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Abstract

Bit-rate and quality of service demands of new wireless communication standards are pushing
signal theory and algorithm implementation to their limits. One of the main strategies which
are being used to achieve the demanded rates is the multiple input-multiple output (MIMO)
technique, which employs multiple antennas, both at transmission and reception.

This PhD dissertation concentrates on the analysis of the e�ects of channel estimation,
specially complex due to the number of parameters to estimate, on the performance of MIMO
detectors, focusing on both practical and theoretical aspects.

The practical analysis has been addressed by designing and developing a real-time wireless
MIMO communication platform. A whole 2 × 2 system has been implemented which has
allowed to evaluate the e�ects of a real hardware implementation on the performance of
the MIMO receiver. A zero-forcing (ZF) detector and a sphere decoder (SD) have been
implemented in order to evaluate their degradation in bit error rate (BER) performance in a
realistic environment including synchronization, channel estimation or quantization e�ects.

On the other hand, a simulation-based analysis has been carried out to evaluate the e�ects
of channel estimation on the comparative performance of the main detectors in fundamental
MIMO systems, including narrowband, orthogonal frequency-division multiplexing (OFDM)
and single-carrier with frequency-domain equalization (SCFDE) schemes. The e�ects of
channel estimation on iterative Turbo-MIMO systems have also been analyzed, proposing
a performance prediction tool based on analytical extrinsic information transfer (EXIT)
functions.

Finally, a parallel decision-directed semi-iterative channel estimation architecture has
been proposed which is specially designed to �t in �eld-programmable gate array (FPGA)
devices and solves some of the problems of other iterative approaches with a moderate
complexity.
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Resumen

Las expectativas, tanto de calidad de servicio como de tasa de bits, de los nuevos estándares
de comunicaciones inalámbricas están llevando la teoría de la señal y la implementación
hardware de algoritmos a sus límites. Una de las técnicas que se están empleando para
conseguir las tasas demandadas es la denominada MIMO (multiple input-multiple output), la
cual consiste en la utilización de múltiples antenas, tanto en transmisión como en recepción.

Esta tesis se centra en el análisis del efecto de la estimación de canal MIMO, especialmente
compleja debido al número de parámetros a estimar, sobre el rendimiento de los detectores
multiantena, centrándose tanto en aspectos prácticos como teóricos.

El análisis práctico ha consistido en el desarrollo de una plataforma de prototipado de
tiempo real para comunicaciones MIMO, así como en la implementación de un sistema
completo 2 × 2, el cual ha servido para evaluar el efecto de la implementación hardware
sobre el rendimiento del receptor MIMO. Se han incluido el detector ZF (zero-forcing) y el
decodi�cador esférico dentro de un sistema hardware completo, permitiendo la evaluación
de la degradación de las tasas BER (bit error rate) en entornos realistas donde se aprecian
los efectos de los errores de sincronización, estimación de canal, cuanti�cación, etc.

Por otro lado, se ha desarrollado un estudio del efecto de la estimación de canal sobre el
rendimiento comparativo de las principales técnicas de detección MIMO. Este análisis ha sido
realizado tanto para sistemas de comunicaciones de banda estrecha como para sistemas de
banda ancha basados en OFDM (orthogonal frequency-division multiplexing) y SCFDE (sin-
gle carrier with frequency-domain equalization). Del mismo modo, se ha estudiado el efecto
del error de estimación de canal en sistemas iterativos Turbo-MIMO básicos, proponiéndose
una herramienta de predicción de tasas BER basada en funciones EXIT (extrinsic informa-
tion transfer) analíticas.

Por último, partiendo de las conclusiones obtenidas en los puntos anteriores, se ha pro-
puesto una arquitectura paralela para estimación de canal iterativa, especialmente apropiada
para ser implementada en dispositivos lógicos FPGA (�eld-programmable gate array). Dicha
arquitectura soluciona varios de los problemas de otros esquemas iterativos introduciendo
un aumento moderado de complejidad.
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Laburpena

Haririk gabeko komunikazio estandar berrien zerbitzu-kalitate eta abiadura eskaerek seinalea-
ren teoria eta algoritmoen hardware inplementazioa euren mugetaraino daramatzate. Aipatu-
tako abiadurak lortzeko erabiltzen ari diren tekniketako bat, garrantzitsuena agian, MIMO
(multiple input-multiple output) delako sistema da, non antena anitz erabiltzen diren, bai
igorlean baita hartzailean ere.

Doktoretza-tesi honen gai nagusia MIMO kanalaren estimazioan datza eta honek MIMO
hartzailean duen efektua ikertzea du helburu, bereziki garrantzitsua suerta baitaiteke esti-
matu beharreko parametro kopuru handia dela eta. Bi bide ezberdin jarraitu dira ikerketa
jorratzeko: bata praktikan oinarritua eta bestea, aldiz, teorian.

Atal praktikoan denbora errealeko prototipaia plataforma bat diseinatu eta sortu da.
Honetaz gain, 2 × 2 MIMO sistema oso bat ere gauzatu da, benetako inplementazio baten
eragina ikertzeko balio izan duelarik. Dekodi�katzaile esferikoa eta ZF (zero-forcing) de-
tektoreak gauzatu dira, sistema erreal baten ondorioak (sinkronizazioa, estimazioa, zen-
bakapena, e.a) kontutan hartu ahal izateko.

Bestalde, simulazioetan oinarritutako ikerketa teorikoa ere jorratu da, kanalaren esti-
mazioak MIMO hartzaile garrantzitsuenetan daukan eragina aztertuz. MIMO sistema mota
nagusienak hartu dira kontuan: banda estukoa, OFDM (orthogonal frequency-divison mul-
tiplexing) eta SCFDE (single carrier with frequency-domain equalization). Era berean,
kanalaren estimazioaren erroreak Turbo-MIMO direlako sistema iteratiboetan daukan era-
gina ere aztertu da, EXIT (extrinsic information transfer) funtzio analitikoetan oinarritutako
ebaluaketa tresna proposatu delarik.

Azkenik, aurreko ataletatik ateratako ondorioetan oinarrituz kanalaren estimazio itera-
tiborako arkitektura paraleloa proposatu da. Proposaturiko arkitektura hau erraz gauza
daiteke FPGA (�eld-programmable gate array) gailu programagarri batean eta beste esti-
mazio tekniken hainbat akats saihes ditzake konplexutasuna neurriz kanpo gehitu gabe.
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Capítulo 1

Introducción

1.1 Introducción y Estado del Arte
Gracias a la evolución de la electrónica y de la teoría de la señal, los sistemas de comunicación
inalámbricos se han vuelto omnipresentes, destacándose servicios como la telefonía móvil, la
difusión de televisión y radio, las redes metropolitanas WMAN (wireless metropolitan area
network) o las redes inalámbricas locales WLAN (wireless local area network). A modo de
ejemplo, las tasas de bits de estas últimas han pasado en 8 años de los 11 megabits por
segundo (Mbps) de la norma IEEE 802.11b a los cerca de 300 Mbps propuestos para el
nuevo estándar IEEE 802.11n [EWC05, IEEE07].

Las necesidades del mercado, tanto de tasa de bits como de �abilidad, así como las
limitaciones de ancho de banda, han obligado a la comunidad cientí�ca a exprimir la teoría
de la información y comunicación llevando hasta sus límites aspectos como la modulación,
la codi�cación y, en especial, la materialización hardware (en chip) de los algoritmos de
procesado de la señal [Rupp03, Burg06]. La mayoría de las aplicaciones de las comunicaciones
inalámbricas exigen un tamaño reducido y un consumo mínimo de potencia, junto a elevadas
prestaciones.

Son varios los caminos adoptados para maximizar las tasas de bits de los sistemas de
comunicaciones inalámbricas: aumento del tamaño de las constelaciones, códigos más e�-
cientes, optimización de los algoritmos de recepción, etc. Sin embargo, hay una técnica que
destaca por encima del resto: la utilización de varias antenas, tanto en transmisión como en
recepción. Esta técnica, denominada MIMO (multiple input-multiple output) permite mul-
tiplicar el límite de la capacidad de canal establecida por Shannon [Foschini98, Telatar99].
Debido a este incremento de capacidad, esta técnica ha sido incluida prácticamente en to-
dos los nuevos estándares de comunicaciones inalámbricas, incluyendo el borrador del IEEE
802.11n para redes WLAN [EWC05, IEEE07].

La detección de una señal MIMO exige el conocimiento de los parámetros que de-
�nen el canal multiantena, los cuales se multiplican debido al número de antenas de trans-
misión y recepción. La estimación de estos parámetros de canal resulta una tarea com-
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pleja y primordial para el rendimiento y la e�ciencia espectral del sistema de comunicación
[Hassibi00, Biguesh06].

Esta tesis doctoral analiza el efecto de la estimación de canal sobre el rendimiento de
los detectores MIMO básicos, centrándose en su estudio mediante simulación y a través
de una implementación hardware de tiempo real. Como se demostrará más adelante, esta
implementación ha permitido cotejar los resultados de simulación con datos reales obtenidos
en la plataforma hardware, así como conocer en detalle los aspectos relacionados con la
materialización de los algoritmos.

Los siguientes apartados resumen de forma introductoria los tres ejes sobre los que se
ha desarrollado esta tesis: los sistemas MIMO, la estimación de canal y la implementación
hardware de algoritmos de tiempo real.

1.1.1 Sistemas Inalámbricos MIMO
Los sistemas MIMO representan uno de los mayores avances en el campo de las comunica-
ciones inalámbricas [Foschini98, Telatar99]. La principal característica de estos sistemas es
la utilización de varias antenas tanto en recepción como en transmisión, donde se transmiten
varios símbolos independientes de forma simultánea, más allá del concepto tradicional del
conformado de haz y las antenas inteligentes. Los símbolos transmitidos por las diferentes
antenas pueden corresponder a información independiente (multiplexado espacial) o a una
codi�cación espacio-temporal de los símbolos de información. En función de la estrategia
empleada, la utilización de múltiples antenas puede proporcionar un incremento en la tasa de
bits, mayor �abilidad de la comunicación o una combinación de ambas ventajas [Paulraj03].

La utilización de múltiples antenas permite multiplicar la capacidad de canal establecida
por Shannon para canales de antena única [Foschini98, Telatar99], gracias al concepto de
diversidad espacial, el cual consiste en asumir independencia o decorrelación entre los sub-
canales que se forman entre las diferentes antenas de transmisión y recepción. Sin embargo,
la inclusión de múltiples antenas no es ninguna panacea: por un lado, se multiplica el número
de cadenas de transmisión y recepción requeridas, incluyendo moduladores, conversores de
frecuencia intermedia a radiofrecuencia, antenas, etc. Por otro lado, el coste computacional
se dispara, sobre todo en recepción, debido al aumento de la complejidad de los algoritmos
de sincronización, estimación de canal y, especialmente, la detección multiantena [Burg06].
Por lo tanto, la implementación de los algoritmos asociados a MIMO es vital de cara al
desarrollo de sistemas realistas cuyo objetivo consiste en un equilibrio entre el rendimiento
y el coste.
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1.1.2 Estimación de Canal
La recepción y detección de una señal MIMO requiere el conocimiento del canal de comu-
nicación, el cual adquiere una estructura matricial debido a la multiplicidad de antenas en
transmisión y en recepción. A modo de ejemplo, si se supone un canal con una respuesta im-
pulsional de 11 instantes de muestreo o taps, el número de parámetros complejos (amplitud
y fase) a estimar puede pasar de 11 (esquema 1 × 1) a 176 (con�guración 4 × 4). Este in-
cremento del número de parámetros implica el rediseño de las secuencias de aprendizaje, así
como una optimización de los algoritmos de estimación de canal [Hassibi00, Li03, Lang04].

La estimación de canal MIMO puede realizarse siguiendo tres estrategias diferentes:

1. Estimación supervisada: El transmisor transmite una secuencia de símbolos cono-
cida por el receptor, permitiendo que este último pueda identi�car el canal de una
forma sencilla [Hassibi00, Biguesh06].

2. Técnicas ciegas: Los parámetros de canal son calculados (hasta cierto grado de
ambigüedad) empleando únicamente los símbolos de información [Tong94, Tong98,
Bölckskei02, Larsson03]. Por lo tanto, no se transmite ningún preámbulo que pueda
facilitar la tarea del receptor.

3. Estimación semi-ciega: Se transmite un preámbulo que permite obtener una esti-
mación inicial que es posteriormente mejorada empleando los símbolos de información
[Muquet99, Míguez02, Wang03, Jagannatham06]. Es decir, estos métodos son una
combinación de las técnicas supervisadas y ciegas.

Diversos estudios teóricos han evaluado la medida en que la información de canal puede
limitar la capacidad teórica de un sistema MIMO [Hassibi00, Yong04, Cosovic07], así como
las propiedades óptimas de los algoritmos de estimación para las con�guraciones más habi-
tuales [Marzetta99a, Barhumi03, Biguesh06]. Sin embargo, resulta prácticamente imposible
relacionar estos resultados teóricos (capacidades máximas, límites superiores, etc.) con el
rendimiento de sistemas reales.

Se han publicado numerosos trabajos que han analizado el efecto de la estimación de
canal sobre las tasas de errores de bit (BER, bit error rate) de varios tipos de sistemas:
multiplexación espacial con DFE (decission feedback equalizer) [Zhu03b], sistemas iterativos
Turbo-MIMO [Mysore05], sistemas MIMO multiportadora en canales espacialmente correla-
dos [Chung06], sistemas de precodi�cación MIMO [Edward08], etc. Estos trabajos se centran
en el análisis del efecto de un conjunto de estimadores de canal sobre un sistema MIMO en
concreto. Sin embargo, no se han publicado resultados que muestren el rendimiento com-
parativo de los detectores MIMO empleando diferentes estimadores de canal, el cual es el
objetivo principal de esta tesis doctoral. Asimismo, no se ha presentado ninguna metodología
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sencilla que permita escoger la mejor combinación estimador-detector para un determinado
sistema.

1.1.3 Demostradores y Sistemas de Prototipado MIMO
Uno de los objetivos principales de esta tesis ha sido el análisis del efecto de la implementación
de algoritmos, especialmente la estimación de canal, sobre el rendimiento de un sistema
MIMO completo. A tal efecto se ha diseñado y desarrollado un sistema MIMO 2 × 2 de
tiempo real para el cual se han tenido que implementar todos los algoritmos de transmisión
y recepción.

La implementación de algoritmos de tiempo real de procesado de señal se desarrolla ha-
bitualmente sobre dos clases de dispositivos: los dispositivos lógicos programables FPGA
(�eld-programmable gate array) y los microprocesadores con prestaciones de tratamiento de
la señal DSP (digital signal processor) [Rupp03, Kaiser04]. Generalmente, un sistema com-
plejo consta de uno o varios de estos elementos. Los dispositivos FPGA, cuya principal
virtud es el paralelismo de los recursos y la velocidad de operación que pueden alcanzar, sue-
len emplearse para la implementación de algoritmos no secuenciales y con cierta estructura,
tales como �ltros digitales, moduladores, ecualizadores, etc. Los microprocesadores DSP,
en cambio, gracias a sus capacidades de procesado matemático y a su carácter secuencial,
se destinan normalmente a operaciones complejas y de frecuencias de repetición reducidas,
tales como cálculos de transformadas, inversas de matrices, etc.

Debido a la velocidad de procesado requerida, se han empleado dispositivos FPGA para
la implementación de todos los algoritmos que conforman el sistema MIMO descrito en esta
memoria. Dada la complejidad del diseño y la di�cultad que conlleva la validación de los
sistemas de comunicaciones, la implementación hardware de estos sistemas suele realizarse
empleando herramientas de alto nivel, que combinan las prestaciones de lenguajes como
Matlab1 o C con la capacidad de de�nición de hardware de lenguajes de diseño tales como
VHDL o Verilog, destacándose las dos siguientes:

• System Generator for DSP de Xilinx [Xilinx08]: Permite generar código VHDL
sintetizable desde un entorno basado en Matlab/Simulink, ampliamente extendido en
el campo del procesado de la señal. Existen muchas otras herramientas orientadas
a las FPGA desarrolladas por otras compañías, tales como Altera o Sinplify, cuyas
prestaciones son similares [Sinplicity].

• System C [SystemC]: Estándar de reciente creación basado en una versión sintenti-
zable del lenguaje C++, el cual permite �exibilizar el diseño de algoritmos hardware así
como facilitar su proceso de validación. Existen otras variantes, no tan estandarizadas

1Matlab y Simulink son marcas registradas de The Mathworks, Inc. [Mathworks].
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pero probablemente más so�sticadas, basadas en lenguajes derivados de C/C++, entre
los que destaca Handel C.

La herramienta System Generator for DSP ha sido considerada la mejor opción debido
a su interfaz basada en Matlab y el amplio mercado abarcado por la casa Xilinx, tanto en el
campo industrial como académico.

Existen numerosas plataformas de prototipado para comunicaciones inalámbricas, so-
bre todo en el ámbito universitario, que combinan varios de los citados dispositivos con
entradas y salidas analógicas, posibilitando el desarrollo de aplicaciones complejas. Se
han presentado numerosas plataformas con transmisores y receptores MIMO, tanto com-
pletamente integrados en hardware de tiempo real [Adjoudani03, Zelst04, Mehlführer05]
como controlados o�-line (transmisión de tiempo real y procesado en PC) desde Matlab
[Kaiser04, Stege04, Caban06]. Algunas de estas plataformas MIMO han sido comercial-
izadas por varias empresas, entre las que destaca la casa Signalion [Signalion].

1.2 Motivación
Tal y como se ha comentado anteriormente, la estimación de canal es un proceso especial-
mente complejo y costoso en los sistemas MIMO, sobre todo en términos de implementación
y e�ciencia de ancho de banda. El rendimiento de los algoritmos de estimación de canal
suele compararse midiendo el error cuadrático medio normalizado (NMSE, normalized mean
squared error) o, en determinados casos, evaluando las tasas BER de un sistema concreto
con diferentes estimadores de canal.

Diversos estudios teóricos han determinado la medida en que la información de canal
puede limitar la capacidad de un sistema MIMO [Marzetta99a, Hassibi00, Yong04, Cosovic07].
Sin embargo, no existen estudios teóricos o prácticos que evalúen la importancia de la es-
timación de canal dentro del diseño de un receptor MIMO completo. Es decir, no se han
presentado resultados o análisis que comparen las tasas BER de varios detectores MIMO
provistos de algoritmos diferentes de estimación de canal.

Esta tesis doctoral ha evaluado el efecto de la estimación de canal sobre el rendimiento
comparativo de las técnicas básicas de detección MIMO, estableciendo la medida en que
puede limitar dicha estimación el rendimiento de un receptor, así como evaluando la posibi-
lidad de reducir la complejidad de un detector MIMO mejorando la calidad de la estimación
de canal.

1.3 Objetivos y Metodología
Este proyecto de tesis ha analizado el efecto de la estimación de canal sobre los detectores
MIMO siguiendo dos vertientes, una teórica y otra práctica. La primera ha tratado de

5



Capítulo 1. Introducción

evaluar el efecto de la estimación de canal sobre las tasas BER de las diferentes técnicas
de detección MIMO. La segunda, en cambio, ha desarrollado un sistema MIMO de tiempo
real con el objetivo de evaluar su complejidad y su rendimiento en un entorno real donde
se aprecian efectos de la implementación tales como fallos de sincronización, errores del
estimador de canal, cuanti�caciones, etc.

1.3.1 Objetivos del Estudio Teórico
El principal objetivo de esta tesis doctoral ha sido conocer el grado en que afecta la calidad
de la estimación de canal al rendimiento comparativo de los esquemas de detección MIMO
en sistemas de multiplexación espacial. Se han evaluado varios casos diferentes: con y
sin diversidad en recepción, empleando transmisión de banda estrecha y de banda ancha,
diferentes órdenes de modulación y ratios de codi�cación, etc.

Se ha planteado como objetivo el diseño de una metodología que permita comparar las
curvas de tasas BER de los detectores MIMO empleando diferentes calidades de estimación
de canal. En ocasiones, y en función del modelo de error del estimador, se han comparado
los resultados de diferentes estimadores empleando el NMSE, pero se ha establecido la tasa
BER como parámetro de�nitivo.

El diagrama de la �gura 1.1 muestra los diferentes parámetros que intervienen en los
procesos de detección y estimación de canal MIMO, así como las principales alternativas que
se han evaluado.

ESTIMACIÓN
DE CANAL 

MIMO

Estimada
del canal

Método de
estimación

Método de
detección

IGUALACIÓN Y
DETECCIÓN

MIMO

NMSE BER

Parámetros sistema: Número de antenas, modulación, codificación, etc.

Secuencia de
aprendizaje

Figura 1.1: Bloques principales y parámetros del sistema evaluado.

El objetivo �nal ha sido el análisis de la importancia del proceso de estimación de canal
en el diseño de un receptor MIMO, de tal forma que se pueda determinar la combinación
idónea de métodos de estimación y detección en función de la limitación de recursos y las
exigencias de rendimiento. Se han considerado tres sistemas MIMO de referencia: banda
estrecha, banda ancha (OFDM y SCFDE) y un sistema iterativo Turbo-MIMO, el cual puede
ser combinado con cualquiera de los anteriores para mejorar su rendimiento.
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1.3.2 Objetivos de la Implementación Práctica
La parte más práctica de este trabajo ha consistido en la implementación de un sistema
MIMO de tiempo real y sus algoritmos más importantes, incluida la estimación de canal, en
una plataforma de prototipado rápido diseñada y desarrollada a tal efecto.

El principal objetivo ha consistido en la evaluación del coste de implementación de un
sistema MIMO básico, así como en el análisis del impacto de la estimación de canal y otros
algoritmos sobre el rendimiento de un receptor real. Los parámetros cuya evaluación se ha
planteado son los siguientes:

1. Recursos necesarios para una implementación realista de un sistema MIMO 2 × 2

completo de tiempo real.

2. Complejidad real del algoritmo de estimación de canal (cantidad de bloques o celdas
de la FPGA, número de multiplicadores, etc.)

3. Degradación sufrida por la tasa BER debido a la estimación de canal y a las carac-
terísticas de la implementación real, tales como la resolución en la cuanti�cación, im-
plementaciones de reducida complejidad, etc.

4. Latencias introducidas por los diferentes algoritmos.

1.3.3 Metodología
Este apartado detalla la forma en que se ha desarrollado la tesis doctoral y los pasos que se
han seguido para la consecución de los objetivos planteados. Al igual que la de�nición de
objetivos, la descripción de la metodología se dividirá en las partes relativas a la teoría y a
la práctica, cuyo desarrollo se ha efectuado en paralelo.

1.3.3.1 Teoría y Simulaciones

A continuación se enumeran los pasos seguidos durante el desarrollo de la tesis para el análisis
teórico y de simulación, así como los principales objetivos parciales y condiciones que dichos
pasos han tenido como hitos.

1. De�nición de las características de los sistemas que se han empleado para las com-
paraciones entre métodos. Se ha establecido un número determinado de modelos cuya
comparación ha permitido re�ejar el efecto de parámetros como el número de antenas,
la longitud de las secuencias de aprendizaje, la modulación, el grado de diversidad, etc.

2. Establecimiento de un criterio de comparación del rendimiento de los detectores MIMO
para varios grados de calidad de estimación de canal.
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3. Implementación Matlab de los algoritmos de estimación de canal y su simulación para
los diferentes modelos, realizando los siguientes pasos por cada algoritmo nuevo:

(a) Corroboración de los resultados NMSE y BER obtenidos con los teóricos, en caso
de haberlos, indicados en la bibliografía.

(b) Comparación de los resultados BER con el caso del conocimiento exacto del canal.

(c) Evaluación de las diferencias de resultados, en caso de haberlas, entre los dife-
rentes sistemas con el objetivo de identi�car los parámetros más in�uyentes de
los modelos.

1.3.3.2 Implementación Práctica

De cara a la implementación práctica y su análisis, las pautas seguidas han sido las siguientes:

1. Selección de las herramientas que se han empleado para la implementación de los
algoritmos del sistema MIMO. Se ha considerado primordial que dichas herramientas
permitan simular los bloques implementados en hardware junto al código Matlab del
sistema completo.

2. Validación de las tarjetas de prototipado rápido Heron de la Universidad de Mondragón
y asimilación de todas sus herramientas de programación, depuración y control desde
PC.

3. Diseño de una herramienta de cosimulación hardware/software para un sistema com-
pleto de comunicaciones MIMO.

4. Implementación de los algoritmos más sencillos: mínimos cuadrados (LS, least-squares)
para la estimación de canal y la anulación o inversa (ZF, zero-forcing) para la detección
MIMO. Esta primera implementación ha sido utilizada para validar la plataforma de
desarrollo y la metodología de diseño de algoritmos de tiempo real.

5. Integración del decodi�cador óptimo (ML, maximum likelihood), implementado como
un decodi�cador esférico (SD, sphere decoder), desarrollado en colaboración con la
Universidad de Edimburgo. Se han evaluado los efectos de la implementación real y la
estimación de canal sobre el rendimiento del decodi�cador esférico.

1.4 Contribuciones de la Tesis
Esta sección describe las contribuciones principales de cada uno de los capítulos que con-
forman la tesis, indicando dónde se proponen técnicas y resultados originales, así como su
comparación con otras referencias bibliográ�cas de interés.
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• Capítulo 2: Se ha realizado una comparación del rendimiento de los esquemas MIMO-
OFDM y MIMO-SCFDE en sistemas WLAN basados en una extensión multiantena
del estándar IEEE 802.11a, publicado en [Mendicute04a, Mendicute04b]. Estudios
similares han sido presentados en [Coon03], aunque con detectores y parámetros muy
diferentes.

• Capítulo 3: Se ha diseñado y materializado un demostrador MIMO 2 × 2 16-QAM.
Se han implementado todos los algoritmos de tiempo real necesarios para su fun-
cionamiento en un canal de banda estrecha. Como contribuciones especiales, destacan
el diseño de un sistema de cosimulación y síntesis presentado en [Mendicute05], el de-
sarrollo de un sistema �Hardware in the Loop� a medida para la plataforma MIMO
de la Universidad de Mondragón [Mendicute06b], y la implementación de un sistema
completo MIMO basado en el decodi�cador esférico, junto a la Universidad de Edim-
burgo, el cual ha permitido evaluar su complejidad de implementación y su rendimiento
en un entorno realista con estimación de canal, sincronización, cuanti�caciones, etc.
[Mendicute06a]. Esta implementación ha sido la primera en integrar un decodi�cador
esférico en un sistema MIMO completo.

• Capítulo 4: Dentro de la evaluación de métodos de estimación de canal para sis-
temas MIMO, se ha propuesto una técnica de predicción de tasas BER para receptores
Turbo-MIMO basados en detectores MMSE-PIC con error de estimación de canal. Se
ha propuesto una herramienta simple que permite incluir dicho error y sus efectos en
las técnicas de evaluación BER basadas en tablas EXIT analíticas [Mendicute07], am-
pliando las técnicas propuestas en [Hermosilla05] para el caso de conocimiento perfecto
del canal.

• Capítulo 5: Se han mostrado resultados que permiten evaluar la importancia de la
estimación de canal y la implementación hardware sobre sistemas MIMO completos
basados en el receptor más simple (ZF) y la implementación más común (SD) del
receptor óptimo ML [Mendicute06a]. Asimismo, se han presentado resultados de simu-
lación que analizan el efecto de los errores de estimación de canal sobre los diferentes
receptores MIMO, tanto para banda estrecha como para OFDM y SCFDE.

Finalmente, se ha propuesto una arquitectura paralela, implementable en dispositivos
FPGA, de un estimador de canal semi-iterativo basado en realimentación de decisión.
Esta estructura de estimación de canal reduce la latencia del sistema y aumenta su
rendimiento con un coste computacional moderado. A la fecha de redacción de este
documento, los resultados de este capítulo no han sido aún publicados, aunque están
en preparación tal y como se indica en el listado del apéndice A.

9



Capítulo 1. Introducción

1.5 Estructura de la Tesis
La estructura de esta memoria de tesis es la siguiente: en el capítulo 2 se describen las
principales características de los sistemas MIMO, así como sus extensiones de banda ancha
basados en OFDM y SCFDE, realizando una comparación de rendimiento de estos últi-
mos en sistemas MIMO WLAN. Asimismo, se detalla la estructura de un sistema iterativo
MIMO basado en un receptor MMSE-PIC, junto a herramientas analíticas de evaluación de
convergencia y estimación de tasas BER basadas en funciones EXIT analíticas.

El capítulo 3 se se centra en el desarrollo de la plataforma de prototipado rápido y la
implementación MIMO 2x2 de tiempo real. Como aspecto importante, este capítulo incluye
la integración de un decodi�cador esférico dentro del sistema MIMO completo, realizada en
colaboración con la Universidad de Edimburgo.

El capítulo 4 describe las principales técnicas de estimación de canal para los sistemas
escogidos, centrándose en técnicas aplicables en la realidad, tales como los métodos supervisa-
dos o esquemas iterativos sencillos. Se muestran los principales aspectos de la estimación de
canal para sistemas MIMO, MIMO-OFDM, MIMO-SCFDE y Turbo-MIMO. En la parte �nal
de este capítulo se propone una extensión de las herramientas de evaluación de rendimiento
basadas en funciones EXIT a sistemas iterativos MIMO con estimación de canal.

El capítulo 5 describe los análisis efectuados para evaluar el impacto de la calidad de la
estimación de canal sobre las técnicas MIMO fundamentales, enfocándolo desde dos puntos
de vista. Por un lado, se analiza su efecto empleando la plataforma MIMO de tiempo real.
Por otro lado, se muestra la evaluación del efecto de la estimación de canal sobre sistemas
más complejos, la cual se ha llevado a cabo mediante simulaciones de Matlab. Este último
capítulo propone en su parte �nal una arquitectura paralela para la estimación de canal
MIMO, mostrando su e�cacia en sistemas de banda estrecha, OFDM y SCFDE.

Por último, el capítulo 6 resume el trabajo realizado y las principales conclusiones
obtenidas, así como las líneas futuras que pueden servir para completar y ampliar el trabajo
presentado en esta memoria de tesis.
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Chapter 2

MIMO Systems in Wireless
Communications

2.1 Introduction
This chapter shows an introductory analysis and the simulation-based performance evalua-
tion of several fundamental multiple input-multiple output (MIMO) wireless communication
systems. First, the main model and capacity bounds are described for a generic narrowband
(frequency-�at fading) MIMO wireless system. The performance and complexity issues of
di�erent space-time coding (STC) approaches and detection techniques are summarized,
focusing on the main MIMO detection algorithms for spatial multiplexing (SM) schemes.
Comparative bit error rate (BER) performance results are provided for coded and uncoded
SM systems to illustrate the behavior of the MIMO detection algorithms.

If the actual capacity gains of multi-antenna systems are to be reached, these fundamen-
tal MIMO schemes must be combined with wideband transmission techniques. Sections 2.3
and 2.4 analyze the extension of basic SM techniques to frequency-selective fading chan-
nels, based on orthogonal frequency-division multiplexing (OFDM) and single carrier with
frequency-domain equalization (SCFDE), respectively. The BER performance curves of these
techniques are compared in a multi-antenna wireless local area network (WLAN) scenario
based on an adaptation of the IEEE 802.11a standard.

Finally, the application of MIMO techniques to iterative (Turbo) receivers is analyzed
in Section 2.5, where the basic structure is shown for a linear MIMO receiver with parallel
interference cancellation (PIC) processing. The convergence and the BER performance of
the system are analyzed by means of standard Monte Carlo (MC) simulations and extrinsic
information transfer (EXIT) based semi-analytical tools.
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2.2 Narrowband MIMO Wireless Systems
Most wideband MIMO communication systems, such as those based on OFDM or code
division multiple access (CDMA), can be reduced to multiple parallel narrowband schemes.
Hence, the basic analysis of STC coding and MIMO detection algorithms can be carried out
for a simple canonical system model, based on single-carrier transmission in a frequency-�at
fading channel environment. As will be shown later in this chapter, it is straightforward
to extend these fundamental MIMO techniques to wideband modulation schemes, such as
OFDM or SCFDE.

