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Abstract

The non-destructive inspection industry faces challenges in automating processes quickly to
meet growing demands. Techniques like active thermography and 3D measurments encounter
difficulties in contexts requiring reduced inspection times, leading to time and resource-
intensive automation. Induction thermography, focused on surface integrity inspection, is
sensitive to system position, requiring multiple thermographies and extending inspection
times inspecting defects with unknown orientation. The automation of surface inspection on
complex geometries involves prolonged timelines and expert resources. The thesis addresses
these both challenges by proposing enhancements in induction thermography, including a
multi-directional system and a continuous scanning method. It also introduces a system
for generating robot inspection trajectories on arbitrary geometries, significantly reducing
planning time without human intervention.
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Introduction

Motivation

The growth in the industry of non-destructive inspection techniques and dimensional control
presents continuous challenges in which these processes are expected to be automated on a
shorter time span and meet increasingly demanding requirements.

In particular, surface integrity induction thermography is a technique that allows localized
heating in surface and subsurface defects, which can be detected with an infrared camera.
In this sense, defect detection is highly sensitive to the relative position of conventional
induction systems which ultimately requires multiple thermographies rotating the induction
system for cracks with unknown defect orientations, thereby extending inspection times.

On the other hand, the automation of surface inspection itself may be an aspect that
requires experts for the inspection of complex geometries, leading to a lengthy automation
process spending many resources.

As this is a dual problem linked to the requirements of the inspection technique and
automation itself, a series of issues affecting induction thermography and the procedural
automation of dimensional inspection have been addressed in this thesis.

This thesis deals with this problem by making contributions in the field of induction
thermography that enhance the technique with systems allowing multi-directional inspection.
To achieve this, a new inductor design, a multi-directional induction system capable of
generating thermographies equivalent to the rotation of the system, and a new method
enabling continuous multi-directional scanning of the surface of the pieces to be inspected
have been proposed.

The second aspect aimed at improving the automation of inspections involves the devel-
opment of a system that generates robot inspection trajectories for dimensional inspection
with a 3D scanner on arbitrary geometries. This system has several improvements over
classical systems, enabling a reduction in robot planning time from hours to just over a
second, without any human intervention.
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Contributions

Considering the context of this thesis, the contributions are aimed at improving the induction
thermography, and the automated 3D inspection planning.

Induction thermography is an inspection technique which is able to identify superficial
and subsuperficial defects, but in many cases, the identification of cracks depends on the
relative orientation of the crack regarding the magnetic field generated by the induction
system. In this scenario, a novel multi-directional induction thermography scheme has been
presented, which is able to induce a magnetic field on four directions, inducing eddy currents
with varying distributions which are mostly affected by the presence of defects. This results
in varying thermal responses of each directional thermography, which exhibit an new feature
that has not been previously described, consisting on the apparent rotating motion of the
typical defect pattern on thermal phase-image. As a result, the thermal response associated to
the defects can also be determined by the variation of the thermal response as a function of
the magnetic field orientation, which effectively increase the available information for data
mining and detection on induction thermography. This novel induction thermography scheme
and a novel processing method exploiting this rotating feature of defects has been presented.
It generates a heat map of the most probable locations of defects. The quantification of this
method has been evaluated with a probability of detection (POD) in two sets of samples,
with more than 400 cracks combined, comparing the proposed technique to the manual
labelling of phase images, yielding an improved detection. This can be explained taking
into account that some crack patterns not visible on a the separated phase images, but its
rotational motion yield a significant signal. This multi-directional induction system employs
an existing tetra-pole inductor which can be used in this manner, but the resulting thermal
distribution is mainly concentrated on the proximity of the coils which is not optimal for
induction thermography. To address this problem, a novel inductor has been proposed
inducing a more uniformly directional magnetic field allowing for greater coverage and and
its usage on multidirectional schemes. Another problem which has been addressed in this
thesis is the detection of cracks with unknown directions on a scan thermography. Scan
thermography enables the continuous inspection of a surface without having to stop the
recording throughout the whole inspection. The novel method introduces a new system for
dynamic thermographic inspections, alternating the orientation of the magnetic field while
the system is moving regarding the surface. To enable the extrapolation of existing thermal
processing methods, a novel a normalized space-time fusion has been proposed. This novel
method reduces inspection times, avoiding any thermographic dead time associated with
coverage movement and inductor physical rotation.
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These contributions are focused on the induction thermography itself, considering the
automation and path planning for complete coverage of the inspected part as another process.
Taking into account that this aspect of the automation is a lengthy process, requiring many
resources, a procedural 3D inspection robotic path-planning for arbitrary geometries has been
proposed with multiple contributions over existing methods aimed at improving the runtime
of the planning and inspection itself. This procedural inspection system, or view planning,
incorporates algorithmic improvements that reduce the search space through combinatorial
clustering, and enhancements in the dual optimization of robot inspection time and capture
pose selection, demonstrating effectiveness in field tests with complex geometries and a
12-axis kinematic chain.

Structure

The structure of the thesis starts with a literature review (chapter 1) of inspection techniques,
with an emphasis on thermography and specifically on induction thermography, as well as
the view planning problem (VPP). From Chapter 2 to Chapter 5 thermography issues are
dealt, while the last chapter, Chapter 6, tackles a general procedure for the definition of
an optimized surface inspection. It is a completely general chapter, that can be applied to
thermography as well as other inspection techniques like vision.

• Chapter 2 presents a new multi-directional induction system for induction thermog-
raphy. This system allows the generation of directional thermographies, exhibiting
a rotation pattern, which has not been observed previously, that has led to the devel-
opment of a novel processing method, demonstrating a higher detection probability
compared to separate analysis. This system, in turn, enables an inspection equivalent
to rotating the inspection system, thereby reducing the automation process.

• Chapter 3 details the development of a new type of inductor that induces a more
uniformly directional magnetic field than conventional alternatives with a fixed mag-
netic field. This allows for greater coverage and facilitates the use of multidirectional
schemes, as the one proposed in the previous chapter.

• Chapter 4 introduces a new system for dynamic thermographic inspections, alternating
the orientation of the magnetic field simultaneously. A space-time fusion is applied,
generating a set of processable directional thermographies with conventional thermo-
graphic algorithms. This further reduces inspection times, avoiding any thermographic
dead time associated with coverage movement and system rotation.
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• Chapter 5 presents a new system for planning the 3D robotic inspection trajectory of
arbitrary geometries. It incorporates algorithmic improvements that reduce the search
space through combinatorial clustering. Additionally, it includes enhancements in
dual optimization of robot inspection time and capture pose selection, demonstrating
effectiveness in field tests with complex geometries and a 12-axis kinematic chain.



Chapter 1

State of the art

In this section, a set of techniques most commonly employed for inspection is listed with
the aim of identifying dimensional and/or structural defects on the surfaces of interest. The
techniques are described along with their underlying physical principles, as well as the
limitations and challenges associated to its industrialization.

The structure is based on the type of techniques, starting with destructive inspection
methods followed by non-destructive ones. Non-destructive techniques are further catego-
rized into three blocks: sec. 1.1 conventional non-destructive methods, sec. 1.2 visual and
geometric methods, sec. 1.3 those based on active and passive thermography. Sec. 1.4 deals
with Probability of detection analysis, a procedure to helps to quantify the confidence in the
ability of a testing technique to detect defects of different sizes reliably. Finally, sec. 1.5
contextualizes all the View Planing procedure.

1.1 Destructive testing

In this section, various use cases of the main destructive inspection methods employed in
the industry are presented, along with the most common defects associated with each of
the mentioned materials. These techniques are often considered the "golden standard" for
determining mechanical properties and detecting defects in many cases.

One notable approach involves the use of residual stress tests, such as drilling a series of
holes, where stress is measured using a strain gauge [1]. In the case of welded joints, the
appearance of any defect can alter the internal distribution of these stresses, attributed to
factors such as burn-through, lack of fusion, lack of penetration, and slag in arc welding.
Laser welding, on the other hand, commonly exhibits defects such as marginal oxidation
incisions, undercuts, depressions, induced porosity, solidification cracking associated with
excessive tensile strain stress, blowouts, and underfills, among other types of defects.
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For common composite materials like Carbon Fiber Reinforced Plastic (CFRP) or Glass
Fiber Reinforced Plastic (GFRP), the use of tensile and fatigue tests is widespread due to the
numerous defects associated with their manufacturing and life cycle, such as delamination,
external impact, barely visible impact damage (BVID), interlaminar disbonds, porosities, or
matrix cracking. Considering another common process like forging, tensile [2] or fatigue
[3] tests allow the determination of certain properties of the resulting pieces. In this context,
common defects are often associated with unfilled sections, cold shuts, scale pits resulting
from improper surface cleaning, misalignments of the dies, flaking associated with abrupt
cooling, and surface cracking, among others. Furthermore, casting processes can yield
various defects such as gas porosity, improper shrinkage, mold defects, among others, which
can impact their properties. Compressive testing [4] in this context reveals the material’s
behavior under a compressive load.

In the case of joining different materials, the use of special adhesives is common, benefit-
ing from the majority of the listed techniques [5]. Additionally, peel tests, as in Mondon et al.
[6], are often conducted, and their results can indicate defects present in the adhesive, such
as porosity, voids, poor curing, and improper thickness, among others.

1.2 Conventional non-destructive testing

In this section, various non-destructive techniques are outlined, often conforming to interna-
tional standards and demonstrating decades of use in the industry.

1.2.1 Liquid penetrant testing

Liquid penetrant testing (LPT), is a conventional non-destructive technique (NDT) employed
for the detection of surface defects mainly on non-ferromagnetic materials. It consists on
the application of a low-viscosity fluorescent liquid that permeates the cavities of surface
cracks after a specified time, as determined by the standard which depend on the capillarity,
viscosity, and surface tension of the liquid. Subsequently, excess liquid is removed, and a
developer is applied, causing the impregnated liquid to emerge from the cracks, facilitating
their identification under ultraviolet light.

This method is capable of detecting various discontinuities, including fatigue cracks,
shrinkage cracks, porosity, laps, and seams. It also provides an indication of a lack of bonding
between joined metals.

However, this process has certain drawbacks. The impregnation time is on the order
of minutes, it is not applicable to porous materials, and the repeatability of the process
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depends on the skill and conditions of the inspector. Additionally, it requires prior cleaning,
a temperature range between 4 and 50 °C, and the use of consumables that may cause skin
irritation [7] and eye damage due to ultraviolet radiation.

Figure 1.1 displays a TIG welded Hayness samples used on this thesis subjected to LPT,
(a) after the application of the developer imaged with a 7 µm/px resolution Leica microscope
on a TIG weld of a Hayness sample and (b) the same sample under white light on the visible
spectrum.

(a) (b)

Fig. 1.1 TIG welded Hayness 282 sample with multiple concentric cracks (a) under UV light
after the developer application of a LPI, and (b) visible with white light.

1.2.2 Magnetic particles inspection

Magnetic Particle Inspection (MPI) is a NDT method used to detect surface and near-surface
defects in ferromagnetic materials. The magnetization of a cracked surface covered by
magnetic particles suspended in a liquid or dry powder form, provokes its accumulation in
the proximity of the discontinuities where the flux leakage of the magnetic field is higher.
Considering that the magnetic field disturbance depends on the relative orientation of the
cracks, it is necessary to repeat the test in at least three directions with a 45º separation.
Under these conditions, the localized concentration of the particles can be clearly identified
with ultraviolet light. The inspection of coated materials or subsurface defects with a depth
of 2 mm in some cases are the main benefits compared to LPI in ferromagnetic materials.
Automated MPI systems are available, but most of the drawbacks of LPI remain. Fig. 1.2
displays an example of a magnetic particle inspection (MPI), with a mooring chain fragment
under UV light (a), and the corresponding photograph (b).
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(a) (b)

Fig. 1.2 Magnetic particle example. (a) MPI fluorescent image of the same sample. (b)
Photo of a mooring chain fragment.

1.2.3 Eddy currents inspection

Eddy current inspection (ECI) is based on the perturbation of Eddy currents around defects.
This technique relies on two coils, a primary which generates a magnetic field near the
surface, inducing Eddy currents, and a secondary which is induced by the electric field of
those currents. The induction frequency of the primary coil conditions the depth at which
the Eddy currents are induced, but in most commercial probes, it operates with a frequency
range between 1 and 2 kHz.

The alterations in these currents correlate with the voltage measured by a secondary
coil, which depends on the electrical conductivity, magnetic permeability, geometry, and
material. The correlation between the current induced by the primary coil and measured
on the secondary is consistent in the absence of defects, but it is important to note that
the induced currents are tangential to the coil’s center, which can affect crack detection
depending on its relative position. Both coils are typically assembled on the same probe
which is swepted through the inspected surface, and the alteration of the induced voltage of
the secondary coil associated to a defect is instantaneous which makes this technique suitable
for online inspection and monitoring.

Another advantage is it does not require cleaning the surface and it is applicable at high
temperatures, also allowing measurement of other material properties such as tensile strength
[8]. Furthermore, it is noteworthy that, depending on the material’s skin depth, the technique
can have a detection capability of several millimeters in depth. However, it can only be
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applied to conductive materials which are mainly orthogonal to surface, and the variations
in magnetic permeability and surface uniformity complicate signal interpretation, as seen
in welding scenarios. Additionally, it’s worth mentioning that the inspection area coverage
can be increased with a coil array. Nevertheless, in this scenario the signal interpretation
becomes more complex, and the setup time for inspection is longer.

1.2.4 Ultrasonic testing

Ultrasonic testing (UT), is one of the most widely used techniques [9] applicable to a variety
of materials. Ultrasonic waves propagate through a material until they encounter a medium
discontinuity, such as air, at which point they reflect back to the source. Analysis of these
reflections allows for the measurement of depth and, in some cases, triangulation of their
position.

An ultrasonic transducer captures this signal, coupled to the material using a couplant,
such as water or oil, to improve signal transmission. The signal can be received either through
reflection if the probe is close to the emitter or through attenuation if it is separated. The
emitter typically operates in the range of 0.5 to 15 MHz.

Another possible improvement is the employment of angle beam probes can also be
employed, allowing the waves to propagate at an angle different from the normal, enabling
the detection of inclined cracks and providing other advantages. Furthermore immersion of
the component can act as a couplant. The use of multiple piezoelectric crystals that transmit
and receive independently at different times allows the coverage of a higher area, while at
the same time it enables the creation of constructive interference in the wavefronts which
enables the beam to be focused on a wider range of depths and incident angles. Another
option involves employing a pulsed laser for non-contact vibration generation, which is then
captured using a laser doppler vibrometer. It’s important to note that the detection of deep
defects depend considerably on the geometry of the component, often requiring customized
processing for each specific case.

1.3 Thermography

This section provides a concise overview of various active thermography techniques, [10]
with a particular emphasis on induction thermography.

Initially, a brief introduction of the thermography as non destructive testing is exposed,
followed by a short overview of the most common infrared detectors. Subsequently a
description of the prevalent heating sources and excitation modalities commonly employed in
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active thermography is shown. And lastly, a succinct overview is provided for the processing
algorithms commonly utilized.

1.3.1 Thermography as a non destructive testing

In the presence of any temperature difference between two media, there is a thermal transfer
that can occur through convection, radiation, or conduction. It is the latter that, in most
cases, enables the use of thermography as a non-destructive inspection method. The fact that
thermal conductivity varies in the presence of internal inhomogeneities or cracks compared
to the surrounding material causes a localized temperature difference.

(a) (b) (c)

Fig. 1.3 Steady-state heat conduction through solid. (a) Linear heat conduction as thermal
resistance. (b) Two materials with a perfect thermal interface. (c) Cracked block.

Given a solid block with thickness L as an example, as depicted in Figure 1.3a, with two
opposite faces along the z-axis at different temperatures T1 and T2, the amount of lost energy
q is:

q =
T1−T2

z
λ =

T1−T2

RthA
[W ] with Rth =

z
λA

[K/W ] (1.1)

where, λ [W/mK] is the thermal conductivity, Rth [K/W ] is thermal resistance, and
A is the area. In this scenario, the temperature variation is linear along z, allowing the
establishment of a steady-state analogy with the laws of electricity. In this context, the perfect
union of two materials in one dimension acts as a pair of thermal resistances in series as
shown in fig. 1.3b. Thus, the presence of any cavity or inhomogeneity in the material can be
interpreted as the presence of an intermediate resistance, leading to a noticeable temperature
difference, as shown in fig. 1.3c.

The transient three dimensional heat diffusion is typically integrated with the Fourier
heat conduction equation, which considers an external heat source QH , by integrating the
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temperature of the following expression:

∂T
∂ t

= α∇
2T +

QH

ρc
(1.2)

where α = κ

ρc [m2/s] is the thermal diffusivity, κ [W/(mK)] is the thermal conductivity,

ρ [kg/m3] is the density, c [J/(kgK)] is the thermal capacity, and ∇2T =
(

∂ 2T
∂x + ∂ 2T

∂y + ∂ 2T
∂ z

)
is the Laplacian of temperature.

The recording of thermal diffusion in the absence of any external heating is referred to as
passive thermography.Another aspect to consider is that the thermal radiation qrd perceived
by the camera depends on the absolute temperature T and emissivity ε as stated by the
Stefan-Boltzmann (SB) law,

qrd = εσSBT 4 (1.3)

, with σSB being the SB constant. On certain occasions, the variation in emissivity itself
allows the presence of contamination from other materials without any thermal variation, such
as the detection of slag present in molten metal in various steelmaking processes [11]. But in
most cases, some form of thermal variation associated with an external source must be present
to measure temperature differences associated to defects, such as the in-situ thermographic
inspection of wind turbine blades, which is preferably conducted during sunrise or sunset
[12], with temperature differences of up to 20ºC depending on the side exposed to the sun.
This allows for the detection of deeper defects. Many examples of passive thermography
rely on pre-existing heating, such as the inspection of transformers [13], thermal leakage in
facades [14], as well as the inherent heating in manufacturing processes like TIG welding
[15] or friction stir welding [16], among others. Considering that passive thermography does
not have the ability to exercise a control over the thermal propagation and its interaction
with defects, meticulous consideration becomes imperative when selecting optimal capture
conditions, cameras, and filters.

In many instances, manufacturing processes do not generate any residual heating, as
observed in the manual formation of laminated composites, commonly employed in the
aeronautic sector which are commonly required to comply with strict regulations regarding
surface integrity . Conversely, the underlying thermal variations of some processes such the
welded joining of steel, hinder any signal attributable to small defects.

Therefore, the direct control of the thermal excitation enables the optimization of the
inspection to a broader range of defects and materials.

In the following section, a brief review of the most common focal plane arrays (FPA)
present in infrared cameras will be presented (sec. 1.3.2). The subsequent three sections
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discuss various thermal sources along with with their respective modulation methods. Starting
with thermo-optical excitation sources (sec. 1.3.3), which are prevalent in many use cases
and employ most of the excitation modalities, they are going to be presented in the first place.
Afterwards the induction thermography (sec. 1.3.4) is covered with a in more detail. And
lastly, other active thermography methods are briefly reviewed (sec. 1.3.5).

And the final section addresses the thermographic processing methods that enable the
extraction and data mining of the signals associated with defects (sec. 1.3.6).

1.3.2 Infrared detectors

An overview is presented of the most common infrared detectors focusing on the focal plane
arrays (FPA) found in the majority of commercial thermographic cameras that rely on the
thermal or photonic detection. FPA [17, 18] sensors are commonly used in this technique
to measure the temperature over a certain area to detect the presence of defects. Although
these sensors are capable of detecting infrared radiation, which is evidently correlated with
temperature, they present a series of challenges that hinder the precise determination of
temperature. Some of those problems which are common for all these sensor, are intrinsic to
the thermographic system, which include the vignetting effect, nonuniform spectral response,
nonlinear response within the dynamic range of the instrument, mechanical vibrations from
external actuators used for scanning, vibrations from cooling systems, restricted depth of
field associated to the wide aperture of the lenses required to increase the thermal signal, as
well as the Narcissus effect where the detector perceives its reflection in the optics, among
other factors. It is important to highlight that the calibration procedures commonly employed
to estimate the temperature from the raw sensor readings are not discussed here.

Thermal detectors

The most widely available and affordable sensors are based on the transduction of the thermal
radiation using a bolometer [19]. A bolometer is a resistive sensor that exhibits linear
changes in conductivity in response to small temperature variation, it is composed by a heat
absorber adhered to a sensitive layer. The arrays of monolithic microbolometers which are
micromachined in silicon have typically a sensitive layer made out of vanadium oxide (VOx)
or amorphous silicon with a small thermal capacity to enable a fast thermal response [20].
The pixel pitch of each microbolometer are on the order of the microns which allow for high
resolution sensors. They can have a broadband sensitivity range and are able to operate at
room temperature with sensitivities of ranging from 20 to 40mK depending on the sensor
pixel pitch.
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Photonic detectors

These sensors are based on the excitation of the incident photons, which are mainly catego-
rized in two groups, photovoltaic and photoconductive sensors [21]. They typically require
an active cooling to 90K or lower temperatures to avoid the dark currents, [22]. Considering
that these sensors directly absorb the projected photons, without any heating of the device
itself, they exibit a reduced latency and higher sensitivities of up to 10 mK compared to a
bolometer.

However, their applicability is limited to a narrow wavelength range, determined by
the materials used. Typically, these materials include indium antimonide (InSb) with a
wavelength range of 3-5 µm, mercury cadmium telluride (MCT) with ranges of 3-5 µm
and 8-12 µm, or lead sulfide (PbS) up to 3 µm [21]. Commercial cameras employing
these sensors are more expensive compared to the cameras employing microbolometers,
and the required cooling results in a heavier device which limits the scope of their practical
applications.

1.3.3 Optically excited thermography

There are many sources to optically heat a surface by projecting a light, associated with
different types of sources. Whether it’s with a lamp, with a pulsed heating with a very short
full width at half maximum (FWHM) pulse ranging from 0.1 to 50 ms, or an extended heating
covering a specific area. Laser sources are also common to project a point or line that scans
the surface to be inspected.

The following sections will cover the most common excitation modalities used with these
light sources to heat the surface for an active thermography non-destructive evaluation.

Pulsed and step heating thermography

One of the most commonly used sources for thermographic excitation involves the use
of tungsten halogen lamps or similar alternatives that project light onto the surface. This
projection can cover either a static area [10], a line [23] or a point [10]. Additionally, there is
the option of capturing temperature from the same side as the projector, i.e., by reflection, or
alternatively by transmission.

The typical setup is illustrated in fig. 1.4, which comprises two lamps heating the surface
and an infrared camera measuring the temperature. Both are synchronized and controlled by
a signal generator, with a PC recording and processing the thermography.

One of the most common methods to induce thermal excitation is to induce an instanta-
neous heating, ideally modeled as a Dirac delta function, on a semi-infinite body (SIB) with
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Fig. 1.4 Optically excited thermography.

depth along z axis. The model presented by [24] introduces an analytical function for the
thermal evolution at the surface as a function of depth, as shown in the following expression:

Tsib(z, t) =
Q
λ

√
κ

πt
exp

(
− z2

4κt

)
(1.4)

Here, Q is the amount of energy, λ [ W
mK ] is the thermal conductivity, κ[m2/s] is the

thermal diffusivity, and time is referenced after the pulse. Considering the temperature at
the surface (z = 0) on a logarithmic scale in time and temperature, it results in the following
expression:

ln(Tsib(z = 0, t)) =−1
2

ln t + ln
(

Q
λ

√
κ

π

)
(1.5)

Equation 1.5 has a slope of -1/2 in the early moments after cooling. This has led to the
development of various processing methods that identify any subsurface anomaly in relation
to the variation with respect to that slope [10].

