

, (20)

�̇� = 𝜴𝐳. (21)

The phase variable 𝜙 is used to track the progress of the movement,
and it is defined as in (3), while the spatial aspects of the motion are
captured by (20) and (21). In R-pDMP, the phase-dependent forcing
term 𝐟 (𝜙) is defined as:

𝐟 (𝜙) = 𝐀𝑟

∑𝑁
𝑖=1 𝐰𝑖𝛹𝑖(𝜙)
∑𝑁

𝑖=1 𝛹𝑖(𝜙)
, (22)

where weights 𝐰𝑖 determine the trajectory shape and are computed
using LWR based on the recursive least-squares method. 𝐀𝑟 is the 3 × 3
iagonal matrix containing amplitude modulators.

The integration of (20) is done using the Euler–Riemann stepping
method [41] as

𝜞 (𝑡 + 𝛿𝑡) = Exp𝜞 (𝑡) (𝛿𝑡𝜴 𝐳) , (23)

where Exp𝜞 (⋅) is defined in (6) and 𝛿𝑡 is the sampling time. As already
entioned, the derivatives of 𝜞 ∈  are defined using manifold-valued

inite differences [42], which read
̇ = Log𝜞 (𝑡) (𝜞 (𝑡 + 𝛿𝑡)) ∕𝛿𝑡,

�̇� = 𝜴−1�̈�

= 𝜴−1 (Log𝜞 (𝑡) (𝜞 (𝑡 + 𝛿𝑡)) +Log𝜞 (𝑡) (𝜞 (𝑡 − 𝛿𝑡))
)

∕𝛿𝑡2.

Previous steps are summarized in Alg. 2.
In case the manifold is a Lie group, the expression of a general

second-order system on a Lie group becomes [41]

�̇� = 𝜴𝐧 (𝐳,𝜞 , 𝜙) , (24)

�̇� = 𝜴𝐦 (𝐳,𝜞 ) , (25)

from which is straightforward to derive that

�̇� = 𝜴
(

𝛼
(

𝛽 log
(

𝜞 ∗ (𝜞 )−1
)

− 𝐳
)

+ 𝐟 (𝜙)
)

, (26)
𝑧 𝑧 𝑔

5 
Algorithm 2 Riemannian periodic DMP

Require: Trajectory {𝜞 (𝑡)}𝑇𝑡=1, gains 𝛼𝑧, 𝛽𝑧, frequency scaling 𝜴,
number of weights 𝑁 , sampling time 𝛿𝑡

1: Initialize goal  ← compute_mean
(

{𝜞 (𝑡)}𝑇𝑡=1
)

2: Initialize weights 𝒘 ← 𝟎𝑁
3: for 𝑡 ∈ {1,… , 𝑇 } do
4: Log𝜞 (𝑡)() ← logarithmic_map(𝜞 (𝑡),)
5: 𝒘 ← 𝒘 + update_weights(Log𝜞 (𝑡)(), 𝑁)
6: end for
7: Initialize generated trajectory

{

�̂� (1)
}

← []
8: for 𝑡 ∈ {1,… , 𝑇 } do
9: �̇�(𝑡) ← pdmp_step(𝛼𝑧, 𝛽𝑧,Log𝜞 (𝑡)(),𝜴,𝒘)

10: 𝒛(𝑡) ← integrate(�̇�(𝑡), 𝛿𝑡)
11:

{

�̂� (𝑡)
}

← exponential_map (, 𝒛(𝑡))
2: end for
3: return

{

�̂� (𝑡)
}𝑇
𝑡=1

�̇� = 𝜴𝐦 (𝐳,𝜞 ) . (27)

Eq. (26) is formally the same as (20), provided we use the logarithmic
map Log𝜞 (⋅) = log

(

𝜞 𝑔 ∗ (𝜞 )−1
)

defined using Lie group theory. The
term 𝐦(⋅) in (27) is the inverse left translation, which maps a tangent
vector from the Lie algebra to the tangent space at 𝜞 and depends on
the specific Lie group. The expressions of 𝐦(⋅) and log𝜞 (⋅) for UQs and
rotation matrices, two Lie groups commonly used in robotics, are given
in [9].

As a final remark, we used the Riemannian formulation (20)–(21)
in the rest of the paper. However, for the sake of completeness, we also
have provided a formulation for Lie groups in (26)–(27).

4.1.1. Quaternion-based periodic DMP (Quat-pDMP)
Inspired by the work on discrete quaternion DMPs [9], we encode

a UQ trajectory by reformulating the dynamic system in (20) and (21)
as

�̇� = 𝜴
(

𝛼𝑧
(

𝛽𝑧 Log𝑞𝐐
(

𝐐𝑔
)

− 𝜼
)

+ 𝐟 (𝜙)
)

, (28)

�̇� = 𝜴𝜼. (29)

The UQ 𝐐𝑔 ∈ 3 in (28) is the goal orientation, which can be the
identity orientation 1 + [0 0 0]⊤ or the mean of the demonstration
uaternion profile. The estimation of the mean can be done by using
8). 𝜴 is the 3 × 3 diagonal matrix containing frequencies. We estimate
he weights 𝐰𝑖 in (22) as follows:
∑𝑁

𝑖=1 𝐰𝑖𝛹𝑖(𝜙)
∑𝑁

𝑖=1 𝛹𝑖(𝜙)
=

𝐀−1
𝑟

(

𝜴−1�̇� −
(

𝛼𝑧
(

𝛽𝑧 Log𝑞𝐐
(

𝐐𝑔
)

)

− 𝜼
)

− 𝝎
)

,

(30)

We perform the integration of (29) by

𝐐(𝑡 + 𝛿𝑡) = Exp𝑞
𝐐(𝑡) (𝛿𝑡𝜴𝜼(𝑡)) (31)

where Exp𝑞
𝐪(𝑡) (⋅) is defined in (10).