2.2.1 System Model
The considered theoretical system model has, as depicted in Figure 2.1, M transmit and N

receive antennas. An input sequence of Lb information bits b(l) is space-time coded, providing
K M -vectors of transmitted symbols s(k), which belong to a generic quadrature amplitude
modulation (QAM) constellation of B points. Scalars l and k denote the bit and symbol
period indexes, respectively. Symbols s(k) are modulated and transmitted simultaneously
by M transmit antennas through the M × N wireless channel, being received at the N

reception antennas, where they are sampled and demodulated simultaneously. The N -vector
of received symbols r(k) is then processed by a MIMO detection block, which outputs the
estimates of the transmitted bits, denoted as b̂(l).

Input

bits MxN

Wireless

MIMO

Channel

s1(k)
Tx 1

Detected

bitsRx 1

sM(k)

r1(k)

rN(k)

s(k) r(k) MIMO

Detection

Mapping

+

Space-

Time

Coding
RX NTX M

b(l) b(l)^

Figure 2.1: Basic diagram of a wireless MIMO system.

Assuming symbol-synchronous receiver sampling and ideal timing, the system of Figure
2.1 can be represented using matrix notation as

r(k) =

√
Es

M
H(k)s(k) + n(k), (2.1)

where s(k) = [s1(k), s2(k), ..., sM(k)]T denotes the vector of transmitted symbols with nor-
malized average energy E[|si|2] = 1, Es is the total transmitted symbol energy, which is
independent of the number of transmit antennas, n(k) = [n1(k), n2(k), ..., nN(k)]T is the
vector of independent and identically distributed (i.i.d.) complex additive white Gaussian
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noise (AWGN) samples with variance N0, and r(k) = [r1(k), r2(k), ..., rN(k)]T is the vector
of received symbols. The N × M matrix H(k) represents the M × N MIMO channel at
symbol index k, being de�ned as

H(k) =




h11(k) h12(k) ... h1M(k)

h21(k) h22(k) ... h2M(k)

: : : :

hN1(k) hN2(k) ... hNM(k)




, (2.2)

where hnm represents the complex channel gain between transmit antenna m and receive
antenna n. If a quasi-static frame-based transmission scheme is assumed, where the channel
H = H(k) is assumed constant over a whole burst, vectors s(k), r(k) and n(k) can be stuck
into matrices, leading to the following system model:

R =

√
Es

M
HS + N, (2.3)

where R is the N ×K matrix of received symbols, S is the M ×K transmitted symbol
matrix, and N contains the N ×K noise samples.

2.2.2 Capacity of MIMO Channels
The channel capacity, de�ned as the maximum achievable error-free data rate, was �rst
derived for AWGN single input-single output (SISO) channels by Claude Shannon in 1948
[Shannon48]. For such a system, the channel capacity is given by:

CSISO = log2 (1 + ρ) bps/Hz, (2.4)

where ρ = Es/N0 denotes the signal to noise ratio (SNR) of the wireless system. The
derivation of MIMO channel capacity bounds has been and still is a very active research
area. Many capacity and performance limits have been published for di�erent STC systems
and channel models [Paulraj03]. The results of the two most signi�cative approaches will be
summarized in the following sections, based on the deterministic and the random channel
assumptions.

2.2.2.1 Deterministic MIMO Channel

The capacity of the MIMO channel is de�ned by the following equation [Foschini96, Telatar99]:

C = max
f(s)

I(s; r), (2.5)
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where f(s) is the probability density function (pdf) of s and I(s; r) is the mutual information
between s and r, which can be expressed as

I(s; r) = H(r)−H(r|s), (2.6)

where H(r) is the di�erential entropy of r and H(r|s) is the conditional di�erential entropy of
r given that s is known. Since the vectors s and n are independent, Equation (2.6) simpli�es
to

I(s; r) = H(r)−H(n). (2.7)

Hence, maximizing I(s; r) reduces to maximizing H(r), which occurs when s is a zero mean
circularly symmetric complex Gaussian (ZMCSCG) vector whose distribution is completely
characterized by its covariance matrix Rss. The di�erential entropies H(r) and H(n) are
given as [Paulraj03]

H(r) = log2 det (πeRrr) = log2 det

(
πe

(
N0IN +

Es

M
HRssH

H

))
bps/Hz, (2.8)

and
H(n) = log2 det (πeN0IN) bps/Hz. (2.9)

Therefore, the capacity becomes [Telatar99]

C = max
Tr(Rss)=M

log2 det
(
IN +

ρ

M
HRssH

H
)

bps/Hz, (2.10)

where Tr(Rss) = M limits the transmitted symbol energy. The capacity C in (2.10) is often
referred to as the error-free spectral e�ciency or the data rate per unit bandwidth that can
be sustained reliably over the MIMO link.

If no channel knowledge is available at the transmitter, the transmitted signals are inde-
pendent and equi-powered, i.e., Rss = IM , and the capacity is given as

C = log2 det
(
IN +

ρ

M
HHH

)
bps/Hz. (2.11)

If the eigendecomposition of HHH is carried out, the capacity in (2.11) can be expressed
as

C =
rc∑

i=1

log2

(
1 +

ρ

M
λi

)
, (2.12)

where rc is the rank of the channel and λi (i = 1, 2, ..., rc) are the positive eigenvalues of
HHH . Equation (2.12) expresses the capacity of the MIMO channel as the sum of the
capacities of rc SISO channels, each having a gain λi and a transmit energy of Es/M .

It has been shown that orthogonal channel matrices (HHH = αIM) maximize the capac-
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ity [Paulraj03]. Furthermore, if the elements of H satisfy ‖Hi,j‖2 = 1 and a full-rank MIMO
channel with M = N = rc is considered, the capacity of the MIMO channel becomes:

C = M log2 (1 + ρ). (2.13)

The MIMO capacity for this particularly illustrative case is therefore M times the scalar
SISO channel capacity.

All the aforementioned capacity values can be improved if the channel or some of its
statistics are known at the transmitter side [Marzetta99b, Paulraj03], which is not the case
for the research described in this document.

2.2.2.2 Random MIMO Channel

If a random channel matrix H is assumed, each realization of the fading channel has a max-
imum information rate de�ned by (2.11) and (2.13). Two capacity values can be calculated:
the ergodic and the outage channel capacity. The �rst assumes an independent channel
realization for each channel use and represents the ensemble average of information rate over
the distribution of elements of H. The ergodic capacity can therefore be written as

C = E
[
log2 det

(
IN +

ρ

M
HRssH

H
)]

bps/Hz. (2.14)

On the other hand, the outage capacity quanti�es the level of capacity that can be
guaranteed with a certain level of reliability [Paulraj03]. The g%-outage capacity Cout,g is
de�ned as the information rate that is guaranteed for (100− g)% of the channel realizations,
i.e., P (C ≤ Cout,g) = g% [Biglieri98]. Figure 2.2 shows the 10%-outage capacity values
for random MIMO wireless channels with M = N and no channel state information at
the transmitter side. As it can be seen, the capacity values increase considerably with the
number of transmit antennas.

2.2.3 Space-Time Coding Techniques
STC techniques de�ne how the information bits b(l) are coded into the transmitted symbol
vector matrix S. Assume that the Lc = Lb data bits are �rst mapped onto a QAM constella-
tion of B points leading to the data symbols d(n), where n ranges from 1 to Nc = Lc/q and
q = log2 B represents the modulation order. These Nc symbols are then processed by a space-
time coder that adds additional MK−Nc parity symbols, resulting in the M×K transmitted
symbol matrix S. Hence, the signalling data rate of the channel is Lb/K = qNc/K = qrs,
where rs = Nc/K is the spatial code rate.

If a common forward error correcting (FEC) code of rate rt, such as a convolutional code,
is used before the symbol mapping, i.e., Lc = Lb/rt and Nc = Lb/ (qrt), the �nal signalling
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Figure 2.2: 10%-outage capacity of random MIMO channels with M = N .

rate can be expressed as:
Lb

K
=

Lcrt

K
=

qNcrt

K
= qrsrt. (2.15)

Depending on the choice of the STC scheme, the spatial rate rs varies from 0 (in�nite coding
diversity ) to M (full multiplexing). For certain classes of codes, such as space-time trellis
codes (STTC) or bit-interleaved coded modulation (BICM), the functions of the symbol
mapper and the space-time (ST) coder can be combined into a single block.

The following subsections show the structures and bene�ts of the most common STC
techniques. The channel is assumed unknown to the transmitter and perfectly known at the
receiver side for the rest of this chapter.

2.2.3.1 Spatial Multiplexing

Figure 2.3 shows the basic structure of an uncoded SM system, also known as vertical Bell-
Labs layered space-time (V-BLAST). As it is shown, the information bits are mapped onto
a QAM constellation and divided into M substreams which are transmitted independently,
leading to a spatial rate of rs = M . This approach results in a signalling rate of qM bits per
transmission symbol period.

Three main schemes can be distinguished that combine temporal FEC-based coding and
SM systems: horizontal encoding (HE), vertical encoding (VE) and diagonal encoding (DE).

• Horizontal Encoding: In HE the bit stream is �rst demultiplexed into M separate
streams, as is shown in Figure 2.4a. Each stream undergoes independent temporal
coding, interleaving, symbol mapping and modulation, and is transmitted from one
antenna.
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Figure 2.3: Diagram of an uncoded N ×M spatial multiplexing MIMO system.
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Figure 2.4: Diagrams of horizontally (a) and vertically (b) encoded spatial multiplexing
transmitters.

• Vertical Encoding: In VE the bit stream �rst undergoes temporal coding, interleav-
ing and symbol mapping, after which it is demultiplexed into M transmission streams,
as is depicted in Figure 2.4b. This encoding scheme achieves better performance re-
sults than the previous HE approach, since each information stream is spread across all
the antennas. However, it can be very complex since joint decoding of the substreams
must be peformed at the receiver.

• Diagonal Encoding: In DE, which was introduced as diagonal Bell-Labs layered
space-time (D-BLAST) in [Foschini96], the data stream �rst undergoes HE encoding,
after which each symbol stream is split into blocks. These blocks are rotated in a
round-robin fashion so that the bit stream-antenna association is periodically shifted,
ensuring that the codeword from any stream is sent over all the antennas.

2.2.3.2 Space-Time Block Codes

While SM multiplies the transmission rate by the number of transmit antennas, space-time
block coding (STBC) provides higher diversity by coding the information symbols in the
spatial domain.

Alamouti Scheme

A pioneering and popular STBC scheme is the Alamouti code, which was originally de-
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signed for systems with two transmit and one receive antennas [Alamouti98]. This technique
divides the transmitted symbol stream in pairs s = [s1, s2] which are mapped into a 2 × 2

matrix SA which is de�ned as

SA =

(
s1 −s∗2
s2 s∗1

)
, (2.16)

where the �rst and second column represent the symbols transmitted at the �rst and second
symbol periods, respectively. Assuming that the channel remains constant over these periods
and the fading is frequency-�at, the signal at the reception antenna for symbol time indexes
1 and 2 is given by:

r1 =

√
Es

2
h1s1 +

√
Es

2
h2s2 + n1 (2.17)

r2 = −
√

Es

2
h1s

∗
2 +

√
Es

2
h2s

∗
1 + n2 (2.18)

where h1 and h2 are the complex channel gains from transmit antennas 1 and 2 to the receive
antenna. If the received signals are rearranged and stuck into a vector y as follows

y =

[
r1

r∗2

]
, (2.19)

the system can be expressed as

y =

√
Es

2

[
h1 h2

h∗2 −h∗1

][
s1

s2

]
+

[
n1

n∗2

]
=

√
Es

2
Heffs + n, (2.20)

where s = [s1 s2]
T , n = [n1 n∗2]

T and the e�ective channel Heff is orthogonal, so that
HH

effHeff = ‖h‖2
F I2. If z = HH

effy, then

z =

√
Es

2
‖h‖2

F I2s + ñ, (2.21)

where ñ is a vector of zero-mean noise samples with covariance E{ññH} = ‖h‖2
F N0I2. Hence,

(2.21) can be simpli�ed as

zi =

√
Es

2
‖h‖2

F si + ñi, i = 1, 2, (2.22)

which can be considered as two individual detection problems. The received SNR value η

corresponding to each symbol is given by

η =
‖h‖2

F ρ

2
. (2.23)
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If E (‖h‖2
F ) = 2, the SNR at detection becomes η = ρ, where ρ = Es/N0 is the SNR of the

system, which is also the SNR per transmitted information symbol for the Alamouti scheme.
This means that this STC scheme does not allow array gain, thought it achieves a diversity
gain of 2 [Alamouti98, Paulraj03].

General STBC Schemes

The Alamouti scheme can be extended to larger systems using orthogonal space-time block
coding (OSTBC). These codes can be designed for any number of transmit antennas with a
spatial rate of rs = 1, provided that only real constellations are used [Tarokh99]. An example
of such coding schemes, which can achieve a diversity gain of MN , is the orthogonal code
design for M = 4, whose structure is the following:

SSTBC =




s1 −s2 −s3 −s4

s2 s1 s4 −s3

s3 −s4 s1 s2

s4 s3 −s2 s1




(2.24)

If linear processing is applied at the receiver, the decoding is decoupled into simpler scalar
(SISO) detection problems, resulting in an input-output relation similar to that described
in (2.22) for the Alamouti scheme.

In the case of complex constellations, orthogonal designs with spatial rate rs = 1 only
exist for systems with M = 2 transmit antennas [Tarokh99]. However, orthogonal STBC
codes exist for spatial rates of rs = 1/2 with any number of transmit antennas. One of such
codes is shown below for M = 3 and complex constellations:

SSTBC =




s1 −s2 −s3 −s4 s∗1 −s∗2 −s∗3 −s∗4
s2 s1 s4 −s3 s∗2 s∗1 s∗4 −s∗3
s3 −s4 s1 s2 s∗3 −s∗4 s∗1 s∗2


 . (2.25)

2.2.3.3 Space-Time Trellis Codes

STTC techniques are an extension of conventional trellis codes to multi-antenna systems.
These schemes can achieve coding gain and full spatial diversity. Each node or trellis state
has A groups of symbols to the left, where A is the constellation size, with each group
consisting of M entries. Each group represents the output for a given input symbol and the
M entries correspond to the symbols to be transmitted from the M antennas. Figure 2.5
shows a trellis diagram for a 4-QAM, 4-state STTC scheme for M = 2 transmit antennas.
These codes can be designed to maximize the coding gain, diversity order or ease of decoding
for a given rate.
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Figure 2.5: Trellis diagram for a 4-QAM, 4-state STTC code with M = 2.

The transmitted frames are decoded at the receiver using maximum likelihood (ML)
sequence estimation, based on a multi-antenna extension of the Viterbi decoder. The number
of states in the trellis and the number of receive antennas de�ne the coding and diversity
gains of STTC techniques. Other STC coding approaches, such as delay diversity coding,
can be considered as particular cases of STTC techniques.

2.2.4 Summary of MIMO Detection Algorithms
The choice of the MIMO detection algorithm depends on the STC technique used at the
transmitter side. For example, when OSTBC codes are used, MIMO detection can be con-
sidered a set of parallel SISO detection problems, so it can be simpli�ed [Paulraj03]. On the
other hand, if STTC coding is selected for transmission, no general simplifying rule exists
and Viterbi-like multi-antenna Trellis-based algorithms are applied.

Spatial multiplexing, where no proper spatial coding exists (rs = M), is the case that
best represents the multi-antenna detection problem, so it can be chosen as a reference when
evaluating MIMO detection and channel estimation techniques. The most common and
interesting detection algorithms are shown in the following list, where the symbol index k of
(2.1) has been dropped for simplicity.

1. Linear techniques, where the detected symbol vector ŝ is calculated multiplying the
received vector r by a spatial �ltering matrix G, as it can be seen in the following
equation:

ŝ = Gr. (2.26)

The two most common linear approaches are the following:

(a) Zero-forcing (ZF): It tries to eliminate the interference between the transmis-
sion antennas, being the nulling matrix G given by
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GZF =

√
M

Es

H+ =

√
M

Es

(HHH)
−1HH (2.27)

where + and H denote the pseudoinverse and Hermitian operations, respectively.
This MIMO detection technique, which is the easiest to implement, has a very
limited performance due to noise enhancement [Foschini98].

(b) Minimum mean squared error (MMSE) [Böhnke03]: It balances the inter-
ference nulling and the noise enhancement of the �lter matrix by minimizing the
total output error. The new �lter matrix GMMSE can be calculated as

GMMSE =

√
M

Es

(HHH +
M

ρ
IM)−1HH (2.28)

2. Non-linear techniques

(a) Maximum likelihood (ML) [Paulraj97, Larsson03]: Optimal detection tech-
nique based on the minimization of an error metric which is evaluated for all the
possible transmitted symbols, as is represented in (2.29). Its complexity can be
prohibitive for systems with large constellations or many transmission antennas,
due to the BM metrics that must be evaluated.

ŝ = arg min
s

∥∥∥∥r−
√

Es

M
Hs

∥∥∥∥
2

F

(2.29)

(b) ZF-V-BLAST [Golden99, Böhnke03]: It is based on the so-called ordered suc-
cessive interference cancellation (OSIC) methods. The symbols transmitted at
each antenna are detected successively following a descending signal to interfer-
ence and noise ratio (SINR) criterion, as is shown in Figure 2.6. Every time a
symbol is detected, its e�ects are removed from the received signal, decreasing
the error probability of the remaining symbols. If a horizontal encoding scheme is
used, the decoder can be included in the feedback chain, as is represented in Fig-
ure 2.6, where bm represents the sequence of detected bits for transmit antenna
m.

(c) MMSE-V-BLAST [Golden99, Böhnke03]: It is an extension of ZF-V-BLAST
that uses the MMSE spatial nulling technique. Its performance and complexity
are clearly higher than those of linear MMSE and ZF-V-BLAST algorithms, as
will be shown in the BER performance comparisons of Section 2.2.5.
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Figure 2.6: Structure of a generic detector with successive interference cancellation.

2.2.4.1 The Sphere Decoder

The sphere decoder (SD) is a specially relevant detection algorithm because it achieves the
optimal ML solution with a considerable reduction in the number of calculated metrics,
which depends on the SNR value and the channel realization [Damen00, Hassibi01]. This
algorithm reduces the computational complexity of the maximum likelihood (ML) detector
by searching over only those noiseless received points, de�ned as

√
Es

M
Hs, that lie within

a hypersphere of radius R around the received signal r, as is shown in Figure 2.7 for a
simpli�ed 2-dimensional case, where the dots represent the noiseless received constellation
and the cross represents the actual received point contaminated with noise.

R

Figure 2.7: Schematic of the sphere decoder search principle for the 2-dimensional case.

The complex version of the SD is considered here, which is applied directly to the complex
lattice Λ(H) = {

√
Es

M
Hs} [Hochwald03]. The process can be represented by

ŝml = arg{min
s
‖r−

√
Es

M
Hs‖2 ≤ R2} . (2.30)

The sphere constraint in (2.30) can also be written, after matrix decomposition and removal
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of constant terms, as
‖U(s− ŝ)‖2 ≤ R2 (2.31)

where U is an M×M upper triangular matrix, with entries denoted as uij, obtained through
Cholesky decomposition of the Gram matrix GG = Es

M
HHH and ŝ =

√
M
Es

(HHH)−1HHr is
the unconstrained ML estimate of s [Hochwald03].

The solution of the sphere constraint (SC) in (2.31) can be obtained recursively using a
tree search algorithm, starting from i = M and working backwards until i = 1. For each
level, the constellation points si that satisfy

|si − zi|2 ≤ Ti

u2
ii

(2.32)

are selected as partial ML candidates, where

zi = ŝi −
M∑

j=i+1

uij

uii

(sj − ŝj) (2.33)

and

Ti = R2 −
M∑

j=i+1

u2
jj|sj − zj|2 . (2.34)

When a new point is found inside the hypersphere (at i = 1) the radius is updated with
the new minimum Euclidean distance and the algorithm continues the search with the new
SC. This process can be seen as a tree search through M levels where each node on each
level contains P branches. If Ti ≤ 0, at any level i, the squared Euclidean distance from the
root to that node has exceeded the SC and the entire branch plus all its descendants can be
discarded, yielding a speed increase compared to an exhaustive search. The search �nishes
when the radius has been reduced so that no more points are found that satisfy the SC: the
last point found satisfying the SC is the ML solution ŝml.

In order to further reduce the complexity of the SD, the points that satisfy (2.32) are
searched according to increasing distance to zi, following the Schnorr-Euchner (SE) enumer-
ation [Schnorr94]. The use of this enumeration has two e�ects:

• On a particular node, The SE enumeration follows the branches with lowest distance
increment |si − zi|2 �rst in any level i. Thus, the �rst points searched are more likely
to be the ML solution, reducing the overall complexity of the search.

• Although the initial radius R is normally set according to the noise variance N0, the use
of the SE enumeration reduces the e�ect that the initial radius has on the complexity
of the SD. From a simulation point of view, the initial radius still has a marginal e�ect
on the complexity of the SD [Damen03]. However, in a parallel implementation of the
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algorithm, the initial value can be set to the end of the scale so that no estimate of
the noise level is required at the receiver [Burg05].

2.2.5 Performance Comparison of MIMO Detection Schemes
This section provides BER performance comparison results for �at-fading spatial multiplex-
ing systems with di�erent MIMO detection schemes. The optimal ML, MMSE, ZF and their
respective V-BLAST extensions are compared in a baseband scenario simulated in Matlab1.
Perfect synchronization and channel estimation are assumed at the receiver, while no chan-
nel state information is available at the transmitter side. Quaternary phase shift keying
(QPSK) transmission has been simulated through a �at-fading Rayleigh channel with no
antenna correlation. The Eb/N0 ratio has been chosen for the BER plots in order to allow
fair and realistic comparisons of di�erent modulation and coding schemes. Figure 2.8 shows
the BER performance curves for antenna setups of 4× 4 (a) and 2× 3 (b).
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Figure 2.8: BER performance of basic MIMO detectors for uncoded 4× 4 (a) and 2× 3 (b)
QPSK transmission.

As it is shown in Figure 2.8a, the SD clearly outperforms the rest of the detectors. If the
�nal slope of the curves is analyzed, which is closely related to the diversity order, it can be
noticed that the V-BLAST schemes achieve a slightly higher diversity than ZF and MMSE,
while SD shows the greatest diversity. Figure 2.8b shows the same performance comparison
for a 2 × 3 setup, with increased reception diversity. It can be seen that the conclusions
from the 4 × 4 case hold. Nevertheless, the di�erences between detectors are reduced and
the performance curves of V-BLAST schemes, which depend of the feedback of detected
symbols, get closer to the optimal detector SD.

1Matlab is a trademark of The Mathworks, Inc. [Mathworks].
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2.3 MIMO-OFDM Systems
If the actual capacity of MIMO wireless systems is to be reached, the multi-antenna trans-
mission and reception schemes of Section 2.2 must be combined with e�cient wideband
modulation techniques such as OFDM, which has become the main solution to overcome the
complexity limitations of time-domain equalization in multi-path frequency-selective fading
channels [Bingham90]. This multi-carrier modulation technique, which is summarized in the
following subsection, is present in nearly all new wireless standards, such as WLAN IEEE
802.11 and wireless metropolitan area network (WMAN) IEEE 802.16.

2.3.1 OFDM
The complexity of optimal ML and even suboptimal equalization of wideband modulation
systems grows exponentially with the length of the channel impulse response L. OFDM
avoids the complexity of time-domain equalization techniques by transmitting information
symbols in frequency-orthogonal narrowband subcarriers which can be equalized indepen-
dently with a relatively low computational cost.

Consider the transmission of a block of T information symbols, represented by vector
s, through a wideband or frequency-selective wireless link of bandwidth Bw. The 1/Bw-
interval sampled baseband channel impulse response, which includes all the transmit and
receive �lter e�ects, is represented by h[τ ], where τ = 0, 1, ..., L− 1.

Figure 2.9 shows the structure of a SISO-OFDM wireless system that transmits the
information symbol block s. As it can be seen, the transmitter �rst performs a T -point
inverse fast Fourier transform (IFFT) operation on s, locating each information symbol at
a di�erent frequency bin or subcarrier, yielding the vector s̃. The IFFT operation can be
represented using matrix notation as

s̃ = DHs, (2.35)

where D is a T ×T discrete Fourier transform (DFT) matrix whose element at position m,n

is given by:
[D]m,n =

1√
T

e−
j2π(m−1)(n−1)

T . (2.36)

The transmitted symbol vector s′ is constructed by appending a cyclic pre�x (CP) of
length LCP to the vector s̃. The CP consists of the last LCP symbols of s̃. The vector s′ is
known as the OFDM symbol and its elements are transmitted serially. Hence, an OFDM
symbol has T + LCP samples. The condition LCP ≥ L − 1 must be satis�ed to avoid
inter-symbol interference (ISI) between successive OFDM symbols.

A vector r′ of length T + LCP + L − 1 is received, which comprises the OFDM symbol
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Figure 2.9: Diagram of OFDM transmission and reception chains for a SISO channel.

convolved with the channel of length L. The receiver removes the CP and gathers T samples
of the received signal r̃ that satisfy

r̃ =
√

EsHcs̃ + n, (2.37)

where Hc is a T × (T + L− 1) Toeplitz matrix given by

Hc =




h[0] 0 · · · 0 0 h[L− 1] · · · h[1]

h[1] h[0] 0 · · · 0 0
. . . ...

... h[1] h[0] 0 0
. . . 0 h[L− 1]

h[L− 1]
... h[1]

. . . 0
. . . 0 0

0 h[L− 1]
... . . . h[0]

. . . . . . 0
... 0 h[L− 1]

. . . h[1] h[0] 0 0
... ... 0

. . . ... . . . . . . 0

0 0 · · · 0 h[L− 1] · · · h[1] h[0]




. (2.38)

The CP renders the matrix Hc circulant and its eigendecomposition can be expressed as

Hc = DHΩD, (2.39)

where Ω = diag{w[0], w[1], ..., w[T − 1]} and w[k] is the sampled frequency response of the
channel at the subcarrier index k. Hence, if a fast Fourier transform (FFT) is performed on
r̃, the received signal r is given by

r = Dr̃ =
√

EsΩs + ñ, (2.40)

where ñ is a T -vector with the noise samples at the T subcarriers. Equation (2.40)
represents how OFDM decouples the frequency-selective channel into T parallel �at-fading
channels, which can be represented for each individual subcarrier f as

r(f) =
√

Esw[f ]s[k] + ñ[f ], f = 0, 1, ..., T − 1. (2.41)
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Therefore, T information symbols are transmitted in parallel during one OFDM symbol
period. Each information symbol is allocated at a di�erent orthogonal subcarrier and occu-
pies a bandwidth of Bw/T , as is shown in Figure 2.10. The main bene�t of OFDM is that
it simpli�es the equalization task because the channel convolution becomes a multiplication
per subcarrier or tone. OFDM can pro�t from diversity if the information is interleaved
and coded across di�erent tones, leading to a modulation technique called coded OFDM
(COFDM). The main drawback of OFDM is the high peak-to-average power ratio (PAPR)
of the signal, which makes ampli�ers more expensive [Dardari00].

T subcarriers

Spacing f = Bw / T

Figure 2.10: Orthogonal subcarriers of an OFDM wireless system.

2.3.2 MIMO-OFDM
The combination of MIMO and OFDM techniques is the main way to reduce the equalization
complexity in frequency-selective fading MIMO channels. Figure 2.11 shows the general
diagram of a MIMO-OFDM system, where the transmission bits are mapped and coded in
space (M antennas), frequency (T subcarriers or tones) and time (di�erent OFDM symbols).
As it is shown, an IFFT is applied at each transmission chain after the spatial, frequency
and time-domain coding process.

If the simplest MIMO-OFDM system is assumed, the generic coding block of Figure
2.11 can be replaced by a spatial multiplexer that assigns one information symbol to each
subcarrier and transmit antenna, leading to the maximum spatial rate of (rs = M). The
detection algorithms of 2.2.5 can then be applied to each subcarrier, leading to T parallel
narrowband MIMO detectors.
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Figure 2.11: Diagram of a general MIMO-OFDM system.

2.3.3 MIMO-Based WLAN Standard: IEEE 802.11n
OFDM has been chosen as the main modulation scheme for the physical layer of many
recent and future wireless communication standards, such as IEEE 802.16 (WMAN) and
IEEE 802.11 (WLAN). The latter has been chosen for the simulations and analysis carried
out in this thesis. Two are the current WLAN standards that include single-antenna OFDM
transmission: 802.11a and 802.11g, at 5.2 and 2.4 GHz, respectively [IEEE99, IEEE03a].

These standards, which were published in 1999 and 2003, reach bit-rates of up to 54

megabits per second (Mbps). Further e�orts are being developed by the task group 802.11n
for the standardization of a MIMO-OFDM based WLAN standard able to transmit data
at several hundreds of Mbps. Drafts 1 and 2 of this standard have already been approved
and several �nal products can be found that comply with 'pre-802.11n' and '802.11n draft
2' speci�cations. Both drafts are based on the work developed by the Enhanced Wireless
Consortium (EWC) [EWC05, IEEE07].

Three are the most relevant di�erences that can be noticed if the EWC proposal is
compared with 802.11a. First, the use of up to 4 transmit chains and antennas is supported.
New concepts, such as space-time stream and spatial stream, are included in order to de�ne
the spatial multiplexing, mapping and space-time coding features of the transmitter, which
are summarized in the diagram of Figure 2.12. Second, the transmission bandwidth can
be doubled, i.e., two frequency bands or channels can be allocated in order to increase the
transmission rate. Last, the convolutional code of 802.11a has been replaced by more e�cient
low-density parity check (LDPC) and Turbo coding schemes.

Regarding the use of multiple antennas, the EWC speci�cation and the pre-802.11n drafts
lie on the most basic MIMO transmission techniques: SM and STBC. The transmitter must
be able to select the most e�cient con�guration for each link depending on the channel
conditions. For instance, SM can be used to multiply the data bit-rate in high SNR scenarios,
whereas STBC or diversity techniques can be more suitable in noisy environments. Hence,
the transmitter must be able to adapt the STC scheme, as is done in 802.11a with the
constellation size or the coding rate.
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Figure 2.12: Diagram of a generic 4× 4 IEEE 802.11n MIMO-OFDM transmitter [EWC05].

2.3.4 Performance Results
Figure 2.13a shows the BER performance of an uncoded 4×4 MIMO-OFDM system with the
linear and V-BLAST detectors. The IEEE 802.11a standard has been taken as a reference,
which is the basis of the IEEE 802.11n. 64 subcarriers are allocated in a bandwidth of 20

MHz. According to the standard, only 48 of the 64 subcarriers have been used for data
transmission, being the rest reserved for pilot allocation and spectrum shaping purposes.
Once again, QPSK modulation has been selected. The wireless channel has been simulated
following the parameters de�ned by the HIPERLAN/2 channel model A, which is de�ned
by an root mean square (rms) delay of 50 ns (11 taps) [Medbo98].

As it can be deduced from its structure, OFDM needs codi�cation and interleaving to
pro�t from frequency diversity and avoid the e�ects of fading. The BER performance of a
rate-1/2 coded MIMO-OFDM system is shown in Figure 2.13b, where the bene�ts of coding
are shown. As it can be seen, the MMSE-V-BLAST receiver outperforms the ML due to
the HE approach, where all the bits from an antenna can be decoded together, so that
the correction capability of the decoder is used to improve the performance of the MIMO
detector.

2.4 MIMO-SCFDE Systems
As has been stated in Section 2.3, OFDM has become the main modulation scheme for high
data rate transmission in frequency-selective channels. Nevertheless, other very interesting
single-carrier modulation techniques have been proposed which can pro�t from the simplicity
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Figure 2.13: BER performance curves of basic MIMO detectors for uncoded (a) and rate-1/2
coded (b) 4× 4 QPSK OFDM transmission.

of frequency-domain equalization (FDE) without the known drawbacks of OFDM, such as
the high PAPR and the lack of frequency diversity in uncoded scenarios. This kind of single-
carrier transmission techniques have been considered when designing many recent wireless
standards, though they have been included partially in standards such as the IEEE 802.16a
[IEEE03b].