Although the diffusion speed of an instantaneous pulse is very fast, the amount of energy
that penetrates the material may be limited based on depth. Furthermore, the amount of energy
projected in a pulse is reduced, so the energy penetration ratio up to a certain depth may be
insufficient to discern a temperature variation associated with deep defects. Additionally,
the use of high-power flashes may be limited in certain situations due to their volume, cost
and electrical source. Therefore, extended heating, or Step Heat Thermography, is a viable
solution in many cases [25, 26].
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Lockin thermography

Another typical excitation modality employing halogen tungsten lamps and induction ther-
mography, among other excitation sources, consists on the periodic heating with a fixed
frequency sinusoidal wave, first described by Carlomagno and Berardi [27] and later devel-
oped by Busse [28] among others. It is based on the dispersion of highly attenuated thermal
waves inside the material which is a phenomenon first described by J. Fourier [29]. The
thermographic system is coupled to a thermal wave source which yields a periodical transfer
of heat at the surface (depth z=0), which is modelled describing the temperature decay in
one dimension, as a function of the depth z and starting temperature T0, with the following
expression from [28],

T (z, t) = T0e−z/µ cos
(

2πz
λ
−2π f t

)
= T0e−z/µ cos(φ(z)−2π f t) (1.6)

Here, µ is the thermal diffusion length as,

µ =

√
κ

ρcπ f
=

√
α

π f
(1.7)

, with κ being the thermal conductivity, ρ the density and c the specific and α = κ

ρc the
thermal diffusivity. The resulting thermal wavelength is λ = 2πµ with a propagation speed
of the waves v = λ f = 2

√
π f α .

Considering eq. 1.6, the phase can be expressed as a direct function of the depth and
thermal diffusion length:

φ(z) =
2πz
λ

=
z
µ

(1.8)

Taking into account that µ is inversely proportional to the square root of the modulation
frequency, the higher the modulation, the shallower the propagation would be, and on the
contrary, the lower frequencies will reach higher depths but at a slower pace.

It is worth considering that the propagated thermal wave inside the object is reflected
when it reaches inhomogeneities, creating an oscillating interference pattern which is clearly
reflected on the frequency domain of the thermogram as a variation in the phase and amplitude,
compared to a sound area.

Subsequently, the details of the different processing techniques will be outlined, many
of which assume that the sample is thermally on a steady-state. In this regard, Breitenstein
et al. [30] proposes a decomposition of the thermogram as the sum of a linear, continuous,
and oscillatory component. The latter has a waveform similar to that of the steady state,
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allowing for the cancellation of thermal variation between pulses. This, in turn, decreases the
amplitude and phase image distortions.

It is also possible to continously integrate the thermal signal to generate both the real
and imaginary component referenced to a square-wave with the same modulation frequency,
which makes this technique feasible for continuous online scanning and defect monitorization
on electronic devices [30].

Another aspect to consider is that the heat source must be calibrated to ensure a pro-
portional energy regarding the modulation, as well as a uniform radiation across the entire
surface [10].

Frequency modulated thermography

Other excitation methods recur to a frequency modulated thermography (FMT) [31], enhanc-
ing the depth estimation on CFRP flat botton holes, employing both a time-domain Hilbert
transform as well as a FFT for the analysis of the thermography. Mulaveesala et al. [32]
and D’Accardi [33] reported a multi-frequency thermography system (MFT), modulating
the activation of the lamps using two superimposed square-wave signals with two different
frequencies to inspect a CFRP sample. Betta et al. [34] discussed the frequency modulated
thermography on an induction thermography system, employing both a multi-tone modu-
lation signal based on the summation of a discrete set of sinusoidal signals, as well as a
chirp signal which continuously increases the frequency. Their results shows an increased
SNR in both FMT modes, compared to a single frequency excitation, as well as the partial
dimensional extraction of defects, which can be explained by the varying thermal diffusion
lengths associated to the modulation frequency.

Line and spot scan thermography

Most of the thermal diffusion associated with the projection of light onto a surface spreads
primarily along the surface normal. This makes it ideal for detecting defects parallel to the
surface at the expense of reducing the capability to detect defects normal to it [10].

In this regard, the scanning of a point or point from a laser or halogen source provokes a
lateral thermal propagation that is disrupted by the presence of any type of defect, enabling
the generation of thermal gradients that interfere with the plane perpendicular to the surface.
As a result, spot scan thermography (SST) [35] and line scan thermography (LST) [36] use a
laser enabling the emission of coherent light with a uniform optical density (OD) compared
to an halogen lamp projected on a line.
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Fig. 1.5 Laser line scanning thermography, with the inspected surface on a 2 axis table,
moving on a raster pattern relative to the camera and laser line controlled by a signal

generator and a PC retrieving the infrared video.

A common scheme of LST employing a laser is shown in fig. 1.5, covering the surface
with a planar raster trajectory.

The thermal response associated with a defect can be identified by both the change in
the heating pattern of the scanned area and a sharp temperature variation, with the "Thermal
barrier" effect [37, 38] being a common example for detecting cracks perpendicular to the
plane.

Another aspect to consider is that the relative motion between the camera and the surface,
requires a robust registration to common reference to be inspected. This is done to generate a
pseudo-static thermal sequence with thermograms of each point associated with a common
temporal reference.

Several laser-based systems have been demonstrated, projecting a point [35] and a line
[36], with some systems scanning a large composite surface with the laser and camera
mounted on a robot [39], as well as the employment of laser arrays for a rapid inspection [40].
Additionally, there are alternative laser excitation modalities employing lock-in modulation
of the intensity [41, 37], which are able to generate a thermal wavefield, enhancing the
detectability of cracks, irrespective of the presence of arbitrary surface patterns.
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Fig. 1.6 Induction thermography, employing a dipole inductor powered by generator with a
window for direct sight from IR camera.

1.3.4 Induction thermography

As previously exposed for the case of Eddy currents testing (ECT), the induced currents
interact with defects, generating a measurable local electric field with a probe. In the case of
induction thermography, an alternating magnetic field is induced with an inductor located
next to the surface, causing superficial and subsuperficial heating captured by the FPA of an
infrared camera.

Induction thermography (IT) uses a probe comprised of a coiled conductive piece of
wire close to a test surface to generate Eddy currents. In essence, exciting a time varying
current on the coil to generate a magnetic field. with a frequency ranging from 10 to 500 kHz.
In the proximity to the test surface, the magnetic field interacts with the test part inducing
Eddy currents running opposite to the currents in the probe. Fig. 1.6 displays an induction
thermography setup with dipole inductor next to the inspected surface with an opening to
enable the direct line of sight of infrared camera.

This intense magnetic field, rapidly magnetizes and demagnetizes the surface. In the
presence of any abrupt change in magnetic permeability, as is the case with material inho-
mogeneities or sudden variations in geometry, a the magnetic field is partially leaked [42].
This is primarily due to magnetostrictive moved dislocations associated with internal friction
damping [43], which ultimately results in a localized heating. The alternating magnetic field
also produces a field of Eddy currents orthogonal to it, due to the electromotive force exerted
on the free electrons of the material as the magnetic flux changes. The density of the Eddy
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current field J decreases exponentially with respect to the depth z, following

J = Jse
−(1+ j)z

δ (1.9)

, where Js is the surface density and δ is the skin depth. The skin depth represents the depth
at which J decreases to Js/e and is defined as δ = (πµ0µrσ f )−1/2, where σ is the electrical
conductivity, µ0 is the magnetic permeability in a vacuum, and µr is the relative permeability.
On the other hand, induced currents are affected by abrupt changes in conductivity and
magnetic permeability, which may be associated with the defects. Thus, the presence of a
crack that interrupts the currents will cause them to deviate around it, creating zones with
higher and lower current density.

The non-zero resistivity of the material produces Joule heating radiation and in particular,
test-parts discontinuities, such as cracks produce a noticeable change in the radiated heating
distribution. Taking into account that the current flows through a material with a certain
resistance R, Joule heating will occur, which can be approximated with the following
expression for a linear conductor

QH [W ] = I2Rt (1.10)

, where I is the current, t is the time. The resistance can be described as R = L/(σS),
where L is the length of the conductor, S is its cross-section area, and σ is the electrical
conductivity. The electrical conductivity at a temperature T can be approximated with respect
to a conductivity σ0 measured at another temperature T0 with the following expression
σ = σ0(1+α(T −T0))

−1, where α is the temperature coefficient of resistivity. This current
can be expressed in terms of density as I = JsS, where S is the cross-section area through
which it flows.

Considering the above, the terms of Joule heating can be substituted in terms of J. Thus,

QH = (JsS)2 L
σS

t =
J2

s
σ

Vt (1.11)

where the volume is V = L S, and σ is the electrical conductivity. Considering this expression
per unit time and volume, we have QH =

J2
s

σ
, exposing that any variation in both terms will

cause a variation in local instantaneous heating, making it particularly sensitive to the
aforementioned defects.

The resulting heat associated to both phenomenons can be estimated, assuming the
principle of energy conservation and the Fourier heat equation, resulting in the temperature
T (x,y,z, t), which can be modeled by integrating eq. 1.2, with QH being the sum of the
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instantaneous heat of both phenomenons, α thermal diffusivity, κ thermal capacity, and ∇2T
the Laplacian of temperature.

Although the heating from both phenomena may overlap, the relative contribution of
each one can vary significantly, as in the case of ferro-magnetic materials where induced
currents predominate. In any case, the set of externally controllable factors can be optimized
to enhance thermal interference from cracks. This optimization may involve varying the
intensity and shape of the field with respect to the surface, as well as the frequency.

Thus, the inductor, its relative placement and the employed generator are key factors in
this type of thermographic inspection. Note that there is already a large literature focused
on identifying the optimum parameter definition in the IT technique, i.e. finding the most
suitable lock-in regimes considering the skin depth, the thermal penetration depth, and the
crack dimensions to be detected [44–46]. These studies are mostly based on extensive
empirical analysis from both laboratory and field investigations of faults and advanced
diagnosis applications.

Undoubtedly, the results and conclusions of such investigations are of particular interest
for current induction thermographic inspection applications, however, the detection of these
cracks is strongly conditioned by the relative orientation between the crack and the direction
of the magnetic field produced by the inductor, which can be a non-predictable variable.

Using a custom inductor, such as single coil [47], a dipole [48] or a Helmholtz coil
pair [49, 50] which are composed of two coils, produces a fixed magnetic field with a
predominant direction. This limits the resulting thermal disparity in the vicinity of the cracks
in certain configurations. The magnitude of this effect is minimized when both the direction
of the crack and the resulting Eddy currents associated to the magnetic field are aligned
[51, 45, 52]. The reliable detection of the cracks, regardless of its orientation is indeed one
of the main challenges of IT. There is though a very limited number of studies dedicated to
overcoming this critical drawback in IT, indeed the majority of modern induction systems
stem from functional old designs that have been subsequently optimized to enhance induction
heating, have been inherited from welding and thermal treatment applications [53, 54], and
thus the generated magnetic field shows a unique direction in most cases. This limitation
of the inductor can be overcome by scanning the area considering different orientations
relative to the inductor. This rotation would require an external intervention such as a
robot gripper but it also increases the inspection time, its cost and makes it more complex.
Angle-independent thermo-inductive system have been previously demonstrated, employing
a pair of Helmholtz coils disposed in an orthogonal manner containing the inspected part,
resulting in a varying magnetic field orientation derived from the vector addition associated
to an induction frequency differential [50] with two generators. The required containment of
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Fig. 1.7 Induction thermography process diagram.

the part limits the potential use-cases of the system to small parts. Other approaches have
recurred to the circular polarization of the Eddy currents employing a tetra-pole inductor
[55, 56] which generates a rotating magnetic field.

Fig. 1.7 summarizes the induction thermography process, considering both phenomenons
and subsequent diffusion which is measured by an infrared camera.

1.3.5 Other active thermography techniques

In addition to the previously mentioned heat sources, there are many alternatives with a wide
range of applications. However, these will not be explored with the same level of depth as
they out of the core of this thesis.

Microwave Microwave Thermography (MWT) is a technique based on the heating as-
sociated to an electromagnetic wave on 1 to 30 GHz spectrum, enabling homogeneous
volumetric heating, with absorption rates varying according to the material and defects
present. Considering that radiation absorption is largely dependent on electrical conductivity,
Levesque et al. [57] proposed a system in the 1990s for detecting inserts in glass-epoxy
using a microwave-emitting parabolic antenna, allowing partial estimation of their depth and
dimensions. Sakagami et al. [58] proposed another system inspecting a concrete block with
artificial cavities by recording cooling after heating the surface with a 2.4 GHz microwave
oven and shielding the remaining faces. The cavities do not exhibit significant heating
compared to the rest of the block, but the infiltration of water enables a localized heating
due to their high microwave radiation absorption rate. Qaddoumi et al. [59] proposed a
system comprised of an open-ended rectangular waveguide probe radiating microwaves on
the X-band (8.2–12.4 GHz) and K-band (18–26.5 GHz) to inspect the corrosion of coated
metallic samples below the paint considering the varying rate of absortion associated to rust.



22 State of the art

Electro-luminescence Another possible alternative consist on the electro-luminescent
effect by reverse biasing a solar cell. This allows for the direct visualization of the state of
the solar cells based on infrared emission [60].

Thermosonics The usage of an ultrasonic wave propagating on the workpiece to generate
heat captured by an infrared camera is known as vibro-thermography or thermosonics. It
entails the inducing of strong vibrations in a test piece with an ultrasonic pressed against the
surface of the test sample, which often yields to the generation of uncontrolled frequency
components. As a result, the repeatability of this technique is challenging in many scenarios,
as described in the following review Ulmar et al. [61]. An additional consideration is that
the induced vibrations may cause ghosting in the IR camera. Despite this, the technique
is deemed effective in numerous scenarios, given that acoustic vibrations can penetrate to
considerable depths.

Air heating Mercer et al. [62] also demonstrated the usage as of forced air to heat or liquid
CO2 to cool a composite sample, enabling the detection of defects. This heat source has also
been proven useful for the partial detection of some defects in Lumber [63].

Thermo-resistive The usage an electric current to produce Joule heating is also an effective
method as demonstrated first by Sakagami et al. [64], yielding a localized contrast on notched
steel plates. The thermographic inspection inducing Joule heating of composites containing
electrically-conductive aligned carbon nanotubes has also been demonstrated with good
results [65].

1.3.6 Processing techniques

This section discuss multiple thermographic processing techniques to enable the subsequent
detection of defects. These methods usually employ conventional statistical methods or they
recur to the transformation of the thermography into the frequency domain, among others.
Moreover, they consistently strive to discriminate and isolate the information pertaining to
defects from the broader dataset. Prior to the description of the exposed methods, the data
representation is detailed in the next section.

Thermography image representation

The data structure containing the thermography can be defined as a third order tensor
Anx×ny×nt with 3 modes or 2d slices corresponding for each dimension as shown in fig. 1.8a,
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(a) (b)

Fig. 1.8 Thermography tensor representation. (a) Slices corresponding to x, y and t
dimensions. (b) Fibers associated to x, y and t dimensions.

denoted as A(i, :, :), A(:, i, :) and A(:, :, i) for the x, y and t dimensions respectively. The tensor
can also be seen as combination of 1D fibers, denoted analogously. Note that the thermogram
of a single pixel can be referred as a mode-3 fiber, A(i, j, :) as shown in the right hand side of
fig. 1.8b.

Processing algorithms

Differential absolute contrast This is one of the classical methods based on the sub-
straction of the temperature and a sound area for the entire thermography [10], which can
be expressed as C(x,y, t) = T (x,y, t)−Ts(t). The thermal contrast can also be computed
throughout the whole thermography [66], or its peak [67], and it can additionally be normal-
ized in many ways [68]. These methods are very sensitive to the combined variations on
surface emissivity, noise, and the variance of the heating along the surface. Another factor
that particularly affects these methods is that a careful selection of the instant t is necessary,
which might vary depending on the depth and shape of each defect.

Phase thermography Originally proposed by Maldague [69], it is based on the analysis of
the thermography on the frequency domain. Employing the well-known DFT [70]:

F( f ) =
1
N

N−1

∑
n=0

T (t)e− j2π
f n
N = R( f )+ jI( f ) (1.12)

a set of complex components, R( f ) and I( f ), for each frequency f are obtained, which
can be expressed in polar form with the amplitude A( f ) =

√
R( f )2 + I( f )2 and the phase

φ( f ) = atan2 I( f ),R( f ). In lock-in thermography, it has already been described the relation
of the phase image to the depth and thermal diffusion length as described in eq. 1.8. The
amplitude is related to the perceived temperature variation. The spectrum of the thermogram
typically exhibit an exponential decay of the amplitude after the carrier frequency (or
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modulation frequency in lockin), which is one of the main reasons that most of the information
is retained by its phase image. This method is also useful on pulsed thermography, based on
the assumption that an ideal Dirac delta has an infinite flat spectrum in the frequency domain.
Another aspect to consider is that real pulses do not have an infinitesimal FHWM nor a square
shape, thus the amplitude of its broad spectrum is not constant. As for lockin thermography,
on a thermal steady-state, the carrier frequency of the modulation is the primary harmonic
employed for its analysis.

Thermal signal reconstruction The thermal signal reconstruction (TSR), originally pro-
posed by Shepard et al. [71], models the exponential temperature decay of pulsed thermogra-
phy cooling as a logarithmic polynomial in a log-log scale. The logarithm of each thermogram
is fitted to the following log-poly ln(T (t)) = ∑

N
n=0 an[ln(t)]n, using a low-order expansion

for the polynomial with 5 to 7 coefficients. This enables a thermogram reconstruction with
T (t) = exp

(
∑

N
n=0 an(ln(t))n), with less noise and enabling the algebraic computation of its

polynomial derivatives, as well as its temporal resampling. The time-derivative images are
of particular interest, since they can reduce the effect of background artefacts. Its discrete
computation from the raw thermogram is very sensible to the noise, and this method enables
an increased SNR for small and shallow defects.

Higher order derivatives Higher order derivatives (HOS) [72] is a statistical temporal
compression technique based on the central statistical moments. Assuming that the cooling
of a pulsed thermography has a shape similar to a Weibull distribution, the higher order
statistics are very sensitive to the changes of its shape and amplitude. The simplest statistical
parameters to evaluate the tendency and variability of a distribution is the mean µ = 1

N ∑
N
n t,

and the variance σ2 = 1
N ∑

N
n (t−µ)2. The third and fourth standarized or central statistical

moments, named as the skewness and kurtosis represents the relative symmetry and the
relative flatness regarding a normal distribution respectively. They are defined as Mi =

µ i

σ i ,

with µ i = 1
N ∑

N
n (tn− µ)i and σ i = ( 1

N ∑
N
n (t− µ)2)

i
2 and i being the statistical order. Both

the skewness and kurtosis do not represent any physical variable but they are correlated
to outliers in the thermogram distribution which is useful for the extraction of additional
features and data mining.

Principal component thermography The principal component thermography (PCT)
exposed by Rajic [73], is based on the singular value decomposition of the thermography.
Considering a flattened thermography Am×nt , with m = nx× ny and m > nt , the full SVD
decomposition is defined as A =UDV T , with Dnt×nt being a diagonal matrix of the principal
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components ordered in descending order, Um×m and Vt×t being orthonormal basis. The first
p columns of U can be statistically associated to a set of plausible undetermined factors
related to each pixel/point. Rajic normalized the thermography and preserved the first two
columns, or components, with the first one associated to mean and second one correlated
with the defects. The discriminative capacity of this method has been reported by many
authors, e.g. Griefahn et al. [74] could separate the surface reflections and Sutthaweekul et
al. [75] was able to correlate the microwave probe lift-off distance, and both of them where
able to discriminate the defects on separate components.

Principal component analysis The PCT is a computationally expensive technique for
most thermographies, but multiple approximation have been proposed, the first one based on
the principal component analysis (PCA) [76], first exposed on a thermography by Marinetti
[77], consisting on the projection of the thermography into an orthonormal basis of the
temporal scatter matrix of the thermography calculated with the SVD. The temporal scatter
matrix of the thermography can be defined as Snt×nt = (Acenter)

T (Acenter), with Acenter being
the flattened thermography subtracting the mean of the thermogram for each point. The
orthogonal decomposition of the scatter matrix is S = UDV T , and selecting a subset of p
columns of Ut×t denoted as Wt×p, the flattened thermography A, can be projected to a new
base with: A′m×p = Acenter×W . This method can be a good approximation, so long each
mean-centered thermogram is roughly equal to the raw thermogram subtracting the mean of
each frame.

Robust principal component analysis Liang et al. [78], demonstrated a robust SNR with
a challenging background on a pulsed induction thermography scenario, using the robust
principal component analysis (RPCA), exposed by Candés et al. [79]. It is based on the
assumption that the thermography can be decomposed in two components. The first one
being a low-rank matrix L0, typically associated to a background and a second one related
to the outliers S0 which is correlated to the defects, denoted as M = L0 +S0 with M being
the three-way tensor of the thermography. The numerical resolution proposed by Candés
uses to a convex optimization, formulating the optimization as min||L0||*+λS0, subject to
M = L0 +S0, with ||L0||* being the nuclear norm representing the sum of the singular values
of L0. This results in 2 three-way tensors which can be subsequently processed.
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1.4 Quantitative analysis and probability of detection

The quantification of the reliability of the the previously discussed inspection techniques can
be measured using multiple methods. In this regard, there is a set of accepted methods to
estimate the probability of detection (POD) according to sector-specific regulations, as is the
case in the aerospace and military industries.

Numerous methods allow for a comparison between techniques, which can statistically
weigh all the information extracted from tests with varying degrees of detail. In some cases,
these methods also consider the reliability of the comparative result.

In this section, these are presented, starting with the precision/recall ratios on sec. 1.4.1.
Subsequently, we will expose the "Hit & miss" probability of detection (HM-POD), as a
measure of the flaw size a on sec. 1.4.2. Finally, a method which compares response â versus
flaw size a 1.4.3.

Another aspect to consider, is that these methods are detailed on the MIL-HDBK-1823A
standard [80], which is considered the state of the art for conducting POD studies in many
industries [81]. A robust implementation of the regression POD algorithms complying to
this standard is available in R programming language, developed by Annis [82].

1.4.1 Precision and recall

Having a ground truth obtained with a previously validated technique, a set of tests is
conducted on the same set of pieces to inspect. In this sense, the result of the evaluated
technique yield a certain number of true positives T P, true negatives T N, false positives FP,
and false negatives FN, over a total of defects T P+FN. The recall [83] is the ratio of true
positives defined as:

Recall =
T P

T P+FN
(1.13)

On the other hand, it is not desirable for the technique to generate a high number of false
positives due to the operational implications it may have. In this way, the precision of the
technique is defined as:

Precision =
T P

T P+FP
(1.14)

1.4.2 Hit and miss - POD

Considering that the probability of detecting a defect is typically proportional to its size,
denoted as a, the previous precision/recall ratios are unable to define a threshold POD as a
function of a, which limits its extrapolation to different scenarios.
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In many applications, the appraisal of an inspection technique is typically associated with
the bigger defect to miss, and for this reason, the POD is generally expressed as a function of
the defect size, defined as an ideal binary step function.

Considering that each crack can be detected or not depending on its size, one could
define a threshold at a corresponding to the desired percentile of the necessary probability of
detection. However, given that the density and noise of the distribution are variable, such a
threshold may not be accurate in practice.

In a realistic situation, the POD is typically described as an ascending sigmoid function,
that can be modelled in many ways. The most accepted HM-POD model to fit the set of
binary points associated to the experiments, is the log-logistic distribution [84], written as:

POD(a) =
e

π√
3

(
lna−µ

σ

)
1+ e

π√
3

(
lna−µ

σ

) (1.15)

where µ and σ are the mean and standard deviation, respectively. In addition, the regression
of that model can weight the varying confidence interval (CI) with the likelihood-ratio method
[85].

1.4.3 A VS Â - POD

Assuming that the evaluated technique produces a signal instead of a binary result, it becomes
possible to fit this signal with respect to the defect size. The method is analogous to the one
in the previous section, and although the proportionality of the signal â to the defect size a is
a priori correlated, the function that best fits it does not necessarily have to be a an ideal step
function or a sigmoid.

Another aspect to consider, is the the relation between the underlying signal of the
technique might not even be follow monotonic curve compared to the defect size, which can
make the final thresholding a very challenging task.