4.1.2. Rotation matrix-based periodic DMP (Rot-pDMP)
Similar to quaternions, in order to encode and adapt rotation matrix

𝐑(𝑡) ∈ R3×3 trajectories while ensuring orthonormality constraints, we
propose to reformulate (20) and (21) as

�̇� = 𝜴
(

𝛼𝑧
(

𝛽𝑧
[

Log𝑅𝐑
(

𝐑𝑔
)]∨

× − 𝜼
)

+ 𝐟 (𝜙)
)

, (32)

�̇� = 𝜴[𝜼]×. (33)

The nonlinear forcing term 𝐟 (𝜙) is defined as in (22). The weights

defining the generated rotation profile are estimated as in (30) by
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Fig. 2. Reproduction of a rhythmic motion using Quat-pDMP. Top: shows the quater-
nion components. Middle: shows the angular velocity components. Bottom: shows the
angular acceleration components. Dashed black lines represent the synthetic periodic
orientation trajectory, while solid colored lines represent the encoded trajectory using
Quat-pDMP. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

replacing Log𝑞𝐐
(

𝐐𝑔
)

with
[

Log𝑅𝐑
(

𝐑𝑔
)]∨

×. Finally, (33) is integrated as

𝐑(𝑡 + 𝛿𝑡) = Exp𝑅
𝐑(𝑡)

(

𝛿𝑡𝜴 [𝜼(𝑡)]×
)

, (34)

where Exp𝑅
𝐑(𝑡) (⋅) is defined in (12).

4.1.3. SPD-based periodic DMP (SPD-pDMP)
Inspired by the work on discrete SPD DMPs [10], we encode a

periodic SPD matrix trajectory by reformulating the dynamic system
in (20) and (21) as

�̇� = 𝜴
(

𝛼𝑧
(

𝛽𝑧vec
(

Log+𝐘(𝐆)
)

− 𝐳
)

+ 𝐟 (𝜙)
)

, (35)

�̇� = vec
(

�̇�
)

= 𝜴 𝐳. (36)

The operator vec(⋅) represents Mandel’s notation for vectorizing the
input symmetric matrix. Here, �̇� = Log𝐘(𝑡) (𝐘(𝑡 + 𝛿𝑡)) ∕𝛿𝑡 ∈ 𝐒𝐲𝐦𝑚 is the
1st-time derivative of 𝐘 which belongs to the space of symmetric
matrices. The goal 𝐆 ∈ 𝑚

++, in (35), can be computed as the average
of the demonstrated SPD matrix profile using Cholesky decomposition
or the more accurate way using (8). 𝜴 is the 𝑚 × 𝑚 diagonal matrix
containing frequencies, while nonlinear forcing term 𝐟 (𝝓) is defined as
in (22). We estimate the weights by
∑𝑁

𝑖=1 𝐰𝑖𝛹𝑖(𝜙)
∑𝑁

𝑖=1 𝛹𝑖(𝜙)
=

𝐀−1
𝑟

(

𝜴−1�̇� −
(

𝛼𝑧
(

𝛽𝑧vec
(

Log+𝐘(𝐆)
)

− 𝐳
)))

,

where 𝐀𝑟 is the 𝑚 × 𝑚 diagonal matrix of amplitude modulators. The
integration of (36) is done as

𝐘(𝑡 + 𝛿𝑡) = Exp+
𝐘(𝑡)

(

𝛿𝑡𝜴 vec−1 (𝐳(𝑡))
)

, (37)

where vec−1(⋅) is used to transform a vector (Mandel’s notation) into a
symmetric matrix.

5. Simulation results

In this section, we validate the performance of the proposed ap-
proaches by performing several simulations:

• periodic quaternion-based DMP (Quat-pDMP),
6 
Fig. 3. Comparison between Quat-pDMP and baseline (classical PDMP + normaliza-
tion). Top: Compares the distance between the demonstration and a reproduction using
Quat-pDMP and the baseline. Bottom: Illustrates both norms resulting from Quat-pDMP
and the baseline without normalization. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

• benchmark Quat-pDMP against two baselines: (emphi) classical
pDMP + normalization and (emphii) with a trajectory from [13],

• periodic rotation matrix-based DMP (Rot-pDMP),
• periodic SPD-based DMP (SPD-pDMP),
• comparison between SPD-pDMP and a baseline.

5.1. Unit quaternion

Fig. 2 shows the simulation results obtained using Quat-pDMP to
learn and reproduce a UQ trajectory. We generated a synthetic periodic
orientation trajectory (dashed lines) that Quat-pDMP was able to suc-
cessfully encode with UQs (solid lines). Fig. 2 (top) shows the individual
elements of the quaternion trajectory, while the last two depict angular
velocity (estimated from �̇�) and acceleration, respectively. The error
between the demonstrated orientation motion and the encoded motion
is negligible. In this test, we set 𝛼𝑧 = 48, 𝛽𝑧 = 𝛼𝑧∕4, 𝑁 = 20, 𝑟 = 1 and
𝐀𝑟 = 𝐈.

In order to correctly represent the orientation, the norm of the
quaternions must be 1. We performed a simulation to evaluate the how
well the proposed approaches maintain this condition. Fig. 3 shows the
simulation results obtained using Quat-pDMP and a baseline. Let us
first present results for Quat-pDMP. Using Quat-pDMP the norm has
a negligible deviation from the expected value 1. In LfD, accurately
reproducing the demonstration(s) is often needed. When dealing with
Riemannian data, one has to further ensure that the learning algorithm
does not introduce distortions to preserve the geometry. The mean error
introduced by Quat-pDMP, computed over a single period, is 0.008
(max error 0.051). For comparison, we also computed the covariant
derivative using the parallel transport, which results in a mean error
of 0.007 (max error 0.047). In view of these results, we claim that
Quat-pDMP can correctly encode periodic orientation trajectories and
that approximating the covariant derivative using finite differences
introduces negligible errors. It is worth mentioning that, when dealing
with periodic motions, the phase variable can be used to reset the state
of the integrator after 2𝜋, helping to keep the error bounded.

5.1.1. Comparison to classical pDMP + normalization
We compare the results from the previous Section 5.1 to a base-

line (Fig. 3). As baseline approach, we encode the quaternion trajec-
tory using 4 classical periodic DMP described in Section 3.1. In other
words, we consider each component of the UQ as an independent DoF
synchronized through a common phase.

The baseline fails to generate a UQ during the execution of the
periodic trajectory (Fig. 3-bottom). In this case, the resulting orientation
is incorrect and can generate an unexpected behavior if it is used to
control a robot. To alleviate this issue, an extra normalization step is
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Fig. 4. Results obtained from the concatenation of the UQ trajectory tested in [13]
and its mirror. Top: Four cycles of UQ elements are generated using our Quat-pDMP
(colored solid lines). Dashed black lines are the demonstrated cycle repeated 4 times.
Bottom: The distance (error) between 10 cycles of the trajectory and the demonstration
one. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

needed before sending the desired orientation to the robot. Differently,
the resulting quaternions from the proposed approach are already with
a unit norm and no further post-processing is needed before sending
it to the robot. Regarding the reproduction accuracy, the mean error
introduced by the baseline, computed in the second period of the
trajectory to ensure the convergence of the motion to the limit cycle,
was 0.0091. Therefore, the baseline introduces a distortion that is 8.8%
larger than Quat-pDMP.