This section will �rst summarize the structure and bene�ts of SCFDE modulation for
SISO systems, after which the model will be brie�y extended to a MIMO scenario. Last, a
comparison of SCFDE and OFDM modulation schemes will be provided for MIMO trans-
mission in WLAN scenarios.

2.4.1 SCFDE Modulation
Figure 2.14 shows the structure of a cyclic-pre�xed SCFDE (CP-SCFDE) transmission
scheme [Falconer02]. As it can be seen, the transmitter is mostly identical to an usual
single-carrier system. Nevertheless, the data symbols are processed block-wise and a CP is
added to each block in order to achieve the circulant matrix property described in Section
2.3.1, thus making the frequency-domain equalization possible.

s ADD

CP

s’
FFT

rREM

CP

r’ r
IFFT

s
FDE

~ ~
s ^

Figure 2.14: Diagram of transmission and reception chains for a SISO-SCFDE system.

As it can be noticed, the receiver side is rather di�erent from the narrowband single-
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carrier case. The equalization of the frequency-selective fading channel is not carried out in
the time domain, but in the frequency domain. Thus, an FFT must be applied after the CP
removal to process the symbols in the frequency domain. The equalization is identical to
the OFDM case, i.e., it is a subcarrier-based multiplication. The main di�erence is that the
equalization is not performed on the information symbols, but on their frequency-domain
transforms.

Once the symbols are equalized, they must be converted back to the time-domain, where
the detection and the following steps are carried out. Hence, the number of operations (one
FFT and one IFFT) are the same as in OFDM, but their location changes.

This transmission technique avoids the high PAPR problem of OFDM [Dardari00] and
pro�ts from a natural frequency-domain diversity, since each information symbol is spread
across all the frequency bins. Its main drawback consists on the separation of the equaliza-
tion and detection steps, which are done in frequency and time domain, respectively. This is
specially important in decision-directed iterative systems, where an FFT must be included
in the feedback chains. As will be shown later, SCFDE outperforms OFDM in BER per-
formance when high coding rate is selected and performs slightly worse with low coding
rates.

2.4.2 MIMO-SCFDE
The extension of SCFDE techniques to MIMO is straightforward. Figure 2.15 shows a
spatial multiplexing SCFDE system. As it is shown, the MIMO spatial cancellation and the
symbol detection are now in di�erent domains. This can complicate the MIMO detection
process for feedback-based techniques (V-BLAST), since FFT blocks must be included in
the feedback chains. On the other hand, the implementation of the optimal ML detector
becomes prohibitively complex because the decisions are not made in the frequency-domain,
where the simple narrowband MIMO model can be applied.
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Figure 2.15: Schematic of a MIMO-SCFDE spatial multiplexing transmission and reception
system.
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2.4.3 Performance Comparison of MIMO-SCFDE and
MIMO-OFDM

This section shows comparative BER performance results for MIMO-SCFDE (solid lines) and
MIMO-OFDM (dashed lines) schemes in a WLAN scenario. A 4 × 4 QPSK transmission
has been simulated over a HIPERLAN/2 A channel [Medbo98] using the maximum and
minimum code rates of the IEEE 802.11a standard (rt = 1 and rt = 0.5) [IEEE99].

As it can be seen in Figure 2.16, the BER performance of ZF-based SCFDE schemes is
very poor due to the noise enhancement and the associated lack of stability of some frequency
bins, which a�ects all the information symbols.

As it is shown in Figure 2.16a, SCFDE outperforms OFDM for uncoded and high coding
rate systems. If the rate-1/2 coded case which is shown in Figure 2.16b is analyzed, it
can be stated that SCFDE can perform close to OFDM in low coding rate systems. More
results on this performance comparison for WLAN-like systems can be found in [Coon03,
Mendicute04a, Mendicute04b].
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Figure 2.16: BER performance comparison of basic MIMO detectors for uncoded (a) and
rate-1/2 coded (b) 4× 4 SCFDE (solid line) and OFDM (dashed line) transmissions.

2.5 Iterative MIMO Receivers
The MIMO systems shown in previous sections must be combined with e�cient coding
schemes in order to get close to their theoretical capacity limits [Foschini98, Telatar99].
Iterative receivers, based on the �Turbo� principle [Berrou93], can approach the optimal per-
formance limits of coded MIMO systems with reduced complexity [Sellathurai02, Biglieri04].

This section analyzes the structure of a speci�c iterative MIMO receiver. Although a
simple �at-fading iterative MIMO receiver is going to be analyzed in this dissertation, the

32



Chapter 2. MIMO Systems in Wireless Communications

same technique can be applied to wideband OFDM or SCFDE systems [Horseman03].
The turbo receiver analyzed in this section consists of an inner soft input-soft output

(SISO*) MIMO detector and an outer SISO* decoder, which iteratively transfer soft in-
formation to each other in order to improve the accuracy of the soft bit estimates. This
section shows the main block diagram of this Turbo-MIMO system, its bene�ts and the
main analysis methods used to predict its performance.

First, the model of an iterative MMSE-PIC receiver will be shown, after which perfor-
mance improvement results will be provided for several iterations. Last, the main conver-
gence and performance analysis methods, EXIT charts and analytic functions, will be brie�y
introduced in Sections 2.5.3 and 2.5.4, respectively.

2.5.1 Fundamental System Model
Figure 2.17 shows the structure of the transmitter of the Turbo-MIMO system under consid-
eration. The information bits b(l) are encoded, interleaved by a block random interleaver and
demultiplexed into M parallel streams. The resulting bits cm(ld), where m and ld denote the
transmission antenna and the demultiplexed coded bit index, respectively, are mapped onto
a generic QAM constellation of B points. The mapped symbols sm(k), which can be stuck
into the vector s(k), are then modulated and transmitted simultaneously by M antennas.

Encoder

MAP

MAP

MAP

D
e
m
u
xb l c lb

c1 ld s1 k

s2 k

sM k

c2 ld

cM ld

Figure 2.17: Diagram of a MIMO transmitter with coding and interleaving.

Figure 2.18 shows the structure of the iterative receiver. The received symbols r(k)

are processed by the SISO* MIMO detector, whose outputs are the soft symbol estimates
y(k) = [y1(k), y2(k), ..., yM(k)]T . This soft MIMO detector receives two kind of inputs: the
received signal vector r(k) and the extrinsic soft bit information fed back by the outer decoder
as the log-likelihood ratio (LLR) values Λex,D

c (lc), which become Λa
cm

(ld) after interleaving
and demultiplexing.

A MIMO detector that carries out PIC and MMSE combining has been implemented,
whose operation can be summarized as:

r′m(k) = r(k)−
√

Es

M

M∑
p=1
p6=m

hps̃p = r(k)−
√

Es

M
[Hs̃(k)− hms̃m(k)] (2.42)
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Figure 2.18: Diagram of a generic interference cancellation-based iterative Turbo-MIMO
receiver.

and
ym(k) = wH

mr′m(k), (2.43)

where m denotes the detected branch, hm is the m-th column of the channel matrix H and
s̃(k) is an M × 1 vector of soft symbol estimates s̃m(k), which are derived from the a priori
LLR metrics Λa

cm
(ld) fed back from the decoder [Tüchler02].

The spatial combining matrix wm is calculated from the channel matrix H as follows:

wm =

√
M

Es

(
HV̄HH + (1− v̄m)hmhH

m +
N0M

ES

IN

)−1

hm, (2.44)

where matrix V̄ = diag(v̄1, ..., v̄M) represents the mean of symbol estimation error variance
matrices V(k) = diag(v1(k), ..., vM(k)) with [Biglieri04, Hermosilla05]:

vm(k) = E{|sm(k)− s̃m(k)|2} = E{|sm(k)|2} − |s̃m(k)|2.

The symbol estimates y(k) are soft-demapped [Tüchler02], providing the extrinsic LLRs
of the coded bits Λex

cm
(ld) , which become the input of the SISO* decoder after multiplexing

and deinterleaving operations. The outer soft decoder, which has been implemented using
the log-MAP version of the BCJR algorithm [Bahl74], delivers the following metrics:

• A posteriori probability (APP) LLRs of the uncoded bits ΛD
b (l), whose signs de�ne the

�nally detected bit values.

• Extrinsic LLRs of coded bits Λex,D
c (lc), which are fed back to the MMSE-PIC for

interference cancellation.
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2.5.2 Performance Evaluation
Figure 2.19 shows the BER performance of an iterative MMSE-PIC MIMO receiver. Results
are shown for 0, 1 and 2 iterations. As it can be seen, the iterative processing and the
exchange of soft extrinsic information improves the performance at moderate and high SNR
regimes. A �xed 4 × 4 MIMO channel, as de�ned in [Hermosilla03], has been used for the
results shown in Figure 2.19a, while a narrowband Rayleigh fading channel has been selected
for Figure 2.19b. The �xed channel results are interesting for the following sections, where
analytical and semi-analytical BER performance tools are described.
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Figure 2.19: BER performance curves for an iterative MIMO receiver in a 4× 4 system with
�xed (a) and Rayleigh fading (b) wireless channels with 0, 1 and 2 iterations.

2.5.3 EXIT Charts
Extensive MC simulations are commonly used for the performance evaluation of communi-
cation systems. Nevertheless, computationally simpler analytical and semi-analytical tools
exist which are useful to reduce the simulation time or to evaluate the convergence behavior
of iterative receivers. EXIT charts, which are the most popular of these convergence analysis
methods, have been extensively applied in iterative or Turbo processing for the evaluation
and design of decoders and receivers [Brink01, Tüchler02, Zelst01].

The main objective of EXIT charts is to reduce the analysis of the whole iterative process
to the evaluation of the exchange of one parameter, usually the mutual information (MI),
between the inputs and outputs of the SISO* processors (detectors or decoders) that conform
a receiver. Figure 2.20 shows the EXIT chart for the iterative receiver of Section 2.5.1. As
it can be seen, a MI transfer curve is calculated for each signal processing block. For the
case analyzed here, two curves are generated: one for the soft MMSE-PIC detector and one
for the SISO* decoder.
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A system with M = 4, N = 4 and Eb/N0 = 3 dB has been selected for the example shown
in Figure 2.20. Three curves are depicted: the thin solid line corresponds to the transfer
function of the soft decoder, which has been drawn with the input MI ID

in in the vertical
axis; the dashed curve corresponds to the transfer function of the MMSE-PIC detector,
whose input IR

in is shown in the horizontal axis; and the thick solid lines represent the EXIT
trajectory. The horizontal lines represent the exchange of information from the MMSE-PIC
detector to the decoder, while the horizontal lines correspond to the information exchange
from the decoder to the MIMO detector. The �nal BER at each iteration step can be
estimated from tables, which are calculated and stored when generating the transfer function
curves [Hermosilla03, Biglieri04].
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Figure 2.20: EXIT trajectory for a MMSE-PIC receiver with Eb/N0 = 3 dB.

The results of Figure 2.20 can be used to design convergent decoder/detector pairs in
an e�cient way, to analyze the convergence of speci�c iterative receivers or to obtain BER
results without the computational cost of MC simulations. The BER performance curves
predicted by the EXIT charts for the �xed channel match the results of Figure 2.19a, which
have been obtained through MC simulation.

When a Rayleigh-fading channel is assumed, the EXIT charts do not match the actual
trajectories exactly, since the mean of output mutual information values is used to calculate
an unique EXIT chart for each Eb/N0 value [Hermosilla03, Biglieri04]. This limitation can
be overcome if analytical tools are used for the calculation of the EXIT trajectories, as will
be shown in the next section.
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2.5.4 EXIT Function-Based Performance Prediction
The lack of accuracy of the EXIT chart-based performance evaluation methods can be solved
if analytical functions are used. The EXIT transfer function-based performance evaluation
method of [Hermosilla05] divides a generic front-end (FE) into two elementary blocks, a so-
called linear combiner (LC) and a non-linear demapper. Here the FE is the MIMO detector,
which can be decomposed into two elementary devices: the MMSE-PIC linear combiner and
the non-linear demapper. In [Hermosilla05], where the channel is perfectly known at the
receiver, the FE is represented by the following parametric transfer functions:

Γm = Fm(IR
in;H, ρ), (2.45)

IR
out,m = Gd(Γm, IR

in) (2.46)

and

IR
out =

1

M

M∑
m=1

IR
out,m . (2.47)

Function Fm describes the LC behavior for a certain channel state and ρ value, giving
an output SINR value Γm for the m-th branch depending on the input MI IR

in. Function Gd

characterizes the soft demapper and its output is the MI at each demapped branch IR
out,m.

Parting from these analytical functions and the EXIT transfer function of the SISO* decoder,
which does not depend on any system parameter, the authors in [Hermosilla05] introduced
a performance evaluation algorithm that reduces drastically the simulation time and shows
good accuracy in quasi-static Rayleigh-fading MIMO channels. The performance evaluation
algorithm is shown in Table 2.1. As it is shown, only Fm must be calculated online for each
channel realization, while the rest of the functions are generated o�-line. Functions fD and
fBER represent the EXIT transfer function and the BER estimation function of the decoder,
respectively [Biglieri04, Hermosilla05].

Following this reduced-complexity semi-analytical method, the BER performance and
convergence properties of an iterative MIMO system can be accurately predicted, as is shown
in [Hermosilla05] for an MMSE-PIC-based receiver.

2.6 Chapter Summary
This chapter has shown an introductory analysis of the main MIMO transmission schemes
that are commonly used in wireless communication systems. It has brie�y described the
scenarios that will be used in forecoming chapters for the evaluation of the impact of channel
estimation and implementation on the performance of MIMO receivers.
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Performance Evaluation Algorithm
(0) Generate H.
(1) Initialization: iteration j = 1; I

D,(0)
out = 0.

(2) Get FE input MI. I
R,(j)
in = I

D,(j−1)
out .

(3) Compute V̄ from I
R,(j)
in , as in [Hermosilla05].

(4) Calculate wm vectors from (2.44) and Γm values from (2.45).
(5) Compute I

R,(j)
out,m and I

R,(j)
out via (2.46) and (2.47).

(6) Obtain the decoder's output I
D,(j)
out = fD(I

R,(j)
out ).

(7) Calculate BER(j) = fBER(I
D,(j)
out ).

(8) Return to step (2) with j = j + 1.

Table 2.1: BER performance evaluation algorithm for each channel realization of an iterative
MIMO receiver.

First, the narrowband multi-antenna model has been introduced and the fundamental
MIMO capacity limits have been shown, as well as the main transmission and detection
schemes that can be used to pro�t from the capacity enhancement provided by the MIMO
channel.

In order to use MIMO in more realistic frequency-selective systems, two main approaches
have been selected: OFDM, which is present in nearly all the new wireless standards, and
SCFDE, which pro�ts from the main advantages of OFDM avoiding many of its drawbacks.
Results have been provided for several MIMO detectors in SM systems with the aforemen-
tioned two modulation schemes, which show the validity of SCFDE as a substitute of OFDM
in high coding rate wireless systems.

Last, the model of an iterative or turbo-MIMO receiver has been shown, based on an
MMSE-PIC receiver followed by a conventional soft convolutional decoder, based on the
well-known BCJR algorithm. The bene�ts of iterative processing have been shown and tools
that allow to design and evaluate the performance of such systems have been introduced.
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MIMO Prototyping Platform and
Implementations

3.1 Introduction
One of the main objectives of this thesis is to compare the performance of MIMO channel
estimation and detection algorithms by simulation. Nevertheless, the actual real-time im-
plementation issues and performance results must be considered in order to allow a fair and
realistic analysis. Many algorithms exist in the bibliography that achieve good performance
results, but some of them may be too complex, expensive or just unfeasible.

This chapter summarizes the work developed to set up and validate a real-time MIMO
algorithm design, simulation and prototyping platform. Matlab/Simulink1, which is exten-
sively used in signal processing, has been chosen as the basis of the whole algorithm develop-
ment �ow [Mathworks]. Xilinx System Generator for DSP2 has been selected as the algorithm
design, validation and hardware co-simulation tool [Xilinx]. The real-time hardware imple-
mentation has been carried out on a modular Hunt Heron prototyping board, which can
include several �eld programmable gate array (FPGA) and digital signal processor (DSP)
devices [Hunt].

The �rst section of this chapter describes the MIMO prototyping methodology and the
software tools used to implement the real-time algorithms. An o�-line MIMO transmission
system is then summarized, which has been used to validate the fundamental synchronization
and channel estimation algorithms with real signals before before implementation.

Section 3.4 summarizes the main features of the hardware development platform, focusing
on the direct relationship between the Matlab simulation and the �nal implementation. A
special section is dedicated to the �Hardware in the Loop� (HaLo) approach, which allows
for co-simulation of Matlab and real hardware-implemented algorithms.

The last sections of the chapter focus on the development of a complete real-time 2× 2

1Simulink is a trademark of The Mathworks, Inc. [Mathworks].
2Chipscope Pro, ISE Foundation, System Generator for DSP and AccelDSP are trademarks of Xilinx,

Inc. [Xilinx].

39



Chapter 3. MIMO Prototyping Platform and Implementations

wireless system, which has been used to validate the whole platform, and the implementation
of a SD-based real-time MIMO system, developed in collaboration with the Institute for
Digital Communications of the University of Edinburgh. These two implementations have
been used to evaluate the BER performance degradation due to channel estimation error
and real-world implementation e�ects.

3.2 Algorithm Prototyping Methodology and Tools
As it has been stated in the introduction of this chapter, Matlab/Simulink has been chosen
as the base of the whole algorithm development �ow. This mathematical tool has been
extensively used in signal processing and is specially suitable for the matrix operations
required for MIMO systems. The main objective of the work described here has been to
develop tools that allow for a progressive transition from pure-Matlab models to real-time
hardware. Figure 3.1 shows the main implementation stages of the design �ow, which must
take into account many real-world issues, such as:

• Fixed-point resolution and error.

• Computational complexity.

• Required hardware resources.

• Latency.

• Achievable throughput.

Low-Level Implem.

GUI-based simul.

High-Level Impl.

Func. Simul.

Figure 3.1: Main stages of the simulation and implementation �ow.
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As it can be seen in Figure 3.1, the design of the algorithms and the �rst behav-
ioral simulations are carried out in Matlab. Simulink provides a graphical user interface
(GUI) which provides a high-level interface for FPGA design and synthesis tools, using
special toolboxes like Synplify DSP3 or Xilinx System Generator for DSP. The latter has
been used in this research work because it allows direct very high-level design language
(VHDL) code synthesis from Simulink and hardware co-simulation [Xilinx08]. Furthermore,
it has been validated in several MIMO testbeds, protoyping platforms and implementations
[Kaiser04, Barbero05b, Caban06]. Once the algorithms are validated using System Gen-
erator, their performance can be further improved optimizing the �nal implementation in
low-level languages, such as VHDL.

One of the main features of the developed design and validation �ow is the ability to
simulate at all the di�erent implementation levels, from the highest level of abstraction
(Matlab) to the �nal VHDL hardware design. Furthermore, all these simulation skills can
be combined with real-time co-simulation and debugging using the �Hardware in the Loop�
approach [Stege04].

The aforementioned design methodology allows a transition from pure Matlab to full
FPGA implementation, following the design and validation �ow of Figure 3.2. The algo-
rithms are �rst tested in Matlab with real signals, using the o�-line transmission platform
that will be described in Section 3.3. Once the algorithms are fully validated, they are
progressively translated into synthetizable System Generator blocks, which can be tested
through �exible Matlab-based simulations. Depending on the stage of the overall design, the
developed logic blocks can be tested with real signals using either the o�-line transmission
platform of Section 3.3 or the �nal real-time prototyping board of Section 3.4, where true
hardware can be combined with simulation software. As can be seen in Figure 3.2, these
�exible �ow leads to the �nal full real-time hardware implementation.
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Figure 3.2: Real-time MIMO algorithm design and validation �ow with real transmission.

3.2.1 Xilinx Design, Synthesis and Implementation Tools
As will be shown later in this chapter, Xilinx FPGAs have been selected as the main devices
for the implementation of the signal processing algorithms required by MIMO communica-

3Synplify DSP is a trademark of Sinplicity, Inc. [Sinplicity].

41



Chapter 3. MIMO Prototyping Platform and Implementations

tions. Xilinx provides several tools for the design, synthesis and validation of programmable
logic for DSP applications, which can be summarized as:

• Modelsim XE4: A simulation tool that allows to validate VHDL designs and post-
synthesis logic. It can also be used to simulate VHDL cose in Matlab/Simulink using
a plug-in called �Link for Modelsim�.

• Chipscope Pro: It allows to evaluate the behavior of a VHDL design in-circuit,
analyzing real-time signals stored when a trigger condition occurs. It consists of two
main modules: Chipscope Analyzer, which is a logic analyzer that shows the evolution
of signals inside the FPGA, and Chipscope Core Inserter, which creates the logic
structure that is necessary to generate the trigger conditions and to store the captured
signals.

• ISE Foundation: It is an integrated graphical environment that provides a design,
synthesis, implementation and programming interface for logic designs. Most of the
tools used in Xilinx devices, such as Modelsim or Chipscope Pro, can be automatically
executed from Xilinx ISE.

• System Generator for DSP: A toolbox of graphical simulation blocks for generat-
ing VHDL designs directly from Matlab/Simulink. Its main bene�t is the ability to
simulate a true programmable logic implementation in Matlab. For example, a speci�c
algorithm implementation can be simulated inside a complete transmitter/receiver sys-
tem modelled in Matlab. The behavior of a System Generator-based design can even
be compared with its equivalent Matlab algorithm. The use of Matlab/Simulink can
make validation of FPGA algorithms more �exible and simple, avoiding the generation
of traditional testbenches and extensive Modelsim simulations.

• AccelDSP: An automatic Matlab to VHDL translator which can also generate Sys-
tem Generator models. It is specially suited for DSP application and matrix-based
operations, which are very common in MIMO scenarios. This solution is considered
interesting for complex matrix operations, such as QR decomposition or inverse calcu-
lation. System Generator for DSP and AccelDSP have recently been merged to create
a product called DSPTools.

3.2.2 Simulink-Based Design of Real-Time Algorithms
As has been stated in Chapter 2, all the simulations are based on a �exible Matlab simula-
tor that has been developed and maintained during this PhD thesis. This simulator, which

4Modelsim is a trademark of Menthor Graphics Corp. [Mentor].
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works mainly in the baseband of wireless systems, has been extended to include more real-
istic communication algorithms such as modulation, �ltering, synchronization and channel
estimation. The main features of these algorithms will be detailed in Section 3.6.

Due to the size and complexity of the aforementioned Matlab simulator, the translation
to Simulink has not been carried out in a functional block basis. The original MIMO model
has been embedded into two s-function blocks, which have been the starting point of the
algorithm implementation. This structure has allowed an easy coexistence of the baseband
Matlab simulator and the hardware-oriented Simulink model. It has also eased the step-by-
step design of algorithms in System Generator, which have been tested one by one.

Figure 3.3 shows the main diagram of the �rst model. As it can be seen, it consists of
two main elements: the Matlab model and the System Generator block, which may contain
the implementation of some or all of the real-time algorithms. These two elements are
connected in both directions, providing the feedback required for the calculation of the BER
performance curves. The model is based on the transmission of symbols in frames or bursts.

Figure 3.3: Combined use of Matlab, Simulink and System Generator models.

The main con�gurable parameters of Xilinx blocks, such as the �xed-point resolution,
the latency or the use of embedded multipliers, can be de�ned as common Matlab workspace
variables. This means that they can be adjusted any time from an initialization script �le.
These variables a�ect the simulation performance of the algorithms, as well as their actual
VHDL design and hardware implementation.

The use of Matlab/Simulink and System Generator has allowed to validate every step
in the implementation process. For example, the ideal Matlab performance of a symbol-
time synchronization algorithm has been compared with several �xed-point implementations.
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System Generator can even estimate the resources demanded by each block, the highest
delay of the circuit and the achievable maximum clock rate. All this information is only
preliminary, but can be used to evaluate the bottlenecks of a design as well as its feasibility
on a speci�c hardware device [Xilinx08].

The output of System Generator is a VHDL entity with all the design created using its
Simulink toolbox. The created structure can be included in a larger Xilinx ISE project which
may contain more System Generator blocks, as well as other VHDL designs with the logic
required to make the FPGA platform work.

Due to the complexity and resources required by the selected algorithms, the System
Generator design has been divided and implemented on up to four di�erent FPGA devices.
The communications between these devices, which require up to 20 megabytes per second
(MBps) of throughput, have been implemented directly in VHDL using speci�c resources of
the Heron platform. Hence, the partitioning of the whole design, which will be explained
later in this chapter, has been one of the biggest challenges of the real-time implementation
of the MIMO system.

3.3 O�-line Transmission Platform
As it has been stated in the previous section, the basic Matlab algorithms have been validated
through MC simulations. Since these algorithms are the base for later real-time implementa-
tions, their behavior must be evaluated with real signals, i.e., with the radio-frequency (RF)
hardware that is going to be used in the �nal designs. A simple o�-line transmission platform
has been set up to allow the combination of Matlab algorithms and real RF transmissions.
Figure 3.4 shows the the block diagram of the developed o�-line system which consists of
the following hardware and software elements:

1,IF

2,IF

1,i

1,q

2,i

2,q

10 MHz reference

40 MHz

 reference

Figure 3.4: Block diagram of the o�-line MIMO transmission platform (2× 2 setup).
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1. Dual-band (2.4 and 5 GHz) RF tranceivers.

2. Parallel carrier interface (PCI) based analog signal acquisition and generation boards:

3. Rohde & Schwarz SMV03 signal generators.

4. Agilent E4440 spectrum analyzer.

5. Personal computer with 2 GB RAM and Intel Dual-Core processor working at 1.9 GHz.

6. Matlab application for signal transmission and reception, PCI board control and RF
front-end con�guration.

As can be seen in Figure 3.4, all the system is controlled by a Matlab application that
generates the digital samples to be transmitted to the PCI signal generation board. Each
transmitted signal may have two di�erent formats:

• Two baseband components (I and Q), which will be modulated by the front-end. Note
that these signals require two analog outputs per transmitted stream.

• One intermediate frequency (IF) signal, which will be upconverted to the �nal RF
frequency using the amplitude modulation (AM) functions of the signal generators.
This solution, which has been used for the block diagram shown in Figure 3.4, allows
to generate two transmission streams with the signal generation board.

Figure 3.5 shows a picture of the Matlab-based MIMO o�-line transmission platform
developed at the University of Mondragon with the 2×2 con�guration depicted in the block
diagram of Figure 3.4.

RF transceivers and signal generators

The platform is equipped with Maxim MAX2827EVKit boards, which can transmit or re-
ceive RF signals in the 2.4 and 5 GHz bands [Maxim]. These boards are able to modulate
and demodulate baseband IQ signals of up to 20 MHz using an external 40 MHz reference
which has been provided by a common signal generator. This solution avoids the need of
implementing modulation and demodulation algorithms, but requires two analog signals to
be generated or acquired for each transceiver.

The number of analog ports can be halved when needed if modulated IF signals are
generated and upconverted employing equipment such as signal generators, which is the
case for the block diagram shown in Figure 3.4. For example, the combination of signal
generators and the aforementioned transceivers allows the implementation of a 2x3 system
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Figure 3.5: Main hardware elements of the o�-line transmission platform.

employing two analog outputs and six analog inputs, all managed from a computer running
Matlab.

Analog signal acquisition and generation boards

The platform is equipped with an Acquitek CH-3150 PCI board, which allows to gener-
ate two analog signals with 12-bits of resolution and can work at up to 20 mega samples per
second (MSps) [Acquitek]. The main features of the board include two analog inputs with a
bandwidth of 70 MHz, 16 MB of memory and several programming interfaces. One of these
interfaces allows to access the board directly from Matlab.

A PCI-based Adlink 9812A analog acquisition board has also been included, which allows
to acquire up to 4 analog signals with 12 bits of resolution at up to 20 MSps and 20 MHz
of bandwidth [Adlink]. The synchronized combination of this board and the aforementioned
generation card provides a Matlab-based o�-line transmission system with 2 outputs and 6
inputs, which can be used in combination with the RF boards to implement a 2× 3 MIMO
system.

O�-line transmission and reception control

The mentioned hardware elements are controlled from Matlab through a PCI-based appli-
cation programmer interface (API). A frame-based transmission system has been developed
that allows the validation of all the algorithms required for a real transmission.
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The maximum length of transmitted frames (Lmax) is limited by the minimum of the
memory sizes of the generation and acquisition boards (Mmin), as stated in the following
equation:

Lmax =
Mmin

OfNRs

, (3.1)

where Of is the oversampling factor, N is the number of receive antennas and Rs is the
number of bits per sample. For instance, if 2 antennas, QPSK modulation, 12-bit resolution
(which requires 16 bits of memory) and an oversampling factor of 8 are selected, the maximum
length of the frame is limited to 4096 symbols.

3.4 Real-time Algorithm Prototyping Platform
The MIMO system and algorithms described in this paper have been implemented on a rapid
prototyping platform developed at the University of Mondragon. As it can be seen in Figure
3.6, this platform consists mainly of the following three elements: antenna sets, Hunt Heron
rapid prototyping boards and RF transceivers.

3.4.1 Rapid Prototyping Boards
The platform is based on modular rapid prototyping HERON HEPC9 boards from Hunt
Engineering [Hunt]. The main advantage of these PCI-based carrier cards is their very
�exible architecture, based on the internal HEART bus which allows communications of up
to 400 MBps between the modules. The following modules have been mounted on the carrier
board for the implementations described here:

• Two HERON-IO2V2 modules with 2 analog inputs and 2 analog outputs of up to 125
MSps with 12 and 14 bits of resolution, respectively. These modules include a 1-million
(M)-gate Xilinx VirtexII FPGA and provide a JTAG interface that allows real-time
in-system debugging with Xilinx Chipscope and hardware co-simulation with System
Generator.

• One HERON-IO5 module with 2 analog inputs and 2 analog outputs of up to 210
MSps with 12 and 16 bits of resolution, respectively. This module includes a 3M-gate
VirtexII FPGA, which also contains a JTAG debugging interface.

• One HERON-FPGA3 module with a 1M-gate VirtexII FPGA. This module has been
replaced by a Virtex-IV module during the last stage of this work.
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Figure 3.6: Main elements of the real-time MIMO algorithm prototyping platform: antenna
sets (1), Heron board (2) and RF transceivers (3).

3.4.2 RF Transceivers
The platform is equipped with Maxim's MAX2827EVKit boards [Maxim], which have been
detailed in Section 3.3. The combination of the analog ports of the aforementioned pro-
totyping boards and these transceivers allows the implementation of systems with up to
three transmit and receive antennas. Figure 3.6 shows four of these RF transceivers with
the HEPC9-based rapid prototyping platform. As can be seen, two of the transceivers are
con�gured as transmitters and two as receivers to set up a 2× 2 MIMO system.

3.5 �Hardware in the Loop� Approach
FPGA designs developed using System Generator blocks or any other high-level design lan-
guage can be tested in two ways:

• Hardware co-simulation: The algorithm runs on real hardware, but not in real-time
[Rupp03, Mehlführer05]. This means that some real-time issues, such as clock o�sets
or synchronization problems, can not be included in the simulations. If the algorithms
do not run in real time, the FPGA implementation of the transmitter and receiver
algorithms can not be properly tested with real signals.
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• Hardware in the loop (HaLo): The algorithm runs on real hardware and in real-
time for a transmission burst. Real-time execution is con�gured, triggered and stopped
from Simulink. The whole system implementation can be validated in real-time or
combined with o�-line matlab simulations [Stege04].

This section describes the HaLo structure that has been developed for the MIMO pro-
totyping platform of the University of Mondragon. Thanks to this HaLo approach, any
algorithm implemented at any design level can be tested with real signals, executed in real-
time or can even be embedded in a real transmission system, thus facing real conditions from
the �rst design stages.

3.5.1 Synchronization between Matlab/Simulink and Real-Time
Hardware

The hardware co-simulation block of System Generator provides two di�erent modes that
allow the synchronization between Simulink and design running on an FPGA:

• Single stepped mode: The FPGA device is clocked from Simulink, being therefore
limited by the performance of the computer.