In the case of image-based signal it is very common to compare the signal regarding the
background noise, using a Signal to noise ratio (SNR), which is typically defined as:

SNR(x,y) = 20log10
abs(S(x,y)−µsound)

σsound
[dB] (1.16)

where S(x,y) is the value of a certain pixel, µsound and σsound are the mean and standard
deviation of sound area. In this regard, the distribution of â - a might vary according to the
use case.
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Assuming that this distribution follows a line on a log-log scale, with a standard deviation
δ , the function is defined as:

â = β0 +β1a (1.17)

where, β0 and β1 are the offset and slope, respectively.
The regression to model the probability of detecting a higher signal Y , regarding a certain

threshold yth, can be defined with the following expression:

POD(a) = Pr(Y > yth) = 1−ΦNorm

[
yth−β0 +β1x

δ

]
(1.18)

where, φNorm is the standard normal cumulative density function (CDF), x = log(a), and
yth = log(âth) is the signal threshold limit.

Considering that the signal of the same defect might vary depending on some uncontrolled
variables of the inspection, multiple regressions can be weighted using the method reported
by Meeker et al. [86]. Another aspect to consider is that the conventional least square
regression is generally avoided, mainly due to the varying variance along the curve. A
weighed likelihood-ratio method [85] enables the estimation of the varying CI on the fitted
sigmoid.

1.5 View planning

The preceding sections have delved into surface and subsurface inspection methods, with
a particular emphasis on active thermography and its applications. However, there has
been no discussion of the crucial aspects associated with its automation. In this regard, the
inspection of an object or surface of interest typically needs to meet a series of requirements
or constraints associated to the employed technology, while ensuring the complete coverage
of the surface to be inspected. In an industrial environment, this is often addressed through
manual CAD/CAM programs that define these trajectories in a virtual environment, which
must then be tested on the actual component to make the necessary corrections associated
with any unforeseen deviations from the real environment.

Therefore, the automation of the inspection itself can be a lengthy process that requires
expertise in both the inspection technique and automation. Consequently, it has been deemed
appropriate to implement a system that procedurally resolves the trajectory generation for a
generic inspection process such as 3D surface reconstruction.
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This section provides a brief a brief overview of the literature related to the View Planning
Problem (VPP) exposed, considering that the goal of this problem is to procedurally automate
the surface inspection using an arbitrary system. This section is organized as follows,
beginning with a review of the applications that motivate this problem. Subsequently, the
two approaches are presented, outlining the associated general flow. Depending on the
employed sensor and approach of the problem, multiple data structures related to the spatial
representation are required. The following section reviews the View Planning Problem (VPP)
using a 3D model of the object or approximate environment, referred to as model-based VPP.
Finally, the next-best-view (NBV) is discussed, which determines the next capture pose that
yields a higher coverage.

1.5.1 Motivation

The purpose of the problem is to plan the positioning of one or multiple sensors with the goal
of visualizing a known [87] or unknown surface [88], of an object or scene.

This problem arises in a relatively broad range of applications. Firstly, there may be a
need to procedurally automate the inspection of a known or unknown object. Additionally,
the objective may involve positioning a network of cameras [89] or static sensors under
certain constraints to cover a certain area. In situations where an autonomous robot is
available [90], its active guidance for exploration and mapping of an environment constitutes
another possible application [91]. In some instances, the total coverage may not always be
the objective, such as object recognition [92] or pose estimation [93, 94] of already known
objects, where the goal is to find optimal viewpoints that minimize the ambiguity of the task.

In industrial settings, the automation of the inspection process is often carried out by
an expert, which can be time and resource-intensive. Furthermore, there may not be an
approximate model of the object, which will end up being manually scanned either way. On
the other hand, the elements comprising a view-planning system consist of one or multiple
sensors, usually positioned by one or more robots, which are detailed in section 1.5.3. The
basic VPP systems are described in section 1.5.2.

1.5.2 Generic view-planning algorithm

The strategies for solving the problem can vary depending on the goal or available informa-
tion. For example, it may be the case that there is an approximate model of the object or
environment to be explored, allowing for an offline planning, referred to as model-based
view-planning problem [95]. In contrast, if no such model is available, an approach called
next-best-view (NBV) is employed [88].
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The model-based VPP has the advantage of having more information, and it follows a
sequential workflow, starting with (1) the sampling of a set of hypothetical capture poses,
(2) the simulation of their perception, and lastly (3) a selection of the final subset of capture
poses that meets the task requirements. Most of these systems distinguish themselves in the
last two steps, considering different criteria for simulation, such as minimizing reflections
and uncertainty in 3D measurements [96, 97], or taking into account the energy radiated by a
pair of halogens perceived by an infrared camera on a thermographic inspection [98]. The
problem formulation varies based on the type of task, so in an inspection object inspection,
the main goal consists on maximizing surface coverage, while on the recognition or pose
estimation, the aim is to reduce any ambiguity.

If an approximate model of the object is not available, the next-best-view approach is
based on an iterative scheme consisting on (1) the selection of one or more poses, (2) path
planning, (3) capture, and (4) update of the virtual environment space.

1.5.3 View planning system

As mentioned earlier, this system requires at least one sensor and a robot or positioning system.
The following briefly outlines the most common types of robots and sensors employed for
VPP applications.

Robot

In this context, multiple types of stationary robots can be employed, such as CNC 3D
Cartesian positioning [99] or robotic arms with various degrees of freedom that allow control
over position and orientation [100, 101], some of which employ non-holonomic kinematic
chains with overactuated robots to increase their effective workspace and maneuverability
[102], as well as the employment of multiple arms [97].

Typically, these robots have a Cartesian workspace limited by the robots joint limits,
and an arbitrary Cartesian pose may have a finite subset of configurations or infinite in
cases where more than 6 degrees of freedom are needed to reach a position with a specific
orientation. In any case, the positioning space of the cameras may be limited not only by
the robot but also by external constraints [95]. On the other hand, mobile robots commonly
used for active recognition and mapping applications can move through various mediums.
Numerous examples of VPP systems employing such robots use unmanned aerial vehicles
(UAV) [90, 91], which can explore a known [103, 104] or unknown environment [105, 91],
even employing swarms of drones simultaneously [106], as well as recognizing people with
infrared cameras in rescue operations [107].
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The use of autonomous underwater vehicles (AUV) on a VPP context is also common for
inspecting known ship hulls [108], underwater structures [109], or the inspection of known
sections of the seabed [110–113].

Other VPP systems employ unmanned ground vehicles (UGV), considering three-
dimensional inspection of an interior [114], thermal mapping of an interior for the detection
of thermal leaks [115], or inspection of terrain [116].

Sensors

The set of sensors that can be employed in a view planning problem (VPP) can be very
diverse [117], mostly comprising cameras and stereo cameras, profilometers, structured light
scanner, infrared cameras, lidars, as well as depth sensors based on multiple cameras.

It is common to use cameras in the visible spectrum [118] or infrared [115, 98] (sec. 1.3.2),
and in some instances, the use of hyperspectral cameras allows for the extraction of more
information [119]. The visibility can be estimated with a pinhole model, where the incident
light ray passes through a focal point and projects onto a plane. Therefore, simulating the
visibility of a camera can be based on the path followed by these rays through ray-casting or
by projecting the scene onto that plane, as briefly discussed in section 5.2.2.

Given that the majority of VPP applications focus on surface reconstruction, the subse-
quent paragraphs will outline the prevalent types of 3D scanners employed for this task.

There are various types of depth sensors that allow the generation of point clouds based
on different principles. It is possible to use a binocular or stereo vision system, based on
the same principle as human vision to infer the distance to an object. In its simplest version
with two cameras on the same epipolar plane and parallel orientation of the optical axis, a
purely geometric relationship is established between the object’s distance from the cameras
and its projection in the images captured by them. Using the binocular pinhole model shown
in fig. 1.9, with a distance between cameras b and focal length f , the orthogonal distance
z of a point P⊂ R3 can be geometrically calculated in terms of the pixel distance of each
camera, the projections of a point P from both cameras, called disparity d = (u2−u1), where
d =− f b

z , z = f b
d , with u1 and u2 being the distance of the projected point of each camera.

Considering the minimum error as ∆z = z2

f b , the accuracy at long distances is limited
by the distance between the cameras and focal distance, making it less suitable in many
circumstances. Additionally, the estimation of the disparity of all points present in both
images (disparity image) is problematic, as it requires associating the points based on image
features. A faster and robust generation of the disparity map can be achieved by employing
the basic principle of photogrammetry [120], which considers that the infinite optical ray
associated to a pixel can be projected on the other camera sensor plane drawing a line.
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Fig. 1.9 Binocular stereo vision under epipolar constrain.

Considering an epipolar constrain allows the associated line to be parallel to the epipolar
plane, accelerating and strengthening the generation of the disparity map. Moreover, it is
not always possible to produce a dense disparity map due to the lack of information or lack
of visual surface texture of the surface. Hence, stereo systems projecting pseudo-random or
similar patterns exist allowing the generation of dense point clouds with a better control of
the lighting conditions. This method can be generalized [120, 121] to sets of cameras, where
perception can be fused in pairs or sets of cameras to expand the field of view [122].

Alternatively, exploiting the time-of-flight (TOF) of light can be used to estimate distance.
In its simplest version, a square-wave light is emitted, and immediately reflected, causing the
wave to have a phase shift corresponding to the round-trip time of light based on the distance
d = c∆t/(2n), where c is the speed of light, and n is the refractive index of the medium. In
this regard, such sensors can have a long range, although their spatial resolution is more
limited and depends on the emitted light frequency. Another factor to consider is that the
resulting point cloud can have many outliers in the vicinity of edges due to the averaging of
TOF of the nearby and distant surface surrounding the edge.

LiDAR is another technology that uses the time-of-flight principle for depth determination,
employing a set of infrared laser beams with a circular movement, capturing reflections with
point light transducers. These systems can cover large areas, but the resolution is limited by
the pulsing frequency and the number of beams. Recently solid-state LiDAR systems have
also been demonstrated [123].

On the other hand, the use of a linear laser beam can be captured by a camera, enabling
the determination of the position of the impinged surface. In this sense, profilometry can
infer the position of the set of points of the laser beam visible by the camera, given its known
intrinsic parameters, and the relative extrinsic position of the laser plane with respect to the
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camera. There are many models to estimate this set of parameters, with the simplest being to
estimate the transformation of the plane, or homography, of the camera sensor relative to the
laser plane [124].

1.5.4 Data structures

In this section, the most commonly used types of spatial representation are described, both in
the capture and planning phases.

Considering the representation of the workspace, it is commonly defined as dynamic tree
of objects with relative poses between them, with the global coordinate system being its root.
Frameworks like ROS [125] or Gazebo [126] represent the interrelation by breaking down
the robot’s links, where the kinematic chain is updated or simulated. The effective workspace
of the robot also has to consider possible collisions, so it is common for these frameworks
to integrate a collision backend, implementing libraries such as FCL [127] or Bullet [128],
among others.

Depending on the circumstances, the internal representation of objects and their surfaces
may vary, either to represent static three-dimensional information captured by sensors or
used by the VPP algorithms and downstream tasks.

Point Cloud

The most common raw representation of 3D sensors is simply a collection of points relative
to a specific frame. In this sense, they can be structured point clouds in a two-dimensional
buffer, or a multi-channel image, or alternatively as an unordered list of points. The points
are usually 2 or 3 dimensions, and it is common for them to have more attributes, such as
intensity, color, or surface normals, among others.

Meshes

It is a set of flat polygons defined by their vertices and mutual interrelation. The interrelation
of polygons, or topology, can be implemented or transformed into any of the alternative
representations of undirected graphs. The most compact way to define a mesh is with an
adjacency list of Cartesian vertices for each polygon. It is common for meshes to have a
single type of polygon, with triangles and quadrilaterals being the most used. Additionally,
the ordering of vertices in the adjacency list is predefined based on the direction of normals.
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Grids and spatial indexers

Considering that the view-planning problem, as well as the downstream applications such
as surface reconstruction commonly use these types of data structures, it is of the utmost
importance to have a comprehenssive understanding.

As previously stated (sec. 1.5.2), the next-best-view is based on the spatial subdivision of
the free, occupied and unknown space which serves as the basis for its decision.

Multiple VPP algorithms, as well as downstream applications use these data structures
as the basis for its execution or to reduce the runtime. For instance, the computation of the
visibility using a naive ray-casting based on the intersection of geometric primitives [129]
scales poorly, as it requires to compute the collision of each ray, regarding all the geometric
primitives of the scene. In this scenario, it is desirable to have an efficient traversal of the
scene by the ray, to minimize the number of collision evaluation, by skipping the empty
space, while avoiding the non-intersecting geometry.

The radial and k-nearest neighbour (knn) search queries are typical functions associated
to these data structures, which are commonly used to accelerate the post-processing and
segmentation of point clouds, as well as the computation of many radial basis functions
for the implicit surface reconstruction to locally [130], or globally [131] sample a signed
distance function (SDF) [132]. Another typical use case of the these data structures, is the
spatial indexing of the objects [133], or fragments of it [134], to enable a faster discrete or
continuous [135], collision evaluation.

The selection of the optimal data structure depends on many factors, such as the type of
data that it contains, the queries required, as well as the time to build and update on a dynamic
environment. The most common spatial indexing data structures are mainly categorized as a
(1) collection of geometric primitives, (2) grids, as well as (3) trees, which typically contain
points, polygons and voxels, among other types of data.

Geometric primitives The simplest method to perform a high level spatial subdivision
consist on enclosing the objects on a bounding primitive, such as axis aligned (AABB) or
oriented bounding boxes (OBB), spheres and ellipsoids, among others, enabling a high level
collision check, regarding other objects or rays.

Grids A uniform grid is one of the simplest spatial indexers to implement with fast access
time, and its construction can be implemented in many ways, using k-dimension tensor
containing each voxel, or an ordered hash-list of the occupied ones. The fixed resolution
means that its size is not optimal to contain spaces with varying density and resolution.
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Trees The simplest hierarquical space subdivision consists on a kd-tree [136] which itera-
tively partitions the space in axis aligned planes containing the median or mean of the data.
This results on a binary tree with the lower level containing the data itself. Other planar
binary partitions, such as the binary space partitioning (BSP) [137] generalizes this idea,
allowing an arbitrary orientation and location of the splitting planes. The spatial subdivision
can also be extended employing quadtrees [138] which are good for 2D or mostly planar
data, as well as Octrees [139], both of which orthogonally subdivide the volume with a
uniform spacing for each level, resulting in 4 or 8 nodes per parent respectively. It is also
common to label the nodes extending the set of attributes with other kinds of data or labels.
Occupancy labels such as free, occupied and unknown space are of special interest for many
application such as VPP and dynamic workspace representation. An example of this is the
octomap [140], which consists on an octree which fuses the occupancy of multiple sensors
with a temporal update rule clamping the occupancy on nodes with a consistent occupancy
probability across multiple sensors. This enables a dynamic compression of the graph by
pruning the sub-nodes with the same occupancy labels.

1.5.5 Model-based view planning

The classical sampling-based VPP, employs an approximate model of the targeted surface,
such as the one exposed by Scott [87], starts with the sampling of viewpoints, its subsequent
simulation and the final set cover ensuring the maximum coverage. The sampling of the
viewpoints starts by decimating [141] or resampling [142] the surface mesh, which yields
another mesh with a different distribution and density of the primitives. This mesh is used to
sample the surface points by selecting the vertices or the barycenters of the mesh primitives.
These points are used to sample a set of a priori ideal viewpoints with a normal incidence
angle from a distance corresponding to the maximum optical resolution, which is defined
as the center of the depth of field (DOF). Other viewpoint sampling methods such as the
one exposed by Jing et al. [103], generates a volume surrounding the object, computed by
calculating the perpendicular at the surface points of the object, and adding the minimum and
maximum distance of the DOF. This 3D volume is used to randomly sample the origins of the
viewpoints, and their orientations is determined with a potential function of the neighbouring
surface normals.

The resulting set of viewpoints is then simulated considering the visibility among other
factors depending on the use case, resulting in a visibility vector of M surface points for each
viewpoint i, denoted as

−⇀
Ai. The visibility of the N viewpoints, regarding M surface points

conforms a visibility matrix, Avis = (
−⇀
A1, ...,

−−⇀
AN), which can be interpreted as a bipartite graph

relating both disjoint sets, as formulated by Tarbox et al. [143]. This data structure, which
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can be interpreted as a bipartite graph, enables a combinatorial formulation of the VPP as
a Set Cover Problem (SCP), to maximize the coverage of the surface with the minimum
number of viewpoints.

The visibility matrix can also consider multiple configurations of the scanning device, as
demonstrated by Gronle et al. [99], which modelled multiple focal distances of a confocal
microscope as different viewpoints, effectively multiplying the size of the visibility matrix.

Considering that the total area to cover is finite, the likelihood of visualizing the same
surface patches increases as the number of viewpoints rises. The diminishing returns of this
problem is one aspect of its submodularity associated to the total overlap of the visibility
[104]. Therefore the coverage and number of viewpoints are two conflicting objectives which
must be approximated in a reasonable time scale. The optimization of the problem has been
previously solved employing well-established meta-heuristics such as, greedy [144], linear
programming [145], Lagrangian relaxation [146], simulated annealing [147], particle swarm
optimization [96], and genetic algorithms [148], among others.

The conventional Greedy Set Cover [144], repeatedly selects the next column (viewpoint)
of Avis, which maximizes the coverage of the remaining uncovered points, until the whole
set is covered in O(logn), [149]. Its unweighted cost, as well as the deterministic selection
criteria, precludes the exploration of alternative solutions, which can be improved with a
randomized selection [150].

Another aspect to consider is that its parallelization is able reduce the runtime with a
similar solution, so long the problem is subdivided in buckets of maximal near-independent
sets [151]. Kava et al. [152] defined the greedy SCP as a markovian decision process
(MDP) yielding a combination of probable coverage sequences associated to the cumulative
probabilties of each selection branch, and a greedy gain considering the gained coverage, as
well as the adjacent boundary of the preselected candidates weighted with a learnt parameter.
In this scenario, a reinforeced learning (RL) framework was used to learn the weighing
parameter showing a performance greater or equal to a greedy SCP, given sufficient learning
time.

The set cover yields a set of unordered inspection frames which might be used to position
static cameras or generate an inspection trajectory, minimizing the inspection time and
considering the kinematic constraints of the robot and camera attached to the robot wrist, by
employing a combinatorial optimization known as the Travelling Salesman Problem (TSP).
Most of these methods have been tested in simple geometries with typical runtimes on the
order of minutes [87, 96, 153, 154].
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1.5.6 Next-best-view

The NBV is an alternative approach of the same problem which was proposed by Connolly
[88], consisting on the iterative selection and capture of the surface represented on a octree
occupancy man, considering the occupied, free and unknown or unseen space. The free space
is determined by ray-casting from the sensor to the occupied voxels flagging the traversed
voxels. It uses two selection heuristics, the first one being a simple sphere sampling which
determines the next camera frame with largest number of potential unseen voxels, and a
second one focusing on the boundary voxels of occupied and unknown ones. The exploration
of the boundaries between unseen and occupied voxel was also exploited by Banta et. al
[155], which presents multiple heuristics ranging from coarse to fine integrated on a later
stage. It starts with an edge-based sensor placement of the depth image, coinding with the
boundary between occupied and unseen space, followed by the sampling of the centroid of
occluded voxel and at a later phase of the scanning it samples cluster of nearby occluded
areas.

Kriegel et al. [156] also recurs to the boundary search considering the trend of the surface
as well as the occupancy uncertainty. His system is able to autonomously explore the scene
with a 3D camera and reconstruct objects with a laser stripe scanner on a higher resolution.

Khalfaoui et al. [157] proposed a selection criteria based on visual information, favoring
the surface patches with an unreliable visibility associated to a large incident angle and
considering potential occlusions according to the partial occupancy map.

Another method employing visual information proposed by Vasquez et al. [158], proposes
a utility function that simultaneously weights for each view-point candidate the potential
number of unseen voxels close to occupied ones, a reduced navigation distance, as well
as quality metric based on the average incidence angle, promoting rays traversing a larger
number of occupied voxels (occlusion). His algorithm also deals with positioning errors by
modelling the positioning error as a 0 gaussian mean, on local cartesian window considering
the utility function. It recurs to the local sampling of the utility function associated to the
chosen viewpoint and convolves the sampled window with a gaussian filter from which the
best possible candidate is selected.

Delmerico et al. [159] proposed and tested experimentally multiple volumetric informa-
tion (VI) metrics for each viewpoint by integrating the information going of each voxel of an
octomap. The most relevant VI metrics are (1) an occlusion aware VI being the cumulative
occupancy probability of unobserved voxels traversed by all the rays casted from the sensor,
an entropy VI based on the occupancy uncertainty of unseen voxel, (3) a rear side voxel
VI weighing the visible entropy of unknown voxels which are adjacent to occupied ones,
(4) a proximity count VI, weighing the occlusion aware with the minimum distance of an
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unseen voxel towards an occupied one. These metrics were also combined with entropy of
each voxel, and the experimental results shows that the entropy-based VI metrics effectively
reduce the entropy of the overall map (cumulative entropy), but they underperform compared
to the rest on a surface reconstruction task. This observation is explained by the fact that all
that uncertain voxels end up being rescanned instead of promoting unsee voxels. Note that in
this system the potential occlusion is tested by ray-tracing from the viewpoint assuming that
unknown voxels are free.

Another aspect considered by Krainin et al. [160] is that in most scenarios the full
coverage of an object is impossible due to the surface on which is located. His system
relocates the object considering the occlusion of the robot gripper and previous coverage,
as well as the self-occlusion of the rest of the robot regarding the scanner. The regrasping
for an optimal coverage has also been explored by Kobayashi et al. [97], emplobying a
dual arm robot with hand-over from one arm to the other, considering the followed path on
configuration space of the robot.

Wu et al. [161] exposed a Convolutional Deep Belief Network (CDBN) [162] modelling
the probability distribution of an occupancy map enabling the synthesis of an extrapolated
point cloud from a certain viewpoint, which serves as the basis for recognition as well as
NBV planning. Other synthesized methods, recur to a point completion networks [163],
to estimate the visibility of the extrapolated cloud by ray-casting on its occupancy voxels,
while at the same time weighting the confidence of each point with a parallel network as
demonstrated by Wu et al. [164]. Other types of NBV algorithms avoid intermediate cloud
extrapolation, such as the one exposed by Zeng et al. [165] which models the information
gain of a set of viewpoints, considering the raw point clouds and capture poses demonstrating
good generalization capabilities, as well as a fast inference time. The training starts by
sampling a set of viewpoints and initializing a null binary selection vector state. It follows
an iterative selection of the pose that maximizes the coverage gain and saving a supervised
training pair of (1) partial point cloud and selection vector state, along with (2) the coverage
gain of the new capture. The process continues up to certain number of iterations, and is
repeated on multiple 3D models. The network architecture extracts global features of the
partial point cloud by max pooling a vector of point-wise features. The point-wise features,
current view-state and global features are concatenated with a self-attention unit (SAU) [166],
which is subsequently passed through a multi layer perceptron (MLP) followed by max
pooling yielding an estimate of the new binary coverage of each point of the object. The loss
function is based on the MSE of the output vector regarding the ground-truth coverage gain.
Network ablation study prove that the inclusion of prior feature extraction and merging with
SAU enables an improved coverage prediction. Vasquez et al. [167] exposed a deep CNN
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predicting the NBV position without any intermediate extrapolation or decision process.
His method employed 323 occupancy grid as input and the determination of the viewpoint
orientation is determined geometrically by pointing towards the object center of the partial
cloud.





Chapter 2

Phase shifted imaging on
multi-directional thermography

In this section a novel multi-directional Eddy current thermography (ECT) system is pre-
sented generating sets of directional phase images that have been fused with a processing
algorithm allowing for an improved probability of detection (POD). This chapter is a modified
transcription of a paper published by the author [168].