5.1.2. Comparison with a trajectory from [13]
Here, we used the same quaternion trajectory 𝐐 tested by Koutras

et al. [13]1 for discrete DMP. The trajectory 𝐐 is not periodic since it
has different initial and final UQs. We make a periodic trajectory 𝐐′ by
mirroring 𝐐 and concatenating the mirrored trajectory with the original
one as 𝐐′ = 𝐐 || mirror(𝐐), where || is a concatenation operator. We
then fed the periodic trajectory 𝐐′ to our Quat-pDMP. Fig. 4-top shows
the reproduction of 4 cycles of the trajectory, while the bottom shows
the error between 10 cycles and the demonstration cycle. The figure
shows that the error is quite small and does not increase over cycles.
Moreover, this simulation provides evidence that our formulation does
not suffer the oscillation mentioned in [13].

5.2. Rotation matrix

Since rotation matrix is still used in various robot applications to
represent an orientation, we show that our method can encode period-
ically changing rotation matrices. Fig. 5 illustrates the performance of
the proposed Rot-pDMP in encoding and generating periodic rotation
matrices trajectory. The bottom graph shows the angular velocity of
the profile. We can see that the demonstrated periodic trajectory (9
elements of the encoded rotation matrix) is accurately reproduced. In
addition, the angular velocity is accurately encoded too.

5.3. SPD profile

In this simulation, we use our SPD-pDMP formulations to learn a
variable SPD profile in 2D. We use the B-Letter motion from the 2D-
Letters handwriting dataset [27] that contains 10 Cartesian trajectories
in 2D. We use these trajectories to fit a GMM model and then use GMR
to retrieve a covariance matrix 𝜮𝑡 ∈ 2

++ for each time step 𝑡. The
covariance matrix profile generated with GMR is not periodic since it

1 Authors would like to thank Leonidas Koutras for providing us the unit
quaternion trajectory used in [13].
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Fig. 5. Top: Reproduction of a rhythmic motion using Rot-pDMP (3D-frame represen-
tation of the rotation matrices). Bottom: Angular velocity (colored solid lines). Dashed
black lines correspond to the original motion. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

has different initial and final points. To make it periodic, we simply
mirror the covariance profile obtaining that 𝜮1 = 𝜮𝑇 , where 𝑇 is the
last point. Finally, to cover a larger part of the SPD manifold, we scale
the obtained covariance by a factor 200. The results of this procedure
are shown in Fig. 6. Intuitively, we start at the top (blue ellipse) by
drawing the ‘‘B-Letter’’ (green ellipses), and after drawing a complete
‘‘B’’, we reverse direction to end up at the top again, thus making one
full period. The generated periodic SPD profile becomes the training
data for our DMP-based approaches.

The left plots in Fig. 6 show demonstrated and learned with
SPD-pDMP profiles. The right plots in Fig. 6 compare the learning
performance of SPD-pDMP and a baseline approach that uses Cholesky
decomposition to vectorize the data. More in detail, the baseline
approach uses the classical periodic DMP formulation described in
Section 3.1. In order to enforce symmetry, positiveness, and definite-
ness of the generated profiles we exploit Cholesky decomposition. In
particular, we pre-process the demonstration and compute the Cholesky
decomposition at each time step. Recall that, given an SPD matrix
𝐒 ∈ 𝑚

++, the Cholesky decomposition returns a lower-triangular matrix
ℒ , such that ℒℒℒ⊤ℒℒℒ = 𝐒 , which can be vectorized to reproduce the
Cholesky vector 𝐥 with dimension 𝑚(𝑚+1)∕2. In our case, we decompose
each of the 𝜮𝑡 ∈ 2

++ matrices and then vectorize the resulting lower-
triangular matrices to obtain a 3D trajectory 𝐥𝑡 ∈ R3. The obtained
trajectory is learned using 3 classical periodic DMPs. To reproduce
the profile, we first predict the next 3D vector 𝐥𝑝𝑟𝑒𝑑 , reshape it into a
lower-triangular matrix ℒℒℒ 𝑝𝑟𝑒𝑑 , and then compute the SPD matrix as
𝜮𝑐ℎ𝑜𝑙 =ℒℒℒ 𝑝𝑟𝑒𝑑

⊤ℒℒℒ 𝑝𝑟𝑒𝑑 .
Fig. 6 (right) shows the accuracy of SPD-pDMP and the baseline. All

the approaches fulfill the geometric constraints. Moreover, we can see
the ability of the 2 algorithms to learn smoothly the stiffness data from
the first cycle. The distance in Fig. 6 (bottom-right), computed by means
of the affine-invariant distance (15) between generated and demon-
strated profiles, shows that the 2 methods have similar accuracy (the
mean distance is 0.008 and the max distance is 0.03). For comparison,
we also computed the covariant derivative using the parallel transport,
which results in a mean distance of 0.006 (max distance 0.018). In
view of these results, we claim that SPD-pDMP can correctly encode
SPD trajectories and that approximating the covariant derivative using
finite differences introduces negligible errors.

5.4. Broader implications for robotic manipulation

The results from our simulations demonstrate several important
implications for the field of robot manipulation skills learning:
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Fig. 6. Results obtained for the B-Letter covariance data. Top-Left : Demonstrated (gray ellipses) and learned with SPD-pDMP (green ellipses) covariance matrices are plotted along
the Cartesian trajectory (black solid line). The blue ellipses represent the initial/final covariance. Top-Middle: Representation of the demonstrated (dashed black line) and learned
with SPD-pDMP (green solid line) covariance matrices in the cone of SPD manifold. Bottom-Left : Demonstrated and learned covariance matrices shown over one period of time
to illustrate the periodic nature of the considered profile. Covariance matrices are rescaled for better visualization. Right-panels: Learning results obtained over three periods using
SPD-pDMP and Cholesky decomposition. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
– Improved Encoding Accuracy: Our proposed Riemannian periodic
DMPs (Quat-pDMP, Rot-pDMP, SSPD-pDMP) have shown a high
level of accuracy in encoding and reproducing periodic trajecto-
ries with specialized geometric constraints. This improvement in
accuracy is critical for tasks that require precise manipulation,
such as surgical robots or industrial automation, where errors can
lead to significant issues.

– Geometric Consistency: By incorporating tools from Riemannian
geometry, our approach ensures that the encoded trajectories
respect the underlying geometric constraints of the data (e.g., the
unit norm for quaternions, positive definiteness for SPD matrices).
This consistency is essential for maintaining the stability and
reliability of robot actions, especially in complex environments.