• Free running mode: The FPGA runs o� an internal clock and is sampled asyn-
chronously when Simulink wakes up the hardware co-simulation block. As the hard-
ware must run in real-time, the �free running� mode is selected for the implementation
of HaLo, establishing two clock domains: Simulink simulation clock domain and the
FPGA free-running clock domain.

Fig. 3.7 shows a basic 2x2 MIMO HaLo application which allows to send and receive
Matlab generated data by means of real-time running signal processing algorithms over real
MIMO channels. The interfacing between both clock domains is carried out by asynchronous
read and write memories located inside the FPGA and connected to Simulink by the JTAG
port. Simulink clock domain is presented in the left-hand side of the �gure, while the right-
hand side shows the real-time running hardware scheme. The interfacing memory blocks can
be implemented using �rst in-�rst out (FIFO) bu�ers or dual-port RAMs, extensively used
in multi-clock applications, providing a reliable and safe way to transfer data between the
host PC and the FPGA.

As it can be seen in Fig. 3.7, the �rst module is selected as the main link between Simulink
and the whole board. In this example, memory interfacing control signals are directly gener-
ated through a Matlab s-function block. Data read and write operations through the JTAG
port are asynchronous, as the hardware is running in �free-running� mode, i.e. real-time
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Figure 3.7: Scheme of a 2x2 real-time HaLo MIMO system controlled from Simulink.

clocked. Once all the data has been loaded into the transmission memory, the �rst mod-
ule is triggered and real-time data processing starts. The signal is modulated, transmitted,
received, demodulated and processed in real time.

When all the received information bits are detected, the Matlab control algorithm receives
a noti�cation and reads the information bits from the reception memory. BER and frame
error rate (FER) measurements are carried out in Matlab and any other analysis, such as
normalized mean squared error (NMSE) of the channel estimator, can be performed.

3.5.2 Application Examples
This section describes some of the applications of the developed �Hardware in the loop�
approach. Most of these applications have been necessary for the implementations described
in this chapter.

Validation of a complete 2x2 MIMO system

The HaLo features of the platform have been employed to implement the 2x2 spatial multi-
plexing system that will be detailed in the following section. The MIMO signal processing
algorithms have been progressively translated from Matlab/Simulink and tested with real
transmissions. The implemented algorithms include frame detection, symbol time synchro-
nization, frequency o�set correction, LS channel estimation and MIMO detection based on
a zero-forcer or a sphere decoder.
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Real-time execution with Matlab-simulated channels

A more complex channel model, developed in Matlab or Simulink, can also be used if the
HaLo approach is selected. Fig. 3.8 shows the diagram of a real-time MIMO system where
the real transmissions have been replaced by an o�-line Matlab-based channel. The inclu-
sion of known channels allows repeatability and eases the debugging of real-time algorithms
before their �nal validation with real transmissions.

Hardware/software co-simulation with real signals

The system can act as a basic testbed that combines Matlab code, hardware implemen-
tation and real signals. Thanks to the �exibility of the system, any of the algorithms of the
system can be implemented in hardware or simulated in Simulink [Stege04].
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Figure 3.8: Matlab-emulated channel in a real-time running rapid prototyping platform.

Hardware acceleration of computationally intensive simulations

The HaLo approach proposed in this section can also be used to accelerate the simula-
tion time of complex systems, such as decoding algorithms. For instance, the simulation of
the System Generator design of the whole MIMO system can run more than 20 times faster
on the FPGAs than in Simulink.

3.6 Implementation of a Basic 2x2 MIMO System
This section describes the implementation of a basic narrowband 2x2 MIMO system based
on a ZF receiver, which has allowed to test the elements of the platform and the validity of
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the design methodology. As has been detailed in Section 3.4, the RF transceivers operate
with baseband IQ signals. Therefore, the modulation does not need to be implemented in
the FPGA. Figure 3.9 shows the main blocks of the hardware implementation.
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Figure 3.9: Diagram of the implemented 2x2 MIMO wireless system.

3.6.1 Transmitter Algorithms
The main signal processing algorithms implemented at the transmitter are:

1. Preamble generation: A preamble is added at the transmitter to allow synchro-
nization and channel estimation at the receiver. Orthogonal binary phase shift keying
(BPSK) modulated Walsh codes have been selected.

2. Multiplexing: The information bits are divided into two separate streams which are
mapped, modulated and transmitted simultaneous and independently.

3. Symbol Mapping: The information bits are mapped onto a QAM constellation,
which can correspond to BPSK, QPSK or 16-QAM modulation.

4. Oversampling: The symbol stream is oversampled by a factor of 8.

5. Pulse Shaping: A raised cosine (RC) pulse-shaping �lter is applied to each symbol
stream with a roll-o� factor of β = 0.5.

6. Inline MIMO channel emulator: A �at-fading Rayleigh channel emulator has been
created to allow hardware co-simulation of the whole system. This channel emulator
is based on Gaussian noise generators and channel coe�cients stored in a large RAM
block. This allows to test the hardware implementation at its maximum rates without
breaking the �at-fading channel assumption.

Figure 3.10 shows a sample System Generator design including all the algorithms imple-
mented at the transmitter side.
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Figure 3.10: System Generator implementation of the 2x2 MIMO transmitter.

3.6.2 Receiver Algorithms
The following algorithms have been implemented at the receiver side, where most of the
complexity and resource demands arise:

1. Frame synchronization: a multi-antenna extension of the double-sliding window
technique has been applied [Heiskala02].

2. Sample-time synchronization: the ML approach of [Naguib98] has been chosen.

3. Frequency O�set Estimation: a reduced complexity iterative o�set estimation tech-
nique has been used as in [Simoens04].

4. Channel Estimation: a basic training-based LS (Least-Squares) MIMO channel es-
timator has been implemented [Marzetta99a].

5. Inverse calculation: A direct implementation of a 2 × 2 matrix inversion has been
developed, which is required by the ZF detector [Burg06].

6. MIMO equalization and detection: The ZF algorithm described in Section 2.2.4
has been implemented as a direct product of two complex 2× 2 matrices.
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3.6.3 Design Partitioning
Design partitioning, or the separation of a system across several DSP and FPGA devices, is
a major issue in the prototyping of complex systems, such as MIMO transceivers [Rupp03,
Kaiser04, Huang08]. Three are the main concerns in this �eld: the e�cient separation of
algorithms, the communication of data among all the elements and the generation of all the
code (DSP) and hardware designs (FPGA) required for all the devices.

As it has been shown in Section 3.4, the Heron rapid prototyping board consists of four
FPGA modules, which must be interconnected to be able to work with large designs. System
Generator provides its own interfacing libraries for some commercial boards. Unfortunately,
the Heron HEPC9 board is not directly supported. Even if System Generator provides ways
to set up new systems, the speci�c structure of the hardware and inter-modular link protocols
must be taken into account in order to achieve a successful multi-FPGA implementation.

Speci�c System Generator-based libraries have been created for inter-module communi-
cation and control of board resources. The design synthesis �ow has also been adapted to
the modular Heron platform, enabling the semi-automatic generation of bitstreams for all
the FPGAs.

The algorithms shown in the previous section have been implemented in four di�erent
Virtex-II FPGA devices, three of which have 1M gates and 3M the other. The �nal im-
plemented structure is shown in Figure 3.11. As it can be seen, the transmitter has been
located into one device, while the receiver has employed the rest of the available resources.
The four analog outputs are controlled by two di�erent devices, which must be synchronized
to allow MIMO transmissions, as will be shown in the next section. The same problem arises
with the four analog inputs.
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3.6.3.1 RF Chain Partitioning

As many MIMO algorithms rely on the reasonable assumption of fully synchronized trans-
mission and reception, a timing or frequency o�set on one board cannot be tolerated. As
the number of antennas grows, each module may not have enough analog inputs or outputs.
Therefore, it becomes necessary to distribute transmission and reception signals through
di�erent modules, requiring inter-module links with predictable delays.

As it is shown in Fig. 3.11, each IO module has 2 analog outputs and 2 inputs. Therefore,
each module can only support one receive and one transmit antenna. The synchronization
of the reception or transmission chains is implemented using a completely con�gurable delay
library. Depending on the applied inter-module communication con�guration, delay param-
eters are de�ned and automatically generated. In the 2x2 case of Fig. 3.11, data symbols are
transmitted synchronously by the RF transceivers, delaying one chain in the �rst module
until the other one arrives to the second module through the intermodule connection. The
same operation is repeated for received RF chain synchronization.

3.6.4 Complexity and Resources
Table 3.1 shows the FPGA resources of the complete MIMO system using 16-QAM modu-
lation. Only the numbers of embedded multipliers and FPGA slices are shown. They are
compared with the total number of resources available on the HEPC9-based rapid prototyp-
ing platform.

Algorithm Mults Slices % Slices
Transmitter 0 1,320 5.34%
Receiver 38 8,413 34.07%
Sync & Ch. Est. 18 2,693 10.9%
Inverse 16 3,881 15.72%
ZF 4 1,839 7.4%

Ch. Emulator 20 1,771 7.17%
Comm. & Control 0 1,542 6.24%
Total Used 58 13,046 52.83%
Total Available 216 24,696

Table 3.1: FPGA resources used by the ZF-based real-time implementation.

The three main blocks of the receiver are also shown to indicate the distribution of
the resources. The calculation of the inverse is the most computationally intensive task,
followed by the joint synchronization and channel estimation process. It should be noted
that the matrix inversion has not been optimized from a resource-consuming point of view,
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since it has been implemented using the direct adjoint matrix method, whose application is
straightforward, but is computationally ine�cient [Burg06].

The algorithm named �Comm. & Control� corresponds to the logic required for the inter-
module data communication and the PCI-based control of the real-time execution �ow.

3.7 Implementation of a Sphere Decoder-Based MIMO
System

As part of the work developed during this thesis, a full SD-based 2×2 MIMO system has been
developed, in collaboration with the Institute for Digital Communications of the University of
Edinburgh. This is the �rst real-time implementation of a whole SD-based real-time MIMO
system. The analysis of the integration of the SD in a realistic whole MIMO prototype
is specially interesting to evaluate its feasibility, complexity and performance degradation
under implementation constraints.

As will be shown in Chapter 5, this implementation has been used to analyze the ef-
fects of channel estimation and implementation errors on the theoretical performance and
throughput of an SD-based MIMO system. A 16-QAM constellation has been chosen to have
a moderately large set of BM = 162 = 256 candidates.

3.7.1 Integration of the SD Model into the MIMO Implementation
The SD algorithm described in Section 2.2.4.1 has been integrated into the whole MIMO
implementation described in the previous section. The SD hardware implementation that
has been ported to the platform has been designed and validated at the University of Edin-
burgh using System Generator for DSP [Barbero05a]. Figure 3.12 shows a diagram of the
architecture which implements the exact algorithm described in Section 2.2.4.1. Therefore,
this detector has a variable throughput and obtains the same solution as the optimal ML
detector.

The aforementioned SD module has been ported to the MIMO prototyping platform
located at the University of Mondragon. The SD algorithm requires two important pre-
processing steps which were executed o�-line in the SD implementation of [Barbero05a].
These operations, which have been implemented to make the SD work in a real system, are
the following:

• An inverse (or pseudoinverse) calculation for ZF pre-processing.

• A Cholesky decomposition of the Gram matrix HHH .

Therefore, these two blocks have been implemented in order to make the SD implemen-
tation work in a full real-time MIMO transmission system. The implementation has been
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Figure 3.12: Structure of the System Generator implementation of the SD decoder, developed
at the University of Edinburgh.

tested running in real time and using the inline channel emulator described in Section 3.4.
The use of an inline channel allows to switch between ideal and hardware values for synchro-
nization times, channel estimates or pre-processing matrices. Hence, the partial e�ect of the
implementation of each module or algorithm can be evaluated.

Two are the magnitudes that have been evaluated for di�erent Eb/N0 values: BER per-
formance and the achievable throughput. Figure 3.13a shows the BER curves of the imple-
mented SD-based MIMO system with perfect synchronization, pre-processing and channel
estimation. The BER performance is shown for the FPGA implementation with 16 and 12

bits of resolution at the input. Since the analog to digital converter (ADC) devices of the
MIMO platform have a maximum of 12 bits of resolution, this has been the value selected
for the �nal implementation. The results for non-ideal synchronization, pre-processing and
channel estimation will be shown in Chapter 5.

Figure 3.13b shows the maximum achievable throughput of the implemented SD-based
MIMO system with perfect synchronization, pre-processing and channel estimation for 16-
bit and 12-bit FPGA implementations. As it is shown, the throughput of the SD does not
depend only on the channel conditions, but also on the e�ective SINR which depends on
quantization and implementation errors.
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Figure 3.13: BER (a) and throughput (b) performance curves for the FPGA implementation
of the SD algorithm.

3.7.2 Complexity and Resources
Table 3.2 shows the FPGA resources of the complete SD-based MIMO system using 16-
QAM modulation. In this case, the calculation of the inverse of the channel matrix and the
Cholesky decomposition of the Gram matrix are the most computationally intensive tasks. It
should be noted that these two operations have not been optimized from an implementation
point of view given that the focus of this work was on the integration of the SD in a MIMO
system. As it can be seen in Table 3.2, the implementation of the SD requires a relatively
small FPGA area, indicating that several SDs could be implemented in parallel on the same
prototyping platform.

Algorithm Mults Slices % Slices
Transmitter 0 1,320 5.3%
Receiver 74 11,923 48.3%
Sync & Ch. Est. 18 2,693 10.9%
Inv. & Chol. 33 4,608 18.6%
SD 23 3,370 13.7%

Ch. Emulator 20 1,771 7.2%
Comm. & Control 0 1,542 6.2%
Total Used 96 16,556 67.0%
Total Available 216 24,696

Table 3.2: FPGA resources used by the SD-based real-time implementation.
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3.8 Chapter Summary
This chapter has described the development of a hardware prototyping platform for the
design and validation of real-time signal processing algorithms for MIMO communications.
A Matlab/Simulink-based methodology has been developed and a �exible platform has been
built which has allowed to port a whole basic MIMO system from Matlab to a multi-FPGA
implementation. Xilinx System Generator for DSP has been chosen as the main tool to
directly generate VHDL designs and co-simulate from Simulink.

The platform located at the University of Mondragon allows to validate Matlab, VHDL
or System Generator algorithms with real signals and with real-time hardware, depending
on the needs for every designing stage. The platform is mainly based on modular Hunt
Engineering Heron rapid prototyping boards and Virtex-II FPGA devices.

Two fundamental detectors have been implemented at the MIMO receiver: ZF and SD.
The latter has been developed in collaboration with the University of Edinburgh, leading to
the �rst SD-based real-time MIMO prototype. Both implementations have been the basis
for the analysis of realistic channel estimation and implementation impairments in Chapter
5.

The main contributions and results of these chapter are the development of a �exible
MIMO prototyping platform, the design and validation of a real-time algorithm development
methodology, and the full real-time implementation of a MIMO wireless system, which can
be based on the ZF or the SD detector.
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MIMO Channel Estimation

4.1 Introduction
All the MIMO detection algorithms described in Section 2.2.4 require the knowledge of the
channel matrix H to detect the transmitted symbols. The estimation of the channel is
specially complex for MIMO systems, due to the multiplication of the number of channel
parameters to estimate. For example, if a system with M = 4, N = 4 and a channel impulse
response length of L = 16 is considered, MNL = 256 complex values must be estimated.
Therefore, if the SISO case is established as a reference, the number of parameters to estimate
has been multiplied by MN , whereas the number of received symbols is only N times larger.

The e�ciency of channel estimation can a�ect the performance of the system in two
di�erent ways: introducing a channel estimation error that reduces the channel capacity
and dedicating a fraction of its bandwidth to the transmission of pilots or training symbols
[Hassibi00, Biguesh06].

The capacity bounds of MIMO systems with channel estimation error have been theoret-
ically evaluated for a set of reference systems [Marzetta99a, Hassibi00, Yong04, Cosovic07],
though these theoretical analysis can not be linked to practical performance results.

Three are the main strategies for the design of MIMO channel estimation algorithms:

1. Supervised or training-based methods: A set of known information symbols are
sent so that the receiver can estimate the channel [Hassibi00, Biguesh06].

2. Blind techniques: The channel values are recovered from the statistical properties
of the received information symbols up to some kind of ambiguity [Tong94, Tong98,
Bölckskei02, Larsson03]. A reduced number of training symbols is usually still needed
to obtain an estimate.

3. Semi-Blind channel estimation: A training matrix is used to allow a �rst estimate,
which is improved using statistical properties of the received signal or information from
already detected symbols [Muquet99, Míguez02, Wang03, Jagannatham06].
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This chapter analyzes the most common channel estimation algorithms used in MIMO
wireless communications. Following the structure of Chapter 2, the main estimation tech-
niques are summarized for each fundamental MIMO system, focusing on practical and fea-
sible algorithms. The objective of this chapter is to classify and evaluate by simulations the
algorithms whose e�ects will be analyzed in the following chapter.

As it has been stated in Chapter 2, many wideband MIMO communication systems,
such as MIMO-OFDM, can be modelled as multiple narrowband transmissions. Although
this is not strictly true for channel estimation issues, frequency-�at fading MIMO channel
estimation, which is detailed in Section 4.2, has been considered the basis for the analysis
of more complex systems. Since most of the wireless standards transmit pilots or known
information symbols, only trained and semi-blind channel estimation algorithms have been
considered as practical cases.

Section 4.3 analyzes the estimation of frequency-selective channels in MIMO-OFDM and
MIMO-SCFDE systems. The main time-domain and frequency-domain algorithms are ana-
lyzed and compared by simulations for burst transmissions in a WLAN scenario. Iterative
channel estimation for Turbo-MIMO systems is then analyzed in Section 4.4, focusing on a
decision-directed expectation maximization (EM) channel estimation algorithm. Simulation-
based performance results are shown for an MMSE-PIC receiver with channel estimation er-
ror. Last, a BER evaluation tool is proposed which allows to predict the BER performance of
iterative MMSE-PIC systems with channel estimation, extending the semi-analytical EXIT
functions described in Section 2.5.

4.2 Narrowband MIMO channels
In common frame or burst based wireless systems, such as the WLAN scenarios de�ned by
the IEEE 802.11a standard, known symbols are transmitted with the information symbols
to allow channel estimation at the receiver [IEEE99]. These training symbols are usually
inserted either at the beginning of the frame (preamble) to allow the �rst channel estimate
or spread among all the information symbols for channel tracking in fast-fading channels
[Sun02, Lang04].

A quasi-static fading model is assumed for the work described in this chapter, i.e., the
channel can be considered constant for a burst or frame. Therefore, the training symbols
can be inserted at the beginning of each frame as a preamble of length LT . The transmitted
symbol matrix S can be then represented as the concatenation of a known training matrix ST

and the data symbol matrix SD of dimensions M×LT and M×LD, respectively, as depicted
in Figure 4.1. The received symbol matrix R can be equally split into a training-related part
RT and a data matrix RD of dimensions N × LT and N × LD, respectively.

Since a frame-based wireless system is assumed, and with implementation in mind, only
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L

LT LD

M

Figure 4.1: Structure of the transmitted symbol matrix S.

simple supervised and semi-blind schemes are considered in this section. First, basic LS and
linear minimum mean squared error (LMMSE) channel estimation techniques are considered.
Two simple semi-blind techniques are then analyzed, based on hard decision-directed iterative
estimation and statistical processing of the received data symbols.

4.2.1 Training-Based Channel Estimation
Training-based estimation of frequency-�at fading MIMO channels is extensively studied
in the literature. The capacity limits for these systems have been theoretically analyzed
from several points of view [Marzetta99a, Hassibi00, Furrer07]. The optimal values for the
training parameters have been calculated from capacity-maximization criteria, concluding
that training-based channel estimation is clearly suboptimal, specially for low SNR scenarios
[Hassibi00]. Another very important drawback of training-based channel estimation is that
the training length must be at least equal to the number of transmitted antennas, which
can reduce the e�ciency of MIMO systems with a large number of transmission antennas.
These are the main arguments that justify the use of semi-blind estimation techniques.

Although there are more approaches to training-based channel estimation of MIMO chan-
nels, two are the fundamental schemes which can be used as references for the rest of the
systems that will be analyzed later. These are the LS and the LMMSE channel estimation
methods. The following sections show the structure of these estimators, as well as some
results regarding their performance for di�erent training lengths.

4.2.1.1 Least-Squares Channel Estimation

The LS solution to the training-based channel estimation problem, which is equivalent to
ML, can be expressed as

ĤLS =

√
M

Es

RT (STSH
T )

−1
SH

T . (4.1)

The LS channel estimation involves the inversion of a M ×M matrix, whose rank can
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be su�cient only if the length LT of the training matrix is not smaller than M and the
training sequences contained in ST are orthogonal. In other words, as many measurements
as unknowns are needed in order to obtain the LS solution. Since ST is known at reception,
(STSH

T )
−1

ST , which involves a matrix inversion, can be computed o�-line. Hence, only a
matrix product is required to obtain the channel estimate.

It has been shown in [Hassibi00, Marzetta99a] that the training matrix ST is optimal if
it is the multiple of a matrix with orthonormal rows, i.e., tr

(
STSH

T

)
= ET IM , where ET is

the total training energy. It has been proposed in [Biguesh04] that this optimal structure
can be obtained using a DFT-like matrix, though BPSK-modulated binary codes, such as
Walsh codes, can also be used. The latter have been chosen to obtain the results shown in
this chapter. If this kind of BPSK-modulated signals are used, the aforementioned matrix
product can be further simpli�ed to addition and substraction operations.

The NMSE of the LS estimation, denoted as γ, is a widely used parameter when evalu-
ating channel estimation algorithms and is calculated as

γ =
E(‖H− Ĥ‖2)

E(‖H‖2)
, (4.2)

where Ĥ stands for the estimate of the channel matrix H. The NMSE for LS channel
estimation can be expressed as [Biguesh06]

γLS =
N0M

ET

, (4.3)

where ET represents all the training energy. If a �xed training power is assumed, which
will be the case for this research work, the energy of the training matrix can only be increased
augmenting its length LT . If the energy per symbol is assumed equal for training and data
symbols (ET = ‖ST‖2 = EsLT ), the result in (4.3) becomes

γLS =
M

ρLT

. (4.4)

Figures 4.2a and 4.2b show the NMSE and BER performances of a 4×4 QPSK transmis-
sion system with LS channel estimation and MMSE detection for di�erent training lengths.

Figure 4.2a shows the NMSE curves for 4 di�erent training lengths, from the minimum
(LT = 4) to LT = 12. The NMSE decreases linearly with both the SNR value ρ and the
training length LT , as de�ned in (4.3). As can be seen in Figure 4.2b, the BER performance
improves if the training length LT increases, but this improvement gets smaller for low SNR
values and long training blocks. For instance, the BER improvement is remarkable when the
training length increases from LT = 4 to LT = 6, but it is negligible when it changes from
LT = 8 to LT = 12. Hence, there is not a direct relationship between the NMSE value and
the BER, which is the main reference for system performance. Therefore, the NMSE value
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Figure 4.2: NMSE (a) and BER (b) performance curves of LS channel estimation for a 4× 4
spatial multiplexing system with MMSE detection.

can be considered when comparing channel estimation schemes, but the BER measurement
must be the reference in order to evaluate the �nal e�ect of channel estimation algorithms.
As will be shown later, this lack of relationship between NMSE and BER measurements can
be more severe when di�erent channel estimators are compared.

4.2.1.2 Linear Minimum Mean Squared Error Channel Estimation

The NMSE curves of LS MIMO channel estimation can be enhanced for low SNR ranges if
the SNR value ρ and the channel correlation metrics are employed [Biguesh06]. This is the
case of the LMMSE estimator, whose solution can be expressed as

ĤLMMSE =

√
M

Es

RT

(
STRHSH

T +
M

ρ
IMxM

)−1

SH
T RH , (4.5)

where RH = E(HHH) is the expectation of the channel autocovariance matrix, which is
directly related to channel path correlation [Schumacher04]. Figure 4.3a shows the NMSE
performance comparison for LS and LMMSE channel estimators for a 4x4 spatial multi-
plexing system with antenna correlation factors of σH = 0 and σH = 0.35 [Schumacher04].
As it can be easily seen, the LMMSE estimator tends to the LS solution at high SNR in
uncorrelated fading channels.

These results show that the channel estimation NMSE is clearly improved by the LMMSE
estimator for low SNR cases. On the other hand, the estimation NMSE improves slightly
when a larger correlation factor is added to the simulations. Furthermore, this NMSE
improvement gives rise to a very small decrease in the BER ratio. For instance, Figure 4.3b
shows the BER performance of both estimation techniques.

Therefore, despite the large NMSE di�erence at low SNR regimes, the BER improvement
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(a) (b)

Figure 4.3: NMSE (a) and BER (b) performance curves of LS and LMMSE channel estima-
tion for a 4× 4 spatial multiplexing system with MMSE detection.

of LMMSE with respect to LS is negligible. Therefore, the NMSE of the channel estimate
can not be considered as an absolute reference. From the results shown in this section, it
can be stated that LMMSE does not clearly outperform LS in terms of �nal BER in systems
with a low antenna correlation factor σH , despite its greater complexity.

If the implementation cost of both algorithms is analyzed, it can be stated that the
LMMSE channel estimator requires an extra addition and a matrix product. Nevertheless,
it can be much more complex than the LS implementation since no value can be precomputed,
due to the variability of RH and ρ. From the results shown by BER simulations and this
simplistic complexity analysis, it is concluded that the LS estimator may be a more e�cient
solution from an implementation point of view.

4.2.1.3 Other Training-Based Techniques

Many other channel estimation techniques exist for training-based systems [Biguesh06]. One
of the most interesting approaches, at least from a communication theory point of view,
is the superimposed pilot (SIP) scheme, which was �rst applied to channel estimation in
[Farhang-Boroujeny95]. It has been used for MIMO channel estimation and its performance
has been analyzed from several points of view, including but not limited to e�ective maximum
throughput, estimation NMSE, �nal BER, etc. [Zhu03a, Coldrey07].

These SIP structures avoid training overhead by simultaneously transmitting pilots and
information symbols, achieving a better throughput. Their main drawback is the channel
estimation error induced by the interference of information symbols. The SIP-based channel
estimation has been deeply analyzed in [Coldrey07], where its optimal con�guration and
further iterative performance improvements have been shown. The SIP techniques have
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been proven to perform better than conventional pilot schemes only in low SNR and very
fast fading scenarios [Coldrey07].

4.2.2 Semi-Blind Techniques
After analyzing the limitations of the main training-based channel estimation techniques (loss
of spectral e�ciency and suboptimality), this chapter describes several semi-blind algorithms
that have been chosen with one or both of the following objectives:

1. Reduction of the length LT of the training matrix, which can lead to a higher spectral
e�ciency.

2. Improvement of the results obtained using the training-based schemes.

These semi-blind algorithms employ the whole received symbol matrix R, including the
unknown data symbol matrix RD, to estimate the channel from known properties of the
transmitted data symbol matrix SD, such as independence of the sources, the �nite alphabet
of the symbols or the constant modulus of phase shift keying (PSK) signals.

Two main algorithm families have been considered:

1. Decision-directed iterative techniques, which iterate between channel estimation and
data detection in order to get lower symbol error rates [Talwar96, Grant00b, Deng03,
Khalighi05].

2. Second and higher-order statistics-based methods [Veen96, Medles03, Jagannatham06].

The main features of these estimation techniques and basic performance results will be
shown in this subsection.

4.2.2.1 Iterative Channel Estimation

Although iterative channel estimation in coded Turbo-MIMO systems will be analyzed later
in this chapter, other simpler decision-directed approaches are summarized here for uncoded
hard-detection systems. These schemes lie on the �nite alphabet property of the source
signals to improve the channel estimation accuracy or to reduce the length of the training
sequences. Several iterative least squares (ILS) systems have been introduced in [Talwar96,
Ranheim05] for blind or semi-blind estimation of di�erent synchronous co-channel signals.
These approaches employ the already detected signals as training symbols, consequently
improving the channel estimate until a convergence threshold is met. Very similar block-
iterative estimation techniques have been derived for iterative coded MIMO system using
an EM formulation, although soft symbol estimates are used instead of hard decisions for
channel re-estimation [Khalighi05], as will be shown in Section 4.4.

The main features of these algorithms can be summarized as:
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1. The channel estimation improvement depends directly on the error probability of the
MIMO detector. Therefore, the improvement only appears when a minimum SNR level
is achieved. Obviously, this estimation approach depends on the symbol constellation.

2. An initialization is required for the �rst iteration. This can be done assigning zero,
random or received symbol-based values to the channel and data symbols. Neverthe-
less, it has been shown in [Li00] that these approaches can lead to wrong solutions
or need several run trials to converge. The use of blind source separation techniques
(see next subsection) or training-based LS is suggested in [Li00] to obtain the initial
channel estimate required for the �rst iteration.

3. Even for uncoded and high symbol error rate systems, these algorithms can o�er a
remarkable BER improvement from the �rst iteration with a relatively low complexity
[Buzzi04].

Similar iterative channel estimation techniques have been presented in [Grant00a, Buzzi04,
Ranheim05]. The simplest algorithms have been selected for the results shown in this sec-
tion, extending the training matrix ST with detected symbols using the aforementioned ILS
algorithm. As a �rst approach, this iteration process has been implemented block-wise and
only for uncoded bit streams. However, it will be extended to iterative coded systems in 4.4.

Figures 4.4a and 4.4b show the NMSE and BER performance improvements achieved
for a 4 × 4 QPSK system reusing the detected symbols as an extension to the training
sequences through an iterative approach. As it can be seen, the iterative algorithm with
the minimum training length (LT = M = 4) and 2 iterations outperforms the basic LS
algorithm with LT = 6. It is shown that a great improvement can be achieved for the second
estimation, though it seems to get smaller as the number of iterations grows. For example,
if the minimum training length of LT = M is considered, the 3 dB gap of the LS channel
estimator can be reduced to nearly 1 dB if two iterations are carried out.

4.2.2.2 Second and Higher-Order Statistics-Based Approaches

Although there are a deal of semi-blind estimation algorithms based on second and higher
order statistical properties of the signal [Veen96, Via07, Sabri08], two special techniques have
been considered here, specially suited for spatial multiplexing systems: a simple algorithm
based on second-order statistics, which achieves quite good results in a very simple manner,
and a blind source separation-based approach, which can reduce the length of the preamble
with a relatively low computational complexity.
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Figure 4.4: NMSE and BER curves of iterative LS channel estimation for a 4 × 4 spatial
multiplexing system with MMSE detection.

Whitening-Rotation or Gaussian Semi-Blind estimation

A very interesting semi-blind algorithm was introduced in [Medles03] and [Jagannatham06]
for MIMO systems, named Gaussian semi-blind or whitening-rotation (WR), respectively.
Parting from independent component analysis (ICA) concepts, this estimation algorithm
decomposes the channel matrix as the following product:

H = WQ (4.6)

where W is a whitening matrix with the same dimensions as the channel (N ×M) and
Q is a square unitary (rotation) matrix of dimensions M ×M .

This technique proposes to estimate the W matrix from the correlation of the received
symbols, i. e., employing second-order statistics, whereas the Q matrix must be estimated
from the training sequence. The main advantages of estimating Q instead of H are the
following:

1. The matrix to be estimated is of dimensions M x M , instead of N x M .

2. The Q matrix, being unitary, implies M2 real parameters, instead of the 2M2 of an
ordinary complex matrix [Jagannatham06]. This property of the Q matrix increases
the relationship between measurements and unknowns, leading to a better channel
estimate.

For example, assuming that W is perfectly known at the receiver, estimating Q instead
of H can o�er an improvement of up to 3 dB in NMSE [Jagannatham06]. From a com-
plexity point of view, this technique requires the estimation of the correlation matrix from
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the outputs and several singular value decomposition operations. Despite its bene�ts, this
technique still requires the use of a training sequence of a length equal or larger than the
number of transmitting antennas.