2.1 Introduction

Inhomogeneous electromagnetic Joule heating derived from the diversion of induced Eddy
currents provoked by cracks, altering its path around as well as under its bottom, is the
principal phenomenon enabling its usage as a non-destructive-evaluation (NDE) technique.
Most induction thermography systems employ inductors derived from old designs, optimized
for localized heating with a fixed magnetic field direction. This provokes a directional detec-
tion blind-spot for surfaces with random crack orientations. In the preliminary experiments
we have observed that the pattern associated with the thermal response distribution can be
geometrically correlated to the relative orientation of the magnetic field regarding the crack,
conforming to a rotating feature that has not been described before. Extracting the apparent
motion as an optical flow, with a phase-shifting interpolation of the intermediate orientations,
generates a signal that enables a robust segmentation of a wide variety of defects in ferritic
and austenitic alloys. Its performance has been evaluated with two ‘Hit/Miss’ POD studies
TIG welds Inconel 718 and Haynes 282 alloys. Results show an increased detectability
regarding the manual labelling of the defects in the same directional set, employing the same
input.
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2.1.1 Related works

Industrial manufacturing processes such as welding, steel hot rolling or casting are prone
to cracks and porosity defects. Yet these defective features act as a stress concentration site
which negatively affect the fatigue life and tensile properties of as-built parts. Furthermore,
when these faulty parts are subjected to large mechanical forces defects in these components
could lead to fatal consequences. Therefore, it is crucial to identify these defective parts
through a quality inspection process, on the one hand, to ensure product quality and, on the
other hand, to enhance material circularity, requalifying it or reusing it in some other process,
i.e., minimizing environmental footprint. The detection of cracks in manufactured metal
alloys is conventionally performed with techniques such as the magnetic particle inspection
(MPI) and liquid penetrant inspection (LPI).

However, the detectability of cracks using MPI and LPI is limited and depends on
the inspector’s skill, which reduces the reliability of these techniques. Additionally, these
methods require the use of toxic chemicals and may require the removal of the component’s
coating before inspection, which increases both the manufacturing and inspection times.
Moreover, the manual and time-consuming nature of traditional inspection processes does
not fit well with modern manufacturing lines. As manufacturing processes have become
increasingly automated and faster, inspection processes must keep pace to avoid creating
bottlenecks in the production line. In industrial practice, both Eddy current and induction
thermography (IT), [69], techniques are commonly used for 100 %-testing of components
and for spot checks, though Eddy current testing is limited to relatively simple geometries,
fails to find large-scale defects as well as shallow inclined cracks, and does not allow to
identify the cracks in thin materials. In this contribution, IT is featured as an interesting
alternative to overcome these limitations.

Undoubtedly, the results and conclusions of such investigations are of particular interest
for current induction thermographic inspection applications, however, the detection of these
cracks is strongly conditioned by the relative orientation between the crack and the direction
of the magnetic field produced by the inductor, which is indeed a non-predictable variable.

Using a customary inductor, such as a dipole or a pair of Helmholtz coils which are
composed of two coils, produces a fixed magnetic field with a predominant direction. This
limits the resulting thermal disparity in the vicinity of the cracks in certain configurations.
The magnitude of this effect is minimized when both the direction of the crack and the
resulting Eddy currents associated to the magnetic field are aligned [51, 45, 52]. The robust
detection of the cracks, regardless of its orientation is indeed one of the main challenges of
IT. There is though a very limited number of studies dedicated to overcoming this critical
drawback in IT, indeed the majority of modern induction systems stem from functional old



2.1 Introduction 43

designs that have been subsequently optimized to enhance induction heating, which have been
inherited from welding and thermal treatment applications [53, 54], and thus the generated
magnetic field shows a unique direction in most cases. This limitation of the inductor can be
overcome by scanning the area considering different orientations relative to the inductor. This
rotation would require an external intervention such as a robot gripper but it also increases the
inspection time, its cost and makes it more complex. Angle-independent thermo-inductive
system have been previously demonstrated, employing a pair of Helmholtz coils disposed in
an orthogonal manner containing the inspected part, resulting in a varying magnetic field
orientation derived from the vector addition associated to an induction frequency differential
[50]. The required containment of the part limits the potential use-cases of the system to
small parts. Other approaches have recurred to the circular polarization of the Eddy currents
employing a tetra-pole inductor [55, 56] which generates a rotating magnetic field.

2.1.2 Contributions

The main contributions of this work lie in:

• the development of a new thermo-inductive modality, based on the generation of a
discrete set of thermographies with multiple magnetic field orientations.

• The identification of a new type of rotational feature associated to the tips and narrow
points of the cracks and defects, which can be geometrically correlated with the
direction of the magnetic field.

• The development of an interpolation method to approximate the intermediate orien-
tations of the magnetic field, while canceling a large part of the noise present in the
phase images, which is not affected by the variation of the orientation of the magnetic
field.

• The design of a processing algorithm that fuses the directional phase images of the
thermography, on a pixel-wise basis, exploiting the apparent motion of the pattern
associated to the cracks, which has demonstrated good results in different materials
and defect types.

• The rigorous evaluation of the performance for the automatic detection of the cracks,
following the MIL-HDBK-1823A standard, in two distinct types of TIG weld defects
on Inconel 718 and Haynes 282, with 218 and 337 cracks respectively. Obtaining the
a90/95 crack size, that is the crack size that can be detected with 90% probability with
a confidence level of 95%. The results demonstrate a probability of detection that is
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not dependent on the relative orientation, with an increased detectability regarding the
manual identification of the cracks in their respective phase images.

2.2 Methods

This section exposes the novel system which is illustrated in fig. 2.1, starting with the
generation of (a) directional phase images (sec. 2.2.2) with a switched tetra-pole inductor
(sec. 2.2.1), followed by a normalized (b) phase-shifted interpolation (sec. 2.2.3), displaying
an apparent rotation of resulting heating around the crack tips, which is (c) estimated with an
optical flow (sec. 2.2.4), yielding a vector field concentric to the cracks, which is integrated
with a vorticity convolution (d), generating a signal correlated to the center of the cracks
(sec. 2.2.5).

(a) (b) (c) (d)

Fig. 2.1 Phase-shifted induction thermography processing pipeline. (a) phase
images of each direction, (b) phase-shifted uniform sampling, (c) optical flow

motion, (d) vorticity of the vector field.

2.2.1 A multi-directional induction thermography system

An inductive thermography inspection system consists of three main components: a wave
generator, an infrared camera, and an inductor. During the inspection, the inductor, powered
by an alternating current, generates a magnetic field. This magnetic field interacts with
the material, inducing Eddy currents beneath the surface. The density distribution of these
currents shows an exponential decay as you move away from the surface, decreasing to 1/e
(approximately 37%) at the skin depth, δec. The skin depth is determined by factors such
as the material’s resistivity ρ , the frequency of the Eddy currents f , and the vacuum µ0 and
relative µr magnetic permeability, i.e. δec =

√
ρ/(π f µ0µr).

The skin effect has implications for thermographic inspections because it affects the depth
at which thermal patterns are detected. Higher-frequency currents or fields have shallower
skin depths, resulting in more surface-sensitive measurements. Conversely, lower-frequency
currents or fields penetrate deeper into the material, allowing for the detection of thermal
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patterns at greater depths. Moreover, surface geometry, the isotropy of the material, and the
presence of cracks, pores, and sharp edges strongly influence the distribution and path of the
Eddy currents and lead to localized Joule heating. This heating causes a localized increase of
the emitted infrared radiation, which is typically captured and measured using an infrared
camera. While this procedure is widely used, there remains a need for critical analysis of
these measurements to accurately assess the presence or absence of defects. Interestingly,
the design and configuration of the induction device significantly influence the distribution
of the radiated field, thereby presenting additional challenges in the analysis process.

Conventional inductor designs, including dipoles and Helmholtz coils, are commonly
constructed with twin or single coils that generate a magnetic field with a fixed direction.
Consequently, the induced Eddy currents exhibit a predominant direction aligned with the
magnetic field. The interaction between the Eddy currents and the defects is also influenced
by the relative orientation of both, potentially causing the currents to flow around or beneath
the defects. As previously stated, the presence of defects and the interplay with the Eddy
currents have been quantifiably observed in studies, particularly when the crack and the Eddy
currents are not parallel. Consequently, conventional inductors face significant limitations
in consistently detecting defects in random crack samples. In contrast, a tunable induction
system capable of rotating the induced magnetic field overcomes potential directional blind
spots. A multidirectional inductor, capable of comprehensive coverage of all crack directions
under examination, ensures that all cracks are subjected to the thermal stimulus. This
capability becomes particularly important when dealing with complex shapes, irregular
geometries, or components with varying thicknesses. With this regard, we devised a new
tetra-polar inductor, based on the tetra-polar magnetic yoke reported in [55], though it
features the ability to further control the induced magnetic field on it.

The inductor, shown in fig. 2.2, is comprised of 2 pairs of coils, Cx and Cy, arranged along
the horizontal and vertical sides of a hollow square-shaped ferrite. This configuration allows
for the convenient placement of an infrared camera on top, ensuring a direct line of sight and
visibility to the inspected surface.

The resulting magnetic field of the 2 dipoles can be expressed as a vector addition in
R2 as B = Bxsin(2π fx +φx)+Bysin(2π fy +φy), where Bx, By, fx, fy, φx and φy are the field
amplitudes, frequency and phase shifts on the transversal directions, respectively. Thus, by
activating or deactivating the coils and reversing their polarity, the tetra-polar inductor can
achieve four distinct orientations of the magnetic field, which we will hereafter denote as
βi, where i is one of the four orientations available using the proposed system. The specific
orientations and their corresponding labels are presented in Table 2.1.
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(a) (b)

Fig. 2.2 Tetra-pole inductor. (a) a 3D illustration based on [55], with 2 pair of
independent coils and (b) is a top view of the inductor defining the relative

orientation of the magnetic field, β , and the crack, α , regarding the inductor, and
the angle between both, ψ .

Table 2.1 Magnetic field orientations as a function of the activation of the coils.

β State
β0 Vx ̸= 0,Vy = 0
β45 Vx =Vy ̸= 0
β90 Vx = 0,Vy ̸= 0
β135 Vx =−Vy ̸= 0

The complete experimental setup is shown in Fig. 2.3. It includes a Flir X6541sc infrared
camera equipped with a Stirling-cooled 640x512 InSb sensor. This camera is capable of
achieving frame rates of 125 Hz at full frame or 4 kHz in windowing mode. The induction
generator utilized is the Edevis ITVis 3000 MHF, which has been employed in various
scenarios and was developed in [169]. It incorporates a full-bridge inverter circuit with
pulse-width modulation, operating within a continuous frequency range of 10 kHz to 60 kHz.
And a switching device to alternate between the different states.

2.2.2 Preliminary experiments on notches

To demonstrate the multi-directional induction capability of the system, a set of experiments
has been carried out to analyze this aspect. Previous research has empirically demonstrated
the relation between the thermal response and the relative orientation between the longitudinal
direction of the crack and the magnetic field [51, 45, 52].
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Fig. 2.3 Multi-directional induction thermography system setup. (a) Overall
system composed by an induction generator, switching box, PC, IR camera,

tetra-pole inductor and a welded sample. (b) A closeup of the camera inductor
and welded sample.

This relation can be used to determine if the magnetic field is effectively rotating, by
generating a similar thermal response by maintaining the same relative orientation of the
magnetic field, β , and the crack, α , that we denote ψ = α−β , as shown in fig. 2.2b. The
thermal radiation is measured by the infrared sensor, which is affected by local emissivity
variations, inhomogeneous initial surface temperature, as well as the directional emissivity,
among others. The bias introduced by the raw thermal recording is mitigated by selecting the
phase image of the carrier frequency of the pulses, associated to the Discrete Fourier Trans-
form (DFT) of the whole thermal recording [69]. Note that in this case, the carrier frequency
is typically called lock-in frequency. This results in the most accepted metric to evaluate the
thermal response for this type of application, defined as the absolute phase contrast [170],
subtracting the local maxima and minima of the pattern, denoted as ∆φ = φmax−φmin. To
simplify the analysis, two artificial notches have been produced with Electrical Discharge
Machining (EDM), with 0.7 mm and 1.3 mm length and the same depth and width of 0.75
mm and 0.1 mm respectively. Note that the notched surface material is Inconel 718, in a
sample measuring 4.75 x 80 x 150 mm. The set of experiments combines the 4 discrete
orientations of the magnetic field, β , combined with 4 identical rotations of the crack, α ,
resulting in 16 measurements for each notch.

The measurements parameters are described in the first line of table 2.2 describing the
heating and cooling time of each pulse as a function of the lock-in frequency and duty ratio
of a square wave. The switching occurs during the cooling of the third pulse of each β

state, enabling the continuous recording of the 4 states, as illustrated in fig. 2.4a, showing a
thermogram corresponding to a sound area.

Note that both the inductor and the camera remain stationary for all the measurements,
with the same recording and thermo-inductive parameters. Fig. 2.5 shows the experimental
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Table 2.2 Experimental parameters describing the recording and thermo-inductive parameters
associated to the preliminary test, probability of detection and supplementary samples.

Experiment
finduction f ramerate tintegration PWM flock−in duty ratio

pulses per state
resolution

kHz Hz ms % Hz % mm/px
Preliminary test 20 300 1 50 % 5 50 % 3 0.75

POD 30 220 1 50 % 5 50 % 3 0.75
Forged Crankshaft 50 300 1 55 % 6 50 % 6 0.75

Steel billet 40 300 1 75 % 2.5 50 % 3 0.75
Forged Steel Bolt 40 300 1 70 % 2.5 50 % 3 1.00
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Fig. 2.4 Multi-directional thermogram. (a) Raw IR thermogram of a sound area
subjected to a 5 Hz multidirectional square wave induction with 3 pulses per

direction, (b) Symbolic Eddy current distribution circumventing oblique crack.

results, with the phase images as a function of α for each row, and β for each column. The
upper left diagonal phase images, with ψ = 0°, exhibit the same rotated pattern. The last
column shows the amplitude with the maximum increase of intensity perceived by the camera
in arbitrary intensity units with ψ = 0°, resulting in the highlighting of the notch. Note that
the real cracks won’t produce such amplitude images as it will be shown later. The pattern
exhibits a localized heat originating from the tips of the notch, associated to a higher Eddy
current density. Whereas the middle of the notch displays the opposite trend linked to the
diversion Eddy currents under the crack. Fig. 2.6a displays the phase contrast of the whole
set as a function of ψ , with a maximal phase contrast with ψ = 0. Note the phase contrast is
directly correlated to ψ confirming an equivalent thermal response associated to the direction
of the magnetic field.

Another aspect to consider, that has not been previously exposed, is the apparent rotation
of the pattern as a function of ψ . Fig. 2.6b shows the phase image profiles of the 4 β states
with α = 0, in the 0.7mm notch, plotting the phase profile of a 0.4mm radius semi-circle
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centered in the notch, with θ being the counterclockwise angle formed by each point, the
center of the notch and the horizontal axis.

The resulting polar profile of each β , resembles a 2Hz sinusoidal wave with a β phase-
shift , that can be modelled with the following expression,

I(θ ,β ) = µ(θ)+φ(α,β )cos(2θ −α−β ) (2.1)

with µ representing the average and φ the phase contrast as a function of α and β . Note that
the apparent motion limits the precise estimation of the orientation and length of the crack,
employing a single β . In this scenario, the apparent rotation of the pattern can be explained
by the varying asymmetry of the Eddy current distribution circumventing an oblique crack
around its tips, as illustrated in in fig. 2.4b.

2.2.3 Thermo-inductive phase-shifting

The shifted polar profiles shown in fig. 2.6b are similar to a wave form phase-shifting. As a
result, equation 2.1, can be adapted to the fundamental phase-shifting equation, assuming
that the global displacement of the signals is associated to the magnetic field orientation,
β , with a phase, γ , the mean, µ , the amplitude, φ , and the pixel intensity of the β signal, I,
resulting in the following expression.

I(x,y,β ) = µ(x,y)+φ(x,y)cos(γ(x,y)+β ) (2.2)

Many methods have been exposed to compute the pixel-wise phase-shifting with prede-
fined shifting sequences [171, 172]. In the current induction scheme shifting sequence, (0,
45, 90, 135), a generalized method, such as the one exposed in [173] has been employed,
yielding the global solution, as a function of the pixel intensities.

γ = atan2
(

Iβ45
− Iβ135

Iβ0− Iβ90

)
φ =

1
2

√
(Iβ0− Iβ90)

2 +(Iβ45
− Iβ135

)2 µ =
1
4
(Iβ0 +Iβ45

+Iβ90 +Iβ135
)

(2.3)
The resulting phase-shifted images for the sequence of images for α = 0 are shown in

fig. 2.7.
The amplitude, φ exhibits an increased signal associated to the pixel-wise variance of the

four images, the average, µ , is clearly correlated to the image spotting the highest amplitude
and the phase-shift, γ , shows a concentric pattern centered in the notch, corresponding to
a monotonic variation of the relative orientation of the crack. The resulting model can be
effectively used to continuously sample the intermediate β orientations with the expression
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(2.2). Another clear benefit is that the subtraction of the mean can reduce the noise. Fig. 2.8
displays on the upper row the 4 original phase images of the 1.3mm notch with α = 0, and
below the uniformly sampled β synthetic images corresponding to the same range subtracting
the mean.

2.2.4 Phase-shifted optical flow

The normalized rotational motion associated from the phase-shifted interpolation can be
effectively described as an invariant feature of the cracks. The apparent motion between
two images can be estimated with a method known as the optical flow (OF). The relative
translation between two consecutive frames can be defined as I(x,y, t) = I(x+∆x,y+∆y, t +
∆t), which can be extrapolated to a dense or sparse planar vector field defined on a bounded
set R2, as Ω(x,y) = (∆x,∆y)T = (u,v)T , with u = ∂x

∂ t , v = ∂y
∂ t . The OF estimation has been

resolved in most of the classical OF algorithms recurring to correlation-based methods, such
as the seminal work of Horn-Schunck [174], which is based on two assumptions. The first
one being a photometric consistency of the moving point formulated as a line constraint or
direction, written as,

dI
dt

= 0 =
∂ I
∂x

∂x
∂ t

+
∂ I
∂y

∂y
∂ t

+
∂ I
∂ t

= Exu+Eyv+Et (2.4)

with Ex, Ey and Et being the partial derivatives of the image. The second assumption is a
term that enforces the smoothness of the solution by reducing the differences of the local
flow, formulated as the minimization of the Laplacian of Ω, written as: ∇2u = ∂ 2u

∂x2 +
∂ 2u
∂y2 and

∇2v = ∂ 2v
∂x2 +

∂ 2v
∂y2 .

Other common methods, rely on image pyramids to extrapolate the flow regardless of the
scale [175], while modern approaches employ supervised Convolutional Neural Networks
showing an improved performance [176]. OF thermographic use-cases have been mainly
employed in image stabilization to generate pseudo-static sequences [60], as well as an
alternative thermal signal processing [177].

A set of flows have been generated employing the method exposed by Farnebäck [178],
implemented in OpenCV, computing the consecutive synthetic images uniformly sampled
with the expression (2.2), subtracting the mean. Considering a rotational motion, the flow
direction is a-priori constant which can be averaged to reduce the temporal noise. Fig. 2.9
shows the average flow of 100 images uniformly sampled in the following cyclic range of β ,
[0, 45, 90, 135, 0), for both notches and α = 0.
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2.2.5 Rotation vector field convolution

A fundamental concept of vector calculus, employed in fluid dynamics and electrodynamics
among other fields, known as the Helmholtz decomposition, provides a simple solution
to the motion analysis of the flow. Based on the assumption that the fluids are typically
modelled as irrotational and incompressible, a set of constraints can be stablished, leading
to scalar functions associated to its velocity vector field. Therefore, the optical flow can
be decomposed as the summation of two components Ω = Ωc +Ωr, with Ωc, being the
incompressible or divergent free component with 0 = ∇ ·Ωc, and Ωr is the irrotational or
curl free component with 0 = ∇×Ωr. ∇ denotes the symbolic operator whose components
represent the partial derivatives, ∇ = ( ∂

∂x ,
∂

∂y). The spatial integral of ∇ ·Ω = ∂u
∂x +

∂v
∂y over a

region is called the divergence, and its orthogonal complementary, ∇×Ω = ∂u
∂y −

∂v
∂x , is its

vorticity.
As a result, the following expressions can approximate the vorticity and divergence,

adapted to the optical flow,

wvort =
m

∑
i

n

∑
j

∣∣r̂i j×Ωi j
∣∣ , wdiv =

m

∑
i

n

∑
j

∣∣r̂i j ·Ωi j
∣∣ (2.5)

with r̂i j being the local unit vector. Figure 2.10a and b shows the vorticity and the orthogonal
cross-sections, and fig. 2.10c and d displays the divergence with its corresponding cross-
sections. The maximum vorticity is centered in the crack with a depression surrounding it
below the background signal. On the other hand, the divergence does not exhibit a clear
convergence to the center of the notch. Considering that the vorticity is correlated to the
center of the notch, a simple blob detector implemented in OpenCV, can effectively estimate
the location of the cracks. The results will employ the vorticity with a positive truncation.

2.3 Results

2.3.1 Experimental measurements on different materials

To evaluate the performance of the exposed methods, summarized in fig. 2.1, a set of
experiments has been carried out in different components made of different materials and
with a diverse set of cracks.

A set of samples with natural cracks arising from the TIG and Laser welding has been
characterized with a different set of methods, to enable a subsequent comparison. First,
standard LPI inspections have been carried out according to ISO 23277, by a certified
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inspector, leading to a partial detection of the cracks, as shown in fig. 2.11a. This procedure
involves, among other things, the application of a low-viscosity fluorescent penetrant liquid
that impregnates the cavities of the cracks after a certain time defined by the standard,
depending on the liquid viscosity, capillarity, as well as surface tension. Subsequent removal
of the excess and the final application of a developer causes the remaining penetrant liquid to
bleed to the surface, allowing an easier detection. Due to the proximity of the cracks, this last
step provokes widespread staining of contiguous cracks, impeding its distinct identification.
In other words, the standard LPI inspection does not have enough resolution to individualize
and measure the cracks, as shown in fig. 2.11b.

To enable a precise determination of the length and shape of the cracks, the standard
procedure has been modified, by excluding the application of the final developer. Under a
high intensity UV lamp, the samples are imaged with a 7 µm/px resolution Leica microscope,
revealing the fluorescent liquid internally permeated in the crack, as shown in figure. 2.11c.
In a second step, macrographs have been taken with a Leica microscope (Leica DVM6),
which has allowed for precise measurements of the length of the cracks (fig. 2.11a) under the
same frame.

Fig. 2.12 displays the multi-directional DFT amplitude and phase images of the sample
shown in fig 2.11. As can be observed, the directional amplitudes, shown in the first row, do
not exhibit clear differences that might increase the available information. Note that some
of the isolated cracks can be easily identified but its pattern can be mistakenly associated
to common features, such as the natural welding surface texture and superficial scratches,
among other patterns. The second row displays the multi-directional phase images, exhibiting
the shifted butterfly pattern [179, 52] with a varying overlap of the pattern near the clusters
of parallel cracks.

Fig. 2.13a shows the phase-shifted optical flow with an increased amplitude of the
flow concentric to the cracks. Fig. 2.13b displays the resulting vorticity with a cross-
section traversing a cluster of parallel cracks, plotted in fig. 2.13c. Note that the depression
surrounding the cracks enables the distinct identification of the cracks.

Considering the positive results shown in the previous sample, the method has been tested
in other samples, and materials with different types of cracks, as shown in fig. 2.16, with
the experimental parameters shown in table 2.2, with the first two samples employing same
values of the POD.

Note that fig. 2.16a and b display a TIG and laser welds made on an Inconel 718 sample,
with the modified LPI procedure in the first column. Fig. 2.16a exhibits a set of cracks with a
similar distribution as the one shown in fig. 2.13, but fig. 2.16b has the commonly known
“fishbone crack” with a large crack centred along the weld and very small radial cracks.
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Fig. 2.16c, d and e, shows a forged steel crankshaft, a steel billet, as well as a forged steel
bolt respectively, with a MPI in the first column.

Note that the welded samples exhibit the typical butterfly pattern, resulting in a vorticity
that clearly correlates the centre of the cracks. On the other hand, the steel samples have
longer cracks, typically associated with lamination or forging defects producing a very
different longitudinal pattern. However, its rotational component is clearly visible in the
discontinuities and bridges of the cracks. This suggests that the narrow gaps and sharp
discontinuities, such as ones present in the bridges of the cracks and the crack-tips, are locally
constraining the direction of the Eddy currents, regardless of the predominant magnetic field
orientation, thereby altering the local Eddy current density distribution.