– Reduction of Pre- and Post-Processing Steps: Traditional methods
often require additional steps to normalize or convert data to
ensure geometric constraints are met. Our approach eliminates
the need for such steps, streamlining the learning process and
reducing computational overhead. This efficiency can accelerate
the deployment of learning-based robotic systems in real-world
applications.

– Adaptability to Different Types of Data: The ability to handle
different types of data (quaternions, rotation matrices, SPD ma-
trices) within a unified framework makes our approach versatile
and applicable to a wide range of robotic tasks. This adaptability
can facilitate the development of more general-purpose robots
capable of performing diverse manipulation tasks.

6. Robot experiments

This section illustrates two experiments2 conducted on two different
robots, namely a Franka Emika Panda and a Kuka IIWA equipped with
qb SoftHand.

6.1. Operating a drilling machine

Operating a drilling machine by a rotary handle requires continuous
adjustments of both orientation and stiffness. As shown in Fig. 1 (left),
the handle must be rotated to control the vertical movement of the drill.

2 A video of the experiments has been submitted as supplementary material.
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For this experiment, we govern the robot interaction behavior with a
Cartesian impedance controller defined as:

𝐟𝑝 = 𝐊𝑝
(

𝐱𝑑 − 𝐱𝑎
)

+ 𝐃𝑝
(

�̇�𝑑 − �̇�𝑎
)

,

𝐟𝑜 = 𝐊𝑜 Log𝑞𝐐𝑑

(

𝐐𝑎
)

+ 𝐃𝑜
(

𝝎𝑑 − 𝝎𝑎
)

,
(38)

where the subscript 𝑝 stands for position and 𝑜 for orientation. 𝐱𝑑 and
𝐱𝑎 are desired and actual positions of the robot’s EEF, and 𝐪𝑑 and 𝐪𝑎 are
desired and actual UQ orientations. Desired and actual linear velocities
are indicated as �̇�𝑑 and �̇�𝑎, while the angular ones are �̇�𝑑 and �̇�𝑎. 𝐊𝑝,𝑜
and 𝐃𝑝,𝑜 are the robot stiffness and damping matrices expressed in the
robot base frame. We used 𝐊𝑜 = 150 𝐈 Nm/rad, while 𝐊𝑝 was generated
online by the proposed method, as detailed later in this section. The
matrices 𝐃𝑝 and 𝐃𝑜 were obtained from 𝐊𝑝 and 𝐊𝑜 by the double
diagonalization design [40], briefly described in Section 3.6.

Motion variables 𝐱𝑑 and �̇�𝑑 were learned from a kinesthetic demon-
stration using a classical periodic DMP. The same demonstration was
used to learn 𝐐𝑑 and �̇�𝑑 by Quat-pDMP. The desired and executed
pose trajectories are shown in the first two rows of Fig. 7. To obtain
the desired stiffness profile, we considered that most of the EEF linear
motion occurs in the 𝑥-𝑦 plane (in the EEF frame). Moreover, the robot
was constrained to move along a circular path defined by the rotary
wheel (see Fig. 1). Given these observations and the set of demonstrated
positions {𝐱𝑑,𝑡}𝑇𝑡=1, we defined the EEF stiffness matrices for 𝑡 = 1,… , 𝑇
as

𝐊𝑒𝑒
𝑝,𝑡 =

[

𝐑(𝜃𝑡)𝐊0𝐑(𝜃𝑡)⊤ 𝟎
𝟎⊤ 𝑘𝑚𝑎𝑥

]

, (39)

where 𝐑(𝜃𝑡) is the 2D rotation matrix defined by the angle 𝜃𝑡 between
𝐱𝑑,𝑡 and the initial position 𝐱𝑑,0. The initial 2D stiffness was 𝐊0 =
diag([𝑘𝑚𝑎𝑥, 𝑘𝑚𝑖𝑛]), where 𝑘𝑚𝑎𝑥 = 3000N/m and 𝑘𝑚𝑖𝑛 = 300N/m. The
stiffness profile (39) was designed to vary in 𝑥 and 𝑦 directions, while
𝑧 was kept constant at the maximum value to stay in contact with the
rotary wheel.

At the beginning of the motion, the robot exerted maximum force
(highest stiffness) along the 𝑥 direction. During the motion, the rotation
𝐑(𝜃𝑡) continuously modified the initial stiffness matrix 𝐊0 to have
the highest (lowest) stiffness along the 𝑦 (𝑥) direction as the drill
approached full depth. After this point, the stiffness along 𝑦 (𝑥) started
to decrease (increase) and returned to the initial value at the end of
the motion, i.e. 𝐊𝑒𝑒

𝑝,𝑇 = 𝐊𝑒𝑒
𝑝,1 = 𝐊0. The desired full 3D stiffness matrices

were then computed as 𝐊 = 𝐑 𝐊𝑒𝑒𝐑 ⊤, where 𝐑 was the rotation
𝑝,𝑡 𝑡 𝑝,𝑡 𝑡 𝑡
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Fig. 7. Results of operating a drilling machine experiment on a Franka Emika Panda. Top two rows show learned (dashed lines) and measured (solid lines) position 𝐩 and
orientation 𝐪 of the robot’s EEF. The third row shows the six relevant elements of the stiffness matrix 𝐊 (desired and learned). The left column depicts the entire task execution
(10 periods), while the right column exhibits a particular zoomed-in section (1 period). The moment when the drill reached full depth is highlighted by the text ‘‘FULL DEPTH’’
and is further illustrated by the experiment photo. The bottom graph shows the desired (gray) and learned (green) stiffness profiles (scaled between [−0.1, 0.1]) in the 𝑥-𝑧 plane,
where the robot linear motion takes place. Note that we learn a full 3D stiffness profile, as shown in the third row, but we show also the profile in the 𝑥-𝑧 plane for better
visualization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
State-to-action collaborative model for sawing task.
Task State Action

𝐱𝑎 (saw position) �̇�𝑎 (saw velocity) 𝐊 (robot stiffness)

close to the robot moving toward the robot decreasing
close to the robot moving toward the human compliant (zero)
close to the human moving toward the human compliant (zero)
close to the human moving toward the robot increasing

matrix between the robot’s EEF and base at time 𝑡. 𝐊𝑝,𝑡 were used as
reference stiffness profile and encoded by SPD-pDMP. The 6 indepen-
dent components of the learned stiffness profile are shown in the third
row of Fig. 7, while the last row shows the stiffness profile in 𝑥-𝑧 plane
(i.e., where the robot motion takes place). Nevertheless, we learn a
full 3D stiffness matrix as shown in the third row of the figure. These
results show that the proposed approach accurately encoded the desired
profiles while fulfilling the underlying geometric constraints, i.e., unit
norm in variable orientation data, and the symmetry, positiveness, and
definiteness of impedance matrices.