Figure 4.5b shows the BER comparison for 4×4 BPSK spatial multiplexing systems with
trained LS, ILS and the WR algorithm. As it is shown, the iterative algorithm outperforms
the WR for small constellations. Although it has not been included in this document, the WR
algorithm achieves a better performance than the one-iteration ILS for larger constellations,
such as 16-QAM.
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Figure 4.5: NMSE (a) and BER (b) curves of training-based, iterative LS and WR channel
estimation techniques for a 4× 4 BPSK transmission of 100 bits per antenna.

If the NMSE curves of Figure 4.5a are analyzed, the estimation performance seems to be
much worse than what it actually is. At high SNRs, the WR algorithm seems to perform
even worse than the LS, but these results do not �t with the BER performance curves of
Figure 4.5b. This case can be considered a good example of the lack of reliability of the
NMSE for channel estimator comparison, specially when estimators with di�erent output
distributions are used, as will be shown later in this section.

The di�erences between BER and NMSE results can be easily explained if the cumulative
distribution function (cdf) of the output SINR is plotted and compared for the di�erent
estimation methods. Figure 4.6 shows the cdf of the output SINR per detected symbol for
Eb/N0 values of 11, 14, 17 and 20 dB. Note that the �nal BER is determined by the cdf
value at which a speci�c SINR level is met, which depends on the selected constellation.

As it is shown in Figure 4.6, the mean value of the SINR is smaller for the WR method
at the mentioned high SNR values, but if the low SINR region of interest is analyzed, it
can be seen that the cdf of the SINR gets smaller for the WR method, involving a lower bit
error probability. This can be due to the fact that the WR algorithm gets a �spatially� more
accurate estimate of the MIMO channel matrix, despite its worse NMSE value.
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Figure 4.6: cdf of output SINR for di�erent channel estimators and Eb/N0 values.

Blind Source Separation Based Approaches

Since independent information streams are transmitted in an SM system, another inter-
esting approach can be based on the principles of blind source separation (BSS). These
methods allow to recover the MIMO channel blindly up to a permutation and phase rotation
of the sources. Equation (4.7) shows the relationship between the blindly recovered symbols
S̄, the transmitted symbols S and the separation matrix G. Matrix P represents a permuta-
tion of the sources and D̄ is a diagonal matrix containing a phase shift at each transmission
antenna.

S̄ = GR = PD̄S + N̄ (4.7)

The channel matrix can be calculated from G, P and D̄ [Veen96]:

Ĥ = G+PD̄ (4.8)

The P and D̄ ambiguity matrices can be estimated employing training sequences which
can be much shorter than those required for training-only based channel estimation. The
main drawbacks of this kind of algorithms are their slow convergence and relatively high
complexity. Since a limited frame length has been assumed, algorithms which can lead to
short training sequences and fast convergence have been specially considered.

Two special BSS algorithms have been analyzed:

1. ACMA (Analytical Constant Modulus Algorithm) [Veen96]: Based on the CM (Con-
stant Modulus) property of some constellations, such as PSK. For systems without
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noise, this non-iterative solution needs M2 information symbols to get a solution. For
AWGN channels, this estimation method o�ers very good results for short frame sizes.
It has been proposed in [Lang04] as a possible complement to trained estimation and in
[Li00] as a blind initialization technique for ILS algorithms. It has also been combined
with space-time codes in [Swindlehurst02]. As many other CM-based algorithms, it
can get acceptable results for non-constant modulus constellations like 16-QAM if a
larger number of samples is employed.

2. JADE (Joint Approximate Diagonalization of Eigenmatrices) [Cardoso93]. This so-
lution, based on 4th order statistics, o�ers relatively fast convergence and has been
proposed in [Wang03] for spatial multiplexing systems with V-BLAST detection. It
requires a larger number of samples than the ACMA algorithm, but it does not depend
on the CM property.

These two methods employ, direct or indirectly, 4th order statistics and need to solve
a joint matrix diagonalization problem. Figure 4.7 shows the comparison of BER rates for
a 6 × 6 MIMO system with ZF detection, ACMA-based channel estimation, considering
di�erent training lengths and Eb/N0 values of 0, 10 and 20 dB. The results for an LS scheme
with the minimum training length have been included for comparison purposes. Though
simpli�ed, the results show that the ACMA BSS algorithm outperforms LS with only half
of the training symbols. Even with just two training periods, the obtained results, though
worse than LS, can be valid for the initialization of iterative algorithms, as has been proposed
in [Li00, Lang04].
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Figure 4.7: BER performance of ACMA-based channel estimation with di�erent training
lengths and Eb/N0 values of 0, 10 and 20 dB.
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4.3 MIMO-OFDM and MIMO-SCFDE
This section describes the main MIMO-OFDM and MIMO-SCFDE channel estimation meth-
ods. Two cases are analyzed: �rst, an optimal time-domain channel estimation algorithm is
evaluated where the channel impulse response is calculated using an LS approach. The sec-
ond one, which is simpler and easier to implement, calculates the frequency-domain channel
responses at certain frequencies, interpolating the value for the rest of the subcarriers. Sev-
eral di�erent optimal pilot allocation schemes are then analyzed, focusing on implementation
considerations. Although only OFDM is considered in this section, the same techniques can
be used for MIMO-SCFDE, as will be shown in the performance results of Chapter 5.

4.3.1 Time-Domain LS-ML Channel Estimation
A MIMO-OFDM system model was shown in Section 2.3, where the CP-induced circulant
channel convolution was represented by a Toeplitz matrix Hc, which contained cyclic shifts
of the channel impulse response. Since the objective of this section is the estimation of these
channel coe�cients, another representation is more suitable. Many di�erent models have
been published [Li99, Barhumi03, Minn06], where the latter is of special interest because of
its general formulation of the problem.

As has been stated for narrowband MIMO systems, the estimation of a generic M ×N

system with uncorrelated path gains can be analyzed as N di�erent M × 1 estimation
problems. Therefore, the basic M×1 model will be analyzed here, as de�ned in [Barhumi03,
Minn06]. As a �rst approach, Q training OFDM symbols of T tones or subcarriers will be sent
through M transmission antennas. The frequency-domain training symbol for transmission
antenna m and OFDM symbol q can be then expressed as

cm,q = [cm,q[0], cm,q[1], ..., cm,q[T − 1]]T , (4.9)

and the respective CP-added time-domain signal of length T + LCP can be represented as

sm,q = [cm,q[−LCP ], cm,q[−LCP + 1], ..., cm,q[0], cm,q[1], ..., cm,q[T − 1]]T , (4.10)

where LCP > L is the length of the CP and L is the maximum length of the channel impulse
response.

Assume Sm[q] is the T ×L training symbol matrix for the m-th transmit antenna and the
q-th OFDM symbol, whose elements are given by [Sm[q]]t,l = sm,q[t− l] for t ∈ {0, ..., T − 1}
and l ∈ {0, ..., L − 1}. If all the training matrices Sm[q] are stuck into an ST matrix of
dimensions QT × LM and the M channel path gain vectors of length L are stuck into an
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LM × 1 column vector h, the whole system can be represented as

r = STh + n, (4.11)

where r is the QT × 1 vector of received symbols after CP removal and n is the QT × 1

vector of uncorrelated Gaussian noise samples with variance N0.
Using this representation, the channel coe�cients appear only once in the equation, while

the time-domain training symbol matrix ST includes the Toeplitz structure required by the
channel convolution. Once the system model is represented in this way, the LS channel
estimate ĥ, which is the same as the ML, can be calculated as [Minn06]

ĥLS =

√
M

Es

(
SH

T ST

)−1
SH

T r. (4.12)

Note that the inversion of an ML ×ML complex-valued matrix is required, among many
other operations. If ST is known, which is the case for preamble-based channel estimation,
the matrix

(
SH

T ST

)−1
SH

T can be computed o�-line so that the channel estimation process
becomes a matrix product. The latter can be further simpli�ed depending on the pilot
structure, as will be shown in the next section.

The mean squared error (MSE) of the channel estimate is given by N0tr{
(
SH

T ST

)−1}
[Minn06] and the NMSE can be represented as:

γLS = γML =
ML

ρQT
. (4.13)

The conditions for the optimal channel estimation are analyzed in [Minn06] and are
ful�lled when

SH
T ST = ET I, (4.14)

where ET is the mean training energy per each transmission antenna [Minn06].
Figure 4.8 shows the NMSE and BER performance curves for a 4×4 MIMO-OFDM sys-

tem with ML channel estimation for uncoded and rate-1/2 coded transmission. A HIPER-
LAN/2 A Model of 11 taps has been used for the simulation [Medbo98], allowing ML < T .
As can be seen, the channel estimation error NMSE decreases linearly with the SNR.

The estimation algorithm of (4.12) has two limitations. On one hand, if the number of
estimated parameters (ML) is larger than the number of FFT points (T ), several symbols
must be used for channel estimation. Di�erent groups of transmission antennas can be
located in di�erent OFDM symbols, as has been shown in [Minn06], where the design of
optimal MIMO-OFDM preamble structures is deeply analyzed. On the other hand, an
interesting situation arises when the length of the channel impulse response L is larger than
the guard interval LCP . If the structure of the training symbols is the same as the data
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Figure 4.8: NMSE (a) and BER (b) performance of ML channel estimation for a 4 × 4
HIPERLAN/2 A channel model (L = 11 taps).

symbols, the full channel impulse response cannot be estimated due to ISI. For instance,
if the HIPERLAN/2 C channel model of L = 31 taps is used in a WLAN 802.11a-based
MIMO system with a guard interval of LCP = 16 [Medbo98], the number of estimated taps
must be limited to 16. Figure 4.9 shows the simulation results for this situation. As can be
seen, an error �oor appears on the channel estimation NMSE curves, since the last taps of
the impulse response are not taken into account. This NMSE error �oor translates into a
BER �oor at high SNR, which can be mitigated with coding, as is shown in Figure 4.9b.
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Figure 4.9: NMSE (a) and BER (b) performance of ML channel estimation for a 4 × 4
HIPERLAN/2 C channel model (L = 31 taps).

The WLAN IEEE 802.11a and IEEE 802.11n standards provide a preamble structure
that allows to improve the channel estimation [IEEE99, IEEE07]. As can be seen in Figure
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4.10, a double-length symbol is included in the preamble, with a double cyclic pre�x. This
can simplify the task of estimating channel impulse responses of up to 2LCP taps. For
instance, Figure 4.11 shows the channel estimation performance when a double-length OFDM
preamble is used in a HIPERLAN/2 C channel model of 31 taps. This structure allows to
estimate up to 32 taps of the channel impulse response with one double symbol and 2 transmit
antennas.

Figure 4.10: Structure of the 802.11a preamble, showing a double-length symbol for channel
estimation [IEEE99].
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Figure 4.11: NMSE (a) and BER (b) performance of LS channel estimation for a 2 × 2
HIPERLAN/2 B channel model (L = 21 taps) using the double-length preamble provided
by the IEEE 802.11a standard.

The same time-domain channel estimation is shown in [Li99] for a 2 × 2 STC scheme,
though a very di�erent notation is used. A complexity reduction method is proposed based
on the estimation of only the most signi�cant taps, which a�ects directly to the size of the
matrix inversion operation [Li99].
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4.3.2 Frequency-Domain LS Channel Estimation
The aforementioned channel estimation process can be simpli�ed if it is carried out directly in
the frequency-domain. Parting from the narrowband estimation algorithms and preambles,
simpler channel estimation schemes can be developed. For example, assuming a 4×4 MIMO-
OFDM system, the channel estimation requires 4 subcarriers for each channel estimate.
These training symbols can be allocated in subsequent subcarriers and/or OFDM symbols,
depending on the frequency and time selectiveness of the channel.

Figure 4.12 shows the structure of two di�erent training sequences which can be used
for frequency-domain channel estimation. The �rst one (a) dedicates each subcarrier to one
transmit antenna using frequency-divison multiplexing (FDM), whereas the second one (b)
uses 4 subcarriers for 4 channels, applying a frequency-domain code divison multiplexing
(CDM) approach. For example, the ST blocks shown in Figure 4.12b can be orthogonal
Walsh codes, which allow the orthogonality of the transmitted symbol streams. On the
other hand, Figure 4.13 shows the structure of a frequency-domain training matrix where
the basic training blocks are divided across two consecutive antennas.
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Figure 4.12: Training structures for frequency-domain MIMO-OFDM channel estimation.
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Figure 4.13: Structure of a 4×N MIMO-OFDM preamble with training blocks spread across
2 subcarriers and 2 consecutive OFDM symbols.

Once the channel gain values are estimated for a subset of the subcarriers, they must
be interpolated for the rest of subcarriers. This can be done using simple polynomial in-
terpolation techniques [Kim05] or calculating the length-limited temporal channel response
through IFFT and FFT operations. A complexity evaluation, based on the number of
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required real operations, has been presented in [Krondorf06]. Linear interpolation-based
frequency-domain channel estimation is the less resource-demanding technique, while the
optimal LS estimation of Section 4.3.1 seems to be the most complex one. On the other
hand, the FFT-based interpolation method gives the same NMSE results as the time-domain
LS estimation.

Figure 4.14 shows two examples of estimated channel impulse responses using di�erent
interpolation methods: FFT-based and linear interpolation. As can be seen, only some of
the frequency subcarriers have been used for the estimation of the channel impulse response.
Figure 4.14 shows the accuracy of the FFT-based interpolation method, whereas the error
of the linear interpolator is remarkable.
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Figure 4.14: Examples of two channel estimates using FFT-based and linear interpolation
schemes.

Figures 4.15a and 4.15b show the NMSE and BER performance curves for the two di�er-
ent interpolation approaches: the FFT-based one (int. 1) and the linear technique (int. 2).
As can be seen, the interpolation error, which can be high for the linear interpolation scheme,
produces an NMSE error �oor and degrades the BER performance. That is the reason why
other more sophisticated interpolation methods are commonly used, such as polynomial or
spline techniques [Colieri02].

4.3.3 Optimal Training Structures for MIMO-OFDM
As it has been advanced in subsection 4.3.1, an optimal training sequence must ful�ll the
condition in (4.14) in order to achieve the best NMSE value. The di�erent preamble and
pilot structures that can satisfy this optimality condition in LS estimation schemes are
summarized in [Barhumi03, Minn06]. The latter divides the optimal training structures into
several di�erent categories, depending on the number of symbols transmitted simultaneously
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Figure 4.15: Comparison of the NMSE and BER curves of a 4 × 4 QPSK MIMO-OFDM
system with FFT-based (int. 1) and linear (int. 2) interpolation techniques.

and the number of OFDM symbols:

• CDM: Code Division Multiplexing. Orthogonal training sequences are sent across
di�erent antennas and subcarriers.

• FDM: Frequency Division Multiplexing. Transmission antennas (or blocks of
antennas) transmit the pilots at di�erent subcarriers and not simultaneously.

• F-FDM + C-CDM: Frequency Division Multiplexing. F Groups of C antennas
are transmitted at F di�erent blocks of subcarriers, while code-based orthogonality is
used at each group.

Table 4.1 shows examples of optimal training matrices for a system with T = 8 sub-
carriers, M = 4 antennas, a channel length of L = 2 taps and Q = 1 OFDM symbol. As
can be seen, a DFT-like matrix has been used in this case to achieve orthogonality between
transmission antennas.

Although these training matrices are optimal from an information theoretical point of
view, there are two other factors that need to be analyzed for a real implementation:

• PAPR value of the training symbol sequence: For example, if the time-domain sequence
associated to the frequency-domain training matrix of Figure 4.12a is analyzed, it
can be noticed that most of the symbols have a value of 0. Thus, the PAPR of
the signal can be very large, which may degrade the performance of the transmitter
[Dardari00, Struhsaker01].

• Transmitted symbols: As has been advanced in the narrowband channel estimation
section, once the required matrix is precomputed, a matrix product must be carried
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Table 4.1: Examples of optimal MIMO-OFDM preambles for T = 8 subcarriers, M = 4
antennas and a channel length of L = 2 taps [Minn06].

out to obtain the channel estimate. This process can be simpli�ed if the symbols in the
ST matrix are specially designed. For example, if symbols of value ±1 are only used,
all the products required for channel estimation can be eliminated. Obviously, the
design of the training symbols must be carefully done to avoid the loss of optimality
or a high PAPR.

4.4 Channel Estimation in Iterative MIMO Systems
This section analyzes the most common channel estimation algorithm used in iterative or
Turbo-MIMO systems. The iterativo MIMO receiver model of Section 2.5 is extended with
a channel estimation block, based on the well-known EM algorithm. The BER performance
of this algorithm has been tested by simulations, which are computationally very demanding
due to the number of iterations and the complexity of the BCJR algorithm. An extension
of the semi-analytical EXIT-based BER prediction tool of [Hermosilla05] has been proposed
that allows to predict the BER performance and convergence of iterative MMSE-PIC-based
MIMO receivers with channel estimation error.

4.4.1 EM Channel Estimation in Turbo-MIMO Systems
Figure 4.16 shows the structure of the iterative receiver, to which a channel estimation
block has been added. As can be seen, the inputs of the channel estimation block are the
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training matrix ST , which is known at the receiver, the received symbol vector r(k) and
soft information from the detected symbols. A basic LS algorithm can be used to get a
�rst channel estimate from the training symbols, which is used at the �rst iteration. This
initial estimate is then updated at every iteration from the soft information fed back from
the BCJR decoder. For the sake of simplicity, only the APP LLR metrics of the coded bits
ΛD

c (lc) will be considered for iterative channel estimation, as in [Boutros00, Khalighi05].
Due to the channel estimation error, the MMSE-PIC receiver generates a soft symbol

estimate using the channel estimate Ĥ instead of the actual value H. Therefore, (2.42) can
be rewritten as

r′m(k) = r(k)−
√

Es

M

M∑
p=1
p6=m

ĥps̃p = r(k)−
√

Es

M
[Ĥs̃(k)− ĥms̃m(k)]. (4.15)
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Figure 4.16: Diagram of a generic interference cancellation-based iterative MIMO receiver
with channel estimation.

The MMSE combining matrix wm in (2.43) is now calculated from the estimated channel
matrix Ĥ as follows:

wm =

√
M

Es

(
ĤV̄Ĥ

H
+ (1− v̄m)ĥmĥH

m +
N0M

Es

IN

)−1

ĥm, (4.16)

Training-only based channel estimation techniques do not pro�t from the iterative nature
of turbo receivers. Many algorithms have been developed to re-estimate the channel from
hard and soft decision statistics fed back from the SISO* decoder. The classical EM chan-
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nel estimation technique [Boutros00, Khalighi05] has been chosen here, where the channel
estimate for the (j + 1)-th iteration is obtained as

Ĥ(j+1) =

√
M

Es

R̄(j)
rs

[
R̄(j)

s

]−1
.

If the iteration index j is omitted, the correlation matrices R̄
(j)
rs and R̄

(j)
s can be expressed

as

R̄rs =
K∑

k=1

r(k)̄sH(k) =

√
Es

M
HR′

s + θ,

R̄s(i, j) =





K ; i = j
∑K

k=1 s̄i(k)̄s∗j(k) ; i 6= j
(4.17)

and

R′
s =

K∑

k=1

s(k)̄sH(k) , θ =
K∑

k=1

n(k)̄sH(k), (4.18)

where vector s̄(k) contains the soft symbol estimates obtained from the APP LLRs fed
back to the channel estimation block [Tüchler02], while θ is the matrix of weighted noise
samples with autocovariance Rθ = ρMR′′

s , where

R′′
s =

K∑

k=1

s̄(k)̄sH(k). (4.19)

The estimated channel Ĥ is a biased estimate of H and can be written as [Khalighi05]:

Ĥ = HR′
sR̄

−1
s + θR̄−1

s . (4.20)

4.4.2 Analytical EXIT Functions with Channel Estimation Errors
The EXIT transfer function-based performance evaluation of Section 2.5.4 has been adapted
to a more realistic system where the channel must be estimated using pilots and iterative
approaches. The approach introduced in [Hermosilla05] divides a generic receiver into two
elementary blocks, an LC and a non-linear demapper. Since channel estimation has been
included, the FE (the MIMO detector) must be now decomposed into three elementary de-
vices: the MMSE-PIC linear combiner, the non-linear demapper and the channel estimation
block.

Only one of the EXIT transfer functions of Section 2.5.4, Fm, needs to be changed if
channel estimation error is included in the analysis method. Function Fm, which establishes
the relationship between the input mutual information and the output SINR value Γm at
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the output of the MMSE-PIC receiver, can be now expressed as

Γm = Fm(IR
in;H, ρ, H̃), (4.21)

where H̃ = H − Ĥ is the channel estimation error matrix. These variables will be
generated for each channel realization by the channel estimation block, whose generation
function Hest can be represented for the j-th iteration as:

Ĥ(j) = Hest(H, ρ,ST , I
R,(j)
in ), (4.22)

where I
R,(j)
in is the input MI at the jth iteration. Hence, the randomly generated channel

estimate depends on the channel state, the noise, the transmitted training sequence and the
mutual information statistics fed back from the decoder, if iterative channel estimation is
used.

Therefore, the transfer function Fm has been recalculated for a deterministic channel H

with an also deterministic channel estimation error H̃. The output SINR Γm at the mth
branch of a generic MMSE receiver can be de�ned as [Paulraj03]:

Γm =
E{smsH

m}
tr(E{emeH

m})
− 1 =

1

E{emeH
m}

− 1, (4.23)

where em = sm − ym. Parting from (2.42-2.43) and omitting the symbol index k, em can
be written as:

em = sm −wH
m




√
Es

M
hmsm +

√
Es

M

M∑
p=1
p6=m

hpsp −
√

Es

M

M∑
p=1
p6=m

ĥps̃p + n




= sm −
√

Es

M
wH

m


hmsm +

M∑
p=1
p6=m

hp(sp − s̃p) +
M∑

p=1
p6=m

h̃ps̃p +

√
M

Es

n


 ,

where h̃m is the mth column of the channel estimation error matrix H̃. Assuming
E{smsH

m} = 1, E{(sm − s̃m)(sm − s̃m)H} = vm and E{(s̃ms̃H
m)} = E{(sms̃H

m)} = 1 − vm,
the error variance can be expressed as

E{emeH
m} = 1−

√
Es

M
wH

mhm −
√

Es

M
hH

mwm +
Es

M
wH

mRrrwm,
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where

Rrr = hmhH
m +

M

ρ
IM +

M∑
p=1
p 6=m

hpvph
H
p +

M∑
p=1
p6=m

h̃p(1− vp)h̃
H
p

︸ ︷︷ ︸
T

. (4.24)

As can be seen, the e�ect of the wrong channel estimate is twofold: the combining vector
wH

m is not matched to the actual channel H and a new error term T appears in (4.24) due
to the wrong cancellation of detected symbols.

4.4.2.1 Adaptation of the Performance Evaluation Algorithm

The performance evaluation algorithm of [Hermosilla05] can be extended to Rayleigh-fading
iterative receivers with channel estimation, independently of the estimation technique, as is
shown in Table 4.2. As can be seen, a new step has been included, numbered as (3), where
a new channel estimate is generated for each channel realization and turbo iteration. The
rest of the algorithm works as detailed in [Hermosilla05], transferring MI values between the
MIMO detector and the outer soft decoder.

Performance Evaluation Algorithm
(0) Generate H.
(1) Initialization: iteration j = 1; I

D,(0)
out = 0.

(2) Get FE input MI. I
R,(j)
in = I

D,(j−1)
out .

(3) Generate estimate Ĥ(j) = Hest(H, ρ,ST , I
R,(j)
in ).

(4) Compute V̄ from I
R,(j)
in , as in [Hermosilla05].

(5) Calculate wm vectors from (2.44) and Γm values from (4.23).
(6) Compute I

R,(j)
out,m and I

R,(j)
out via (2.46) and (2.47).

(7) Obtain the decoder's output I
D,(j)
out = fD(I

R,(j)
out ).

(8) Calculate BER(j) = fBER(I
D,(j)
out ).

(9) Return to step (2) with j = j + 1.

Table 4.2: BER performance evaluation algorithm for each channel realization of an iterative
MIMO receiver with channel estimation.

4.4.3 Channel Estimation Error Models
Function Hest(H, ρ,ST , IR

in) calculates a channel estimate for each channel realization based
on the information fed back from the decoder as APP LLRs and the statistics of the training
process. Two classical channel estimation techniques will be considered in this section for
the analysis of this function: training-based LS and soft decision-directed EM.
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4.4.3.1 Training-Based LS Channel Estimation

If a training symbol matrix ST of dimensions M × LT is sent before data transmission and
the LS channel estimator of Equation (4.1) is applied, the estimation error is uncorrelated
among the N receivers and can be easily modelled as a zero-mean Gaussian variable with
variance equal to the NMSE value in (4.4).

The estimate generation function H
(1)
est(H, ρ,ST ), which does not depend on IR

in if only
training symbols are used, must then create a channel estimate Ĥ according to the afore-
mentioned statistics for each channel realization.

4.4.3.2 Iterative EM Channel Estimation

The estimation function Hest(H, ρ,ST , I
(j,R)
in ) must generate an estimate H(j) for all the

iterations j > 1 according to (4.20), while the training-based function H
(1)
est(H, ρ,ST ) is used

at the �rst iteration. Thus, the matrices in (4.17-4.19) must be calculated from the output
statistics of the decoder in order to model the channel estimation error. A very simple
approach has been followed which calculates the aforementioned matrices according to the
following approximations:

ˆ̄Rs(i, k) =





Ns ; i = k

Ns(1− σp)w
H
i hkh

H
k wi ; i 6= k

(4.25)

R̂′
s(i, k) =





Nsσp ; i = k

Ns(1− σp)h
H
k wi ; i 6= k

(4.26)

R̂′′
s(i, k) =





Nsσp ; i = k

Ns(1− σp)w
H
i hkh

H
k wi ; i 6= k .

(4.27)

The value of σp = E{s̄ms̄H
m} has been calculated o�-line for each constellation alphabet

when generating the EXIT transfer function of the decoder. The approximations in (4.25-
4.27) have been tested for QPSK modulation with several di�erent channel realizations.

4.4.4 Simulation Results
A system with M = 4 and N = 4 antennas has been chosen to validate the performance
evaluation method. Simulations with QPSK modulation have been conducted to compare
the classical MC simulations and the EXIT-based analytical performance evaluation method
with channel estimation error. Up to 10000 data blocks of 2048 coded bits have been simu-
lated with a quasi-static Rayleigh-fading MIMO channel. Walsh codes of 4 × 8 and 4 × 16

symbols have been sent as training symbols and perfect timing and demodulation have been
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assumed at the receiver. A non-recursive non-systematic convolutional code with generator
polynomials {5, 7}8 and the common log-map implementation of the BCJR algorithm have
been selected for FEC encoding and decoding, respectively, with a random interleaver.
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Figure 4.17: Comparison of EXIT fuction-based and MC simulation results for LS channel
estimation with a training length of LT = 8 (a) and LT = 16 (b).

Figure 4.17a shows the BER comparison of EXIT and MC techniques for the iterative
MMSE-PIC receiver with LS channel estimation and a 4×8 training matrix. As can be seen,
the EXIT-based analysis gives slightly optimistic and quite accurate results for training-based
channel estimation. The results of MC simulation with perfect channel estimation have been
included in the �gures as a reference. Figure 4.17b shows the same comparison for a 4× 16

training matrix with similar results.
Figure 4.18 extends the comparison to EM-based channel estimation using the techniques

and simpli�cations of section 4.3. The BER estimation accuracy of the models is shown for
a system with iterative channel estimation and an initial training matrix of dimensions
4× 8. These results show that this method and the assumed simpli�cations can be used to
estimate or predict the BER performance of iterative receivers with channel estimation. For
the case of EM channel estimation, further analysis is required to extend the aforementioned
assumptions to other modulations and MIMO detectors.

4.5 Chapter Summary
This chapter has described the most fundamental channel estimation algorithms that can be
applied to the MIMO systems described in Chapter 2. Since a feasible MIMO implementation
is on the scope of this research, simple and e�ective narrowband algorithms have been �rst
considered, such as training-based LS and LMMSE, iterative approaches or simple second and
higher order statistics-based methods that can be applied to spatial multiplexing scenarios.

85



Chapter 4. MIMO Channel Estimation

−2 −1 0 1 2 3 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

B
E

R

 

 

E
b
/N

0
 (dB)

MC Ch. Perf (its=0)
MC Ch. Perf (its=1)
MC Ch. Perf (its=2)
MC Ch. Est (its=0)
MC Ch. Est (its=1)
MC Ch. Est (its=2)
EXIT Ch. Est (its=0)
EXIT Ch. Est (its=1)
EXIT Ch. Est (its=2)

Figure 4.18: Comparison of EXIT fuction-based and MC simulation with soft decision-
directed EM channel estimation and an initial 4× 8 training matrix.

The narrowband channel estimation techniques have been extended to wideband scenarios
based on OFDM and SC-FDE. The optimal time-domain ML-LS has been analyzed, showing
its performance in several di�erent scenarios. More simple frequency-domain estimation
techniques have also been evaluated, analyzing the e�ects of di�erent training structures
and interpolation schemes.

Finally, iterative channel estimation has been analyzed for turbo-MIMO receivers using
a widely-spread EM algorithm. As an interesting contribution of this chapter, the analytical
EXIT functions-based performance prediction tools of [Hermosilla05] have been extended to
systems with channel estimation errors.
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Chapter 5

Impact of Channel Estimation on the
Performance of MIMO Detectors

5.1 Introduction
This chapter focuses on the analysis of the impact of channel estimation on the performance
of MIMO receivers. The e�ects of channel estimation error and hardware implementation
impairments are analyzed for the MIMO detectors described in previous chapters. Section
5.2 describes the two scenarios that have been considered. First, the real-time 2× 2 MIMO
system of Sections 3.6 and 3.7 has been used in order to evaluate the BER performance
degradation due to practical channel estimation issues. A more �exible testbed has then
been designed in Simulink to allow co-simulation of Matlab code and a realistic System
Generator-based implementation of some of the algorithms.

Section 5.3 analyzes the impact of channel estimation and implementation on the perfor-
mance of two fundamental narrowband MIMO receivers based on the optimal (SD) and the
most simple (ZF) detectors. Their performance is evaluated under realistic implementation
conditions such as limited bits of resolution, imperfect channel estimation, synchronization
failure and error propagation through the hardware.

On the other hand, the e�ects of channel estimation are also analyzed by simulations
for more complex MIMO systems such as MIMO-OFDM and MIMO-SCFDE in Section 5.4.
Finally, a parallel decision-directed channel estimation architecture is proposed in Section
5.5 which allows a semi-iterative channel estimation with improved BER performance and
low latency.

5.2 Scenarios for the Analysis of Channel Estimation
Implementation

Two scenarios have been considered to evaluate the e�ects of channel estimation on the
performance of MIMO receivers. First, the full 2× 2 MIMO system of Section 3.6 has been
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considered, where the impact of channel estimation on the overall performance of a realistic
MIMO scheme can be evaluated. This validation scenario has two main drawbacks: it has
been designed for 2×2 narrowband transmissions, due to time and resource limitations, and
its �exibility is very limited, since the cost of redesigning and validating some of its parts is
prohibitive.

Therefore, this platform has only been used for the main narrowband results shown in
this chapter. However, a new scenario has also been developed to evaluate channel imple-
mentation e�ects in more complex systems, such as wideband MIMO or systems with a
larger number of antennas.

5.2.1 LS Estimator in Fully Implemented MIMO Scenario
As it has been stated in Section 3.6, a full 2× 2 MIMO system has been developed and val-
idated using System Generator for DSP. Two receivers have been implemented as reference
cases: ZF and SD, the simplest and the most e�cient, respectively. Although the MIMO
system is composed by many di�erent algorithms, this chapter will focuses on channel es-
timation and its e�ects on the performance of the whole receiver or the most critical of its
parts, i.e., the MIMO detector.

Figure 5.1 depicts the �rst blocks of the implemented receiver. The input signals are
received at two separate antennas, downconverted to baseband by means of two synchronous
front-ends, �ltered and processed by the synchronization blocks. Two main synchronization
algorithms are carried out: the coarse frame detection, which detects the start of a valid burst
using a known sequence of symbols [Heiskala02], and the symbol-time synchronization, which
detects the best instant for downsampling [Naguib98]. Once the information symbols are
synchronized and downsampled, they are processed by the channel estimation block, which
estimates the channel using the received symbol matrix RT and the known training matrix
ST .