2.3.2 POD on Inconel 718 and Haynes 282 with TIG welds

In the previous section, a robust establishment of the ground-truth of the defects has been
presented and all cracks have been measured. This characterization is necessary for a POD
analysis to evaluate the performance of the method presented in this work, relative to existing
ones. For the POD analysis, the "Hit and Miss" (HM-POD) model has been employed,
following the MIL-HDBK-1823A standard. This procedure is considered the state of the art
for conducting POD studies in many industries [81], with a validated implementation in R
programming language, used in the current analysis, developed by Annis [82]. The simplest
POD analysis can be expressed as the ratio of true positives (TP), regarding the total number
of defects, denoted as Recall = T P/(T P+FN), with the false negatives (FN), representing
the undetected defects. This oversimplified scalar, does not reflect the real detectability
related to the size or length of the defects, denoted as a. In many applications, the appraisal
of an inspection technique is typically associated with the bigger defect to miss, and for this
reason, the POD is generally expressed as a function of the defect size, defined as an ideal
binary step function. In a realistic situation, the POD is typically described as an ascending
sigmoid function, that can be modelled in many ways. The most accepted HM-POD model
to fit the set of binary points associated to the experiments, is the log-logistic distribution
[84], written as:

POD(a) =
e

π√
3

(
lna−µ

σ

)
1+ e

π√
3

(
lna−µ

σ

) (2.6)

with µ and σ being the mean and standard deviation respectively. Additionally, the regression
of that model has an associated uncertainty determined by a confidence interval (CI), typically
estimated with the likelihood-ratio method [85].



54 Phase shifted imaging on multi-directional thermography

In this scenario, the natural cracks arising from the TIG and Laser welds have been
produced on two types of alloys, namely, Inconel 718 and Haynes 282. Since the materials
have different types of cracks, as well as ferromagnetic properties and surface emissivity,
affecting the perceived thermal response of the signal, it has been estimated that the POD
analysis must be separated in two sets with their own distinct results. A set of 13 samples
with 218 cracks for the Inconel case, and 14 samples with 337 cracks for the Haynes case,
has been used to conduct both analyses according to [180], stating that a set of 60 cracks
is the minimum required. The followed HM-POD, for both Haynes and Inconel sets, has
consisted in the following steps.

• An enhanced LPI to stablish ground-truth and labelling of the defects and length.

• Phase-shifted induction thermography with a manual labelling of the butterfly pattern
present in each phase image.

• The processing algorithm shown in fig. 2.1, with the local maxima search, generating
the key points overlayed in the vorticity.

• Alignment and correlation of detected points with the ground-truth.

Note that an added difficulty to the correlation of the detected points is the clustered
distribution of some cracks, with a corresponding local maxima plateau covering multiple
cracks, as it can be seen in fig. 2.13 and fig. 2.16a. The criteria that have been used to
correlate the local maxima of the vorticity and the LPI ground truth has consisted in an
association based on its proximity. Fig. 2.14a shows an instance of 3 cracks and one local
maxima, coinciding with 2 cracks. Fig. 2.14b spots 2 parallel cracks matched by a set of 3
points. Fig. 2.14c has 3 cracks, with a false negative.

Both the Inconel and Haynes have a set of 4 hit and miss values corresponding to the
manual labelling of the butterfly patterns for each direction, a 5th one associated to the union
of the 4 phase images, and the 6th one linked to the phase-shifting. Since the manually
labelled mono-directional phase-images are so sensible to the orientation, they generate a
hit-miss distribution that is very difficult to reliably fit resulting in very poor results.

To have a fair comparison, the union of the manual labelling of all the directions has been
considered to effectively employ the same input as the phase-shifted method. The HM-POD
curves are shown in fig. 2.15, with the upper row displaying the Haynes phase-shifted (a),
and manual labelling (b). The lower row shows the TIG Inconel 718, with the phase-shifted
POD (c) and its associated manual labelling (d). Note that the employed regression model
has consisted in the log-logistic function implemented in the software made by Annis [82].
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The corresponding results of the analysis are summarized in table 2.3. As it can be observed,
the resulting POD analysis in both sets is significantly more robust employing the phase-
shifted. It is also worth noting that some of the identified cracks were imperceptible in the
static mono-directional phase images, but their rotational component has contributed to its
automatic identification.

2.4 Conclusions

In this chapter, a novel multi-directional thermo-inductive system has been proposed which
is able to generate thermographies with a discrete set of predominant Eddy current directions.
The multiple orientations of the Eddy currents generate a varying path around the defect,
resulting in a thermal response dependent on a directional component. The 4 directional
observations produced by the exposed system enable the detection of cracks with an unknown
orientation.

The variation of the phase image pattern, regarding the magnetic field orientation, exhibits
a new type of rotating feature that has not been described before. This differentiating feature
has motivated the development of a processing technique, inspired by the phase-shifting,
based on the integration of the relative motion of the thermal response. This directional
thermal response has also been observed in a set of different samples and types of cracks.

Note that the resulting thermal response of the pulses is based on the composition of
the current and precedent ones. The separation of both effects could generate an improved
thermal contrast, compared to a FFT of the raw thermogram, such as the one employed in this
work for simplicity. The superposition of multiple induction modalities, combining discrete
or continuous directional and temporal moneodulations remains an interesting topic, which
could potentially yield to complementary information.

The whole processing technique has exploited the rotating motion of the cracks in steel
and superalloys such as Inconel 718, and Haynes 282, showing a strong correlation in all
the exposed cases. The performance evaluation of this technique has been conducted with a
‘Hit/Miss’ Probability of Detection model, showing an increased sensitivity regarding the
manual labelling of the phase-images butterfly patterns of the cracks. Future works should
focus on the generalization of the technique to all types of defects, employing machine
learning models, or neural networks, that would be able to carry out a fused training of the set
of the discrete set of directional images. Multi-spectral and color-based Convolutional Neural
Networks seem like good candidates to generalize the technique to enable an increased
sensitivity of the phase-shifted induction thermography. Alternatively, the development
of taylor made techniques that would focus on a sparse statistical reduction of the optical
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flow, into a set of trainable descriptors would also be a worthwhile option to explore in
upcoming iterations. Ultimately, a rigorous physical modelling of the observed phenomena
is necessary to further optimize the technique or develop new methods, as well as an eventual
extrapolation to other use-cases.

Table 2.3 Hit/Miss Probability of Detection summary of both sets of welds
comparing the manual labelling with the exposed method. a50,a90 and a90/95

are the minimum lengths providing a probability of detection of 50 %, 90 % and
90 % with a confidence level of 95 %, respectively.

Set Method
a50 a90 a90/95

nTot nHits
mm mm mm

Haynes 282 Phase-Shift 0.3757 0.7424 0.8545 337 251
Haynes 282 Manual Labelling 0.6252 1.115 1.26 337 192
Inconel 718 Phase-Shift 0.3599 0.5771 0.6656 218 182
Inconel 718 Manual Labelling 0.5184 1.068 1.279 218 148
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Fig. 2.5 Phase images on notches, as a function of the magnetic field
orientation. The first four columns shows the phase images in degrees as a

function of the direction of β and the last one corresponds to the amplitude of
the FFT. The rows displays the notches in different directions, α . (a) 0.7mm, (b)

1.3mm.
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Fig. 2.6 Directional Phase contrasts. (a) Phase Contrast as a function of the
relative orientation between the the artificial defect and the magnetic field ψ , (b)
Polar profiles of the phase images centered in the crack with a radius of 0.4 mm,

coinciding with phase maximum of the 0.7 mm notch and α = 0°.

(a) (b) (c)

Fig. 2.7 Thermo-inductive phase-shifting. Image corresponding to the
parameters of the phase-shifting of the four phase images of the carrier
frequency (a) φ amplitude [º], (b) µ average [º], (c) γ phase-shift [rad].

Fig. 2.8 Normalized phase-shifted interpolation. Upper row with the 4 original
phase images of the 1.3mm notch with α = 0, below a sequence of synthetic
phase-shifted images with a uniform sampling of β covering the same range.
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Fig. 2.9 Phase-shifted optical flow average overlayed on top of the first phase
image. (a) 0.7 mm, (b) 1.3 mm.
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Fig. 2.10 Motion field potential functions. (a) Intensity and orthogonal cross-sections of the
vorticity (a, b), and the divergence (c, d).

Fig. 2.11 Modified fluorescent penetrant inspection TIG Inconel weld. (a) clean surface, (b)
Standard LPI under UV light after the application of a developer, (c) Enhanced LPI under

UV light after removing the excess of the fluorescent liquid.
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Fig. 2.12 Multi-directional DFT in TIG Haynes weld. Upper and lower row displaying the
directional amplitudes in arbitrary units and phases in degrees of the carrier frequency,

associated to the four directions, β .
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Fig. 2.13 Phase-shifted optical flow vorticity signal profiles. (a) Optical flow of Haynes weld
overlaid on top of the phase image, (b) Vorticity, (c) Vorticity profile highlighting the peaks

corresponding to the center of the cracks.
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Fig. 2.14 Clustered cracks association examples. Vorticity image fragments displaying an
overlay of the real cracks in bright blue and the corresponding size, the detected peak of the
vorticity in red, and the association of the crack and the peaks highlighted in white, yielding

a number of true and false positives, as well as false negatives. (a) Tp=2: 0.5, 1.21 mm,
Fn=1: 0.71 mm, Fp=0, (b) Tp=2: 1.34, 0.71 mm, (c) Tp=2 0.53, 0.23 mm, Fp=0, Fn=1: 0.26

mm, Fp: 2.

(c)

(a)

(d)

(b)

Fig. 2.15 Hit/Miss Probability of Detection. Estimated POD sigmoid with a solid line, and
the upper and lower confidence level with a dotted line. Four PODs corresponding to both
sets and methods. (a) Haynes Phase-shift, (b) Haynes union manual labelling, (c) Inconel

Phase-shift, (d) Inconel union manual labelling.
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Sample Phase images Optical flow Vorticity

Fig. 2.16 Natural weld crack detection. The first column displays the samples with the
enhanced LPI for TIG inconel (a) and a laser inconel 718 (b), and a MPI for (c) forged steel

crankshaft, (d) steel billet and (e) forged steel bolt. The remaining columns displays the
multi-directional phase images, the optical flow, as well as the vorticity with a positive

truncation.



Chapter 3

Quadratic inductor

3.1 Introduction

The previous chapter exposed a system to generate directional magnetic fields with a tetra-
pole inductor, which enables a new type of induction thermography modality. Considering
that this novel technique enables a robust detection of the cracks regardless of their orientation,
it has been deemed interesting to develop an inductor which is able to induce a more uniform
magnetic field. In this chapter, a novel type of inductor is presented, with four coils wounded
on a hollow parallelepiped core, which is able to generate a magnetic field with multiple
orientations, enabling the detection of defects with an arbitrary orientation orthogonal to the
inspected surface.

Eddy current thermography (ECT) is a technique consisting on the induction of a magnetic
field to generate a superficial ECT (Eddy Current Testing) is a technique that induces a
magnetic field to generate superficial heating, allowing the detection of surface and subsurface
defects that may cause alterations in the resulting thermal diffusion, captured by an infrared
camera.

In this context, the disturbance of thermal diffusion caused by the crack may be influenced
by the relative orientation of the defects with respect to the magnetic field, as observed in the
literature review. While in many cases, the set of defects may have a predominant orientation,
this is not always guaranteed, as seen in the case of crack patterns in the welds of Chapter 2.

There are some inductors, such as the tetra-pole proposed by Yang et al. [181], and the
one presented by Li et al. [56], both of which consist of two pairs of coils. These coils
individually generate an orthogonal magnetic field between them. In both works, the coils
are wound around "legs" that directly contact the surface. Additionally, in both cases, the
authors subject both pairs of coils to a 90º phase-shifted waveform.
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(a) (b)

Fig. 3.1 Quadratic inductor. (a) 3D render with labelled coil pairs. (b) Instance used in
experiments.

This arrangement allows them to generate a rotating magnetic field, analogous to vertical
polarization, with a rotation speed identical to the electrical frequency of the source powering
the coils.

In section 3.2, the inductor is described and in section 3.3, the results of the tests are
presented.

3.2 Methods

In this section a brief description of the proposed inductor is presented, as well as the tested
modalities of the results.

3.2.1 Inductor description

It is a quadratic inductor with a hollow parallelepiped-shaped core, featuring two pairs of
parallel coils labeled H and V , on each side. Fig. 3.1a provides a 3D view of the inductor
with the four coils, and fig. 3.1b displays one of the manufactured instances based on this
design.

Depending on the internal window of the inductor, it can be adapted to different use cases,
allowing for a higher magnetic field density or a different inspection area.

Taking into consideration that the distribution of the magnetic field can be influenced by
the shape of the coil and the inductor, both of which have a rectangular form in this case, it
can be proposed that the magnetic field density is inversely proportional to the square of the
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Fig. 3.2 Schematic diagram for coils in opposite sides. (a) Currents of both coils relative to P,
on the surface. (b) Schematic trend of magnetic flux density of both coils.

SN

Fig. 3.3 Magnetic field direction of two opposing coils.

distance from the conductor, according to Biot and Savart’s theorem, as follows:

dB =
µ

4π

Idl× r̂
r2 (3.1)

Here, r is the distance, µ is the magnetic constant, Idl is the infinitesimal displacement
of the conductor, and r̂ is the unit vector between the evaluated point and the conductor. In
this context, the schematic representation of the relationship between the two coils, with a
counter-clockwise current, and a point P located between them is shown in fig. 3.2a. On the
other hand, the sum of both magnetic fields can be schematically seen in fig. 3.2b, yielding a
higher density of the magnetic flux in the proximity of the coils, with a lower density and
variation on the center.

Taking into account the direction of the current and the arrangement of the coils, the
predominant direction of the magnetic field at the center of the inductor is parallel to the
wounding axis of each coil pair, as illustrated in the fig. 3.3.



66 Quadratic inductor

The simultaneous activation of the two orthogonal pairs of coils can be ideally defined
as a vector addition in R2 with B̃ = B⃗x + B⃗y, where B⃗x = i⃗φx sin(2π fxt + θx) and B⃗x =

j⃗φysin(2π fyt +θy), with φ , f y θ are the field amplitudes, frequency and phase shifts of both
pairs of coils respectively.

The resulting magnetic field amplitude is |⃗B|=
√

B⃗x
2
+ B⃗y

2
and its orientation or phase

is defined as β = arctan B⃗y
B⃗x

.
As a result, it is possible to replicate the same scheme of rotational induction as proposed

by Yang et al. [181] and Li et al. [56], using the same induction frequency along both
axes and an absolute phase difference, ∆θ = |θx−θy|, of 90º. However, in this case, such a
possibility has not been experimentally tested. Alternatively, there is the option of using two
different induction frequencies that result in a continuous variation of β , analogous to the
approach presented by Oswald-Tranta et al. [182]. This induction modality has been tested
during the development of the thesis, as a proof of concept, with two generators, yielding
thermographies which enables the detection of cracks, regardless of their orientation with a
single pulse.

To test the capabilities of this inductor, the selective induction of the coils has been
performed yielding four magnetic flux directions, using the same scheme described in
Chapter 2. These directions are illustrated in fig. 3.4 considering the currents in each pair of
coils in red, and the resulting magnetic flux in dotted lines.
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(a) β = 0, Ih ̸= 0, Iv = 0 (b) β = 45, Ih = Iv ̸= 0

(c) β = 90, Ih = 0, Iv ̸= 0 (d) β = 135, Ih =−Iv ̸= 0

Fig. 3.4 Quadratic inductor states, considering different currents for each pair of coils.

3.2.2 Setup

To empirically validate the results achieved using this inductor for non-destructive test-
ing through thermography, the experimental setup depicted in Figure 3.5 has been used
afterwards.
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Fig. 3.5 Experimental setup.

It is composed by a Flir X6541sc infrared camera equipped with a Stirling-cooled
640x512 InSb sensor capable of achieving a frame rate of 125 Hz at full frame or 4 kHz
in windowing mode. The quadratic inductor is powered by an Edevis ITVis 3000 MHF
generator, which incorporates a full-bridge inverter circuit with pulse-width modulation,
enabling an induction frequency range from 10 kHz to 60 kHz. The activation of the
inductor coils is handled by a switching device, enabling the alteration of the magnetic field
orientations of the inductor in 4 different states. The experimental parameters of both notches
and natural cracks are: 300Hz framerate, 0.001 integration time, 20kHz induction frequency,
4 square lockin pulses with 5Hz frequency, yielding 0.8s recording time.

3.3 Results

In this section a set experiments has been carried out to evaluate the proposed inductor on a
set of notched probes and samples with natural cracks.

3.3.1 Notched samples

A set of notched samples made out of an austenitic allow used in the aeronautic sector called
Inconel 718, has been subjected to multiple induction thermography tests, considering the
4 activation states of the inductor rotating the inductor only in orientations. Two artificial
notches have been produced with Electrical Discharge Machining (EDM), with 0.7 mm and
1.3 mm length and the same depth and width of 0.75 mm and 0.1 mm respectively. Note that
the notched surface material is Inconel 718, in a sample measuring 4.75 x 80 x 150 mm. The
measurements will be analogous to the ones exposed on chapter 2, but in this scenario the
inductor will be rotated, instead of the sample. Fig. 3.6 shows the phase images on the first
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columns for each inductor state β , last column amplitude of β = 0, and the rows correspond
to an induction rotating the inductor α degrees, last columns delta intensity colored in three
been to show its distribution.
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Fig. 3.7 Notches phase contrast and SNR as a function of relative orientation of magnetic
field and crack, Ψ. (a) Delta Phase [rad]. (b) SNR [dB]

The analysis shown in fig. 3.7 quantifies the phase contrasts of the 32 measurements, as
well as the SNR employing the following expression SNR = 20log10

∆ϕ

σ
, with σ standard

deviation of a sound area and ϕ being the local contrast of the crack tips and crack center.
These results are analogous to the ones exposed on the same notches in chapter 2.

The absolute phase contrast and SNR shows a similar trend compared to the tetra-pole
inductor exposed in chapter 2.

3.3.2 Natural cracks

Two samples have been tested following the same procedure, (1) a cracked fragment of a
steel mooring chain, as depicted in fig. 3.8a, and (2) hayness 282 TIG welded sample on
fig. 3.8b.

Fig. 3.9 and fig. 3.10 depicts the phase, as well as the magnitude images of the chain
fragment and hayness sample, with a rotating butterfly pattern.
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(a) (b)

Fig. 3.8 Natural cracks samples. Upper row upper photograph, lower phase image with
labelled crack centers. (a) Steel mooring chain fragment. (b) Hayness TIG welded coupon.
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Table 3.1 Natural crack recall, hayness sample, considering the maximum signal of each set
of induction states with a minimum SNR of 4dB.

α0 α45 α90 α135
β0 0.7 0.8 0.4 0.7

max(β0,β90) 0.8 1 0.9 0.9
max(β0,β45,β90,β135) 1 1 1 1

Fig. 3.11 and fig. 3.12 depicts the SNR and ∆ϕ of the defects, with multiple rotations of
the inductor α , as well as the combined maximum SNR of single inductor state (β0), two
orthogonal inductor states (β0,β90), as well as the 4 states.

The steel chain fragments has 3 cracks which generate a very high signal with a low noise
background. These cracks can be detected employing almost any relative direction of the
magnetic field. In this scenario, only the smallest crack (nº 2), won’t have a significant signal
if the relative orientation of the Eddy currents and the crack is orthogonal. The first and third
cracks are deeper and the assymetric butterfly pattern indicate that they might be slightly
inclined beneath the surface. Note that these thermographies have rotated 90º. . Considering
the hayness probe, the small shallow cracks generate a lower phase delta and SNR, which can
be associated with smaller heating of the austenitic allow, affected by the varying texture of
the weld with a reflective surface finish associated to hayness. To evaluate the performance
of this method on the hayness probe considering 3 induction orientation combinations, a
simple recall ratio quantification has been performed, as shown in table. 3.1, with a minimum
threshold of 4dB for the SNR. Note that recall is defined as recall = T P

T P+FN , with T P and
FN being the number of true positives and false negatives respectively.

In this scenario, the mono-directional induction misses multiple cracks with a much lower
signal and higher noise, but the employment of two orthogonal direction yields a much better
result, ultimately the 4 orientations provide the best result. Note that the total time recording
time of each combination is different.
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3.4 Conclusions

In this chapter a novel inductor for induction thermography has been presented, enabling the
generation of thermographies with different thermal patterns associated to the directional
magnetic field of the proposed inductor. It is based on a set of two pairs of orthogonal coils,
whose winding axes are parallel to the surface. Considering this arrangement, the magnetic
field resulting from both pairs can ideally be reduced to the summation of both orthogonal
fields. This allows controlling the predominant direction of the magnetic field by altering the
phase shift of the alternating current between both pairs of coils.

In this regard, the system has been tested with a set of four current phase shifts between
both pairs for non-destructive testing in the directions of the resulting magnetic fields. The
obtained results show a variable phase delta depending on the relative orientation of the
cracks with respect to the magnetic field. To demonstrate the system’s capability, tests have
been conducted on samples with real cracks, achieving good results in a steel sample and
another one made of the Haynes 282. The results are consistent with the observations of the
rotating butterfly pattern previously described in chapter 2.

It provides several industrial advantages compared to traditional inductors: reduction of
inspection times, possibility of designing a more robust and simplified inspection system,
multidirectional detection, etc.

Future works should focus on the rigorous physical modelization of the system, as well
as the extrapolation to a higher number of coils, optimization of design parameters and
uniformity of magnetic field. The employment of alternative modulations of the magnetic
field should enable an omnidirectional induction with a single thermography using a circular
polarization [181], or the excitation with two frequencies at the same time [182]. Another
aspect that should a priori improve the thermal response is the combination of these magnetic
field orientation modulation methods, with a frequency modulated amplitude resulting in
varying thermal diffusion lengths.



Chapter 4

Dynamic multi-directional induction
thermography

4.1 Introduction

The preceding chapters introduced a novel form of induction thermography and an induc-
tor capable of generating magnetic fields in multiple orientations. Both setups produce
thermographic images from various directions without requiring movement of the inductor
relative to the object. This enhances the system’s detection capabilities and simultaneously
decreases the overall inspection time. Given that a significant factor extending the overall
inspection time in static induction thermography (SIT) is the dead time linked to the camera’s
movement in relation to the object, this chapter introduces a system aimed at addressing
this issue on a multi-directional induction scheme. It integrates the quadratic inductor into a
multi-directional induction scan thermography setup, enhancing efficiency and minimizing
the impact of dead time on the inspection process. This method allows for continuous scan-
ning of a part through simultaneous multi-directional induction, facilitating defect detection
irrespective of the part’s orientation during movement.

4.1.1 Motivation

In various scenarios, such as steel hot rolling, metal extrusions, and rail track inspection, the
feasibility of employing static induction thermography (SIT) is severely constrained due to the
impracticality of using a stationary camera. Additionally, when scanning large components,
a considerable volume of recordings is generated, resulting in the dispersion of the detected
defects across multiple thermographies. The amalgamation of these thermographies typically
occurs post-inspection through the registration of recordings and the mapping of defects
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onto a shared reference frame. Moreover, it is important to note that the application of
SIT requires an intermittent capture and movement of both the camera and inductor. This
operational requirement introduces dead times, thereby effectively prolonging the overall
inspection time.

Another factor to consider, is the fact that the detection of the defects is strongly con-
ditioned by the relative orientation of the magnetic field of the inductor regarding defect.
Considering that in many scenarios the direction of the defects is not known, the employment
of an inductor with a fixed magnetic field might leave some of the defects undetected.

As a result, the combination of the dynamic induction thermography (DIT) with a multi-
directional inductor might benefit multiple inspection scenarios.