6.2. Collaborative human–robot sawing

To demonstrate the ability of the proposed method to encode and
reproduce rotated (non-diagonal) stiffness matrices in a realistic peri-
odic collaborative task, we performed an experiment on collaborative
human–robot sawing. As shown in Fig. 1 (right), the task involved
a human and a robot cutting a metal bar with a saw. The specific
state-to-action collaborative model designed for the sawing task is
given in Table 1. This strategy conforms with established studies on
collaborative human–robot sawing [4]. While the designed model in
Table 1 is specific to sawing, the proposed state-to-action approach is
general and can be applied to other tasks.

The resulting robot stiffness strategy from the developed state-to-
action collaborative model was used in combination with the proposed
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R-pDMP method to encode the changing robot stiffness matrix and
facilitate the desired collaborative behavior. To demonstrate the ability
to encode and reproduce non-diagonal stiffness matrices, we rotated
the sawing axis and the task frame by 45deg around the 𝑧-axis with
respect to the robot base frame. In this task, the 𝑧-axis did not exhibit
variable stiffness behavior, as it was involved in keeping contact with
the object, so only 𝑥-axis and 𝑦-axis stiffness components were encoded
by the proposed R-pDMPs method. The robot reference position was set
near the point where the robot should pull back the saw when it was its
turn to pull. The encoded DMPs were then reproduced online during the
human–robot collaborative sawing to exhibit the appropriate stiffness
behavior and facilitate the task execution.

Here, the robot interaction behavior was governed by a hybrid
force/impedance controller defined as:

𝐅 = 𝐅𝑓𝑜𝑟 + 𝐅𝑖𝑚𝑝, (40)

where 𝐅𝑓𝑜𝑟 maintains contact in the 𝑧-axis through a PI controller,3 𝐅𝑖𝑚𝑝
controls the sawing motion in the 𝑥-axis by the impedance controller
defined as 𝐅𝑖𝑚𝑝 = 𝐊

(

𝐱𝑑 − 𝐱𝑎
)

+ 𝐃
(

�̇�𝑑 − �̇�𝑎
)

, where 𝐱𝑑 and 𝐱𝑎 are
the desired and actual positions of the robot’s EEF, respectively, and
𝐊 and 𝐃 are the robot stiffness and damping matrices expressed in
the robot base frame. The matrix 𝐊 was generated online by the
proposed method, while 𝐃 was obtained by the double diagonalization
design [40], briefly described in Section 3.6.

The results of the collaborative human–robot sawing experiment are
shown in Fig. 8. We observed that a stable collaborative behavior was
achieved very quickly and maintained until the object was cut off at
88 seconds. After the cut-off moment, the robot remained stable at
its reference position, waiting for any potential further human input.
The position and force graphs show that the generated stiffness matrix

3 Note that the derivative term was not used since sawing produces noisy
force measurements and numerical derivation of such signal is not very useful.
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Fig. 8. Results of the collaborative sawing experiment. Top graphs show the measured position 𝐩 of the robot’s EEF. Middle graphs show the interaction force 𝐅. Bottom graphs
show the relevant elements of the stiffness 𝐊. The left column depicts the entire task execution, while the right column exhibits a particular zoomed-in section. The moment when
the object was cut off and the task was completed is highlighted by the magenta text ‘‘cut-off moment’’ and is further illustrated by the experiment photo showing the cut-off
piece falling down. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
produced nearly identical position displacements and forces in both
𝑥-axis (red lines) and 𝑦-axis (green lines), corresponding to the task
frame being rotated by 45deg. This alignment indicates that the robot
accurately followed the desired trajectory while maintaining the appro-
priate stiffness profile, ensuring effective collaboration with the human
partner.

In more detail, the position graph shows a smooth and consistent
motion throughout the sawing task, with minimal deviation from the
desired trajectory. The smooth periodic sawing indicated that the robot
properly performed the transitions between different stages of the
collaborative tasks and continuously maintained coordination with the
human at all times. This consistency is crucial for tasks requiring
precise and repetitive movements. The force graph demonstrates that
the robot applied a consistent force along the task direction, adapting
its stiffness in response to the varying task state, which enhanced both
the safety and efficiency of the interaction.

The experiment also highlighted the robustness of our state-to-
action collaborative model (Fig. 8-bottom) approach in dynamically
adjusting the stiffness matrix. When the saw was moving toward the
human, the robot decreased the stiffness and then remained compliant
in order not to oppose the human’s action. When the saw reached the
human end, the roles were reversed, and the human became complaint
while the robot increased its stiffness to pull the saw back to its own
end. We can also see that the elements of the stiffness matrix during
the experiments adhered to the symmetric positive-definite matrix
condition.

6.3. Broader implications for human–robot interaction

– Enhanced Safety and Efficiency: The ability to dynamically adjust
the robot’s stiffness based on the task state significantly enhances
the efficiency of human–robot interactions for periodic tasks. By
adapting to the varying demands of the task in real-time, the
robot can respond more appropriately to human actions, ensuring
adaptability and coordination.

– Reduction of Complexity and Intrusiveness: Traditional methods
often rely on complex and intrusive measurements such as EMG
or EIT to infer human intent. Our state-to-action approach elim-
inates the need for such measurements by directly using the
task state, simplifying the setup and making it more practical
for real-world applications. This reduction in complexity and
10 
intrusiveness can facilitate wider adoption of collaborative robots
in various industries.

– Versatility and Generalizability: The state-to-action collaborative
model demonstrated in the sawing task is generalizable to a wide
range of other collaborative tasks. This versatility makes our ap-
proach applicable to various domains, including manufacturing,
healthcare, and service industries, where robots need to perform
diverse tasks in close collaboration with humans.

– Facilitation of Advanced Research: The insights gained from our
experiments provide a foundation for further research into ad-
vanced human–robot interaction strategies. Researchers can build
on our state-to-action model to develop more sophisticated algo-
rithms that further enhance the adaptability and responsiveness
of collaborative robots.

7. Discussion

The following discussion highlights the primary findings from both
our simulation and real robot experiments, elucidating their implica-
tions for the field of human–robot interaction, and addresses the lim-
itations of our proposed approach. The simulations demonstrated that
the proposed Riemannian periodic R-pDMPs (Quat-pDMP, Rot-pDMP,
SPD-pDMP) accurately encoded and reproduced periodic trajectories
with specialized geometric constraints. The results showed that our ap-
proach maintained geometric consistency, such as unit norm for quater-
nions and positive definiteness for SPD matrices, without the need
for additional normalization or conversion steps. The comparison with
baseline methods highlighted the superiority of our approach in terms
of accuracy and stability. The proposed methods effectively reduced
the error introduced during the reproduction of periodic trajectories,
thereby ensuring precise and reliable performance.