In the 2× 2 scenario described in this section, the symbol-time synchronization and the
channel estimation algorithms have been carried out together, thanks to the structure of
the synchronization algorithm proposed for narrowband MIMO transmissions in [Naguib98].
The symbol-time sampling instant is chosen in order to maximize the overall received gain
for a known transmitted training matrix ST . For instance, if an oversampling factor of 8 is
assumed, the received sequence is sampled at 8 di�erent delays, choosing the one with the
highest gain.

In the 2× 2 implementation of Section 3.6 this synchronization process, which is closely
related to channel estimation, has been implemented calculating up to 24 delayed channel
estimates. The output of this process is twofold: On one hand, the best sampling instant
is chosen for downsampling. On the other hand, the LS channel estimate is obtained as
a subproduct of the synchronization process [Naguib98]. Note that this implementation
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Figure 5.1: First blocks of the MIMO receiver, including frame detection, symbol-time syn-
chronization and channel estimation.

is useful only for narrowband MIMO transmissions and needs to be redesigned for other
systems [Heiskala02].

The implemented channel estimator is identical to the LS channel estimation algorithm of
Section 4.2.1.1 in terms of NMSE and BER performance. Since the training matrix is known,
the inversion (or pseudoinversion) of the matrix can be computed o�-line. Furthermore, if
the training matrix is chosen to be based on BPSK-modulated Walsh codes, the matrix
product can be reduced to a set of simple addition or substraction operations. For instance,
if the following training matrix of length LT = 8 is assumed

ST =




1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

1 −1 −1 1 1 −1 −1 1

1 1 1 1 −1 −1 −1 −1




, (5.1)

its pseudoinverse, which is the matrix to be multiplied by the received symbol matrix
RT , becomes
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S†T =
1

8




1 1 1 1

−1 1 −1 1

1 −1 1 −1

−1 −1 1 1

1 1 1 −1

−1 1 −1 −1

1 −1 −1 −1

−1 −1 1 −1




. (5.2)

The fact that all the numbers in the S†T matrix are +1 or -1 eases the implementation of
the channel estimator, reducing the number of operations to 2MNLT additions or subtrac-
tions, since the RT matrix is a complex matrix. Hence, the Walsh structure also avoids the
multiplication of two complex matrices. The implementation of the synchronizer-estimator
has been developed so that it generates the estimate Ĥ after the last training symbol is
received, processing the symbol sequence while it is being received.

Figure 5.2 shows the structure of the implemented narrowband channel estimator, where
the two most remarkable elements are the following: the tapped delay line, corresponding to
the oversampling of the inputs for the synchronization block, and the matrix multiplication,
implemented as a set of addition and subtraction operations.

Tapped Delay Line

Additions and Subtractions for real parts of received matrix ST

Figure 5.2: Structure of the implemented LS channel estimator.

An oversampling ratio of 8 and a training length of LT = 16 have been chosen for the
implementation shown in Figure 5.2. If an addition block is used per each operation, this
may require up to 2MNLT = 128 adders. If the symbol frequency is not too high, the
adder/subtracter sets can be reused for di�erent reception antennas, since the operations
to be carried out are the same. In the example of Figure 5.2, two input sequences have
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been processed by each of the adder/subtracter sets, thus reducing the number of required
adders to 64. From a channel estimation implementation point of view, the accuracy of
the estimates can only be degraded by the quantization at the input and the resolution of
addition/subtraction operations, which are usually limited to avoid high resource occupation.

5.2.2 Flexible Matlab-Based Channel Estimator Implementation
Evaluation

Although the evaluation of realistic estimation algorithms in fully-implemented MIMO sys-
tems has been one of the major objectives of this research work, another Simulink-based
simulation environment has been designed to extend the results obtained in the 2 × 2 nar-
rowband hardware platform to other interesting scenarios. The designed testbench, where
only some of the algorithms are implemented using System Generator, has helped to de-
velop the full aplication, as well as to evaluate parts of the implementation in a full Matlab
scenario.

Figure 5.3 shows the simulation testbed designed to combine a realistic System Generator
design of channel estimation algorithms and the �exible Matlab MIMO simulator that has
been used for the simulation results shown in all the previous chapters. As it can be observed
in Figure 5.3, two are the main elements of the simulator: the Matlab simulation code, which
has been transformed into a Simulink s-function block, and the System Generator design that
contains the algorithms that have been implemented on the FPGA device.

Figure 5.3: Matlab/Simulink-based channel estimation evaluation testbed.

All the system is controlled by the Matlab s-function block, which has the following
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functions:

1. Con�guration of the system parameters using a �exible table to program the Eb/N0

range, the number of MC iterations, the QAM constellation, the number of antennas,
the coding rate or the MIMO detection scheme.

2. Generation and coding (if required) of information bits.

3. Symbol multiplexing and mapping.

4. Channel convolution and AWGN addition.

5. Generation of the received samples which are transferred to the channel estimation
block.

6. Reception of data from the channel estimator block, including the channel estimate
and the received symbol stream, which can be quantized and delayed by the channel
estimator in order to emulate a real implementation.

7. MIMO detection, demapping, decoding and demultiplexing.

8. BER and NMSE calculation.

This system can be used to analyze partial System Generator implementations in a
�exible Matlab model which includes all the fundamental MIMO systems described in the
previous chapters, such as MIMO-OFDM, MIMO-SCFDE or turbo-MIMO receivers. This
testbed and the aforementioned full 2 × 2 transmission system have been the scenarios for
the results shown in the following sections of this chapter.

5.3 Narrowband MIMO Channels
This section evaluates the performance of real MIMO receivers in a fully implemented sce-
nario for the optimal SD and the low-complexity ZF receiver. These results are then extended
to more complex systems, such as 4× 4 and 4× 6 antenna setups with coded and uncoded
transmission, using the Matlab-based simulator of Section 5.2.2.

5.3.1 Evaluation of Channel Estimation on the Real-Time MIMO
Platform

This subsection analyzes the e�ects of a realistic channel estimation algorithm and hardware
implementation on the performance of a fundamental real-time 2 × 2 system with ZF and
optimal ML (SD) detection techniques. The LS channel estimator shown in Section 5.2.1
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has been used with a training length of LT = 16 and BPSK-modulated Walsh codes. Note
that the length of the training sequence is largely greater than the minimum (LT = M = 2),
so that a good channel estimation accuracy is expected.

5.3.1.1 Zero-Forcing Receiver

The basic ZF detector in (4.6) requires the multiplication of the received vector by the inverse
(or pseudoinverse) of the channel estimate. Therefore, the main operations needed for its
implementation are the estimation of the channel matrix, the calculation of its pseudoinverse
and a matrix product. All these operations and the quantization of the signals induce an
error-�oor at high SNR values [Burg06]. For the case of the ZF receiver, whose performance
is relatively poor, this error �oor arises at very high SNR values.

Figure 5.4 shows the BER performance curves for two di�erent cases. The �rst one is
based on real results from the hardware platform, whereas the second one uses simulation
results for comparison purposes. Two curves are shown for each setup: one with the perfect
knowledge of the channel and the other one using the LS channel estimator of Section 5.2.1.
As it has been stated in Chapter 4, the channel estimation error induces a Eb/N0 shift
for the simulated cases, which is small (1 dB) in this case due to the amount of training
symbols (LT = 16). If the hardware-related curves are analyzed, it can be observed that
the degradation due to implementation issues is smaller than the error induced by channel
estimation, specially for low SNR values. However, the e�ects of implementation tend to be
more important at high SNR due to the aforementioned error �oor.

If channel estimation is added to the hardware-implemented ZF receiver, it can be seen
that its degradation is slightly smaller than for the simulated case. Therefore, it can be
stated that channel estimation plays an important role for low-performance receivers such
as the ZF detector. On the other hand, the implementation of the algorithms is less critical,
since their e�ect can only be noticed at very high SNR values. Note that this conclusions
have been drawn with a very good channel estimation quality (LT = 16 for M = 2), showing
the impact of channel estimation on the overall receiver performance.

5.3.1.2 Optimal Sphere Decoder-Based MIMO System

Thanks to a collaboration project with the University of Edinburgh, the e�ects of imperfect
channel estimation and other hardware-related aspects have been evaluated for an optimal
ML detector, implemented using the SD algorithm, in the real-time MIMO platform of
Section 5.2.1. The implementation has been limited to a 2×2 16-QAM transmission scheme,
where the optimal MIMO decoder must choose a solution among 162 = 256 candidates.

As has been already stated, two are the main implementation aspects that degrade the
performance of the receiver: on one hand, the quantization of the received samples, which
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Figure 5.4: BER degradation of the ZF algorithm due to channel estimation and implemen-
tation e�ects.

have been digitalized to 12 bits of resolution; on the other hand, the hardware-limited imple-
mentation of the signal processing algorithms, which can generate errors that are propagated
through the rest of the system.

Since the SD is an optimal receiver that achieves the same performance as ML, the results
for both techniques must be the same with channel estimation and implementation errors,
assuming the inputs are the same and the metrics are calculated identically. The main e�ects
of implementation issues are the degradation of detection SINR and a higher deviation at the
calculation of the initial search point, which is usually obtained by performing a ZF operation
on the received vector [Hochwald03]. As it is well known, ZF enhances the e�ects of noise
and errors, which increase the number of iterations required to obtain the ML solution, hence
reducing the maximum achievable throughput of the system.

Figure 5.5 shows the e�ects of channel estimation and implementation issues on the
performance and achievable throughput of the implemented SD receiver. As it is shown, the
e�ects of imperfect channel estimation are one of the main degradation sources of the SD
algorithm. This result is quite signi�cative, since a training length of LT = 16 symbols has
been used in this implementation, which results on a quite accurate estimate of the channel.

If the BER curve of Figure 5.5a is analyzed, the error �oor induced by the implementation-
related issues can be noticed. Due to the good performance of the SD algorithm, this error
�oor is more remarkable, being its importance comparable to that produced by channel
estimation for large SNR values. On the other hand, Figure 5.5.b shows the achievable
throughput of the SD, whose maximum is degraded from 30 to 28 Mbps. As it can be

94



Chapter 5. Impact of Channel Estimation on the Performance of MIMO Detectors

0 5 10 15 20 24
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

 

 

SD (MATLAB)
SD (FPGA), 16 bits
SD (FPGA), 12 bits
SD (FPGA), 12 bits, Ch. Est.
SD (FPGA), 12 bits, Ch. Est. + Impl.

−5 0 5 10 15 20 25 30
12

14

16

18

20

22

24

26

28

30

32

E
b
/N

0
 (dB)

T
hr

ou
gh

pu
t (

M
bp

s)

 

 

SD (FPGA), 16 bits
SD (FPGA), 12 bits
SD (FPGA), 12 bits, Ch. Est.
SD (FPGA), 12 bits, Ch. Est. + Filt.

(a) (b)

Figure 5.5: E�ects of channel estimation and realistic implementation on the BER perfor-
mance (a) and achievable throughput (b) of a complete SD-based MIMO system.

observed, the main throughput degradation is due to implementation e�ects, while the im-
pact of imperfect channel estimation is still remarkable. Therefore, it can be concluded that
high-performance algorithms are prone to show error �oors at lower SNR values, being more
sensitive to implementation aspects, whereas channel estimation plays a more important role
in algorithms with lower performance.

5.3.2 Simulation-Based Evaluation
MIMO channel estimation and detection, as well as the implementation aspects of the latter,
have been widely analyzed in the literature [Hassibi00, Zelst04, Burg06]. Nevertheless, these
studies have been isolated and an overall analysis of their combination is missing. Channel
estimators are usually evaluated only using MC simulations, comparing the NMSE of the
channel estimates or theoretical Cramer-Rao bounds. On the other hand, the performance
of MIMO detectors is compared based on the perfect knowledge of the channel. There-
fore, a comparison of MIMO detectors with di�erent channel estimation accuracies may be
interesting in order to design an e�cient and balanced receiver.

Complex joint estimation and detection schemes exist, but are not prone to be imple-
mented in real systems [Grant00a, Zhu03a]. Assuming that a low-complexity realistic system
is composed of separated channel estimation and detection blocks, an in-deep evaluation of
their combinations can help to understand the overall complexity and performance issues of
the receiver. For instance, the use of a longer preamble or the implementation of a simple
iterative channel estimator can make an MMSE-V-BLAST receiver outperform an optimal
SD with low-quality channel state information (CSI).

This section shows simulation-based BER performance curves for several fundamental
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MIMO receivers with di�erent channel estimation error levels, which can be generated chang-
ing the amount of training symbols. In order to simplify the number of simulations and
results, the following parameters have been considered:

• Modulation order: QPSK and 16-QAM.

• Antenna setup and MIMO scheme: spatial multiplexing with 4×4 and 4×6 (increased
reception diversity) antenna setups.

• Coding: no coding and rate-1/2 convolutional coding with hard Viterbi decoder, as
stated in the IEEE 802.11a standard [IEEE99].

• MIMO detectors: ZF, MMSE, ZF-V-BLAST, MMSE-V-BLAST and ML (SD).

• Channel estimation: LS with LT = M = 4 (minimum) and LT = 3M = 12, whose
NMSE is related to the SNR value ρ following Equation (4.4).

5.3.2.1 Uncoded 4 x 4 System

Figure 5.6a shows the performance of the previously detailed MIMO detectors for an uncoded
4 × 4 spatial multiplexing system with QPSK modulation. Two di�erent training lengths
of LT = 4 (solid lines) and LT = 12 (dashed lines) have been selected in order to represent
two di�erent channel estimation e�ort levels. The NMSE gap between these two estimation
levels can be easily covered using simple semi-blind approaches or extending the training
length, which may not be possible in many systems. As it can be observed, all the receivers
are a�ected almost equally (2 dB shift) by the di�erence in channel estimation quality.
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Figure 5.6: a) BER performance of a 4 × 4 spatial multiplexing system with LS channel
estimation with LT = 4 (solid line) and LT = 12 (dashed line). b) Performance comparison
of ML (SD) and MMSE-V-BLAST with iterative channel estimation for LT = 4.
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The aim of this kind of simulations is to shed some light on how channel estimation can
a�ect the selection and design of a detector. For instance, it can be seen that an MMSE-V-
BLAST detector can perform close to the SD in low and mid SNR values if more resources are
dedicated to channel estimation. Therefore, an MMSE-V-BLAST receiver with an improved
channel estimator may work better than the SD detector, showing that extra e�ort in channel
estimation may help to reduce the complexity or cost of a receiver.

The channel estimation accuracy may be improved in several ways. Assuming the length
of the preamble is �xed by a standard such as the IEEE 802.11a [IEEE99], the estimation
can be improved adding simple semi-blind estimation techniques, such as a decision di-
rected channel estimation approach [Grant00b, Buzzi04] or any of the techniques described
in Section 4.2.2. Figure 5.6b shows the performance of the optimal detector and an MMSE-
V-BLAST receiver with a block-iterative channel estimator with 1 and 2 iterations. Note
that the complexity of the MMSE-V-BLAST detector is relatively low in comparison to the
SD for large constellations and high number of antennas [Burg06].

The aforementioned iterative approach is just an example of how channel estimation can
be taken into account in order to design a whole MIMO receiver. The iterative technique
used for the results shown in Figure 5.6b has its drawbacks, such as a high latency due to the
block-wise iterative structure or a low e�ciency because of the lack of information from the
decoder. A parallel architecture is proposed in Section 5.5 which overcomes some of these
issues and achieves a good BER performance at a moderate computational cost.

Figure 5.7 shows the same comparisons for 16-QAM and 64-QAM 4×4 spatial multiplex-
ing systems. Following the same strategy as with QPSK modulation, the BER performance
is shown using two di�erent channel estimation e�orts which correspond to LT = 4 (solid
lines) and LT = 12 (dashed lines). If Figure 5.7a (16-QAM) is analyzed, it can be observed
that the di�erence between MMSE and ZF is smaller for both linear and V-BLAST detectors,
whereas the SD outperforms clearly the rest.

As interesting cases, it can be observed that ZF and ZF-V-BLAST can perform close to
MMSE and MMSE-V-BLAST, respectively, if channel estimation is improved. This case is
specially interesting since MMSE requires the knowledge of the SNR level at reception and is
slightly more complex. Note that this is not the case for QPSK, where ZF and MMSE curves
were further and the latter always outperformed the former. Therefore, it can be stated that
the impact of channel estimation on the design of a receiver increases with the modulation
order, as is corrobored in Figure 5.7b, where 64-QAM has been used for comparison. The
optimal ML (SD) algorithm has not been considered due to its prohibitive complexity for
the 4 × 4 64-QAM system. As interesting cases, it can be seen how the channel estimation
improvement is larger than the di�erence between ZF and MMSE receivers. For instance,
ZF can clearly outperform MMSE with a better channel estimation accuracy and MMSE
can perform close to MMSE-V-BLAST (much more complex) for low and mid-SNR values
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Figure 5.7: BER performance of an uncoded 4 × 4 spatial multiplexing system with LS
channel estimation with LT = 4 (solid line) and LT = 12 (dashed line) for 16-QAM (a) and
64-QAM (b) modulations.

if a better channel estimation is used. These last results con�rm the fact that the impact of
channel estimation becomes more important when the modulation order increases.

If SD and MMSE-V-BLAST are analyzed for the 16-QAM case, it can be noticed that
the latter could perform better if channel estimation was improved. Figure 5.8 shows the
performance of the SD and an MMSE-V-BLAST detector with di�erent semi-blind channel
estimation approaches, including decision-directed iterative and non-iterative methods. It
can be seen that these techniques can perform quite near to ML for low and mid SNR levels,
while they su�er from a lack of diversity (slope) at high SNR values. Nevertheless, these
approaches can be acceptable if a per-antenna (HE) coding approach is used together with
the V-BLAST structure, as it will be shown in the next section.
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Figure 5.8: Comparison of the SD and an MMSE-V-BLAST detector with enhanced channel
estimation for 4× 4 16-QAM transmission.
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5.3.2.2 Coded 4 x 4 System

Interesting results arise if coded spatial multiplexing systems are analyzed with di�erent
channel estimation accuracy levels. Figure 5.9a shows the comparative results for a 4 × 4

QPSK spatial multiplexing system using a rate-1/2 convolutional code with channel estima-
tion lengths of LT = 4 (solid lines) and LT = 12 (dashed lines). Note that a per-antenna
(HE) coding approach has been selected for V-BLAST structures, so a layer pro�ts from
the corrected symbols of already decoded streams. Even so, MMSE outperforms ZF and
ZF-V-BLAST, while SD is still the best receiver for mid and high SNR values.
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Figure 5.9: BER performance of an coded 4×4 spatial multiplexing system with LS channel
estimation with LT = 4 (solid line) and LT = 12 (dashed line) for QPSK (a) and 16-QAM
(b) modulations.

If Figure 5.9a is analyzed, it can be observed that the performance of MMSE-V-BLAST
and SD are far from the rest. If the e�ects of channel estimation are evaluated, it can be
observed that MMSE-V-BLAST is a very good candidate to avoid the complexity of the
SD algorithm. Nearly the same conclusions arise if the 16-QAM scheme is evaluated. As it
has already been stated for uncoded systems, the curves of the detectors tend to get closer
with larger constellations. As interesting results, MMSE can outperform ZF-V-BLAST if
channel estimation is increased. If the best performance is to be reached with a moderate
complexity, an MMSE-V-BLAST receiver with iterative channel estimation can be a good
candidate for large constellation or number of antennas.

5.3.2.3 4 x 6 Setup

A 4× 6 setup is brie�y considered in this section in order to analyze the e�ects of increased
diversity on the performance of MIMO systems with channel estimation error. Uncoded and
coded QPSK transmission is considered. Figure 5.10a shows the performance of an uncoded
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4×6 system with QPSK modulation. As it can be seen, the reception diversity has improved
the performance and the slope of the BER curves. It has also reduced the di�erence between
some receivers such as the V-BLAST architectures and the optimal detector. The same
happens with the di�erences between the ZF and MMSE techniques.

0 2 4 6 8 10 12

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

 

 

ZF
MMSE
ZF−V−BLAST
MMSE−V−BLAST
ML (SD)

0 2 4 6 8 10 12

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

 

 

ZF
MMSE
ZF−V−BLAST
MMSE−V−BLAST
ML (SD)

(a) (b)

Figure 5.10: BER performance of uncoded (a) and coded (b) 4 × 6 spatial multiplexing
system with LS channel estimation with LT = 4 (solid line) and LT = 12 (dashed line) for
QPSK modulation.

Figure 5.10.a represents the e�ect of two di�erent channel estimation accuracies, corre-
sponding to LT = 4 (solid lines) and LT = 12 (dashed lines) on the performance of the
receivers. This is specially interesting since channel estimation introduces nearly the same
shifts as in the previous cases, becoming its e�ect notorious. For instance, all the V-BLAST
structures fairly outperform the optimal detector with channel estimation enhancement. This
shows that channel estimation becomes specially important in systems with high diversity,
where the di�erences between detection performance curves are smaller.

Figure 5.10b shows the same comparison for a coded 4 × 6 system. This case becomes
quite extreme since the e�ects of coding and low detection errors reduce the BER in the
V-BLAST architectures. It can even be noticed that the ZF-V-BLAST detector can clearly
outperform the SD receiver if channel estimation accuracy is improved. These comparisons
can be extended to the low-performance receivers, such as ZF and MMSE, where all the
di�erences between detectors are reduced in comparison to the e�ects of channel estimation.
As it can be seen in Figure 5.10b, a ZF-V-BLAST structure can be su�cient to achieve
very good results in a system with coding and high diversity if good channel estimation is
provided.
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5.3.2.4 Summary of Main Results

The simulation results shown in this section have proven the importance of channel estima-
tion on the performance of MIMO detectors. It has been concluded that a proper selection
of algorithms and a good channel estimation quality can help to reduce the complexity of
a whole MIMO receiver. For instance, it has been shown how simpler structures, such as
MMSE-V-BLAST, can outperform the optimal SD if the channel estimation is improved.

It has also been shown that the e�ects of channel estimation become more important
when the modulation order (constellation size) grows or when high diversity is provided. In
these cases, where the di�erences between detectors become smaller for the evaluated SNR
range, channel estimation can play an important role in the design of a MIMO receiver. For
example a ZF-V-BLAST scheme with increased channel estimation accuracy can perform
better than the SD in a per-antenna (HE) coded 4 × 6 QPSK system, thus reducing the
complexity of the receiver. On the other hand, it has been shown that the e�ects of channel
estimation are slightly smaller in coded MIMO systems.

5.4 MIMO-OFDM and MIMO-SCFDE Systems
This section extends the simulation results of Section 5.3 from narrowband to wideband sys-
tems, using OFDM and SCFDE, which have been already de�ned in Chapter 2. Frequency-
domain channel estimation with FFT-based interpolation has been chosen for the evaluation
of the impact of the CSI. As in the previous section, two levels of channel estimation accu-
racy have been modelled using two di�erent training lengths, which are related to the NMSE
value of the channel estimate by (4.14).

As has been stated in Chapter 2, the WLAN IEEE 802.11a standard has been taken as
a reference, thus using FFT and IFFT blocks of T = 64 subcarriers [IEEE99]. In order to
allow a fair comparison between OFDM and SCFDE, all the available subcarriers have been
used so that both techniques transmit at the same rate and through identical channels.

Following the structure of the previous section, the following subsections analyze the
e�ects of channel estimation on MIMO-OFDM and MIMO-SCFDE systems.

5.4.1 MIMO-OFDM
The following results show the e�ects of channel estimation on a 4×4 MIMO-OFDM system.
The HIPERLAN/2 A channel model has been selected, which is de�ned by an rms delay
of 50 ns (L = 11 taps) [Medbo98]. Thus, ML = 4 · 11 = 44 parameters are estimated per
reception antenna. A training length of LT = 1 (one OFDM symbol) is assumed as the
minimum channel estimation accuracy level, while up to LT = 4 will be considered. The
following simulations show the e�ects of channel estimation on uncoded and rate-1/2 coded
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4× 4 systems with QPSK and 16-QAM modulation. The mentioned two coding approaches
(rt = 1 and rt = 1/2) represent the limits of the coding possibilities of the 802.11a standard
[IEEE99].

5.4.1.1 Uncoded 4x4 System

Figure 5.15a shows the performance of di�erent detectors in a 4× 4 MIMO-OFDM systems
with QPSK modulation. As it can be seen, the performance gaps between the detectors
are very clear. Two channel estimation error levels are shown, corresponding to LT = 1

(solid lines) and LT = 4 (dashed lines). It can be seen that the gap between the curves is
larger than the 2 dB shift introduced by the channel estimation error di�erence. The main
conclusion that can be drawn from this curves is that the e�ect of channel estimation is
not determinant in the design of a QPSK MIMO-OFDM receiver, since the choice of the
detector plays a more important role. Nevertheless, its impact on the BER performance is
still remarkable.
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Figure 5.11: BER performance of an uncoded MIMO-OFDM spatial multiplexing system
with LS channel estimation with LT = 1 (solid line) and LT = 4 (dashed line) for QPSK (a)
and 16-QAM (b) modulation.

The same analysis is shown in Figure 5.15b for 16-QAM modulation. The huge di�erence
between the optimum detector and the others is remarkable, whereas the di�erences among
the rest seem much smaller. If the e�ects of channel estimation are analyzed, it can be
noticed that an increased estimation e�ort can reduce the complexity of the detector. For
example, ZF-V-BLAST with LT = 4 performs similar to MMSE-V-BLAST with LT = 1,
while MMSE with LT = 4 can perform close to ZF-V-BLAST with LT = 1, which may be
an interesting result for uncoded or high-rate coded system (e.g. rt = 5/6). If these results
are compared with the narrowband system of the previous section, it can be noticed that the
impact of channel estimation is smaller, though it is still important for large constellations.
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5.4.1.2 Coded 4x4 System

OFDM modulation has been conceived to work with channel coding in order to achieve
frequency diversity. This section extends the simulation results of the previous section to
rate-1/2 coded systems. Two constellations are evaluated: QPSK and 16-QAM. Figure
5.12a shows the performance of the analyzed receivers with QPSK modulation. As has been
previously explained for the narrowband case, the V-BLAST structures (where transmitted
antenna streams are detected and decoded successively) pro�t from the correction capability
of the channel code. However, ZF-V-BLAST shows a very poor performance, caused by the
feedback of the detection errors induced by the noise enhancement of the ZF algorithm, thus
reducing its applicability.

Two groups of curves are shown in Figure 5.12a, corresponding to LT = 1 (solid lines)
and LT = 4 (dashed lines). As interesting results, it can be noticed that MMSE with a
higher channel estimation e�ort can be a good low-complexity candidate in this kind of
systems, whereas MMSE-V-BLAST clearly outperforms SD for the block length used for
these simulations.
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Figure 5.12: BER performance of an coded MIMO-OFDM spatial multiplexing system with
LS channel estimation with LT = 1 (solid line) and LT = 4 (dashed line) for QPSK (a) and
16-QAM (b) modulation.

Figure 5.12b shows the same results for a system with 16-QAM modulation. Due to the
constellation order, the correcting e�ects of the V-BLAST architectures are reduced. It can
be seen that SD and MMSE detectors can perform similarly to MMSE-V-BLAST and ZF-V-
BLAST, respectively, if channel estimation is improved. If the e�ects of channel estimation
errors are analyzed, it can be seen that a worse channel estimate a�ects more the MMSE-
V-BLAST architecture than the SD, but the BER performance curves remain quite similar.
The choice between them should be taken evaluating their complexity, which is much larger

103



Chapter 5. Impact of Channel Estimation on the Performance of MIMO Detectors

for the SD in a 4 × 4 16-QAM system [Burg06]. If a low complexity detector is required,
the MMSE technique seems the unique acceptable candidate, though its performance is 5

dB worse than for the aforementioned techniques.

5.4.2 MIMO-SCFDE
As has been shown in Chapter 2, SCFDE modulation may be an interesting alternative to
OFDM for MIMO WLAN scenarios. This section analyzes the e�ects of channel estimation
on the performance of MIMO-SCFDE systems. For simplicity and to allow fair comparisons
with OFDM, the same preambles and estimation techniques have been considered. The same
structure as for OFDM is followed, although some results are omitted for space limitations.
Since the MIMO equalization is done in the frequency-domain, the optimal ML and SD
approaches cannot be applied in their original forms, so they have been discarded from the
analysis.

5.4.2.1 Uncoded 4x4 System

Figure 5.13a shows the performance of an uncoded 4× 4 MIMO-SCFDE system with QPSK
modulation with training lengths of LT = 1 (solid lines) and LT = 4 (dashed lines). As
can be seen, the performance of the ZF-based approaches (both linear and V-BLAST) are
very poor due to the noise enhancement problem at some frequency bins that a�ects all
the information symbols, which are located in the time domain. As has been stated for the
OFDM case, the di�erences between detectors are very large, so channel estimation is not
determinant, at least for low-order constellations.
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Figure 5.13: BER performance of an uncoded MIMO-SCFDE spatial multiplexing system
with LS channel estimation with LT = 1 (solid line) and LT = 4 (dashed line) for QPSK (a)
and 16-QAM (b) modulation.
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Figure 5.13b shows the same BER performance comparison for 16-QAM. Despite the
reduction in the di�erences between the performances of the detectors, channel estimation
is not a determinant factor that can reduce the complexity of the receiver. This conclusion
is partial, since some of the selected detection algorithms (ZF and ZF-V-BLAST) can not
be used in these scenarios due to their very poor performance, while the ML solution is too
complex to be implemented.

5.4.2.2 Coded 4x4 System

Figure 5.14a shows the performance of a coded 4×4 MIMO-SCFDE system, where the same
e�ects of the uncoded case are magni�ed. The BER performance curves of the detectors show
very large di�erences. Therefore, it can be stated that the impact of channel estimation is not
determinant in order to select one detector or another, at least for the detection algorithms
evaluated in this analysis. Even so, MMSE detection shows a good complexity-performance
trade-o�. Therefore, MMSE detection with enhanced channel estimation can be a good
low-complexity solution for this kind of systems. Although the gaps between curves seem
smaller for the 16-QAM case shown in Figure 5.14b, the same conclusions can be drawn.
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Figure 5.14: BER performance of a coded MIMO-SCFDE spatial multiplexing system with
LS channel estimation with LT = 1 (solid line) and LT = 4 (dashed line) for QPSK (a) and
16-QAM (b) modulation.

5.4.3 Comparative Performance and Considerations
Channel estimation error, which can be modelled as a Gaussian variable for the LS channel
estimation techniques considered in this section [Biguesh06, Minn06], does not a�ect the
comparative performance of OFDM and SCFDE techniques. Figure 5.15a shows the BER
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performance curves for coded MIMO-SCFDE and MIMO-OFDM systems with QPSK mod-
ulation. The minimum training length (LT = 1) has been used. The results are as expected,
since both systems perform identically for MMSE-based techniques using the lowest coding
rate, (rt = 1/2).
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Figure 5.15: E�ects of channel estimation on the performance of a coded 16-QAM spatial
multiplexing system.

If the same comparison is carried out with 16-QAM (Figure 5.15b), it can be seen that the
performance of SCFDE is degraded in comparison to OFDM, as happens in the perfect CSI
case. As a conclusion, channel estimation may be determinant in order to select the detection
algorithm and the target performance of the system, but it does not a�ect the modulation
selection (OFDM or SCFDE). Nevertheless, the simplicity of detection in OFDM systems
allows more options (ZF, ZF-V-BLAST, ML) in order to jointly design the channel estimator
and the MIMO detector.