4.1.2 Related works

Other works have dealt with this problem on an induction thermography scenario focusing
on the accurate registration of the dynamic thermal recording employing fiduciary markers
to account for the varying scanning velocity [183], or the remapping of the thermographies
employing rectification targets on a curved work-piece [184]. The fusion of the thermo-
graphies into a common reference yields a pseudo-static thermography which enables the
extrapolation of the processing methods employed of the static thermography. Other studies,
including the one presented by the author [60], have utilized an optical flow-based registra-
tion method to stabilize digitally flash thermography on a wind blade, thereby producing a
pseudo-static thermography from a moving camera with a random motion. Multiple works
have previously focused in this aspect for the laser excited thermography, such as which are
able to successfully build a thermogram for each pixel of the thermography, corresponding to
a certain point on the inspected part. The integration of these thermographies into a unified
reference produces a pseudo-static thermography, facilitating the application of processing
methods akin to those employed in static thermography. Numerous studies have delved
into this aspect within the domain of laser-excited thermography, wherein a thermogram is
successfully constructed for each pixel of the thermography, corresponding to a specific point
on the inspected part. Note that a significant distinction from laser-excited thermography lies
in the fact that induced heating often impacts a broad area, leading to accumulated heating
on the surface. This accumulation can introduce distortions in the resulting pseudo-static
thermogram.
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4.2 Outline

This chapter focus on a novel system that combines the dynamic thermography with an
interleaved rotation of the magnetic field using the previously exposed quadratic inductor
in chapter 3. In this context, the capture process involves a linear movement between the
workpiece and the camera coupled with the inductor. This is achieved through a simultaneous
induction employing a square wave modulation and a consecutive switching sequence of the
magnetic field in four distinct states. The resulting process yields a set of 4 thermograms
corresponding to each direction of the induced magnetic field, which enables the employment
of a fused multi-directional defect detection. Considering that the sequential switching of the
magnetic field and simultaneous movement of the camera frame and inductor regarding the
inspected part has a compounded effect, the pseudo-static-temporal fusion is not trivial. The
spatio-temporal registration of each induction direction yields a set of synchronized pseudo-
static thermographies starting at different times and location during the scanning process. The
initial fusion exhibits artificial thermal discontinuities which render them useless for any of
the SIT processing techniques. To address the variations in starting temperature, a normalized
thermal drift compensation is implemented to preserve the oscillating component of the
sequence of pulses and a subsequent averaging of the subset of pulses reduces the overall
noise. Following this, the application of any of the established SIT processing techniques,
including FFT, PCA, TSR and HOS among others, enables the temporal compression of
the reconstructed thermographies for data mining and accurate defect detection as it will be
exposed in the results with natural defects.

Fig. 4.1 describes the processing of the dynamic multi-directional induction thermogra-
phy.
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Fig. 4.1 Dynamic multi-directional induction thermography system. Dynamic IR recording
with simultaneous multi-directional induction and subsequent pseudo-static directional

thermography reconstruction and final processing.

The method consists on the reconstruction of the dynamic thermography to generate a
set of directional thermographies. Simultaneously with the recording, a sequence of pulses
with a square-wave modulation is induced, alternating the activation of the coils for each
pulse sequentially. The process begins with an incremental registration of each frame of
the thermogram and continues with the temporal separation and synchronization of each
state of the inductor, ensuring that the start of each thermogram aligns with the period of the
pulses. Depending on the translation speed, each thermogram might have multiple pulses
resulting in discontinuities between the start and the end of consecutive pulses. A thermal
drift compensation (TDC) enables the preservation of the oscillating component, yielding a
thermogram with multiple pulses with no discontinuities. Afterwards the averaging of the
pulses enables the reduction of the noise. These directional pulsed thermographies can be
subsequently processed employing most of the temporal compression techniques.

4.3 Methods

In this section the proposed method is exposed employing forged steel bolt with a natural
crack, as shown in fig. 4.9b. The experimental setup used for this simplified experiment is
detailed below, as well as the experimental parameters.
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4.3.1 Setup

The experimental setup is depicted in fig. 4.2. It features a Flir X6541sc infrared camera
equipped with a Stirling-cooled 640x512 InSb sensor capable of achieving a frame rate of
125 Hz at full frame or 4 kHz in windowing mode. A quadratic inductor such as the one
exposed in this work, is mounted to a linear axis along with the camera, while the inspected
part remains stationary. The induction generator employed is the Edevis ITVis 3000 MHF,
which incorporates a full-bridge inverter circuit with pulse-width modulation, enabling an
induction frequency range from 10 kHz to 60 kHz. The activation of the inductor coils is
handled by another device, enabling the alteration of the magnetic field orientations of the
inductor in 4 different states.

Fig. 4.2 Dynamic multi-directional induction thermography processing setup, with an
infrared camera and inductor and switching device mounted on a linear axis scanning a static

forged bolt.

4.3.2 Synchronized pseudo-static multi-directional thermography

The pulse sequence is modulated with a square wave with a period Tl and duty ratio DT ,
synchronized with a sequential switching sequence, β = {0,45,90,135}. For each switching
state i in the sequence, there is a set of N periods j, each containing O instants, k.

Considering that the main focus of this work consists on the multi-directional aspect of
the reconstruction, a fixed translation has been employed to fuse the frames into a common
reference for the incremental registration of the thermography. Since the incident angle of the
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camera is normal to the surface, the registration is formulated as the translation of each pixel
into another frame denoted as dst(x,y) = src(x Tx,y Ty), which is interpolated with a bilinear
filter. This yields a registered thermography with a common spatial reference starting at the
first frame, t = 0.

The recordings have been carried out with a framerate of 300 Hz, a window resolution of
320x320 on an inductor with a 50x50mm window. The square-wave period is Tl = 0.2 s and
DT = 50% for the 4-state sequence and a horizontal translation speed of 375m m/min.

Fig. 4.3 displays the different inductor states associated to the activation of the coils,
and the corresponding square eave modulation of the generator, as well as the resulting
thermogram of a registered point.
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Fig. 4.3 Multi-directional thermo-inductive square wave modulation. The upper graph shows
a registered thermogram, the second shows the square wave, and the third and fourth

displays the coil activation states of the switching device.

The resulting registered thermograms of 2 points, as well as 3 frames of the sequence
are shown in fig. 4.5 and fig. 4.4 respectively. This has allowed the extraction of up to 3
complete pulses per state, as illustrated on fig. 4.6.

(a) (b) (c)

Fig. 4.4 Pseudo-static synchronized thermograms. (a) Frame 200, (b) Frame 700, (c) Frame
1200.
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Fig. 4.5 Pseudo-static synchronized thermograms of points A and B from fig. 4.4.
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Fig. 4.6 Pseudo-static synchronized thermograms for each state β of the inductor.

4.3.3 Thermal drift compensation

The set of four synchronized pseudo-static thermographies contain multiple pulses with a
different starting time for each pulse. The associated discontinuities of the thermograms, as
shown fig. 4.6 are the result of the thermal drift associated to the accumulated temperature of
the surface. This is caused by the overlapping thermal diffusion of the previous pulses with
the current one resulting, in different heating and cooling rates for the pulses.

Considering that, in many cases, the thermogram processing occurs in the frequency
domain, some authors have proposed a method that preserves its oscillatory component,
considering the diffusion of preceding pulses and their initial temperature. The method
proposed by [30] involves the decomposition of the raw thermogram into an (1) oscillatory
component, (2) a linear component associated with the diffusion of preceding pulses, and (3)
the mean value for each pulse. Considering that Fj,k is the temperature of the instant k and
pulse j,its decomposition is noted as: Fj,k = Fd j +Fo j +Fli,k , with Fd j being the average of
the pulse j with O frames, Fl j,k being the linear component associated to the thermal drift,
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and Fok the oscillating component. Therefore, the decomposition exposed by Breitenstein et
al. can be formulated as follows to retain the oscillating component:

Fo j = Fj,k −
1
O

O−1

∑
k=0

Fj,k −
(

j− O
2
− 1

2

)
∆T
O

(4.1)

Oscillating component

Temperature pulse i, instant j

mean of pulse i

linear component with ∆T = Fj,(O−1)−Fj,0

The oscillating component of each state for the points A and B of fig. 4.4 is shown
in fig. 4.7. Note that it does not exhibit a significant variation of the amplitudes and the
previously observed discontinuities. Considering that most of the classical temporal com-
pression techniques are focused on the pulsed thermography, the resulting set of pulses
has been averaged to a single pulse, yielding a thermogram with a reduced noise devoid of
discontinuities, as shown in fig. 4.8.
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Fig. 4.7 Thermal drift compensation, oscillating component.
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Fig. 4.8 Average oscillating components.

4.3.4 Temporal compression

To assess the extrapolation of the results compared to a SIT, a series temporal compression
methods have been chosen.

Firstly by employing the amplitude of the thermogram. Secondly, a FFT, yielding
both phase and amplitude images. Afterwards, a PCA [77] and PCT [73] with the first
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(a) (b)

Fig. 4.9 Samples with natural cracks. (a) Steel billet with delamination defect. (b) Forged
bolt with longitudinal crack imaged with magnetic particles.

2 components which accounts for 60% of the variance in this scenario. Additionally, the
cooling has been temporally compressed employing a TSR [185], which fits the thermogram
with a logarithmic polynomial, enabling a robust estimation of the first and second temporal
derivatives of thermograms. The fourth method has consisted in the statistical reduction of
the cooling, previously exposed by Madruga et al. [186], as Higher Order Statistics (HOS),
which comprises the mean, standard deviation, skewness, and kurtosis.

Furthermore, a Robust Principal Component Analysis (RPCA) [79] has been employed,
which decomposes the thermography into a low-rank and sparse 3-way tensor associated
with potential outliers. Statistically defects can be a priori considered as outliers relative to a
homogeneous background. For instance, Liang et al. [78], observed that the signal associated
with the sparse component exhibits a significant correlation with the cracks, enabling its
usage in scenarios with challenging backgrounds. Results will show the temporal L2 norm
of both low-rank and sparse RPCA decomposition.

4.4 Results

The assessment of the results, exposed with two samples with natural cracks, the first one
being a forged bolt such as the one shown in fig. 4.9a, and the second consists on a steel billet
fig. 4.9b, both of which have a longitudinal crack parallel to X axis of the camera, parallel to
its motion.

Experimental parameters for the induction, recording and speed of the axis are identical
to the previous ones.
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4.4.1 Quantitative evaluation criteria

The associated signal of the processing techniques has been analysed considering 4 profiles
of 2 samples, with a Signal To Noise ratio described as: SNR = 20log |Scrack−µlocal |

σsound
, with

σsound being the standard deviation of sound area, Scrack being the absolute value of the
signal and µlocal mean over a 60x60 window centered in each profile. The measurement
of the signal, S has been carried along a set of diagonal profiles A and B traversing sound
area and profiles C and D corresponding to crack as shown in registered frame of steel billet
in fig. 4.25 and forged bolt in fig. 4.10. For each processing algorithm the SNR have been
evaluated using precision and recall, for all profiles and induction orientation combined, with
recall = T P/(T P+FN) and precision = T P/(T P+FP), with T P true positives (profiles
C and D), FN false negatives and FP false positives (profiles A and B).

4.4.2 Quantitative analysis

The resulting SNRs, precision and recall of steel bolt for each processing algorithm, profile
and induction orientation are shown in table 4.1.
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The resulting images of each processing algorithms and induction orientations for the
forged bolt are shown in figs 4.11 to 4.24 and sound profiles A and B are displayed on the
upper left side of figure each figure, with the bottom left side showing crack profiles C and
D. Fig. 4.11 corresponds to magnitude, showing a signal surpassing 30 dB in both defect
profiles with the exception of 90º induction orientation. This signal is mainly correlated to the
localized heating and, as a result magnitude sound profiles located on the thread are affected
by directional component of the emissivity and non-uniform heating. Phase image, fig. 4.12,
shows a similar SNR for both sound and crack profiles. Temporal standard deviation of
cooling thermogram, fig. 4.13 yields a signal greater than 40 dB for cracks, while skewness,
fig. 4.14, and kurtosis, fig. 4.15, do not show the same difference between sound and defect
profiles. Delta temperature, fig. 4.16 has a similar signal to magnitude, since they are both
correlated. PCA first and second components, shown in figs 4.17 and 4.18, yield a similar
signal compared to magnitude image. PCT first and second components, figs 4.19 and 4.20,
exhibit reduced SNR difference between sound and defect profiles. RPCA L2 norm of low
rank component shown in fig. 4.21, has a similar signal compared to magnitude image but
sparse component, fig. 4.22 is able to successfully separate both defect and sound areas,
with nearly a total background subtraction of the thread, but it exhibits salt and pepper noise
which could be reduced by applying a low pass filter. First and second derivatives of TSR
fitted to cooling thermogram, figs 4.23 and 4.24 respectively, both yield a SNR exceeding 40
dB, but the second derivative has a negative SNR in all sound profiles.
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Steel billet SNRs, precision and recall for each processing algorithm, profile and induction
orientation are shown in table 4.2.



4.4 Results 99
Ta

bl
e

4.
2

St
ee

lb
ill

et
SN

R
(d

B
)o

fp
ro

fil
es

of
fig

.4
.2

5
hi

gh
lig

ht
in

g
va

lu
es

su
rp

as
si

ng
4

dB
co

ns
id

er
in

g
fo

ur
di

re
ct

io
ns

of
di

ff
er

en
t

pr
oc

es
si

ng
al

go
ri

th
m

s
an

d
ri

gh
tc

ol
um

ns
sh

ow
in

g
pr

ec
is

io
n

/r
ec

al
lw

ith
3

m
in

im
um

th
re

sh
ol

ds
.

Pr
oc

es
si

ng
C

om
po

ne
nt

So
un

d
pr

ofi
le

s
D

ef
ec

tp
ro

fil
es

R
ec

al
l/

Pr
ec

is
io

n
A

B
C

D
2d

B
4d

B
8d

B
0

45
90

13
5

0
45

90
13

5
0

45
90

13
5

0
45

90
13

5
R

P
R

P
R

P

FF
T

m
ag

ni
tu

de
-1

.6
-5

.3
-1

8.
6

-1
1.

0
-6

.6
-5

.4
-1

1.
9

-1
5.

4
5.

8
13

.5
11

.8
14

.4
12

.9
15

.3
3.

2
5.

7
1.

0
1.

0
0.

9
1.

0
0.

6
1.

0
ph

as
e

-1
5.

2
-5

.4
-6

.5
-4

.4
-8

.2
-1

4.
6

-1
2.

6
-1

1.
2

9.
9

13
.1

7.
6

12
.5

12
.5

14
.4

-2
.5

11
.7

0.
9

1.
0

0.
9

1.
0

0.
8

1.
0

H
O

S
ku

rt
or

is
-1

6.
0

-1
2.

0
-1

0.
5

-4
.3

-1
9.

6
-1

4.
2

-1
2.

9
-1

5.
8

11
.1

11
.4

7.
2

12
.7

14
.2

14
.0

-0
.6

12
.9

0.
9

1.
0

0.
9

1.
0

0.
8

1.
0

sk
ew

ne
ss

-9
.7

-1
2.

8
-8

.2
-5

.3
-1

3.
7

-1
1.

5
-1

4.
6

-2
0.

0
13

.0
12

.4
8.

8
15

.6
15

.1
13

.9
0.

0
14

.9
0.

9
1.

0
0.

9
1.

0
0.

9
1.

0
st

d.
de

v.
0.

8
-0

.5
-6

.9
-1

9.
3

-3
.6

-5
.3

-1
3.

5
-1

4.
4

5.
9

15
.3

14
.5

16
.8

14
.9

18
.1

6.
8

4.
7

1.
0

1.
0

1.
0

1.
0

0.
6

1.
0

PC
A

C
0

-1
.6

-5
.5

-1
9.

2
-1

0.
6

-6
.7

-5
.3

-1
1.

8
-1

5.
4

6.
0

13
.6

11
.8

14
.5

13
.0

15
.4

3.
3

5.
8

1.
0

1.
0

0.
9

1.
0

0.
6

1.
0

C
1

-1
3.

6
-2

3.
1

-1
3.

1
-2

.0
-1

4.
3

-6
.3

-1
0.

9
-1

0.
5

-1
9.

4
11

.3
11

.2
15

.0
12

.9
18

.6
3.

2
11

.0
0.

9
1.

0
0.

8
1.

0
0.

8
1.

0

PC
T

C
0

-7
.6

1.
2

-5
.3

-5
.7

-1
3.

4
-3

5.
7

-1
2.

3
-9

.3
1.

1
1.

1
1.

4
2.

9
8.

9
15

.8
-5

.3
9.

8
0.

5
1.

0
0.

4
1.

0
0.

4
1.

0
C

1
-1

2.
8

-3
.7

-8
.8

-4
.0

-8
.4

-1
2.

4
-1

3.
8

-1
3.

4
-2

.5
-1

.6
-1

5.
6

-1
7.

5
-2

.7
-6

.8
-1

9.
3

-3
.6

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

R
PC

A
lo

w
ra

nk
-1

.7
-5

.5
-1

9.
0

-1
0.

6
-6

.6
-5

.3
-1

1.
7

-1
5.

4
5.

9
13

.5
11

.8
14

.5
13

.0
15

.5
3.

2
5.

9
1.

0
1.

0
0.

9
1.

0
0.

6
1.

0
sp

ar
se

-7
.0

-1
.8

-1
.0

-3
.5

-2
.1

-8
.8

-7
.1

-6
.4

-1
.2

-1
.7

5.
3

6.
4

14
.0

17
.7

14
.2

12
.9

0.
8

1.
0

0.
8

1.
0

0.
5

1.
0

T
he

rm
o

de
lta

T
0.

2
-2

.8
-9

.7
-1

8.
2

-4
.2

-7
.3

-1
3.

0
-1

9.
1

5.
3

12
.3

10
.7

13
.4

12
.4

13
.9

3.
1

4.
2

1.
0

1.
0

0.
9

1.
0

0.
6

1.
0

T
SR

de
riv

.1
-1

.7
-2

.9
-1

3.
0

-3
6.

0
-6

.8
-6

.6
-1

8.
5

-1
1.

8
6.

3
12

.3
10

.9
13

.0
11

.5
12

.8
2.

2
2.

0
0.

9
1.

0
0.

8
1.

0
0.

6
1.

0
de

riv
.2

-4
.8

-1
0.

1
-2

2.
8

-8
.4

-9
.0

-4
.8

-1
1.

8
-1

7.
9

14
.3

16
.6

15
.1

18
.8

17
.8

18
.7

7.
2

13
.1

1.
0

1.
0

1.
0

1.
0

0.
9

1.
0

Fi
g.

4.
25

R
eg

is
te

re
d

St
ee

lb
ill

et
w

ith
a

de
la

m
in

at
io

n
de

fe
ct

ov
er

la
ye

d
w

ith
pr

ofi
le

s
A

an
d

B
in

so
un

d
ar

ea
,C

an
d

D
cr

ac
k.



100 Dynamic multi-directional induction thermography

This sample has a uniform flat background which enables an increased SNR difference
of sound and defect profiles across all the processing algorithms shown in figures 4.26 to
4.39, resulting in a higher recall and precision ratios compared to the steel bolt. Note that
the RPCA L2 norm can effectively identify defects across different profiles and orientations.
However, it doesn’t offer the same advantage as seen in the TSR second derivative when
compared to the steel bolt.
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4.5 Discussion

The resulting SNR of the proposed method, compared to the static thermography exhibit a
reduced SNR associated to the ghosting and other artifacts associated to the reconstruction.
Nonetheless, the signal of most of the methods surpass 4 decibel in most of the magnetic
field orientations. Note that an ideal signal processing should maximize the SNR on profiles
C and D which are centered in hot spots of the cracks and profiles A and B should not yield a
significant SNR value.

On the other hand, these types of defects do not necessarily require the 4 orientations to
detect the cracks, since most of the evaluated algorithms surpass the minimum SNR threshold
of 4 decibels in at least two magnetic field orientations.

At the same time, the thermal drift compensation, along with subsequent averaging,
allows for the use of multiple pulses, resulting in lower noise.

Of all the exposed temporal compression methods, the standard deviation of the thermo-
gram consistently produces the highest SNR, although this may be due to the fact that this
type of cracks exhibits a very pronounced heating in the cracks.

On the other hand, the L component of the norm-2 of the RPCA is correlated to the
magnitude, as expected, but the S component does not stand out particularly, due to the
higher background noise in the sound area, reducing its SNR.

4.6 Conclusions

In this chapter, a novel system has been presented that enables dynamic multi-directional
induction thermography on flat and cylindrical parts.

The system involves interleaved induction from various directions of the magnetic field
with simultaneous relative motion between the piece and the camera and inductor assembly.

The processing and separation of each direction have been integrated with a thermal
drift compensation to preserve the oscillatory component of the pulses, thus normalizing
the magnitudes of the mono-directional thermograms. This normalization has allowed for
consistent weighting between each pulse in the sequence, enabling the noise reduction
of the thermogram with a simple averaging. The resulting system produces consistent
multi-directional thermographies in a single scan, allowing the application of conventional
processing techniques.

Future instances of the problem could potentially enhance the results by utilizing a local
registration of images to cancel out vibrations in the translation system. Additionally, other
methods of spatio-temporal fusion based on Machine Learning or neural networks have not
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been evaluated yet. The employment of other types of processing techniques, such as the
Tucker Decomposition or the canonycal polyadic decomposition could potentially be used
to process a 4-way tensor adding the orientation of the magnetic field, to the reconstructed
video.

The ability to perform dynamic multi-directional thermography has reduced the dead
time when the camera is not recording, whether due to the movement required to cover the
surface for inspection or the need to rotate the inductor for parts with defects of indeterminate
orientation.

The exposed processing algorithms have shown Signal-to-Noise Ratios (SNRs) greater
than 4db in most cases considering the four induction orientations, demonstrating the feasi-
bility of this method.





Chapter 5

Sparse model-based view planning for
complex geometries

Previous sections of this academic paper have presented advancements in induction ther-
mography aimed at refining the technique and while at the same time reducing the total
inspection time. In this context, numerous inspection systems require robots to position an
inspection head carrying an infrared camera, 3D scanner, or other kinds of sensors. The
majority of these systems are integrated into robotic cells, which typically require an offline
programming of trajectories to cover a specific inspection surface. Considering that the total
inspection time depends significantly on the varying experience of the operators doing the
automation, a novel system has been proposed which is able to procedurally automate and
optimize the inspection itself on an arbitrary geometry. In this scenario the objective of the
inspection is the accurate 3D reconstruction of complex geometries, but this system can be
extrapolated to other techniques such as induction thermography.

5.1 Introduction

The initial viewpoint sampling method is able to lower the complexity of the algorithm by
creating a sparse visibility bipartite graph relating the targeted surface patches, with the
potential viewpoints (camera poses defined in SE(3)), which are contained in the surroundings
of the object. This graph is used to sample and simulate a subset of viewpoints, employing
an iterative greedy parallel set cover which weights the coverage of the sparse and simulated
visibility. This method prematurely rejects poor candidates and prioritize the viewpoints
providing an increased coverage, with no expensive preprocessing of the 3D models. A
randomized Greedy Heuristic with local search has been proposed to maximize the coverage,
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while minimizing the total inspection time, first with the set cover of the simulated viewpoints,
and secondly with the sequencing of the viewpoints and robot positioning with obstacle
avoidance. Furthermore, the performance of the system is demonstrated on a set of complex
benchmark models from the Stanford and MIT repositories, yielding a higher coverage with a
lower computational runtime compared to existing sampling-based methods. The validation
of the full system has been carried scanning a Stanford Dragon positioned with a 12 axes
kinematic chain composed by two robots.

5.1.1 Motivation

Automated inspections have gained significance within the smart manufacturing context as
they are necessary for many downstream applications or quality assurance. These systems
are commonly required to inspect a surface that will ensure the fulfillement of the required
specifications. Usually, the complete coverage of the surface of interest requires a set of
captures from different viewpoints. The associated camera network design or the automation
of the robotic inspection can be a lengthy process with many delays. The automatic resolution
of this aspect is called a view planning problem (VPP).