The collaborative human–robot sawing experiment demonstrated
the practical applicability of our state-to-action collaborative model.
The robot successfully adapted its stiffness based on the task state,
achieving smooth and consistent motion throughout the sawing task.
This adaptability improved both the safety and efficiency of the in-
teraction. The experiment validated that our approach could handle
complex, non-diagonal stiffness profiles in real-time, ensuring that the
robot could respond appropriately to dynamic changes in the inter-
action dynamics. This capability is particularly beneficial for tasks

requiring close collaboration between humans and robots.
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Our findings have several important implications for advancing
human–robot interaction: Dynamically adjusting the robot’s stiffness
based on the task state enhances safety and efficiency, allowing the
robot to better respond to human actions and reduce injury risks. Our
method eliminates the need for complex measurements like EMG or
EIT, simplifying the setup and making it more practical for real-world
applications, thus facilitating wider adoption of collaborative robots.
The state-to-action model is generalizable to various tasks beyond
sawing, making it applicable to manufacturing, healthcare, and service
industries, where robots need to collaborate closely with humans. The
precise and consistent execution of tasks enhances the performance
and reliability of robotic systems. Finally, the insights from our ex-
periments provide a foundation for advanced human–robot interaction
strategies, enabling the development of more sophisticated algorithms
that enhance robot adaptability and responsiveness.

Our current work focuses on specific types of Riemannian man-
ifolds (e.g., 3,  (3), and 𝑚

++). Extending our approach to other
ypes of manifolds and ensuring the same level of performance and
eliability is an important area for future exploration. For instance,
nvestigating the application of our method to Grassmann manifolds
used for subspace learning) and hyperbolic manifolds (beneficial for
epresenting hierarchical data) could open new avenues for research
nd application. Moreover, one of the main challenges with our ap-
roach is the computational complexity associated with the calculation
f exponential and logarithmic maps on Riemannian manifolds. These
perations are essential for ensuring geometric consistency but can
e computationally intensive, particularly for high-dimensional data.
uture work will focus on optimizing these computations through more
fficient algorithms and leveraging parallel processing techniques. Ad-
itionally, we will explore approximation methods that can reduce
omputational load while maintaining accuracy.

. Conclusions

In this paper, we proposed a novel periodic DMP formulation that
xtends the classical formulation by incorporating tools from Rie-
annian geometry to encode and reproduce periodic robotic skills
ith geometric constraints. Moreover, we introduced a novel state-

o-action collaborative model that dynamically adjusts end-effector
tiffness based on task-specific states, enhancing safety and efficiency
n human–robot interactions.

Our method was validated through extensive simulations and real
obot experiments, demonstrating superior performance compared to
tate-of-the-art methods. The ability to maintain geometric consistency,
educe the need for pre- and post-processing steps, and dynamically
dapt to changing task requirements highlights the potential of our
pproach for advancing human–robot collaboration.

Future work will address the identified limitations, focusing on
ptimizing computational performance and generalizing to other man-
folds. By refining and extending our approach, we aim to further
nhance collaborative robots’ capabilities and integration into various
pplications.

RediT authorship contribution statement

Fares Abu-Dakka: Writing – review & editing, Writing – original
raft, Visualization, Validation, Software, Methodology, Investigation,
onceptualization, Formal analysis, Funding acquisition, Project ad-
inistration. Matteo Saveriano: Writing – review & editing, Writing
original draft, Validation, Software, Methodology, Conceptualization.
uka Peternel: Writing – review & editing, Writing – original draft,

Validation, Methodology, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
11 
Data availability

No data was used for the research described in the article.

Acknowledgments

This work is supported by Basque Government (ELKARTEK) projects
Proflow KK-2022/00024 and HELDU KK-2023/00055, and by the Eu-
ropean Union project INVERSE (GA No. 101136067).

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.robot.2024.104763.

References

[1] A.J. Ijspeert, J. Nakanishi, S. Schaal, Learning rhythmic movements by demon-
stration using nonlinear oscillators, in: IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 1, Lausanne, Switzerland, 2002, pp.
958–963.

[2] A. Rai, F. Meier, A. Ijspeert, S. Schaal, Learning coupling terms for obstacle
avoidance, in: IEEE-RAS International Conference on Humanoid Robots, IEEE,
Madrid, Spain, 2014, pp. 512–518.

[3] A. Gams, T. Petrič, M. Do, B. Nemec, J. Morimoto, T. Asfour, A. Ude,
Adaptation and coaching of periodic motion primitives through physical and
visual interaction, Robot. Auton. Syst. 75 (2016) 340–351.

[4] L. Peternel, N. Tsagarakis, D. Caldwell, A. Ajoudani, Robot adaptation to human
physical fatigue in human–robot co-manipulation, Auton. Robots 42 (5) (2018)
1011–1021.

[5] L. Peternel, T. Petrič, J. Babič, Robotic assembly solution by human-in-the-loop
teaching method based on real-time stiffness modulation, Auton. Robots 42 (1)
(2018) 1–17.

[6] E. Rückert, A. d’Avella, Learned parametrized dynamic movement primitives
with shared synergies for controlling robotic and musculoskeletal systems, Front.
Comput. Neurosci. 7 (2013).

[7] P. M. Wensing, J.-J. Slotine, Sparse control for dynamic movement primitives,
IFAC-PapersOnLine 50 (1) (2017) 10114–10121.

[8] P. Pastor, L. Righetti, M. Kalakrishnan, S. Schaal, Online movement adaptation
based on previous sensor experiences, in: IEEE/RSJ International Conference on
Intelligent Robots and Systems, San Francisco, CA, USA, 2011, pp. 365–371.

[9] A. Ude, B. Nemec, T. Petric, J. Morimoto, Orientation in cartesian space
dynamic movement primitives, in: IEEE International Conference on Robotics
and Automation, Hong Kong, China, 2014, pp. 2997–3004.

[10] F.J. Abu-Dakka, V. Kyrki, Geometry-aware dynamic movement primitives, in:
IEEE International Conference on Robotics and Automation, Paris, France
(Online), 2020, pp. 4421–4426.