Therefore, although channel estimation does not a�ect the comparative behavior of
MIMO-SCFDE and MIMO-OFDM, some considerations can be made. For example, if a
very low-complexity receiver is to be used, MIMO-OFDM can work with a ZF receiver,
whose poor performance can be improved if some resources are dedicated to channel estima-
tion or iterative detection approaches are applied. For both OFDM and SCFDE approaches,
MMSE can be an acceptable candidate since it performs relatively well with low complexity,
but still far from the MMSE-V-BLAST and SD detectors.
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5.5 Design of a Parallel Decision-Directed Channel
Estimation Architecture

Results of Section 5.3 show the importance of channel estimation accuracy and how a proper
selection of algorithms can reduce the complexity of the overall MIMO receiver. For instance,
an MMSE-V-BLAST structure has been shown to outperform the optimal receiver if com-
plexity is added to the channel estimation process. A simple block-iterative algorithm has
been used for the reference results shown in the previous sections [Ranheim05]. Nevertheless,
the aforementioned algorithm is not e�cient from an implementation point of view, since the
channel is block-wise re-estimated after the last symbol is received, thus adding a prohibitive
latency and requiring large matrix operations.

An interesting channel estimation algorithm was introduced in [Grant00b], where the
channel columns (gains of the transmit antennas) are estimated from the detected symbols
nulling the e�ects of the rest of antennas, following a PIC-based approach. For every symbol
time k, the channel gain estimate ĝm(k) of the m-th transmit antenna can be calculated
from the detected symbol vector ŝ(k) as:

ĝm(k) = ŝ(k)-1
(√

M

Es

r(k)−
∑

p6=m

ĥp(k)ŝp(k)

)
, (5.3)

where ŝp(k) is the symbol detected at symbol period k for transmit antenna p.
This algorithm can be used to update the MIMO channel every received symbol at a low

complexity cost. For example, the channel estimate (ĥm) can be updated following the next
equation:

ĥm(k) = uĥm(k − 1) + (1− u)ĝm(k), (5.4)

where u is a forgetting factor, whose value (0 ≤ u ≤ 1) depends of the reliability of the
detected symbols. This simple decision-directed approach performs slightly worse than the
block-iterative techniques [Buzzi04, Ranheim05], but it brings out two bene�ts: there is no
latency added to the system and it may be able to track fading channels, which is not the
case for the quasi-static burst-based transmission analyzed in this research. In this context,
it must be noticed that the last symbols of the frame are detected using a better channel
estimate and that the aforementioned latency properties do not hold if iterations are needed
to improve the BER performance [Buzzi04].

Based on this properties and pursuing a simple low-latency decision-directed iterative
channel estimation approach that can be easily implemented on an FPGA device, this sec-
tion proposes a parallel decision-directed (PDD) channel estimation architecture which can
be considered semi-iterative and performs better than the block-wise iterative approaches.
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Furthermore, this architecture has no latency and can be combined with more complex
systems, such as turbo-receivers or hard-decision based convolutional decoders.

The next section shows the main structure of the proposed channel estimation archi-
tecture as well as some signi�cant performance results. Once the structure of this channel
estimation approach is detailed, it will be extended to wideband MIMO-OFDM and MIMO-
SCFDE systems. Results are provided that show the e�ciency of the architecture with
di�erent detectors and MIMO setups.

5.5.1 Narrowband Systems
This section shows the design of a PDD iterative channel estimation architecture for a refer-
ence burst-based narrowband quasi-static fading channel, which will be extended to wideband
in the following sections. Figure 5.16 shows the main structure of the PDD architecture with
P = 4 parallel units, where K stands for the length of the burst in symbol periods. Each of
these units consists of a MIMO detector and a decision-directed channel updater, which is
described by (5.3) and (5.4).
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Figure 5.16: Architecture of PDD receiver with P=4.

The structure is based on the decision-directed PIC-based channel estimator of [Grant00b],
replicating the MIMO detector and channel estimator blocks (units) so that the �rst unit is
applied to the received symbol vector r(k), the second one to the vector r(k −K/P ) which
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has been received K/P symbols before and so on. In order to reduce the detection latency,
the last K/P symbols are detected once, the previous K/P are detected twice, whereas the
�rst K/P symbols are detected P times. Every time a detection is carried out, the channel
is re-estimated. Therefore, the information of the reestimated channel symbols is fed back
and forward, so that it is used to improve the detection of all the symbols, and not just the
last, as it is the case for common non-iterative decision-directed methods.

Figure 5.17 shows the mean NMSE value used to detect every symbol in a received burst
or frame for the training-based LS, the PIC decision-directed (DD) approach [Grant00b] and
the proposed PDD architecture. The LS channel estimator calculates a channel value which
is kept constant for all the symbols in the burst. If the NMSE values of the decision-directed
algorithm are analyzed, it can be seen that the channel estimation error is reduced for the
last symbols of a frame, thus reducing the number of wrong detections for the last bits. If
the PDD architecture shown in this section is applied, the NMSE of the channel estimate
can improve for all the symbols of the frame, even improving the last NMSE value of the
basic decision-directed architecture due to the up to P iterations performed with some of
the previous symbols. One of its main advantages is that it improves the channel estimate
used for the detection of all the symbols in a frame, as it can be seen in Figure 5.17.

Figure 5.17a shows the NMSE values for an MMSE-V-BLAST detector with QPSK mod-
ulation and an initial LS estimate obtained with a training matrix of length LT = 4. On
the other hand, the results of Figure 5.17b have been obtained using the same detector
with 16-QAM modulation and a more accurate initial channel estimate (LT = 8). Since
the structure lies on the principles of decision-directed channel estimation, the performance
results become worse when the constellation size is increased. A block length of 200 symbols
(1600 bits) has been selected for these simulations, while a quasi-static �at-fading Rayleigh
channel model has been used.

Figure 5.18 shows the BER performance curves of several decision-directed channel esti-
mation algorithms, including the PDD architecture, in two di�erent 4× 4 scenarios: QPSK
transmission with MMSE detection (Figure 5.18a) and 16-QAMmodulation with a ZF detec-
tor (Figure 5.18b). As it can be noticed, the PDD structure outperforms the block-iterative
approaches in both scenarios without adding any latency to the receiver and with a moderate
computational cost.

A very interesting case arises with ZF detection, whose BER performance results are
shown in Figure 5.19. It can be observed that both block-iterative and PDD schemes out-
perform the perfect CSI case. This is due to the noise enhancement problem of the ZF
algorithm, which seems to be reduced if iterative channel estimation is employed. This
means that these decision-directed channel estimators do not converge to the actual value of
the channel matrix, but to a close value whose inverse (which is used for MIMO detection)
reduces the noise enhancement problems of the ZF, even with a worse channel estimation
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Figure 5.17: Mean NMSE for every received symbol in a frame for MMSE-V-BLAST detec-
tion with LT = 4 QPSK (a) and LT = 8 16QAM (b) systems.
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Figure 5.18: BER performance curves of di�erent iterative channel estimators and the PDD
architecture for QPSK MMSE (a) and 16QAM ZF (b) scenarios.

quality in terms of NMSE. The results of Figure 5.19 show that the performance of the PDD
approach is similar to the block-iterative techniques.

5.5.2 Extension to MIMO-OFDM and MIMO-SCFDE Systems
The PDD architecture introduced in the previous section can be easily extended to OFDM
systems, where the iterations are carried out every time a whole symbol is received. The
frequency-domain channel estimator, which has been detailed in Section 4.3.2, has been
chosen to extend the PDD architecture to MIMO-OFDM systems. Assuming a preamble-
based burst transmission as de�ned in the IEEE 802.11a standard, the �rst channel estimate
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Figure 5.19: BER of a 4 × 4 QPSK ZF system with di�erent channel estimators including
the PDD.

is calculated from the training symbols. When an OFDM symbol is fully received, the
channel is updated and the channel estimation is improved while the frame is processed.
The same structure of Figure 5.16 is applied so that the P di�erent units are working at
di�erent symbol indexes and iteration numbers.

Figure 5.20 shows two examples of the evolution of the frequency response of an Hnm

subchannel, from the �rst trained LS estimate (diamond marker) to the �nal value (squared
marker), while the actual channel is shown in a solid line. Two di�erent Eb/N0 levels are
shown, corresponding to 12 and 4 dB. The selected channel corresponds to the HIPERLAN/2
A channel model (11 taps) [Medbo98].
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Figure 5.20: Evolution of channel estimate of a sample Hnm subchannel for Eb/N0 values of
12 dB (a) and 4 dB (b).
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Figure 5.21 shows the BER performance of the PDD algorithm in comparison to the basic
trained LS and the PIC-based decision-directed algorithm [Grant00b]. It can be observed
that the performance improvement is small for low SNR values (incorrect feedback from
detected symbols), but the �nal value gets close to the known channel case for high SNR.
The HIPERLAN/2 A channel and blocks of 8 OFDM symbols (4096 bits), which are short
enough to guarantee the quasi-static fading assumption, have been used for these simulations.
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Figure 5.21: BER comparison of PDD channel estimation architecture and the decision-
directed (DD) approach for a 4 × 4 MIMO-OFDM system with MMSE (a) and MMSE-V-
BLAST (b) detection algorithms.

The extension of the PDD architecture to MIMO-SCFDE systems is not straightforward.
The channel estimation process is carried out in the frequency-domain, where the calculation
of the channel gains is relatively simple following (5.3) and (5.4). Nevertheless, SCFDE maps
the symbols in the temporal domain. Therefore, IFFT and FFT processes are required to
apply the PDD algorithm. Another important di�erence can be noticed if Equation (5.3) is
applied to MIMO-SCFDE systems. It is not the decision on the actual symbol s(k) which
is used for cancellation and estimation, but a frequency bin of the FFT transform of the
detected symbol s, which does not �t into any �nite alphabet, as it is the case for OFDM.
This leads to unstability and noise enhancement in frequency bins with low signal power,
degrading the performance for all the symbols.

This problem has been solved assigning a threshold Th for channel updating. Whenever
the power of a frequency bin of the detected symbol is smaller than Th, the update of the
channel value is not carried out. Since all the information symbols tend to follow a uniform
distribution, the frequency bins a�ected by the threshold are not likely to be in the same
frequencies in all the SCFDE symbols, so all of them can get updated correctly.

Figure 5.22 shows the BER performance curves for two MIMO-SCFDE systems using the
PDD channel estimation architecture. It can be seen that the inclusion of the aforementioned
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threshold criterion does not degrade the performance of the architecture, which outperforms
the LS estimate and the basic decision-directed estimator. The systems parameters are the
same as in the previous OFDM comparisons: QPSK signalling with MMSE and MMSE-V-
BLAST detection, 8 OFDM symbols and the HIPERLAN/2 A wireless channel.
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Figure 5.22: BER comparison of PDD channel estimation architecture and the decision-
directed (DD) approach for a 4× 4 MIMO-SCFDE system with MMSE (a) and MMSE-V-
BLAST (b) detection algorithms.

5.6 Chapter Summary
This chapter has focused on the evaluation of the impact of channel estimation on the
performance of MIMO detection algorithms using two di�erent strategies. On one hand,
the full real-time 2 × 2 MIMO system of Chapter 3 has been used to analyze the e�ects
of channel estimation and implementation issues on fundamental MIMO receivers. On the
other hand, Matlab simulations have been carried out to evaluate the e�ects of channel
estimation accuracy on the performance of the main detectors (ZF, MMSE, ZF-V-BLAST,
MMSE-V-BLAST and ML(SD)).

Regarding the implementation-based analysis, it has been shown that the accuracy of
the channel estimate is determinant on the �nal BER performance. For the simplest ZF
detector, the channel estimation error has been proven to a�ect the BER performance curve
more than the implementation-based errors. The same analysis has been carried out for the
optimal SD detector, where the e�ects of the implementation have been shown to be more
in�uent, though the e�ects of channel estimation are still considerable. For all the cases,
implementation related issues represent an error �oor at high SNR values, while channel
estimation induces a horizontal shift of the BER performance curves.

113



Chapter 5. Impact of Channel Estimation on the Performance of MIMO Detectors

The practical evaluation has been completed with simulations of more complex systems,
including wideband MIMO-OFDM and MIMO-SCFDE schemes. It has been observed that
the gaps between detection techniques can be covered improving the channel estimation
quality, which means that the complexity of the detectors can be reduced if channel estima-
tion is improved. The e�ects of the channel estimation accuracy are specially remarkable for
large constellations in narrowband and MIMO-OFDM scenarios. For example, an MMSE-
V-BLAST detector with a simple iterative channel estimation algorithm has been proven
to perform similarly or better than the optimal detector (SD), which can be prohibitively
complex for large constellations and number of antennas. The impact of channel estimation
has been shown to be more determinant in systems with large constellations, high diversity
orders and high coding rates.

Finally, a parallel decision-directed (PDD) semi-iterative channel estimation architecture
has been proposed which can be used to improve the performance of simple MIMO detectors.
This structure enables the bene�ts of block-iterative channel estimation without adding any
latency to the system and can be combined with any of the MIMO setups considered in this
dissertation.
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Chapter 6

Conclusion and Further Research

This work has focused on the analysis of the e�ects of channel estimation on the performance
of MIMO wireless systems. The performance comparison of channel estimators is usually
based on their NMSE values, whereas the evaluation of the receivers focuses on the BER
comparison of di�erent detectors with perfect channel knowledge. However, an overall anal-
ysis of the di�erent combinations of channel estimation and detection algorithms is missing
in the literature. The work detailed in this dissertation aims to shed light on the overall
design of a receiver in order to establish the most e�cient estimator-detector combination
for each MIMO system depending on the target performance and the allowable complexity.

6.1 Summary
The aim of this PhD thesis has been to analyze the e�ects of channel estimation on MIMO
wireless systems under two di�erent scopes. On one hand, the impact of channel estimation
on the performance of MIMO detectors has been analyzed theoretically and by means of
simulations. On the other hand, this theoretical analysis has been complemented with the
implementation and evaluation of a real-time MIMO platform.

The practical analysis of this research has addressed the design and development of a
MIMO prototyping platform which has been used to develop a full real-time 2 × 2 system.
This hardware implementation has allowed to understand the implications of the design and
validation of real-time MIMO algorithms. Thanks to this MIMO system, which can use a
ZF or a SD (ML) detector, the e�ects of channel estimation error have been evaluated and
compared to the impact of the rest of implementation issues. It has been shown that the
error induced by channel estimation is critical in low-performance receivers in comparison
to other error sources like quantization, channel pre-processing or synchronization failures.
However, hardware implementation becomes more in�uent in more e�cient detectors such
as the SD, despite the importance of the channel estimation error.

Chapter 4 has shown a brief summary of simple and realistic channel estimation algo-
rithms for MIMO spatial multiplexing systems, including narrowband, OFDM and SCFDE
schemes. Channel estimation has also been evaluated for a MMSE-PIC Turbo-MIMO re-
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ceiver, proposing analytical EXIT function-based tools which allow to evaluate the BER
performance of iterative MIMO systems with channel estimation errors. These analytical
EXIT-based tools can help to avoid the computational cost of extensive MC simulations.

A simulation-based analysis has been developed in Chapter 5 which has evaluated the
comparative performance of the basic MIMO detectors (ZF, MMSE, ZF-V-BLAST, MMSE-
V-BLAST and SD) with di�erent channel estimation accuracy levels. This methodology
has allowed to study the trade-o� between the complexity of channel estimation and MIMO
detection algorithms in narrowband, OFDM and SCFDE systems. It has been shown that
channel estimation can play an important role when designing the receiver since the com-
plexity of the detector can be reduced if a proper channel estimator is employed. As an
illustrative example, the optimal ML detector can be outperformed by a simpler MMSE-
V-BLAST architecture with an iterative channel estimation approach, which can be less
complex for large constellation and number of antennas. These simulation-based results
have shown the importance of channel estimation for the design of e�cient and balanced re-
ceivers. It has also been concluded that the impact of channel estimation is more important
for narrowband systems, large constellations and systems with higher reception diversity.

Finally, a semi-iterative parallel decision-directed channel estimation architecture has
been proposed. This channel estimator can achieve a very good performance, similar to a
block iterative technique, without any latency and can be easily implemented on an FPGA
device. Results have been provided which show good performance in uncoded narrowband,
OFDM and SCFDE MIMO scenarios.

6.2 Thesis Contribution
The main contributions of this research work are the following:

• Chapter 2: A comparison between the BER performance curves of MIMO-OFDM and
MIMO-SCFDE has been carried out for systems based on the IEEE 802.11a standard
[Mendicute04a, Mendicute04b].

• Chapter 3: A real-time 16-QAM 2×2 MIMO prototype has been designed and devel-
oped, including an inline channel emulator. A Matlab-based hardware and software co-
simulation methodology has been developed from scratch for the Heron platform of the
University of Mondragon [Mendicute05], including �Hardware in the Loop� simulation
tools [Mendicute06b]. An optimal detector, based on the sphere decoder, has been in-
tegrated in the whole MIMO system in collaboration with the University of Edinburgh,
which has served to evaluate its performance in a full MIMO system [Mendicute06a].
To the author's knowledge, this integration is the �rst reported implementation of a
whole real-time SD-based MIMO system.
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• Chapter 4: An analytical EXIT function-based BER prediction tool has been pro-
posed for Turbo-MIMO systems with MMSE-PIC receivers with channel estimation
errors [Mendicute07]. A simple model has been proposed which includes the e�ects of
channel estimation error for training-based LS and iterative EM channel estimators,
extending the methods proposed in [Hermosilla05] for systems with perfect CSI.

• Chapter 5: Results have been provided which allow to evaluate the e�ects of channel
estimation and realistic hardware implementation on the BER performance of MIMO
detectors, including the simplest detector (ZF) and the optimal ML receiver (imple-
mented as SD) [Mendicute06a]. A simulation-based comparison of several basic de-
tection algorithms has been carried out for di�erent channel estimation error levels in
narrowband and wideband MIMO systems (OFDM and SCFDE), which has allowed
to evaluate the impact of the selection and design of channel estimation algorithms.

Finally, a parallel decision-directed semi-iterative channel estimation architecture has
been proposed, which achieves good performance with no latency and a moderate
complexity. Many of the results of this chapter have not been published yet. See
Appendix A for the publications (published or under preparation) derived from this
PhD thesis.

6.3 Suggestions for Further Research
The work described in this PhD dissertation can be improved and extended in many ways.
These are some of the suggestions for further research:

• The fundamental real-time MIMO implementation and the analysis of Chapter 5 could
be extended to more realistic and demanding cases, such as systems with a larger
number of antennas or multicarrier modulation.

• The proposed analytical EXIT function-based tools have been applied to a very speci�c
case (MMSE-PIC receiver with LS and EM estimators). Their extension to more
generic Turbo-MIMO systems and channel estimation models may be interesting in
order to con�rm their validity.

• The simple simulation-based methodology that has been used for the analysis of chan-
nel estimation e�ects could be extended to multiuser MIMO scenarios, where CSI is
extensively used at both transmitter and receiver sides.

• The proposed PDD architecture could be applied to coded systems, from conventional
Viterbi convolutional decoders to BCJR-based SISO* detectors. The applicability and
the achievable performance results for this kind of systems should be evaluated.
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• The hardware design and implementation of the PDD architecture could be carried
out in order to evaluate the real performance and complexity issues of the proposed
channel estimator in real scenarios.
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Publications

The following papers have been published or are under preparation for publication in refereed
journal and conference proceedings. Those marked by † are reproduced in this appendix.

Journal papers:
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Abstract — Multiple-Input Multiple-Output (MIMO)

signal processing combined with Orthogonal Fre-

quency Division Multiplexing (OFDM) is a widely

accepted solution to achieve the high bit rates that

new communication standards require in frequency-

selective wireless channels. In recent years, a new

Frequency-Domain Equalized (FDE) Cyclic-Prefixed

Single-Carrier (CPSC) block transmission system has

been proven to achieve similar performance to OFDM

for coded systems with the same overall complexity,

avoiding its main drawbacks and becoming a candi-

date for future wireless standards. In this paper, a

FDE CPSC spatial multiplexing system is analyzed and

compared to OFDM. The implementation of different

frequency-domain MIMO equalization and detection

schemes is evaluated. Simulation-based performance

results prove the efficiency of FDE CPSC based spatial

multiplexing systems and highlight that these transmis-

sion schemes can outperform OFDM in uncoded and

high coding rate MIMO systems, as it has been shown

in the literature for the SISO case.

I. Introduction

As new wireless communication network standards are being de-
fined, the demand for higher throughput is growing enormously.
Recent wireless local (WLAN) and metropolitan (WMAN) area
network standards such as IEEE 802.11a, 802.11g, 802.16a and
ETSI HIPERLAN/2 have chosen Orthogonal Frequency Divi-
sion Multiplexing (OFDM) to overcome the wireless channel’s
high frequency selectivity. Newer, not yet defined WLAN stan-
dards, such as 802.11n, aim to reach data rates of up to 300
Mbps. In order to achieve these high bit rates, Multiple-Input
Multiple-Output (MIMO) signal processing techniques become
necessary.

Two basic approaches have been studied to enhance OFDM
with MIMO: Space-Time Coding (STC) and Spatial Multiplex-
ing (SM) [1]. STC increases the diversity order of the com-
munication system by coding over the different transmission
antennas, which leads to a better performance. On the other
hand, SM transmits independent data streams on each antenna
simultaneously, thus allowing greater data throughputs for a
fixed bandwidth [1, 2].

Although OFDM has been included in many standards due
to its simple equalization, alternative cyclic-prefixed or zero-
padded single-carrier (SC) block transmission techniques have

1Partially sponsored by the Dpt. of Education, Universities and

Research of the Basque Government through a Researcher Training

Grant.
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Figure 1: Wireless FDE CPSC transmission and reception

systems.

been proposed and developed in recent years [3, 4]. SC trans-
mission avoids OFDM’s three main drawbacks: Large peak-to-
average ratio of the signal power, frequency offset sensitivity and
no multipath diversity in uncoded systems. The most simple
and interesting of these SC techniques is the Frequency-Domain
Equalized (FDE) Cyclic-Prefixed Single-Carrier (CPSC) trans-
mission system. As can be seen in Fig. 1, its overall complexity
is similar to an OFDM system. As the equalization is done in the
frequency-domain, FFT and IFFT blocks are required in recep-
tion. This system has been proven to fairly outperform OFDM
for uncoded systems and yields similar BER performance in
coded transmissions [3]. Its main disadvantages are the loss
of subcarrier allocation granularity and the difficulty of coping
with fixed narrowband interferers. A very interesting feature
of CPSC lies on the fact that the main complexity belongs to
the receiver part, so it can be combined with OFDM, allowing
asymmetric systems where most of the complexity resides at
one side (base station, access point, etc.), as it has been pro-
posed in new 802.16 standards [5]. FDE has been extended to
several MIMO systems, such as diversity combining using adap-
tive LMS and RLS equalization [6] or Space-Time Block Coding
with MMSE-FDE detection [7].

This paper discusses and compares the frequency-domain
equalization of CPSC and OFDM spatial multiplexing systems.
The main MIMO equalization techniques are analyzed and BER
performances of both systems are evaluated with simulations for
a HIPERLAN/2 MIMO system. The applicability and perfor-
mance of known V-BLAST [8] detection algorithms is specially
analyzed.

The layout of this paper is as follows: Section II details the
evaluated MIMO equalization techniques. In Section III the
FDE CPSC-based MIMO transmission and reception systems
are introduced. Section IV summarizes the most interesting
aspects of MIMO OFDM equalization. Section V shows the
simulation results and some conclusions are drawn in Section
VI.
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II. MIMO Equalization and Detection

Techniques
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Figure 2: Flat MIMO system

Fig. 2 shows a single-carrier spatial multiplexing system for a
frequency-flat fading channel with additive white Gaussian noise
(AWGN). This model will be extended to a frequency-selective
channel case in Section 4. The system has M transmit and
N receive antennas. The path loss from transmit antenna m to
receive antenna n is represented as hnm. The sampled baseband
system of a flat MIMO channel can be represented in matrix
notation as:

r =

√
Es

M
H̃s + n (1)

where r is an Nx1 vector containing the signals received in
each antenna, s is an Mx1 vector with the signals transmitted
simultaneously at each transmission branch and n is an Nx1
vector containing channel’s AWGN. Es is the transmitted signal
power and H̃ is a NxM channel matrix, defined as:

H̃ =




h11 h12 ... h1M

h21 h22 ... h2M

: : : :
hN1 hN2 ... hNM




Linear non-OSIC MIMO detection

Maximum Likelihood detection using equation (2) should be the
optimal detection method for spatial multiplexing. However, it
is computationally too complex due to the calculation of the
likelihood metrics for SM possible input vectors, where S is the
number of symbols in the constellation.

ŝ = arg min
s

∥∥∥∥r −

√
Es

M
H̃s

∥∥∥∥
2

F

(2)

MMSE (Minimum Mean Squared Error) and ZF (Zero-Forcing)
[9] are simpler solutions, based in the product:

ŝ = Gr (3)

where

GZF =

√
M

Es

H̃
+

=

√
M

Es

(H̃
∗

H̃)−1H̃
∗

(4)

GMMSE =

√
M

Es

(H̃
∗

H̃ + αIMxM )−1H̃
∗

(5)

with α = NoisePower/SignalPower. The notations * and +

stand for conjugate transpose and pseudoinverser espe ctivel y.
MMSE offers much better results than ZF in AWGN channels,
but its performance is still quite far from optimal for N = M
[9].

Non-linear V-BLAST (OSIC) detection

An OSIC (Ordered Successive Interference Cancellation) based
algorithm has been proposed in [8] to overcome the limitations
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Figure 3: Frequency-Domain Equalized MIMO spatial mul-

tiplexing transmission and reception system.

of previous methods with relatively low complexity and has been
named ZF-V-BLAST detection. It is based in the iteration of
three steps:
1. Ordering: Determine the transmit antenna k with great-
est SNR from the estimated channel, selecting the row (G)

k
of

smallest norm of the nulling matrix G:

k = arg min
k

‖(G)
k
‖2 G = GZF (6)

2. Nulling and slicing: Detect transmitted symbol at antenna
k ŝk:

yk = ((G)
k
)T r (7)

ŝk = arg min
ŝk

‖ŝk − yk‖ (8)

3. Cancellation: Remove the effect of the detected symbol from
received signal vector and its column H̃k in the channel matrix:

r = r −

√
Es

M
H̃kŝk (9)

H̃nm = 0 ∀m = k (10)

Note that the diversity order increases by one in each iteration.
Other V-BLAST detection algorithms such as MMSE-VBLAST
or SOMLD (Successive Ordered Maximum Likelihood Detec-
tion) differ from ZF-V-BLAST in the calculation of the G ma-
trix in (6) and the ordering criterion [2, 9].

III. Frequency-Domain Equalized

Cyclic-Prefixed Single-Carrier MIMO system

The baseband flat MIMO channel model in (1) can be easily
extended for a L tap frequency-selective channel:

r(k) =

√
Es

M

L∑

l=1

H̃(l)s(k − l) + n(k) (11)

The addition of the cyclic prefix avoids IBI and transforms
the linear time convolution of the input signal and the channel
response into a circular convolution, thus the model in (11) can
be modelled as a product in the frequency domain. This way
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MIMO equalizer is employed at each frequency.

a flat MIMO channel is obtained for each one of the Nf FFT
frequency points of Fig. 3:

R(f) =

√

Es

M
H(f)S(f) + N(f) (12)

R, H, S and N are the Nf -point FFT transforms of r, H̃, s and
n, respectively. Note that the MIMO equalization is not done
on the information bearing symbols s(k), but on the frequency-
domain FFT points S(f), so an IFFT is required before the
symbol detection. This means that all symbols from an antenna
must be equalized before they can be detected. This is partic-
ularly important for V-BLAST detection, as it will be shown
later.

For the MIMO detection techniques that do not require any
decision feedback, such as ZF or MMSE, the Frequency-Domain
MIMO detection requires Nf MIMO equalizers, i.e., one for
each of the FFT output points, as it can be seen in Fig. 4.

For MIMO equalization techniques requiring detected sym-
bol feedback, such as ZF-V-BLAST or MMSE-V-BLAST, FDE
CPSC implies several problematic changes because the IFFT
and the FFT operations appear in the feedback chain as it can
be seen in Fig. 5. Equations (7) and (8), slicing and cancella-
tion, become:

ŝk = arg min
ŝk

‖ŝk − ifft(Ŝk)‖ (13)

Dk = fft(ŝk)

R(f) = R(f) −

√

Es

M
Hk(f)Dk(f) (14)

where sk is a whole block transmitted from antenna k in the time
domain. R and Ŝ are frequency-domain received and equalized
signal and Dk is the FFT transform of the detected symbol
block ŝk. As it can be deduced from (13) and (14), the equal-
ization and detection must be done per antenna and in a whole
block basis due to the IFFT and FFT operations involved in the
feedback chain. Thus, the antenna ordering process in (6) will
be done for a whole time block, instead of per each FFT point
in the frequency domain, like in OFDM, as it would be desirable
to reduce the effects of frequency selectivity. This per-block or-
dering can slightly reduce the performance improvement of the
OSIC (V-BLAST) algorithm.

IV. MIMO-OFDM Equalization

In OFDM an Nf -point IFFT operation is done on the
information-bearing symbols before the cyclic prefix addition,
so each symbol is transmitted on an orthogonal frequency sub-
carrier. Since a cyclic prefix is also used, equation (12) can also
model a MIMO OFDM transmission system, where S(f) is the
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Figure 5: MIMO V-BLAST per-antenna signal detection

and decision feedback.

information symbol sent at subcarrier f . Thus, Nf flat MIMO
systems are obtained.

Note that the frequency-domain equalization is done directly
on the data symbols and not in their FFT transform, as in the
FDE CPSC case. This allows symbol based detection and feed-
back, simplifying the implementation of OSIC algorithms in un-
coded systems. For coded transmission, this symbol-by-symbol
detection can be improved if a per-antenna coded (PAC) V-
BLAST algorithm is applied as described in [2], where coding
and soft Viterbi decoding blocks are inserted in the V-BLAST
decision feedback chain. If this coded scheme is used, equaliza-
tion and detection must be done in a whole block basis, like for
the FDE-CPSC case.

V. Simulation results

Simulated System Parameters

Two different spatial multiplexing transmission systems are
simulated: MIMO FDE CPSC and MIMO OFDM. The main
simulation parameters are based on the HIPERLAN/2 stan-
dard. For OFDM, this means a 20 MHz bandwith channel with
64 subcarriers, 48 of which are used to carry information sym-
bols. The OFDM symbol duration is 4 us, 0.8 of which are the
cyclic prefix. For CPSC, blocks of 64 symbols are sent with a
cyclic prefix of 16 symbols at each transmission branch. The
symbol duration is 50 ns and a 64-point FFT is employed in
equalization. QPSK modulation is analyzed. Both uncoded
and coded transmissions are compared. Transmitted symbols
are per-antenna coded with an interleaved 1/2 rate convolu-
tional (HIPERLAN/2 standard) code and soft Viterbi decoding
is used at reception.

A stochastic MIMO Rayleigh frequency-selective fading
channel is used with an rms delay spread of 100ns (channel
model B from HIPERLAN/2 specification). The discrete chan-
nel impulse responses have exponentially decaying power taps
and there is no antenna correlation. Perfect channel knowledge
is assumed at reception. Three antenna layouts are compared in
order to evaluate how the antenna number and diversity affect
BER performance: 1x1 (SISO), 4x4 and 3x4.

Results

The BER performance versus SNR per receive antenna is de-
picted in Fig. 6 for uncoded QPSK with several antenna setups
with no channel correlations and using the MMSE detection
technique. MIMO-FDE-CPSC (continuous line) clearly outper-
forms MIMO-OFDM (dotted line) in uncoded transmissions,
as suggested in [3, 4] for SISO systems. When N = M the
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BER performance degrades slightly with MMSE as the number
of transmission and reception antennas grows, but very good
BER results can be obtained if reception diversity is increased.
For example, the 3x4 antenna setup outperforms the 1x1 BER
performance, while transmitting at a three times higher bitrate.

In order to compare OFDM and CPSC, Fig. 7 shows the BER
performance results for MIMO coded systems. QPSK modu-
lation and frequency-domain MMSE detection are employed.
Coding and interleaving give frequency diversity to OFDM,
whose BER performance becomes similar or better to CPSC
only for low coding rate frequency-selective systems.