5.1.2 Related work

Typically, the solution to the VPP for an unknown 3D object is handled with a "next best
view" (NBV) approach. This method determines iteratively the subsequent position that will
reveal the greatest possible portion of the component’s surface or its immediate environment
for the robot. Some methods recur to octomaps which chart the surroundings of the occupied,
empty, and unknown space, to estimate a probabilistic map of the information gain [140],
enabling the determination of the upcoming pose. Even if this strategy is useful for reverse-
engineering and path finding of robots [187, 188, 122], among other applications, it requires
an intermittent online capture and processing, artificially extending the process and incurring
in other inefficiencies. Approaching the VPP with an approximate model that enables the
simulation of the inspection allows the usage of different heuristics and methods to attain a
predictable result.

Depending on the final goal, many specification criteria have been utilized. For instance,
in a surface reconstruction problem the minimum sampling density and variance of the point
clouds are considered [87], and in a network placement problem, the main objective is to
make a complete coverage of the scene [89] with the minimum number of viewpoints.

The classical sampling-based VPP, which employs an approximate model of the targeted
surface, such as the one exposed by Scott [87], starts with the sampling of viewpoints, its
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subsequent simulation and the final set cover ensuring the maximum coverage. The sampling
of the viewpoints starts by decimating [141] or resampling [142] the surface mesh, which
yields another mesh with a different distribution and density of the primitives. This mesh is
used to sample the surface points by selecting the vertices or the barycenters of the mesh
primitives. These points are used to sample a set of a priori ideal viewpoints with a normal
incidence angle from a distance corresponding to the maximum optical resolution, which is
defined as the center of the depth of field (DOF), as described in alg. 1.

Algorithm 1 Sample Offset DOF [87].
1: function SAMPLEOFFSETDOF(Mesh, z f , zn, ncams)
2: Mesh′← ResampleMesh(Mesh,ncams)

3: P,N← SampleBarycenters(Mesh′,ncams)

4: Cams← /0
5: for each pi ∈ P do
6: oi← pi +ni(z f + zn)/2
7: Cams←Cams∪ToFrame(oi,−ni)

8: return Cams

Other viewpoint sampling methods such as the one exposed by Jing et al. [103], sum-
marized in alg. 2, generates a volume surrounding the object, computed by calculating the
perpendicular at the surface points of the object, and adding the minimum and maximum dis-
tance of the DOF. This 3D volume is used to randomly sample the origins of the viewpoints,
and their orientations is determined with a potential function of the neighbouring surface
normals.

Algorithm 2 Sample Potential Field [103].
1: function SAMPLEPOTENTIALFIELD(Mesh, z f , zn, ncams)
2: Mesh′← ResampleMesh(Mesh,ncams)

3: V ← dilate(Mesh′,z f )−dilate(Mesh′,zn)

4: Ocams← RandomSampling(V,ncams)

5: Cams← /0
6: for each oi ∈ Ocams do
7: vi← potentialField(oi)

8: Cams←Cams∪ToFrame(oi,v)

9: return Cams

The resulting set of viewpoints is then simulated considering the visibility, as well as the
incident angle θ , as illustrated in fig. 5.3a, among other factors, resulting in a visibility vector
of the surface points for each viewpoint,

−⇀
Ai. The visibility of the N viewpoints, regarding M

surface points conforms a visibility matrix, Avis = (
−⇀
A1, ...,

−−⇀
AN), which can be interpreted as

a bipartite graph relating both disjoint sets, as formulated by Tarbox et al. [143]. This data
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structure, which can be interpreted as a bipartite graph, enables a combinatorial formulation
of the VPP as a Set Cover Problem (SCP), to maximize the coverage of the surface with the
minimum number of viewpoints.

Considering that the total area to cover is finite, the likelihood of visualizing the same
surface patches increases as the number of viewpoints rises. The diminishing returns of this
problem is one aspect of its submodularity associated to the total overlap of the visibility
[104]. Therefore the coverage and number of viewpoints are two conflicting objectives which
must be approximated in a reasonable time scale. The optimization of the problem has been
previously solved employing well-established meta-heuristics such as, greedy [144], linear
programming [145], Lagrangian relaxation [146], simulated annealing [147], particle swarm
optimization [96], and genetic algorithms [148], among others.

The conventional Greedy Set Cover [144], described in alg. 3, repeatedly selects the
next column (viewpoint) of Avis, which maximizes the coverage of the remaining uncovered
points, until the whole set is covered in O(logn), [149]. Its unweighted cost, as well as
the deterministic selection criteria, precludes the exploration of alternative solutions, which
can be improved with a randomized selection [150]. Another aspect to consider is that its
parallelization is able reduce the runtime with a similar solution, so long the problem is
subdivided in buckets of maximal near-independent sets [151]. The set cover yields a set
of unordered inspection frames which might be used to position static cameras or generate
an inspection trajectory, minimizing the inspection time and considering the kinematic
constraints of the robot and camera attached to the robot wrist, by employing a combinatorial
optimization known as the Travelling Salesman Problem (TSP).

Algorithm 3 Greedy Set Cover.
1: function GREEDYSETCOVER(A = {A1, ...,An})
2: Sol← /0
3: while |Uncovered(Sol)|> 0 do
4: Select j that maximizes |A j ∩Uncovered(Sol)|
5: Sol← Sol∪ j
6: return Sol

One of the main drawbacks of all these systems is that they do not use complex geometries
instances in the exposed results, as well as a typical runtime to solve the problem on the order
of minutes [87, 96, 153, 154].

Considering that the simulation of the viewpoints takes a significant share of the total
runtime of this problem, the sampling of an optimal subset of viewpoints is an important
aspect of the problem. Most of the conventional viewpoint sampling methods are able
to restrict its sampling space, but they do not take into account any information from the
surrounding geometry, which limits their ability to extrapolate the mutual visibility of the
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viewpoints. The occlusion ratio of a point should a priori correlate to the number of incident
cameras in a visibility matrix, but it does not retain any spatial information to prioritize the
sampling of viewpoints associated with complex surface patches. Some pseudo-illumination
models, employed in 3D rendering to shade the surfaces, such as ambient occlusion [189],
map a scalar field in the surface, by computing the ratio of occluded local random rays. This
yields a scalar field associated to the vertices or faces of the model, with high values related
to concave regions, internal geometries, or high curvature regions. But this mapping of
the surface is nevertheless unable to determine the best location of the viewpoints for each
surface patch.

All the mentioned studies expose different methods to solve the problem, but they
typically involve an expensive mesh preprocessing which is prone to alter the original surface
and its topology, introducing defects such as normal inversion affecting the visibility and
accuracy of the simulation. Another factor to take into account is the extended computational
times exposed by these studies, which impose restrictions on the scale and complexity of the
inspected part. Furthermore, the minimization of the inspection time focus mainly on the
SCP without considering the sequencing of the viewpoints restricted by the axes of the robot
positioning the sensor and its workspace. The contributions addressing these shortcomings
are enumerated in sec. 5.1.4.

5.1.3 VPP combinatorial formulation

The view planning problem (VPP), consists on the determination of a minimum set of
scanning viewpoints Cp to cover a surface. The surface of the inspected part, S is composed
by a set of vertices in R3, and a collection of polygons, which are defined as an adjacency
list of vertices. Another aspect to consider is that the set of viewpoints, must be contained in
a space belonging to the Special Euclidean group SE(3) [190], surrounding S. The coverage
of S by Cp, must also fulfill a set of specification parameters γ , which have been defined in
this work as (1) the minimum density, defined as the maximum distance between the points,
δmax [m], and (2) the maximum incident angle of the camera towards a point, noted as θmax.

The combinatorial approach of the VPP requires the discretization of both S and Vc

(space of possible camera poses), yielding a set of M points or polygons P = {p1, ..., pM},
and N viewpoints, C = {c1, ...cN} with Cp ∈C. The determination of the visibility of a point
pi, regarding a viewpoint c j, can be formulated as a binary scalar (0 non-visible, 1 visible),
ai j that takes into consideration the direct line of sight and the specification compliance.
Therefore, the computation of the visibility of a viewpoint viewpoint c j, regarding the whole
set of points P, can be defined as a binary visibility vector,

−⇀
A j = (a1 j, ...,aM j)

T , with ai j

being the visibility of pi regarding c j. The combination of all the viewpoint visibility vectors
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conforms a binary visibility matrix [143], with the points and the viewpoints corresponding
to the rows and columns respectively, noted as Avis = (

−⇀
A1, ...,

−−⇀
AN)|P|×|C|.

Note that Avis can be represented as a bipartite graph of two disjoint sets, P and C.
Fig. 5.1, shows their symbolic relation in (a), as well as its bipartite graph in (b), with
the vertices on the top symbolizing the viewpoints, the points below, as well as the edges
representing their visibility. The visibility matrix of this figure is shown down below.

(a)

p1 p2 p3 p4

c1 c2

(b)

Fig. 5.1 Visibility as a bipartite graph. (a) Symbolic representation of the visibility with 2
cameras covering a surface discretized in 4 points and the dotted line showing the visibility
of each point towards the cameras. (b) Bipartite visibility graph corresponding to the left

side of the figure

Consequently, we can define the VPP as the joint minimization of (1) the number of
viewpoints |Cp| with Cp ∈ Vc and (2) the ratio of uncovered points of P, subjected to the
visibility and specification compliance γ as follows,

min
CpCpCp∈VcVcVc

(
f (CpCpCp) , |CpCpCp|

)
with f (CpCpCp) = 1− 1

M

M

∑
i

N⋃
j

−⇀
A j (5.1)

subset CpCpCp of positioning space, VcVcVc

uncovered surface

visibility vector of jth viewpoint

Note that f (Cp) represents the ratio of uncovered points considering the union of the
visibility vectors of Cp.

5.1.4 Contributions

A sampling-based view-planning system is exposed with a set of distinct contributions aimed
at reducing the runtime of the VPP and the total inspection time of the robot:
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• A novel sampling view-planning that employs a sparse representation of the underlying
visibility, reducing the sampling space with a clusterization preserving the relation
between the space of the viewpoints and the surface.

• A sampling and simulation algorithm that does not require any expensive preprocessing
of the 3D model, yielding typical runtimes close to 1 second.

• An improved greedy heuristic for the SCP and Robot Travelling Salesman (RTSP)
problem, with a randomized local search, analogous to GRASP [150], to minimize the
time to traverse the viewpoints by the robot.

• Results validated with a set of 20 complex benchmark models demonstrating a higher
coverage with a lower runtime compared to existing sampling-based methods, as well
as the evaluation of the full system scanning a Stanford Dragon with two robots.

5.2 Methods

Based on the submodular property of the VPP [104], a set of assumptions can be established
to approximate the underlying visibility matrix, which can be used for efficient sampling of
the simulated viewpoints.

Point sampling
5.2.1

Sparse visibility
matrix
5.2.2

Greedy
Parallel Selection

5.2.2

Camera simulation
5.2.2

Update weighted
coverage

Covered?
Set Cover

5.2.4

RTSP
Path Planning

5.2.4

N

Y

Fig. 5.2 System overview.

Taking into account that this is a sampling-based view-planning, the proposed method
estimates a visibility matrix which serves as the basis for the optimization of the objectives
to attain the maximum coverage and minimum inspection time. An overview of the system
is displayed in fig. 5.2, starting by sampling the surface (sec. 5.2.1), which does not require
an expensive pre-processing of the mesh. A subsequent estimation of the visibility yields a
sparse visibility matrix (sec. 5.2.2), which is employed to iteratively select a set of viewpoints
(sec. 5.2.2), weighing both the sparse and simulated visibility (sec. 5.2.2), taking into account
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the accessibility of the robot (sec. 5.2.3). The resulting set of viewpoint vectors links P
on a dense visibility matrix, which serves as the basis for the minimization of the total
inspection time (sec. 5.2.4), first by reducing the set of viewpoints that ensures the coverage
by employing a Greedy Randomized SCP (sec. 5.2.4) and a subsequent reordering of the
viewpoints, taking into account the robot (sec. 5.2.4), in a problem known as the RTSP.

5.2.1 Surface point sampling

As previously stated, depending on the specification parameters of resolution and inherent
variable sampling density of most surface reconstruction algorithms employed in the genera-
tion of the 3D models, it is necessary to produce a uniform point sampling of the surface,
S. In this system, a modified version of the algorithm exposed by Corsini et al., [191], has
been implemented, starting with a Montercarlo point sampling of the surface with a higher
resolution of the predefined δmax, typically by a factor of 10. A subsequent subsampling
is carried out by iteratively selecting random points and discarding the neighbouring ones
at δmax radius. The neighbouring points are typically selected, employing spatial indexers,
such as kd-trees [192], or hash tables [193], among others methods. The iterative selection
terminates when the projected number of points, based on the area is reached, or no points
remain on the uncovered list.

5.2.2 Visibility calculation

The determination of the visibility in this scenario starts by the determination of the sparse
visibility matrix and the subsequent iterative selection of viewpoints and camera simulation.
Note that in this scenario, sec. 5.2.2 is exposed before sec. 5.2.2 to present the view-frustum.

Camera simulation employed 3D camera

The employed scanner in this work is a precalibrated Gocator 3520, composed of two 5
MP cameras and a 100 Watt blue light fringe projector, allowing for the 3D measurement,
so long the projector has the co-visibility of one camera, enabling the reduction of the
shadows and mutual occlusions present in complex geometries. It is based on a structured
light phase-shifting scanner, projecting a set of shifted sinusoidal patterns, which ultimately
allows the pixel-wise association between the cameras and the projector. This enables the
triangulation of the scanned surface points, taking into account the calibrated optics and their
relative positions, as illustrated in fig. 5.3b.

As a result, a conservative visibility evaluation of the scanner fuses the visibility of each
device as a combination of the visibility of the projector and the cameras. Therefore, the
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Table 5.1 Gocator 3520 view-frustum parameters.

ϕx ϕy zn zf Rx Ry b θv δmin

30º 40º 280mm 430mm 1944 2592 180mm 14º 0.08mm

visibility of a point p is defined as v = vpro j ∩ (vc1∪ vc2) with vpro j, vc1 and vc2, being the
separated visibility of the projector and both cameras respectively.

The visibility of each device towards the surface points has been assessed individually
through a three-step process. Firstly, by examining the view-frustum containment of each
point [194]; secondly, by evaluating specification compliance; and lastly, by ensuring an
unobstructed line of sight.

A pinhole model has been used to describe the view-frustum of each camera, as well as
the projector. Fig 5.3a displays the view-frustum as a truncated pyramid in a darker shade,
with ϕx and ϕy being the Field of View (FOV) constrained by the sensor rectangular shape
in the horizontal and vertical axes respectively. The minimum optical resolution is ensured
by constraining the DOF, between zn and z f . The relative position of the stereo camera with
the projector is shown in fig. 5.3b, being θv, the vergence angle in the XZ plane and b, the
distance between the cameras. Table 5.1 depicts the parameters associated with the Gocator
3520, assuming the same view-frustum for the three devices, with Rx and Ry being their
resolution.

(a) (b)

Fig. 5.3 Visibility evaluation. (a) Pinhole view-frustum with a DOF between zn and z f , FOV
with ϕx and ϕy. A ray directed from the focal point towards p with an incident angle θp is
drawn with a dotted line. (b)Stereo camera and projector relative position with a baseline b

and vergence angle θv.
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Note that the maximum incidence angle depends on the reflectance of the surface, the
exposure, and aperture among other factors which has been determined empirically, yielding
a value of θmax = 70º.

The specification compliance of the minimum resolution, δmax, has been estimated with
a similar approach to the one exposed by Scott, [87], which can be approximated with the
following equation:

δp =
Rp∆ϕ

H(θp < θmax)cosθp
(5.2)

Rp =
zp

cosϕp
is the distance between p and the focal point, ∆ϕ =min

(
ϕx
Rx
,

ϕy
Ry

)
the minimum

angular resolution of the sensor, H(θp < θmax) being the Heaviside step function with θmax

being the maximum incidence angle, and (cosθp)
−1 modelling the Lambertian reflectance

associated to the incidence θp, as shown in fig. 5.3a.
Another aspect to consider is the computation of the direct line of sight of the cameras,

which is known to be a complex problem [195], can limit the scale and complexity of the
VPP. The two main ways to solve this problem consist on the ray-casting of the optical rays
originating from the sensor to the scene, and alternatively the projection of the world into the
plane of the sensor.

Using the ray casting to estimate the visibility implies the evaluation of the intersection
between each ray with all the geometric primitives of the scene. The alternative, based on the
Z-buffer method [196] has an exponential decay [197] in its precision, and the rasterization of
the projection implies that the framebuffer resolution must be sufficiently small to visualize
the specified surface resolution, δmax.

In this context, a ray-tracing technique, such as Embree [198], has been integrated to
project rays from the camera towards the remaining points within the view-frustum. This
process adheres to specification compliance and effectively separates the visibility runtime
from the sensor’s resolution.

Sparse Visibility matrix

The sparse visibility matrix, is based on the extrapolation of the visibility of the neighbouring
viewpoints. The visibility from a point pos, surrounding the surface is illustrated in fig. 5.4a
showing the visible surface points with solid rays, which are restricted by the direct line of
sight, DOF and their respective incident angle. Therefore, if two of the remaining rays are
contained in the FOV of a viewpoint, both of their respective surface points will be visible.
For instance in fig. 5.4a, a 45º FOV camera with its optical axis aligned with the ray of
p1 will also visualize p2. The same idea can be extended for the viewpoints located on an
Euclidean radius around pos.
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The sparse visibility matrix can be defined as an approximation of the dense visibility
matrix described in sec. 5.1.3; however, it exhibits two clear differences. The first one lies
in the fact that it relates the visibility towards a random subset of P denoted as Psp. The
second one is that it has an explicit partition of the viewpoints. This is due to the way the
visibility is extrapolated with a spatial indexation of the viewpoints, as it will be explained
later. Therefore, the sparse visibility matrix can be denoted as follows: Asp = (A1, . . . ,An),
where Ai|Psp|×|Ci|

is the sub-matrix of the extrapolated visibility of a subset of viewpoints Ci,
regarding Psp.

The sparse visibility matrix is built based on the efficient extrapolation of the local
visibility, starting with the sampling of a collection of viewpoint axes from each surface
point, and the subsequent extrapolation of the visibility.

x
x

(a) (b)

Fig. 5.4 Camera sampling. (a) Symbolic representation of the omnidirectional visibility from
a point in space pos, casting rays to the visible points in solid lines conditioned by the

distance, incident angle and the occlusions. (b) Point visibility sampling volume,
representing a partial spherical cone, with its vertex and axis coincidental to p and surface

normal, n, respectively.

Point visibility sampling The first phase involves sampling a set of optical axes associated
to the points on the surface with a direct visibility. The process starts by selecting a random
fraction κ of P, denoted as Psp. For each point p in Psp, a subset of fixed vectors is sampled,
representing the optical axes of potential viewpoints directed to p. To ensure the visibility of
an optical axis kp towards p with its normal np, a point visibility space is defined with two
equations depending on the pinhole parameters of the camera and kp: (1) zn ≤ kT

p np ≤ z f ,

(2) ( kp
|kp|)

T np > cosθmax, representing DOF containment and feasible angle of incidence.
This volume has the shape of a partial spherical cone, with its vertex and axis coincidental
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to the point p and surface normal, np, respectively. The maximum and minimum radius
correspond to the DOF range, and the cone half angle is associated with the maximum
incidence angle, θmax, as illustrated in fig. 5.4b. A set of vectors pointing to p is sampled
from this volume with a 3D uniform grid and a ∆d resolution. The direct line of sight is
evaluated by ray-casting from kp towards p, discarding the occluded ones. Based on the
experiments the following grid sampling resolution gives good results:

∆d =
1
3

(
z f + zn

2
(tanϕx + tanϕy)+ z f − zn

)
(5.3)

∆d represents an average of the DOF, and the dimensions corresponding to the mid plane
cross-section of the view-frustum.

Visibility extrapolation The second phase consist on the extrapolation of the visibility of
the neighbouring optical axes. Considering that each optical axis is linked to a surface, the
extrapolation has been carried out in two steps. The first one consisting on the binning of the
optical axes employing a grid which partitions the Euclidean Space R3, and the orientation
space with spherical coordinates, as shown in fig. 5.5.

Fig. 5.5 Optical axes grid parameters in R3 for rp and the latitude γ and longitude λ of kp
regarding the frame of the object.

The grid is built by indexing the optical axes, assigning 5 integer scalars (3 for position
and 2 for orientation) to each optical axis, which are then sorted first by the Euclidean position,
and subsequently by the orientation. This effectively groups the optical axes belonging to
the same orientation bin, denoted as ORI, contained on an Euclidean bin, denoted as POS.
As a result, all the consecutive elements with the same orientation belong to the same bin.
The left side of fig. 5.6 displays the relation of the ordered optical axes, denoted as CAMS,
contained in the oriention and position bins. So long, the euclidean and angular resolution
of the grid, ∆d and ∆β respectively, are sufficiently small, all the optical axes contained
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in the same orientation and position, bin will have similar rp and kp vectors, resulting in
a comparable visibility. Therefore, the centroid of the optical axes of each orientation bin
inherits the predominant visibility of the bin. The right side of fig. 5.6 displays the centroids
of the orientation bin inheriting the visibility of the surface points from the optical axes.
Experiments have show that the Euclidean resolution of the grid ∆d, described in eq. 5.3
gives good results, as well as the following angular resolution: ∆β = min(ϕx,ϕy)/4. The
centroid of the optical axes is determined as follows, rC = 1

n ∑
n
i=0 ri and kC = ∑

n
i=1 ki

|∑n
i=1 ki| .

... ··· ...

... ... ...

POSPOSPOS

ORIORIORI

CAMSCAMSCAMS

PT SPT SPT S ... ··· ...

POSPOSPOS

CentroidsCentroidsCentroids

PT SPT SPT S

Fig. 5.6 Hierarchical binning is depicted with a two level spatial indexing of the optical axes,
with an Euclidean POS, and orientation ORI partitioning, corresponding to the first and

second level respectively. The left side of the figure shows that each orientation bin contains
a set of optical axes which are linked to a single point each. The right side displays the

Centroids of the axes of each bin linked to all incident points of ORI.

Note that the ordered list of points of the spatial binning and the strides of the orientation
bins associated to the clustered camera centroids can be seamlessly copied to the row and
column index buffers of a binary Compressed Row Sparse (CRS) matrix respectively. The
resulting CRS matrix conforms an approximation of Avis with a lower density. Considering
that the hierarchical binning groups the camera centroids by Euclidean bins, the sparse
visibility matrix can be as noted as a set of n column blocks corresponding to the Euclidean
bins POS, denoted as A′sp = (A1, ...An).

One of the drawbacks of the binning is that the resulting clusterization depends on the
origin of the spatial partition. For instance, a cluster of optical axis can be divided, resulting
in two contiguous centroids, instead of one that clusters the group. Fig 5.7 shows a set of
outgoing rays from pos directed to the points shown fig. 5.4b, with an angular partition of
∆β = 60◦, represented with dotted lines, and their respective centroids drawned in blue.
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Fig. 5.7 Rays directed to the points illustrated in fig. 5.4a from pos partitioned in 60◦ bins
with the axes centroids of each bin in blue.

In this example, the viewpoint aligned with Vori1 will probably see most of the points
visualized by Vori2 , but none of the points corresponding to Vori3 . Alternatively, Vori2 , will
probably visualize most of their adjacent ones. This redundant co-visibility of the axis
centroids can be used to further increase the number of edges in the sparse bipartite graph.
Therefore, the co-visibility of the local axes centroids contained in an Euclidean bin, Kbin =

{k1, ...,km}, can be formulated as a symmetric adjacency matrix, denoted as: Acams =

(...ei j...)m×m, with ei j = kT
i · k j > cos∆β . The extrapolation of the visibility within the

Euclidean bin, has been carried out with a graph composition of the sparse visibility matrix,
Asp and the optical axis orientation adjacency matrix Acams, with the following binary matrix
multiplication, Asp = A′sp×Acams, with Asp being the final sparse visibility matrix. Fig. 5.8
shows a visibility graph corresponding to fig. 5.4a, with the upper row corresponding to a set
of viewpoint nodes and their mutual adjacency represented by the dotted edges. As a result,
the nodes in the bottom are associated to the points P, which are connected to the viewpoints
C, either by the initial binning with gray edges, or the subsequent extrapolation in black.
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c1

p1 p2 p3 p4 p5 p6 p9 p10

c2 c3 c4

Fig. 5.8 Bipartite graph relating the visibility of the viewpoints on top and the points at the
bottom related to fig. 5.4a. The gray edges are associated to the binning, and black ones to

the extrapolation. The dotted lines denote the orientation adjacency of the viewpoints.