[11] F.J. Abu-Dakka, M. Saveriano, L. Peternel, Periodic DMP formulation for
quaternion trajectories, in: IEEE International Conference of Advanced Robotics,
Ljubljana, Slovenia, 2021, pp. 658–663.

[12] A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical
Movement Primitives: Learning Attractor Models for Motor Behaviors, Neural
Comput. 25 (2) (2013) 328–373.

[13] L. Koutras, Z. Doulgeri, A correct formulation for the orientation dynamic
movement primitives for robot control in the cartesian space, in: Conference
on Robot Learning, Osaka, Japan, 2020, pp. 293–302.

[14] M. Saveriano, F.J. Abu-Dakka, A. Kramberger, L. Peternel, Dynamic movement
primitives in robotics: A tutorial survey, Int. J. Robot. Res. 42 (13) (2023)
1133–1184.

[15] A. Paraschos, C. Daniel, J. Peters, G. Neumann, Probabilistic movement prim-
itives, in: Conference on Neural Information Processing Systems, Lake Tahoe,
Nevada, United States, 2013, pp. 2616–2624.

[16] S. Dutta, L. Behera, S. Nahavandi, Skill learning from human demonstrations
using dynamical regressive models for multitask applications, IEEE Trans. Syst.
Man Cybern.: Syst. 51 (1) (2018) 659–672.

[17] J. Duan, Y. Ou, J. Hu, Z. Wang, S. Jin, C. Xu, Fast and stable learning of
dynamical systems based on extreme learning machine, IEEE Trans. Syst. Man
Cybern.: Syst. 49 (6) (2017) 1175–1185.

[18] S. Calinon, D. Bruno, D.G. Caldwell, A task-parameterized probabilistic model
with minimal intervention control, in: IEEE International Conference on Robotics
and Automation, Hong Kong, China, 2014, pp. 3339–3344.

[19] Y. Huang, F.J. Abu-Dakka, J. Silvério, D.G. Caldwell, Toward orientation learning
and adaptation in cartesian space, IEEE Trans. Robot. 37 (1) (2021) 82–98.

[20] P. Pastor, H. Hoffmann, T. Asfour, S. Schaal, Learning and generalization of
motor skills by learning from demonstration, in: IEEE International Conference
on Robotics and Automation, Kobe, Japan, 2009, pp. 763–768.

https://doi.org/10.1016/j.robot.2024.104763
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb1
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb1
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb1
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb1
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb1
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb1
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb1
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb2
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb2
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb2
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb2
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb2
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb3
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb3
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb3
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb3
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb3
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb4
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb4
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb4
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb4
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb4
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb5
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb5
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb5
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb5
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb5
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb6
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb6
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb6
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb6
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb6
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb7
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb7
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb7
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb8
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb8
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb8
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb8
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb8
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb9
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb9
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb9
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb9
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb9
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb10
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb10
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb10
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb10
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb10
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb11
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb11
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb11
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb11
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb11
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb12
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb12
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb12
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb12
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb12
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb13
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb13
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb13
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb13
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb13
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb14
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb14
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb14
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb14
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb14
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb15
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb15
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb15
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb15
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb15
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb16
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb16
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb16
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb16
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb16
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb17
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb17
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb17
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb17
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb17
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb18
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb18
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb18
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb18
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb18
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb19
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb19
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb19
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb20
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb20
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb20
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb20
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb20


F. Abu-Dakka et al. Robotics and Autonomous Systems 180 (2024 ) 104763 
[21] J. Silvério, L. Rozo, S. Calinon, D.G. Caldwell, Learning bimanual end-effector
poses from demonstrations using task-parameterized dynamical systems, in:
IEEE/RSJ International Conference on Intelligent Robots and Systems, Hamburg,
Germany, 2015, pp. 464–470.

[22] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and
Control, Springer Publishing Company, Incorporated, 2010.

[23] S. Kim, R. Haschke, H. Ritter, Gaussian mixture model for 3-dof orientations,
Robot. Auton. Syst. 87 (2017) 28–37.

[24] M.J. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, D.G. Caldwell, An approach
for imitation learning on Riemannian manifolds, IEEE Robot. Autom. Lett. 2 (3)
(2017) 1240–1247.

[25] L. Dodero, H.Q. Minh, M. San Biagio, V. Murino, D. Sona, Kernel-based clas-
sification for brain connectivity graphs on the Riemannian manifold of positive
definite matrices, in: International Symposium on Biomedical Imaging, Brooklyn,
NY, USA, 2015, pp. 42–45.

[26] S. Herath, M. Harandi, F. Porikli, Learning an invariant Hilbert space for domain
adaptation, in: IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 2017, pp. 3845–3854.

[27] S. Calinon, Gaussians on Riemannian manifolds: Applications for robot learning
and adaptive control, IEEE Robot. Autom. Mag. 27 (2) (2020) 33–45.

[28] N. Jaquier, L. Rozo, D.G. Caldwell, S. Calinon, Geometry-aware manipulability
learning, tracking, and transfer, Int. J. Robot. Res. 40 (2–3) (2021) 624–650.

[29] A. Ajoudani, N. Tsagarakis, A. Bicchi, Tele-impedance: Teleoperation with
impedance regulation using a body–machine interface, Int. J. Robot. Res. 31
(13) (2012) 1642–1656.

[30] K. Kronander, A. Billard, Learning compliant manipulation through kinesthetic
and tactile human-robot interaction, IEEE Trans. Hapt. 7 (3) (2014) 367–380.

[31] L. Roveda, J. Maskani, P. Franceschi, A. Abdi, F. Braghin, L. Molinari Tosatti, N.
Pedrocchi, Model-based reinforcement learning variable impedance control for
human-robot collaboration, J. Intell. Robot. Syst. 100 (2) (2020) 417–433.

[32] X. Chen, N. Wang, H. Cheng, C. Yang, Neural learning enhanced variable
admittance control for human–robot collaboration, IEEE Access 8 (2020)
25727–25737.

[33] E. Zheng, Y. Li, Z. Zhao, Q. Wang, H. Qiao, An electrical impedance tomography
based interface for human–robot collaboration, IEEE/ASME Trans. Mechatronics
26 (5) (2021) 2373–2384.

[34] A. Gams, A. Ijspeert, S. Schaal, J. Lenarčič, On-line learning and modulation
of periodic movements with nonlinear dynamical systems, Auton. Robots 27 (1)
(2009) 3–23.

[35] T. Petrič, A. Gams, A.J. Ijspeert, L. Žlajpah, On-line frequency adaptation and
movement imitation for rhythmic robotic tasks, Int. J. Robot. Res. 30 (14) (2011)
1775–1788.