The following expression shows the graph composition of the visibility extrapolation
illustrated in fig. 5.8, corresponding to fig. 5.4a.



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1


A′sp

×

1 1 0 0
1 1 1 0
0 1 1 0
0 0 0 1



Acams

=



1 111 0 0
1 111 0 0
111 1 111 0
111 1 111 0
111 1 111 0
0 111 1 0
0 0 0 1
0 0 0 1


Asp

(5.4)

The generation of the sparse visibility is summarized in alg. 4.

Algorithm 4 Build Sparse Visibility.
1: function BUILDSPARSEVISIBILITY(P,θmax,CampPars,κ)
2: Psp← SubsamplePoints(P, κ)

▷ Sample and ray-cast optical axes for each point (sec. 5.2.2)
3: Axes← PointVisibility(Psp,θmax,CamPars)
4: Centroids,Asp,Bins← VisibilityExtrapolation(Psp,Axes)

▷ Optical axes centroids to viewpoints
5: C← ToFrames(Centroids)

▷ Filter invalid Robot viewpoints
6: C← FilterInvalidViewpoints(C)
7: return Psp,C,Asp

Note that the viewpoints are calculated from the centroids with a random rotation of the z
axis in line 5 of alg. 4.

Greedy iterative selection

The sampling and simulation of the viewpoints is based on a greedy set cover (alg. 3),
weighting the coverage globally, with a local parallel selection. The selection penalizes the
number of covers of each point by weighting both the extrapolated visibility (Asp), and the
simulated viewpoints, up to a minimum number of covers, mincov. Considering that the
neighboring viewpoints, contained in the same Euclidean bin (POS), have a higher overlap
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of the surface visibility, compared to the farthest ones, it enables its parallel selection in
buckets of maximal near-independent sets [151], approximating the sequential greedy set
cover solution with a shorter runtime. The proposed method to sample and simulate the
viewpoints is exposed in alg. 5.

Algorithm 5 Sparse Iterative Sampling.
1: function SPARSEITERATIVESAMPLING(P,mincov,CamPars)

▷ Initialize P, Centroids and Sparse visibility, alg. 4
2: Psp,C, Asp← BuildSparseVisibility(P,θmax,CampPars,κ)

▷ Initialize camera viewpoints, visibility matrix and coverage vector
3: Cams← /0, Avis← /0 Cov← /0

▷ Iterative selection and camera simulation
4: while True do

▷ Weighted uncovered points vector
5:

−−−−−⇀
Uncov←max(0,1−

−−⇀
Cov

mincov
)

6: Cams′← /0
▷ Greedy parallel selection

7: for each A ∈ Asp do
▷ Remaining weighted coverage

8:
−−−−−−−−−−−⇀
UncovCams← AT ×Uncov

9: Select i maximum row of
−−−−−−−−−−−⇀
UncovCams

10: if
−−−−−−−−−−−⇀
UncovCamsi ≥ 1 then

11: Discard ith camera in A
12: Cams′←Cams′∪Ci

13: if Cams′ == /0 then
14: break
15: A′vis←CameraSimulation(P, Cams′, CamPars)

▷ Save viewpoints and simulated visibility
16: Cams←Cams∪Cams′, Avis← Avis∪A′vis
17: Add the dense and sparse coverage of Psp to

−−−⇀
Cov

18: return Cams, Avis

After calculating the sparse visibility matrix with alg. 4 in line 2, the vector
−−⇀
Cov, which

counts the accumulated covers of each point of Psp is initialized, as well as the final set of
viewpoints, Cams and the simulated visibility matrix Avis of P. The iterative selection starts
by initializing the vector

−−−−−⇀
Uncov, which negatively weights the accumulated covers of each

point of Psp, up to a minimum number of covers, mincov, as shown in line 5. The parallel
selection within each bin POS, starts by calculating the weighted new coverage

−−−−−−−−−−⇀
UncovCams,

of each viewpoint in line 8, with A, being the block of Asp corresponding to the viewpoints
contained in POS. Afterwards, the viewpoint with the maximum value, greater or equal
to one, is saved. The parallel selection, yields at most a viewpoint for each bin, which are
then simulated in line 15 and saved in Avis. The accumulated coverage of the points

−−⇀
Cov,

is updated with the summation of the dense and sparse visibility of Cams′. This process is
repeated until no viewpoints are selected.
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5.2.3 Robot accessibility testing

The accessibility of the viewpoints is evaluated based on the existence of a valid robot
configuration with no collision. A fast inverse kinematic solver such as IKFAST [199], has
been employed returning, the complete set of solutions. The sampling of robot configurations
for kinematic chains with more than 6 degrees of freedom has been carried out with two
different methods. In the case of external positioning axis, a random or uniform sampling for
each redundant axis is sufficient, and for multiple robotic arms, a Cartesian bounding box is
defined to randomly sample the possible configurations, as described in the results.

The resulting robot configurations are subsequently tested for any intersection of the
robot with the scene. The collision detection is typically handled using a two-phase approach
consisting on an initial broad phase and a subsequent narrow phase. The broad phase employs
a simplified primitive geometry of the objects to discard the evaluation of distant objects.
Some implementations use the sort and sweep algorithm to evaluate the overlap of the
projected bounds of the primitives into the three axes. While other approaches recur to a
parallel spatial cell subdivisions to evaluate the collision of objects contained in the same
cell. The second phase computes the exact contact points of the intersected geometry. A
collision detection library, such as FCL [127] has been implemented in this instance with
both the broad and narrow phase.

5.2.4 Inspection time optimization

After simulating the visibility of the sampled viewpoints, the problem must be able to
minimize the total inspection time, maximizing the coverage. The joint optimization of both
problems is notoriously hard which has motivated the division of the problem in two steps.
The first one consisting on the minimization of the number of selected viewpoints on a SCP,
analogous to the greedy set cover alg. 3. And a second phase aims at minimizing the time to
visit each viewpoint by simultaneously reordering them considering the robot configurations,
which is a variation of the TSP, known as the RTSP. Since the solution of both problems
can be formulated as an ordered list, a sequential greedy insertion [144], can be employed
in an iterative manner. Some heuristics, such as GRASP [150], add some randomization
to the greedy heuristic by choosing among the k candidates for the solution, instead of the
best one. The proposed generic resolution of both problems is displayed in alg. 6, consisting
on the generation of an initial solution S, conformed as an ordered list. This solution is
iteratively optimized, by employing a similar scheme to a Variable Neighborhood Search
(VNS) [200], first by discarding g elements and a subsequent randomized insertion of the k
nearest neighbors. The resulting solution S′ is preserved so long it improves S. The local
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search is terminated after tmax seconds, or lmax iterations with no improvements. To enable
the adaptation of the generic optimization scheme, to the SCP and RTSP, the following
functions must be altered accordingly, RandomizedGreedyInsertion, discardGRandom, as
well as compareSolution. The adaptation of the proposed scheme is detailed in the following
sections.

Algorithm 6 Greedy Variable Neighborhood Search.
1: function RANDOMIZEDGREEDYVNS(A = {A1, ...,An}, k, g)

▷ Initial solution
2: S′← RandomizedGreedyInsertion(A, /0,k)
3: S← S′, l← 1
4: while l ≤ lmax∩ t < tmax do
5: S′←discardGRandom(S′,g)
6: S′←RandomizedGreedyInsertion(A,S′,k)
7: if compareSolution(S′,S) then S← S′, l← 1
8: else l← l +1
9: return S

SCP

Both the initial solution shown in line 2, as well as the insertion of the local search in line
6 from alg. 6, have been implemented with alg. 7, considering the previously calculated
visibility matrix, Avis = (

−⇀
A1, ...,

−−⇀
AN)|P|×|C|. Note that the insertion of viewpoints stops after

reaching a coverage ratio, ηvis is reached as shown in line 2. It starts by determining the
number of uncovered points of the solution S of each viewpoint, resulting in the vector
−−−−−⇀
Covers. Subsequently, a column among the k maximums of

−−−−−⇀
Covers is choosen. The random

removal of g elements in the unordered solution S, discardGRandom follows a uniform
distribution. The iterative local search saves the solution S′, so long it has a lower cardinality
regarding the best S, or an improved coverage with the same cardinality.

Algorithm 7 Randomized Greedy SCP.
1: function RANDOMIZEDGREEDYINSERTIONSCP(Avis ={A1, ...,AN},S,k)
2: while 1

M |Uncovered(S)|> 1−ηvis do
▷ New covers for each viewpoint

3:
−−−−−−⇀
Covers← (· · · , |Uncovered(S)∩A j|, · · ·) j∈{1,...N}

4: Pick random j column within the k maximums of
−−−−−−⇀
Covers

5: S← S∪ j
6: return S
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Robot travelling salesman problem

The minimum set of viewpoints with a coverage ratio of ηvis that complies with the spec-
ifications must be sequenced to minimize the time to visit each viewpoint. The scanning
space, or task space, T , is contained in SE(3), which is associated with the end-effector of
the robot. The projection of the robot space R, onto T , known as the forward kinematic
(FK), is unique, but its opposite, the inverse kinematic (IK), does not share the same property.
Non-holonomic robots, as well as singular points in T , might even have infinite IK solutions.
Consequently, every target ti within the set T forms a cluster of robot configurations denoted
as Ri = {ri j}, thereby extending the TSP to a Clustered Traveling Salesman Problem (CTSP).

In most industrial inspections, the start of any robot routine coincides with the end on a
“home” configuration, rhome, conforming a Hamiltonian tour traversing all the viewpoints.
The RTSP is a particularization of the CTSP, which in some approximations leverages
the duality of the robot and task space to reduce the complexity of the problem [201].
Fig. 5.9a displays the Hamiltonian tour on a TSP graph in the task space, and b represents
the corresponding RTSP.

The complete set of clusters, including home, is defined as A = {A0, ...AN−1}, with each
cluster Ai composed by a varying number of robot configurations, with A(i, j) = ai j, being
the robot configuration j of the target i. A tour S is defined as an ordered list of M pairs,
{x,y}, with x and y being the set point number and its associated configuration respectively.

The time to transition from a robot configuration −⇀ai j to −⇀akl is defined as: cost(−⇀ai j,
−⇀akl) =

max
(
|−⇀ai j−−⇀akl|⊘−⇀ω

)
, with −⇀ω being the axes velocities of the robot and ⊘ the element-wise

vector division. As a result, the cost of a tour S is the summation of all the segments costs.
And the function compareSolution of line 7 in alg. 6 for the RTSP determines if S′ has a
lower cost compared to S.

Adapting the function RandomizedGreedyInsertion for the RTSP has resulted in alg. 8,
which assigns a random configuration of A when the sequence is empty, and then iteratively
chooses the configurations that are among the k minimum costs of the unvisited target
configurations.
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(a) (b)

Fig. 5.9 Scan sequencing. (a) Travelling salesman problem. (b) Robot-TSP.

The implementation of discardGRandom for the RTSP, defined in line 5 from alg. 6,
erases a set of g contiguous elements of the circular sequence, yielding a unique gap for the
subsequent insertions.

Algorithm 8 Randomized Greedy Insertion RTSP.
1: function RANDOMIZEDGREEDYINSERTIONRTSP(Avis ={A1, ...,AN},S,k)

▷ Hamiltonian cycle enables random start
2: if then|S|== /0
3: pick random i ∈ {0, ...M−1} and j ∈ {0, ...|Ri|−1}
4: S0←{i, j}

▷ Insert in the first gap, next
5: curr← f irstBe f oreNull(S), next← (curr+1)%M
6: repeat

▷ Costs from Scurr to remaining viewpoint configurations
7: Costs={{Cost(Scurr,{i, j})}∀i∈({0,...M−1}−S),∀ j∈{0,...|Ri|−1}
8: Pick random {i, j} among k minimums in Costs

▷ Add to sequence
9: Snext ←{i, j}

10: curr← next, next← (curr+1)%M
11: until Snext ̸= 0
12: return S

5.3 Experiments and results

The evaluation of the proposed method has been conducted in two phases. The first one
compares the view-planning system without the robot. The second phase benchmarks the
full system with two robotic arms and a printed Stanford Dragon.
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5.3.1 Synthetic view-planning

To evaluate the performance of the contributions, regardless of the employed kinematic chain,
a set of 4 models from the Stanford repository and 16, from the MIT CSAIL Textured Models
Database has been simulated throughout the pose generation, simulation and the Greedy Set
Cover exposed in alg. 3 selecting up to 20 viewpoints. The quantitative evaluation has been
carried out by employing the area under the curve (AUC) [159], measuring the accumulated
information gain of the final Greedy selection sequence.

The minimum resolution is δmax = 0.001m with a maximum incidence angle, θmax = 70º,
employing the camera parameters associated to the Gocator3520, shown in table 5.1.

Two alternative pose generation methods have been compared, the first one proposed by
Scott[87], implemented with alg. 1, and a second exposed by Jing [103] following alg. 2.
Both methods sample a predetermined number of viewpoints based on the resolution and
the area of the mesh as: ncams =

1
20

areamodel
δmax

2 . Since both methods require a mesh resampling,
the method exposed by Schroeder [141] has been used, which is implemented in VTK with
the operator vtkDecimatePro [202]. Note that the presented method employs the following
parameters: κ = 0.25 and mincov = 15.
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Fig. 5.10 Coverage sequence up to 20 viewpoints comparing the proposed method (sparse)
and two alternative methods. (a) Comparison between 3 models of the dataset. (b) Average

of the whole dataset.
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Table 5.2 displays the results of the 20 models and the 3 methods, reporting the coverage
of 2, 4 and 6 viewpoints, as well as the AUC and the runtime in seconds. Note that to reduce
the randomness, the results are averaged in 10 runs, executed in a laptop with a Ryzen 9
5900HX with 16 parallel threads in 8 cores and 32GB of RAM. Fig. 5.10a illustrates 3
instances of the coverage sequence, and fig. 5.10b displays the average of the whole set.

5.3.2 Real tests

Setup

The tests have been carried out with a kinematic chain composed of two manipulator with 6
axes, consisting of an ABB IRB 6700 235/2.65 carrying the scanner and an ABB IRB4600
60/2.05 with a printed Stanford Dragon tied to the 6th axis, as illustrated in fig. 5.11. To
replicate the real setup in the simulation, the kinematic chain shown in fig. 5.11 has been
calibrated employing common methods. The FK of both robots, associated to the frames
of their flanges regarding their respective bases, robTFL, have been determined using the
nominal DH parameters of both robots. The relative position of their bases, robcamTrobpart

has been calibrated following the default method provided by the robot controller with an
error of 2.2mm. As for the hand-eye calibration associated with the relative position of
the scanner coordinate system, FLcamTcam, centered in the projector focal point, regarding
the flange of its robot, it has been estimated with the quaternion method [203], with a set
of 12 captures employing a checkerboard pattern, yielding a square error of 0.278mm and
0.012◦. The frame of the inspected part regarding the flange of the robot, robpart Tpart , has
been determined by averaging the registration of the model with 6 captures yielding an
average error of 15.67mm and 0.44◦.
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Fig. 5.11 Setup and approximate frames of the kinematic chain carrying the scanner and the
part.

Reconstruction analysis

The employed parameters of the system are presented in table 5.3.

Table 5.3 Robot view-planning parameters.

Specifications Iterative sparse SCP RTSP

δmax θmax mincov κ ηvis tscp g k trtsp g k

1mm 70º 35 0.2 90% 10s 2 4 10s 2 4

The resulting sampling has simulated 474 poses for a set of 32671 surface points. The
final selection has employed the randomized Greedy SCP with 16 instances in parallel
for 10 seconds, selecting the best solution. Fig. 5.13a compares the resulting sequence of
the conventional Greedy SCP, as well as the corresponding accumulated visibility of the
scanned point clouds. The solution is composed of 7 viewpoints which have been sequenced,
employing the RTSP algorithm described in sec. 5.2.4. The 12 axes robot configurations
of the capture poses have been sampled, first by selecting a random pose of the viewpoint
on a Cartesian bounding box of 0.5x0.5x0.5m to determine the corresponding frame of the
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Fig. 5.12 Comparison of the simulated poses and the resulting point clouds with the first and
second rows displaying the projected cloud from the viewpoint of the simulated and scanned

pose. The third row displays the resulting cloud registered to the model and its
corresponding viewpoint. And the last row shows the incremental registration of the clouds

with the registered cloud in red and the previous ones in blue.

other robot. The dense path with obstacle avoidance of the resulting sequence of robot
configurations has been planned with RRT-Connect [204] implemented in OMPL [205],
which has been subsequently post-processed to generate 2 robot programs compatible with
the controller enabling a synchronized execution. The accumulated errors of the kinematic
chain alter the resulting pose which provokes a deviation from the simulated visibility. The
Cartesian deviation of the robot has been measured by registering the point cloud from the
theoretical frame of the model, regarding the model itself. The total overlap of the point
clouds has been determined, first by discarding the points that do not attain the minimum
resolution, δmax, determined by a minimum number of neighbours, minNN , within a radius,
r = 2δmax, employing the following expression: minNN = πr2

δmax
2 . And secondly by estimating

the number of points of the simulated point cloud within a 2δmax distance of the registered
capture. Fig. 5.13b shows the registration distance with the resulting overlap. The 7 captures
of the inspection are presented in the columns of fig. 5.12, with the top and middle rows
displaying the projected point clouds of the simulated and scanned viewpoints. The third
row displays the model with the point cloud overlapped to the simulated in red, and the
non-overlapping in green, as well as the synthetic points which are not scanned in blue.
The surface reconstruction of the model has followed a conventional method consisiting
on the pre-alignment of the clouds to the frame of the robot flange carrying the scanned
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object and a subsequent incremental registration with a modified iterative closest point
(ICP) [206]. The ICP has been implemented using the point cloud library [207], employing
a different objective function [208], and a correspondence estimation based on a normal
shooting coupled with normal rejection. The set of registered clouds is the basis for the
surface reconstruction employing the software GOM inspect. Fig. 5.14 shows the resulting
surface of the model.
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Fig. 5.13 Evaluated coverage sequence and displacement errors. (a) Accumulated visibility
of the Greedy Set Cover, and the randomized Greedy with the visibility of the scanner. (b)

Overlap ratio of the simulated viewpoints and the registered point cloud, including the
registration distance in mm.
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Fig. 5.14 Reconstructed model rendered from 4 perspectives based on the 7 registered point
clouds.

5.4 Discussion

The outcome presented in section 5.3.1 reveals an enhanced coverage in the majority of
instances compared to the analyzed alternatives with a shorter runtime. The employment of
expensive mesh preprocessing penalizes the duration of the alternative methods significantly.
The results exposed in tab. 5.2 shows that some instances, such as the vase, goblet and bowl
improve the coverage by a significant margin, which is likely caused by the deep internal
concavity of these containers. Given that the predominant orientation of the faces points to a
region where they will not have a direct visibility of the interior, its visibility is restricted
to a set of viewpoints with an incidence angle and region of the viewpoint space that is not
effectively sampled by these alternative methods. On the contrary, the proposed method
samples a subset of cameras that prematurely discards all occluded candidates, ensuring that
the subsequent clusterization preserves them by positively weighting their unique visibility.
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On the other hand, primarily convex objects with reduced curvature, such as the head and
bunny, have an increased co-visibility of the surface, resulting in a comparable coverage.
Considering the positive results of the proposed method, future instances of the problem
could adapt the sampling and clusterization criteria considering other variables which would
a priori enable an improved sampling.

The field test has shown that the full system is able to perform with similar results to
the simulated problem, even with an average positioning error of 6mm, yielding an average
overlap of 92% of the simulated poses regarding the real captures. The accumulated visibility
shown 5.13a is higher than the simulated one, which could be associated with multiple factors
such as a conservative maximum incident angle and the mutual compensation of the visibility
of the whole set of point clouds.

Another aspect to consider is that only one instance of the randomized set cover has
been exposed, which has enabled the reduction of one pose with a higher coverage. Future
instances of the problem could integrate other objectives in this SCP algorithm factoring the
minimum overlap between the captures and the inclusion of other variables to enable the
optimization of secondary objectives. The reduced computational cost of the sparse visibility
matrix could serve as the basis for the visibility segmentation which could be employed
in the positioning of the parts or the design of tooling factoring the visibility. The greedy
RTSP employed with the two robotic arms has not been analyzed but it could be extended to
systems with multiple independent scanners.

5.5 Conclusions

In this work, a novel method for the view planning has been introduced based on the efficient
sampling of a predefined 3D model, by employing a sparse representation of the underlying
visibility without any expensive mesh preprocessing.

Experiments on a set of 20 complex models have shown that the presented method is
nearly 3 times faster than conventional methods, yielding improved coverage with the same
number of viewpoints. This method is able to build a sparse representation of the visibility
which enables a premature rejection of poor viewpoint candidates. What is more, at the same
time prioritizes the sampling of viewpoints covering complex surface patches, without any
expensive mesh preprocessing.

The article on which this chapter is based is currently under review with minor changes.
Finally, a modified randomized greedy heuristic has been proposed to solve separately

the Set Cover, as well as the sequencing of the robot scanning poses with satisfactory results.
This method has been tested with a stereo-structured light scanner mounted on a robot to
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scan a complex model positioned by another robot. Despite the significant positioning errors
accumulated in the kinematic chain, the resulting coverage of the whole set of captures has
produced a higher coverage.





Chapter 6

Conclusions

In this thesis, scientific contributions have been presented for non-destructive testing through
induction infrared thermography, as well as the procedural generation of 3D inspection
trajectories with robots.

The contributions in induction thermography have allowed the inspection and evaluation
of various materials and components without affecting their properties. This is achieved
using new systems that can detect cracks in all directions without any movement of the
induction system. This approach has enabled the generation of thermographies associated
with magnetic fields of different orientations. The directional observations facilitate detecting
cracks with unknown orientations, and the defect pattern on the phase image reveals a new
rotating feature which depends on the magnetic field orientation, inspiring a processing
technique based on phase-shifting. This directional thermal response is observed in various
samples and crack types. Future work should focus on generalizing this technique using
machine learning or neural networks. Rigorous physical modeling is crucial for optimization
and potential extrapolation.

Additionally, a new quadratic inductor has been introduced to generate directional mag-
netic fields with a uniform field distribution, enabling the design of inductors with much
larger inspection windows and multidirectional capabilities. Future works should focus on
the rigorous physical modelization of the system, employment of circular polarization [181],
excitation with two frequencies [182], as well as frequency modulated induction of each coil,
among others alternatives.

Furthermore, the previously described directional induction system has been combined
with the new quadratic inductor to perform dynamic scanning inspections, where the magnetic
field is simultaneously rotated. The system involves interleaved induction from various
magnetic field directions while maintaining simultaneous relative motion between the piece
and the camera-inductor assembly. The proposed method decompose the thermography in



142 Conclusions

its directional components including a normalized thermal drift compensation allowing for
consistent weighting and noise reduction. This system will benefit in future works with
local image registration for vibrations compensation, and the usage of new spatio-temporal
fusion methods employed in neural networks, as well as alternative methods to fuse the
transient thermographies by incorporating magnetic field orientation into the reconstructed
thermographies.

Finally, a system has been developed to address the view planning problem, with contri-
butions aimed at reducing execution time through spatial reduction based on combinatorial
clusterization. A novel method for efficient view planning is with a novel sparse visibility
representation on a 3D model without costly mesh preprocessing has been exposed. The
method prioritizes complex surface patches and employs a modified randomized greedy
heuristic for Set Cover and robot scanning pose sequencing, demonstrated demonstrated on
complex models with field tests using a 12-axis kinematic chain. Future works could focus
on the extrapolation of the sparse visibility employing neural networks to enable VPP with
no model, as well as the adaptation to inspections with surface contact, such as induction
thermography.
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