[36] S. Schaal, C.G. Atkeson, Constructive incremental learning from only local
information, Neural Comput. 10 (8) (1998) 2047–2084.

[37] M. Fréchet, Les éléments aléatoires de nature quelconque dans un espace
distancié, in: Annales de l’institut Henri Poincaré, vol. 10, (no. 4) 1948, pp.
215–310.

[38] Q. Rentmeesters, A gradient method for geodesic data fitting on some symmet-
ric Riemannian manifolds, in: IEEE Conference on Decision and Control and
European Control Conference, IEEE, Orlando, FL, USA, 2011, pp. 7141–7146.

[39] X. Pennec, P. Fillard, N. Ayache, A Riemannian framework for tensor computing,
Int. J. Comput. Vis. 66 (1) (2006) 41–66.

[40] A. Albu-Schaffer, C. Ott, U. Frese, G. Hirzinger, Cartesian impedance control
of redundant robots: Recent results with the DLR-light-weight-arms, in: Inter-
national Conference on Robotics and Automation, Taipei, Taiwan, 2003, pp.
3704–3709.

[41] S. Fiori, I. Cervigni, M. Ippoliti, C. Menotta, Synthetic nonlinear second-order
oscillators on Riemannian manifolds and their numerical simulation, Discrete
Contin. Dyn. Syst. Ser. B 27 (3) (2022) 1227–1262.
12 
[42] N. Boumal, P.-A. Absil, A discrete regression method on manifolds and its
application to data on SO (n), IFAC Proc. Vol. 44 (1) (2011) 2284–2289.

[43] P.-Y. Gousenbourger, E. Massart, P.-A. Absil, Data fitting on manifolds with
composite Bézier-like curves and blended cubic splines, J. Math. Imaging Vision
61 (5) (2019) 645–671.

Fares J. Abu-Dakka received a B.Sc. in Mechanical En-
gineering from Birzeit University, Palestine (2003), and
advanced degrees (DEA and Ph.D.) in robotics motion
planning from the Polytechnic University of Valencia (UPV),
Spain (2006, 2011), in addition to M.Sc. in Biomedical
Engineering from UPV (2015). His postdoctoral journey
began at the Jozef Stefan Institute, Slovenia, in 2012. From
2013 to 2016, he was a Visiting Professor at Carlos III
University of Madrid, Spain, followed by a postdoctoral role
at the Istituto Italiano di Tecnologia (IIT) from 2016 to
2019. He was a Research Fellow at Aalto University (2019–
2022) before joining the Technical University of Munich
as a Senior Scientist in 2022, where he led the Robot
Learning group at MIRMI. Currently, he is a Lecturer and
Researcher at Mondragon Unibertsitatea, Spain. His research
spans control theory, differential geometry, and machine
learning, with a focus on improving robot manipulation
performance and safety. He also serves as an Associate
Editor for IEEE Robotics and Automation Letters (RA-L)
and IEEE Transactions on Robotics (T-RO). Webpage: https:
//sites.google.com/view/abudakka/

Matteo Saveriano received his B.Sc. and M.Sc. degree in
automatic control engineering from University of Naples,
Italy, in 2008 and 2011, respectively. He received his Ph.D.
from the Technical University of Munich in 2017. Currently,
he is an assistant professor at the Department of Industrial
Engineering (DII), University of Trento, Italy. Previously, he
was an assistant professor at the University of Innsbruck and
a post-doctoral researcher at the German Aerospace Center
(DLR). He is an Associate Editor for RA-L and IJRR. He is
the coordinator of the EU project INVERSE. His research
activities include robot learning, human–robot interaction,
understanding and interpreting human activities. Webpage:
https://matteosaveriano.weebly.com/

Luka Peternel received a PhD in robotics from the Faculty
of Electrical Engineering, University of Ljubljana, Slovenia
in 2015. He conducted his PhD studies at the Department for
Automation, Biocybernetics and Robotics, Jožef Stefan Insti-
tute in Ljubljana from 2011 to 2015, and at the Department
of Brain–Robot Interface, ATR Computational Neuroscience
Laboratories in Kyoto, Japan in 2013 and 2014. He was with
the Human–Robot Interfaces and Physical Interaction Lab,
Advanced Robotics, Italian Institute of Technology in Genoa,
Italy from 2015 to 2018. Since 2019, He is an Assistant
Professor at the Department of Cognitive Robotics, Delft
University of Technology in the Netherlands.

http://refhub.elsevier.com/S0921-8890(24)00147-7/sb21
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb21
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb21
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb21
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb21
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb21
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb21
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb22
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb22
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb22
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb23
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb23
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb23
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb24
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb24
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb24
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb24
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb24
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb25
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb25
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb25
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb25
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb25
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb25
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb25
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb26
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb26
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb26
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb26
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb26
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb27
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb27
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb27
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb28
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb28
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb28
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb29
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb29
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb29
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb29
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb29
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb30
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb30
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb30
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb31
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb31
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb31
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb31
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb31
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb32
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb32
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb32
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb32
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb32
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb33
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb33
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb33
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb33
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb33
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb34
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb34
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb34
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb34
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb34
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb35
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb35
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb35
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb35
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb35
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb36
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb36
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb36
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb37
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb37
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb37
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb37
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb37
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb38
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb38
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb38
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb38
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb38
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb39
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb39
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb39
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb40
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb40
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb40
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb40
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb40
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb40
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb40
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb41
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb41
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb41
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb41
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb41
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb42
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb42
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb42
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb43
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb43
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb43
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb43
http://refhub.elsevier.com/S0921-8890(24)00147-7/sb43
https://sites.google.com/view/abudakka/
https://sites.google.com/view/abudakka/
https://matteosaveriano.weebly.com/

	Learning periodic skills for robotic manipulation: Insights on orientation and impedance
	Introduction
	Related Work
	Background
	Classical Periodic DMP formulation
	Riemannian manifold
	The unit m-sphere manifold Sm
	The special orthogonal group SO(m)
	SPD matrix
	Double diagonalization design

	Proposed Approach
	Riemannian periodic DMP (R-pDMP)
	Quaternion-based periodic dmp (Quat-pDMP) 
	Rotation matrix-based periodic dmp (Rot-pDMP) 
	spd-based periodic dmp (SPD-pDMP) 


	Simulation Results
	Unit quaternion
	Comparison to classical pDMP + normalization 
	Comparison with a trajectory from koutras2020correct

	Rotation matrix
	SPD profile
	Broader implications for robotic manipulation

	Robot Experiments
	Operating a drilling machine
	Collaborative human–robot sawing
	Broader Implications for Human–Robot Interaction

	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