Fig. 8 shows the BER performance results for MIMO coded
systems with MMSE-V-BLAST equalization and detection.
MMSE-V-BLAST equalization clearly outperforms MMSE, due
to the diversity of the OSIC algorithms. The 4x4 antenna setup
even outperforms the SISO case at high SNR. OFDM perfor-
mance (dotted line) is slightly better that FDE CPSC (contin-
uous line). Note that the coding rate used is the lowest of the
HIPERLAN/2 standard and that CPSC tends to outperform
OFDM as the coding rate grows.
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Figure 8: BER performance of MIMO OFDM and FDE
CPSC for 3x4, 4x4 and SISO 1/2 coded systems with
MMSE-V-BLAST equalization.

VI. Conclusion

We have analyzed the extension and applicability of fundamen-

tal MIMO equalization and detection techniques to FDE CPSC

systems. ZF, MMSE, ZF-V-BLAST and MMSE-V-BLAST al-

gorithms have been evaluated for FDE CPSC and compared to

MIMO-OFDM. BER performance simulations for uncoded and

coded QPSK spatial multiplexing systems have been obtained

and prove the potential of FDE CPSC MIMO systems. It has

been shown that this transmission scheme can equal or outper-

form MIMO-OFDM in uncoded and high coding rate systems.
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ABSTRACT

Multiple-Input Multiple-Output (MIMO) signal processing
combined with Orthogonal Frequency Division Multiplex-
ing (OFDM) is a widely accepted solution to achieve the
high bit rates that new communication standards require
in frequency-selective wireless channels. In recent years,
a new Frequency-Domain Equalized (FDE) Cyclic-Prefixed
Single-Carrier (CPSC) block transmission system has been
proven to achieve similar performance to OFDM for coded
systems with the same overall complexity, avoiding its main
drawbacks and becoming a candidate for future wireless
standards. In this paper, a FDE CPSC spatial multiplex-
ing system is analyzed and compared to OFDM. The appli-
cability of different frequency-domain MIMO equalization
and detection schemes is evaluated. Simulation-based per-
formance results prove the potential of these techniques and
highlight that FDE CPSC can equal or outperform OFDM in
uncoded and high coding rate spatial multiplexing systems,
as it has been shown in the literature for the SISO case.

1. INTRODUCTION

As new wireless communication network standards are be-
ing defined, the demand for higher throughput is growing
enormously. Recent wireless local (WLAN) and metropoli-
tan (WMAN) area network standards such as IEEE 802.11a,
802.11g, 802.16a and ETSI HIPERLAN/2 have chosen
Orthogonal Frequency Division Multiplexing (OFDM) to
overcome the wireless channel’s high frequency selectivity.
Newer not yet defined WLAN standards, such as 802.11n,
aim to reach data rates of up to 300 Mbps. In order to achieve
these high bit rates, Multiple-Input Multiple-Output (MIMO)
signal processing techniques become necessary.

Two basic approaches have been studied to enhance
OFDM with MIMO: Space-Time Coding (STC) and Spatial
Multiplexing (SM) [1]. STC increases the diversity order of
the communication system by coding over the different trans-
mission antennas, which leads to a better performance. On
the other hand, SM transmits independent data streams on
each antenna simultaneously, thus allowing greater through-
puts [2, 3].

Although OFDM has been included in many standards
due to its simple equalization, alternative cyclic-prefixed
or zero-padded single-carrier (SC) block transmission tech-
niques have been proposed and developed in recent years
[4, 5]. SC transmission avoids OFDM’s three main draw-
backs: Peak-to-average ratio of the signal power, frequency

Mr. Mendicute’s work is partially sponsored by the Dpt. of Education,
Universities and Research of the Basque Government through a Researcher
Training Grant.
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Figure 1: Wireless FDE CPSC transmission and reception
systems.

offset sensitivity and no multipath diversity in uncoded sys-
tems. The most simple and interesting of these SC techniques
is the Frequency-Domain Equalized (FDE) Cyclic-Prefixed
Single-Carrier (CPSC) transmission system. As it can be
seen in Fig. 1, its overall complexity is similar to an OFDM
system. As the equalization is done in the frequency domain,
FFT and IFFT blocks are required in reception. The addition
of the cyclic prefix avoids Inter-Block Interference (IBI) and
transforms the linear convolution of the signal and the chan-
nel into circular, i.e., a product in the frequency domain. This
system has been proven to fairly outperform OFDM for un-
coded systems and yields similar BER performance in coded
transmissions [4]. A very interesting feature of CPSC lies
on the fact that the main complexity belongs to the receiver
part, so it can be combined with OFDM, allowing asymmet-
ric systems where most of the complexity resides at one side
(base station, access point, etc.), as it has been proposed in
new 802.16 proposals [6].

This paper discusses the frequency-domain equalization
and detection of CPSC spatial multiplexing systems. The ap-
plicability of the main MIMO equalization techniques is ana-
lyzed and their implementation is compared to OFDM based
MIMO systems. The BER performances of both systems are
evaluated with simulations.

The layout of this paper is as follows: Section 2 details
the evaluated MIMO equalization techniques. In Section 3
the FDE CPSC-based MIMO transmission and reception sys-
tems are introduced. Section 4 shows the most important
simulation results and some conclusions are drawn in Sec-
tion 5.

2. MIMO EQUALIZATION AND DETECTION

TECHNIQUES

Fig. 2 shows a single-carrier spatial multiplexing system
for a frequency-flat channel with additive white Gaussian
noise (AWGN). This model will be extended to a frequency-
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selective channel case in Section 4. The system has M trans-
mit and N receive antennas. The path loss from antenna m
to antenna n is represented as hnm. The sampled baseband
system of a flat MIMO channel can be represented in matrix
notation as:

r =

√
Es

M
H̃s+n (1)

where r is an Nx1 vector containing the signal received in
each antenna, s is an Mx1 vector with the signals transmit-
ted simultaneously at each transmission branch and n is an
Nx1 vector containing channel’s AWGN. Es is the transmit-
ted signal power and H̃ is a NxM channel matrix, defined as:

H̃ =




h11 h12 ... h1M

h21 h22 ... h2M

: : : :
hN1 hN2 ... hNM




2.1 Linear non-OSIC MIMO detection

Maximum Likelihood (2) should be the optimal detection
method for spatial multiplexing. However, it is computation-
ally too complex due to the calculation of the output of SM

possible input vectors, where S is the number of symbols in
the constellation.

ŝ = argmin
s

∥∥∥∥r−

√
Es

M
H̃s

∥∥∥∥
2

F

(2)

MMSE (Minimum Mean Squared Error) and ZF (Zero-
Forcing) [7] are simpler solutions, based in the product:

ŝ = Gr (3)

where

GZF =

√
M

Es
H̃

+
=

√
M

Es
(H̃

∗
H̃)−1H̃

∗
(4)

GMMSE =

√
M

Es
(H̃

∗
H̃+αIMxM)−1H̃

∗
(5)

with α = NoisePower/SignalPower. * and + stand for con-
jugate transpose and pseudoinverser espect ivel y. MMS Eo f -
fers much better results than ZF in AWGN channels, but its
performance is still quite far from optimal for N = M [7].

2.2 Non-linear V-BLAST (OSIC) detection

An OSIC (Ordered Successive Interference Cancellation)
based algorithm has been proposed in [8] to overcome the
limitations of previous methods with relatively low complex-
ity and has been named ZF-V-BLAST detection. It is based
in the iteration of three steps:
1. Ordering: Determine the transmit antenna k with greatest
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Figure 3: Frequency-Domain Equalized MIMO spatial mul-
tiplexing transmission and reception system.

SNR from the estimated channel, selecting the row (G)k of
smallest norm of the nulling matrix G:

k = argmin
k

‖(G)k‖
2 G = GZF (6)

2. Nulling and slicing: Detect transmitted symbol at antenna
k ŝk:

yk = ((G)k)
T r (7)

ŝk = argmin
ŝk

‖ŝk − yk‖ (8)

3. Cancellation: Remove the effect of the detected symbol
from received signal vector and its column H̃k in the channel
matrix:

r = r−

√
Es

M
H̃k ŝk (9)

H̃nm = 0 ∀m = k (10)

Note that the diversity order increases by one in each itera-
tion. Other V-BLAST detection algorithms such as MMSE-
VBLAST or SOMLD (Successive Ordered Maximum Like-
lihood Detection) differ from ZF-V-BLAST in the calcula-
tion of the G matrix in (6) and the ordering criterion [3, 7].

3. FREQUENCY-DOMAIN EQUALIZED
CYCLIC-PREFIXED SINGLE-CARRIER MIMO

SYSTEM

The baseband flat MIMO channel model in (1) can be easily
extended for a L tap frequency-selective channel:

r(k) =

√
Es

M

L

∑
l=1

H̃(l)s(k− l)+n(k) (11)

The addition of the cyclic prefix avoids IBI and trans-
forms the linear time convolution of the input signal and the
channel response into a circular convolution, thus the model
in (11) can be modelled as a product in frequency domain.
This way a flat MIMO channel is obtained for each one of
the N f FFT frequency points of Fig. 3:

R( f ) =

√
Es

M
H( f )S( f )+N( f ) (12)
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R, H, S and N are the N f -point FFT transforms of r, H̃,
s and n, respectively. Note that the MIMO equalization is
not done on the information bearing symbols s(k), but on the
frequency-domain FFT points S( f ), so an IFFT is required
before the symbol detection. This means that all symbols
from an antenna must be equalized before they can be de-
tected. This is particularly important for V-BLAST detec-
tion, as it will be shown later.

For the MIMO detection techniques that do not require
any decision feedback, such as ZF or MMSE, the frequency-
domain MIMO detection requires N f MIMO equalizers, i.e.,
one for each of the FFT output points, as it can be seen in
Fig. 4.

For MIMO equalization techniques requiring detected
symbol feedback, such as ZF-V-BLAST or MMSE-V-
BLAST, FDE CPSC implies several problematic changes be-
cause the IFFT and the FFT operations appear in the feed-
back chain as it can be seen in Fig. 5. Equations (7) and (8),
slicing and cancellation, become:

ŝk = argmin
ŝk

‖ŝk − ifft(Ŝk)‖ (13)

Dk = fft(ŝk)

R( f ) = R( f )−

√

Es

M
Hk( f )Dk( f ) (14)

where sk is a whole block transmitted from antenna k in the

time domain. R and Ŝ are frequency-domain received and
equalized signal and Dk is the FFT transform of the detected
symbol block ŝk. As it can be deduced from (13) and (14),
the equalization and detection must be done per antenna and
in a whole block basis due to the IFFT and FFT operations
involved in the feedback chain. Thus, the antenna ordering
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Figure 6: BER performance for uncoded QPSK MIMO FDE
CPSC and MIMO OFDM with MMSE equalization.

process in (6) will be done for a whole time block, instead of
per each FFT point in the frequency domain, like in OFDM,
as it would be desirable to reduce the effects of frequency se-
lectivity. This per-block ordering can slightly reduce the per-
formance improvement of the OSIC (V-BLAST) algorithm.

4. SIMULATION RESULTS

4.1 Simulated System Parameters

Two different spatial multiplexing transmission systems are
simulated: MIMO FDE CPSC and MIMO OFDM. The main
simulation parameters are based on the Hiperlan/2 standard.
For OFDM, this means a 20 MHz bandwith channel with 64
subcarriers, 48 of which are used to carry information sym-
bols and 4 are reserved for pilot tones. The OFDM symbol
duration is 4 us, 0.8 of which are the cyclic prefix. For CPSC,
blocks of 64 symbols are sent with a cyclic prefix of 16 sym-
bols at each transmission branch. The symbol duration is 50
ns and a 64-point FFT is employed in equalization. QPSK
modulation is analyzed. Both uncoded and coded transmis-
sions are compared. Perfect channel knowledge is assumed
at reception.

A stochastic MIMO Rayleigh frequency-selective chan-
nel [9] is used with an rms delay spread of 100ns (channel
model B from Hiperlan/2 specification). The discrete chan-
nel impulse responses have exponentially decaying power
taps and there is no antenna correlation. Three antenna lay-
outs are compared in order to evaluate how the antenna num-
ber and diversity affect BER performance: 1x1 (SISO), 4x4
and 3x4.

4.2 Results

The BER performance versus SNR per receive antenna is
depicted in Fig. 6 for uncoded QPSK with several antenna
setups with no correlation and MMSE detection technique.
MIMO-FDE-CPSC (continuous line) clearly outperforms
MIMO-OFDM (dotted line) in uncoded transmissions, as
suggested in [4, 5] for SISO systems. When N = M the
BER performance degrades slightly with MMSE as the num-
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ber of transmission and reception antennas grows, but very
good BER results can be obtained if reception diversity is in-
creased. For example, 3x4 antenna setup outperforms SISO
BER transmitting at a three times higher bitrate.

Fig. 7 shows the BER performance of the MIMO equal-
ization schemes analyzed in Section 2 for 4x4 and 3x4 FDE
CPSC systems. V-BLAST algorithms are the ones which
offer the best performance. The diversity obtained by the
OSIC algorithm allows even to outperform the SISO results
for high SNR. The effect of including the FFT and IFFT in
the decision feedback of V-BLAST detection systems does
not degrade their BER performance. MMSE-V-BLAST al-
gorithm performs slightly better than ZF-V-BLAST.

In order to compare OFDM and CPSC, Fig. 8 shows the
BER performance results for MIMO coded systems. Trans-
mitted symbols are per-antenna coded (PAC) with an in-
terleaved 1/2 rate convolutional (Hiperlan/2 standard) code.
QPSK modulation and frequency-domain MMSE detection
are employed. Coding and interleaving give frequency diver-
sity to OFDM, whose BER performance becomes similar or
better to CPSC only for low coding rate frequency-selective
systems.

5. CONCLUSION

We have analyzed the extension and applicability of fun-
damental MIMO equalization and detection techniques
to FDE CPSC systems. ZF, MMSE, ZF-V-BLAST and
MMSE-V-BLAST algorithms have been evaluated for CPSC
and compared to MIMO-OFDM. BER performance simu-
lations for uncoded and coded QPSK spatial multiplexing
systems have been obtained and compared to OFDM for a
frequency-selective Hiperlan/2 standard channel. It has been
shown that MIMO equalization can be easily adapted to
frequency-domain equalized single-carrier transmission and
that this communication scheme can equal or outperform
MIMO-OFDM in uncoded and high coding rate systems.

0 2 4 6 8 10 12 14 16

10
−4

10
−3

10
−2

10
−1

10
0

SNR per antenna (dB)

A
v
e

ra
g

e
 B

E
R

BER vs SNR for 1/2 CODED MIMO OFDM and MIMO FDE CPSC (QPSK)

1x1 CPSC
1x1 OFDM
4x4 CPSC
4x4 OFDM
3x4 CPSC
3x4 OFDM

Figure 8: BER performance comparison for coded MIMO
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Abstract

This paper addresses the problem of (semi-) blind channel estimation and equalization for 2-11 GHz Fixed 

broadband Wireless Access (FBWA) systems in the presence of co-channel interference. In particular, a (semi-)

blind technique is proposed which combines a subspace technique for blind channel estimation and 

cyclostationary statistics. It will be shown that the proposed technique provides consistent estimates of the 

broadband wireless propagation channel in the presence of interference and is shown to outperform other 

similar blind subspace-based techniques using conventional second-order statistics or cyclostationary statistics.

Keywords
(Semi-) blind channel estimation, cyclostationary signals, single carrier systems, frequency domain equalization. 

1. INTRODUCTION

The increasing demand for high spectral efficiency in broadband wireless communications where multipath 

delay spread is a major transmission problem has motivated the design of (semi-)blind equalization techniques 

which require little or no knowledge of the transmitted sequence. A number of blind channel estimation and 

equalization techniques have been proposed in the literature, which rely on some statistical properties or 

algebraic structure of the received cyclostationary signal [3]. In particular, several subspace techniques have 

been proposed for blind and semi-blind channel identification and equalization after the pioneering work by 

Moulines et al. [3] which have been applied for single-carrier systems [6] and multicarrier systems [4]. These 

techniques are attractive due to their efficiency in terms of the amount of data needed to estimate the propagation 

channel. Several combinations of subspace techniques and cyclostationary estimation have been proposed in the 

literature [7][8][9] which exploit the ability of cyclostationary statistics to mitigate the effect of interference from 

co-channel users on channel estimation. 

The technique proposed in this paper combines cyclostationary statistics measured in terms of both the cyclic 

and conjugate cyclic autocorrelation functions and subspace techniques. It is shown that performance

improvements can be obtained when these are combined in comparison with other similar techniques which 

either rely on the cyclic or the conjugate cyclic autocorrelation functions due to the ability to handle circular and 

non-circular signals [8]. The proposed blind method is concerned with the ability to mitigate the contribution of 

jammer signals in the estimation of the propagation channel of the signal of interest, provided that they exhibit 

different cyclostationary signatures.

In particular, this paper addresses the problem of (semi-)blind channel estimation and equalization for 2-11 GHz 

broadband wireless systems. The proposed blind channel estimation technique is robust in the presence of co-

channel interference and it is suitable for cyclic-prefixed (CP) single-carrier (SC) frequency-domain equalization 

(FDE) [1]. CP-SCFDE is based on the insertion of a cyclic prefix in each transmitted block of data to remove 

interblock interference like in OFDM and the main advantage compared to OFDM system is the reduced peak-

to-average ratio requirements with similar receiver processing complexity. This technique has recently been 

proposed as an alternative to uncoded OFDM or low coding rate systems and has been adopted as a PHY 

standard for Wireless Metropolitan Area Networks (WMAN) IEEE 802.16 (Std 802.16a-2003).

2. SYSTEM ARCHITECTURE

The FBWA systems for Local and Metropolitan Area Networks under study can adopt Point-to-Multipoint

(PMP) and Mesh operation modes. In PMP mode, traffic from terminal equipment (TE) is forwarded through 
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Subscriber Stations (SS) to Base Stations (BS), whereas in Mesh mode, traffic can be routed through other SSs 

and can occur directly between SSs. The main source of interference comes from the coexistence of BSs from 

different operators transmitting simultaneously under the coverage of the main beam of the victim BS antenna. 

Another important source of interference is related to SS-to-BS interference, where one or several SS can be 

transmitting simultaneously with the desired SS. The problem of interference has been subject to a

recommendation and it has been established that an acceptable level would require co-channel interference to be 

6 dB below the receiver thermal noise (i.e., I/N≤ -6 dB)[5].

Both DL and UL operations require data to be formatted into Bursts as shown in Figure 1. A Unique Word  (UW) 

is inserted in the Burst Preamble (BP) for synchronisation and equalizer initialization purposes and it also serves 

as a cyclic prefix for inter-block interference cancellation [1]. Frank-Zadoff or Chu sequences originally 

conceived for synchronization of radar systems are used in the UW because they exhibit zero correlation at non-

zero correlation lags. 

Figure 1. Framed Burst Format.

3. (SEMI-) BLIND CHANNEL ESTIMATION 

Figure 2 describes the baseband system model of a CP-SC FDE system [1]. A multichannel model is proposed,

where a discrete-time input sequence x(k) is received by K antennas. The received signal at the ith antenna 

element is converted to the frequency domain (FD) after the cyclic prefix has been removed. Equalization is 

performed in the FD and proper decoding and detection is carried out in the time-domain. The (semi-) blind 

channel estimation algorithm samples the received signal at a rate P times faster than the source symbol rate and 

is formulated as:
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where )()(
def

)(
khh

ii

k
=  are the coefficients of the ith subchannel, M+1 is the length of the subchannel impulse 

response and N is the length of the observation window, both multiples of the oversampling factor P. On the 

other hand, T])1(,),1(),([ +−−−= MNkxkxkxx k
 is the (N+M)x1 vector which contains the oversampled input 

sequence x(k), T)()()()(
])1(,),1(),([ +−−= Nkykykyy iiii

k

 represents the Nx1 received signal vector and )(i

kw  is 

the noise vector at the ith antenna. 

3.1 Channel identification using cyclostationary statistics and subspaces

Let us first define the autocorrelation function of the oversampled input sequence x(k) as:

),()}()({),( * mPkRkxmkxEmkR
xx

+=+= (3)
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Figure 2. Cyclic Prefixed SC-FDE system block diagram.

which is periodic in k  with period P. The cyclic autocorrelation function of the input sequence x(k) can be 

defined in terms of the Fourier series coefficients of the autocorrelation function
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where α  is a set of frequencies known as the cyclic frequencies [2]. Similarly, the conjugate cyclic

autocorrelation can be defined as:
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From equation 4, the signal x(k) is said to be wide-sense cyclostationary with period P if there is a non-zero

cyclic frequency α for which the Fourier coefficients )(mRx

α  are non-zero. The autocorrelation matrix

}{)(
H

kkx xxEkR = of the zero-padded input sequence x(k) is a diagonal matrix with P-1 zeros interspersed between 

two non-zero elements defined as:
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and thus, following equation 4 we might express

P
]1[diag

2

x)1(222 σπ απ απ αα −−−−= Pjkjj

x
eeeR (7)

Since the magnitude of each element on the leading diagonal is nonzero, 
α

xR  is full rank for all α . On the other 

hand, the output autocorrelation matrix as in [3] can be expressed as:
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where wR  is the autocorrelation matrix of the stationary noise process. By definition, using equations 8 and 4,

an expression for the received signal cyclic autocorrelation matrix can be formulated as:
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From this, for 0=α
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is the received signal average autocorrelation matrix but more importantly, for 0≠α ,

H

NxNy RR ΗΗ= αα

P

l=α ,nPl ≠ Znl ∈, (11)

The Singular Value Decomposition (SVD) of the received signal autocorrelation matrix of equation 8 as in [3] or

the received signal cyclic or conjugate cyclic of equation 11 as in [7][9], provides subspace information on the 

signal subspace which can be used for blind channel estimation up to an scalar factor. Similarly to the 

formulation presented in [8], a cyclic and conjugate cyclic correlation matrix can be expressed as:
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The identification of the channel coefficients is based on the SVD of the 2KNx2KN
α

yCR ,  matrix. Provided that 

the filtering matrix 
N

Η  meets the full column -rank condition [3], the eigenvectors associated with the non-zero

eigenvalues span the signal subspace and form the signal eigenvectors matrix S , whereas the eigenvectors 

associated with the last eigenvalues for 0≠α  span the null-subspace and collectively form the null-space

eigenvector matrix G . Due to the orthogonality between the columns of matrix S  and G  we can conclude that 

any vector from the null subspace is orthogonal to any column vector in the signal subspace and by extension to 

any column of the filtering matrix C

0=Cg
H

i
1).(20 −−−<≤ MNKNi (13)

When only sample estimates of the received signal cyclic and conjugate cyclic autocorrelation matrices are 

available, the set of linear equations of equation 13 can be solved in the least squares sense, as the minimization 

of the following quadratic form:

2
1)(2

0

|| Cgq
H

i

NMKN

i

∑
−−−

=

= (14)

Note that for a circular signal, i.e. 0)}()({ =+ kxmkxE , the conjugate cyclic autocorrelation is null for all k and

m. On the other hand, if the signal is spatially and temporally white, i.e. )()}()({
2*

mIkxmkxE
x
δσ=+ ,

following equation 4 and the derivation to 9, the cyclic autocorrelation of the input signal  becomes null for all k

and m. Additive white Gaussian noise is circular and white and will be therefore cancelled from any 

measurement of the received signal cyclic or conjugate cyclic autocorrelation functions for a sufficiently large 

observation window.

In this context, it is particularly interesting the fact that some non-circular signals have both non-zero cyclic and 

conjugate cyclic autocorrelation. In the case of modulation types such as BPSK, where both the cyclic and

conjugate cyclic autocorrelation are the same, the rank of the source signal cyclic and conjugate cyclic 

autocorrelation matrix of equation 12 is essentially the rank of
α

xR , i.e. M+N. However, if the magnitude of the 

cyclic and conjugate cyclic are different or one of them is zero, the rank of 
α

xCR ,
 is double. It is apparent that 

this method only performs better than the method using the received signal conjugate cyclic autocorrelation

when the input signal is non-circular and is robust not only in the presence of AWGN but also in the presence of 

circular interfering signals , which was also observed in [8].

4. SIMULATION RESULTS. 

Simulations were conducted to observe the performance of different channel estimation algorithms in a

WirelessMAN-SCa scenario. The source signal from the desired user is a 4 Mbps BPSK signal which is received 

by K=4 antennas and the sampling frequency is 12 MHz. The number of data symbols in a burst is 1024 and a 

Frank-Zadoff sequence of length 64 is used as UW. A SUI-3 channel model was used in the simu lations with 

antenna correlation at the receiver. A training-based LS algorithm, the conventional subspace blind channel 

estimation method [3], the subspace approach proposed in this paper using both the cyclic and conjugate cyclic 

autocorrelation functions and only using the conjugate cyclic autocorrelation are compared in terms of the mean-

squared error (MSE) for a I/N ≤ -6 dB interference scenario. A single 3 Mbps QPSK modulated signal co-

channel interferer signal is considered. Both the cyclic and conjugate cyclic autocorrelation functions were 

evaluated for a cycle frequency 4=α  MHz, the degree of ISI is 3=M  and the width of the temporal window is 
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4=N . Figure 3 shows a detail of the convergence of the algorithms and it is observed that for the simulated 

interference scenario, the proposed technique is able to track the channel characteristics correctly and achieves a 

lower MSE than the rest. It can also be observed that the same blind technique using only the conjugate cyclic 

autocorrelation function and the conventional blind subspace techniques are unable cannot achieve a desirable 

channel estimate.

Figure 3. Convergence of channel estimation algorithms in a I/N ≤ -6 dB interference scenario.

5. CONCLUSIONS

This paper presents a new approach for blind channel identification in the presence of interfering signals using a 

different cyclostationary signature from the desired signal. Although conventional multichannel subspace based 

blind channel estimation techniques are in general more data efficient than purely statistical methods, the 

combination of cyclostationary statistics measured in terms of both the cyclic and conjugate cyclic

autocorrelation and subspace methods can produce consistent estimates of the channel in the presence of jammer 

signals. It has been shown that the proposed method achieves better performance than the blind subspace 

methods using only the conjugate cyclic autocorrelation in the presence of signals with nonzero cyclic and 

conjugate cyclic statistics and are appropriate for CP-SC broadband wireless systems .
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Abstract

This contribution describes a MIMO simulation and validation

platform suitable for a progressive implementation of real-

time signal processing algorithms. We describe a platform

which allows to share Matlab, simulated VHDL and hardware

designs while transmitting through a real MIMO channel. The

applicability and first results of this platform are shown for a

narrowband 2x2 spatial multiplexing system operating in the

2.4 GHz band.

1 Introduction

MIMO (Multiple-Input Multiple-Output) transmission tech-

niques have become the main solution to achieve the high

bit rates required by new communications standards. For

example, the emerging 802.11n proposals aim to reach data

rates of up to 300 Mbps employing techniques such as spatial

multiplexing or space-time coding [4].

The main disadvantages of MIMO techniques lie on the

multiplication of the required hardware, due to the number

of transmission and reception chains, and on the complexity

linked to the multi-antenna signal processing algorithms. The

latter has led to many ”off-line” MIMO implementations,

i.e., systems where real signals are transmitted and processed

employing excessive time and resources, such as computers

running Matlab. Due to the imminent inclusion of these

techniques in new standards and prototypes, the real-time

cost-effective implementation of these algorithms is becoming

crucial [8][2].

This contribution presents a flexible platform suitable for a

progressive transition from Matlab simulated to FPGA-DSP

based real-time MIMO algorithms through an intuitive and

reliable flow, which is summarized in Fig. 1.

This platform has the following main features:

• It allows a flexible combination of Matlab/Simulink code

and simulated or FPGA-running VHDL implementations.

• The simulated FPGA algorithms can run with limited

fixed point or full Matlab double resolution.

FPGA

FPGA

Matlab + 

hardware 

VHDL 

FPGA

Sim 

Matlab / 

VHDL 

Matlab / 
VHDL sim 

Matlab + 

VHDL 

sim 

Fig. 1. States of a progressive transition from simulated to hardware-
implemented real-time MIMO signal processing algorithms.

• Real transmissions or a simulated MIMO channel can be

used.

The layout of this paper is as follows: Section 2 shows

the main characteristics of the selected MIMO model and

algorithms. Section 3 gives a detailed description of the plat-

form and its main elements. The most interesting application

examples are shown in Section 4, while conclusions and future

work lines are drawn in Section 5.

2 MIMO model and algorithms

2.1 System model

Fig. 2 shows the basic 2x2 MIMO spatial multiplexing model

which has been selected and implemented in order to test

the validity of the platform. The transmitted bits are split

into two streams which are transmitted independently and

received synchronously at two receiver antennas. A low-rate

flat channel has been chosen as a first approach. A 50 Ksps

(Kilosymbols per second) rate has been used to ensure the flat

channel assumption.

A complete Matlab-based model has been created and adapted

to Simulink. A MIMO Rayleigh channel has been used and

a short frame based burst transmission system has been as-

sumed. The correlation degree of the transmitter and receiver

antenna gains has been included in the model, allowing the

simulation of different distances between the antennas [6]. A

preamble is transmitted to allow simpler synchronization and

channel estimation algorithms.
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Fig. 2. Structure of a basic 2x2 MIMO spatial multiplexing system.

2.2 Algorithms

The following algorithms have been implemented in Matlab

and Simulink in order to apply the aforementioned MIMO

model to real signals:

• Frame synchronization: a multi-antenna extension of the

double-sliding window technique has been applied [3].

• Sample-time synchronization: an ML (Maximum Likeli-

hood) approach has been chosen [5].

• Frequency Offset Estimation: a reduced complexity iter-

ative offset estimation technique has been used [7].

• Channel Estimation: basic training-based MIMO chan-

nel estimation techniques, such as LS (Least-Squares)

and MMSE (Minimum Mean Squared Error) have been

implemented.

• MIMO Detection: the following detection techniques

have been included in the model: ZF (Zero-Forcing,

MMSE (Minimum Mean Squared Error), ML and V-

BLAST (Vertical Bell-Labs Layered Space-Time) [1].

3 Description of the platform

The system described in this document is based on a computer

with the following elements:

• Vector signal generators and dual-band (2.4 and 5 GHz)

RF tranceivers.

• PCI-based analog signal acquisition and generation cards.

• Hunt’s DSP and FPGA fast prototyping modular Heron

boards.

• Simulation software: Matlab, Simulink and ModelSim.

• FPGA design, synthesis and programming software: Xil-

inx System Generator, Xilinx ISE and Heron Tools.

3.1 RF transceivers and signal generators

The platform is equipped with Maxim’s MAX2827EVKit

boards, which can transmit or receive RF signals in the 2.4

GHz and 5 GHz bands. These boards are able to modulate and

demodulate baseband IQ signals of up to 20 MHz employing

a 40 MHz reference, which must be synchronized for all

the transceivers from the same side of the communication.

This solution avoids the need of implementing modulation

and demodulation algorithms, but requires two analog signals

to be generated or acquired from a transceiver.

The number of analog ports can be reduced when needed if

a modulated signal is generated and up-converted employing

equipment such as signal generators. For example, the com-

bination of signal generators and the aforementioned trans-

ceivers allows the implementation of a 2x3 system employing

two analog outputs and six analog inputs, all managed from

a computer running Matlab.

3.2 Acquisition and generation boards

The platform is equipped with an Acquitek CH-3150 PCI

board, which allows to generate two analog signals with 12

bits resolution and 20 MSPS (Mega Samples Per Second).

The main features of the board include two analog inputs, 16

MB of memory and many programming interfaces. One of

these interfaces allows to access directly to the board from a

Matlab simulation.

A PCI-based Adlink 9812A analog acquisition board has

also been included, which allows to acquire up to 4 analog

signal with 12 bits resolution and 20 MSPS. The synchronized

combination of this board and the aforementioned generation

card provides a Matlab-based off-line transmission system

with 2 outputs and 6 inputs, which can be helpful to test

the validity of the Matlab algorithms with real signals.

3.3 Fast prototyping boards

The platform contains two modular fast prototyping Heron

HEPC9 boards from Hunt Engineering, which will be used
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to develop and test the implementation of real-time signal

processing algorithms. These PCI-based boards have an ab-

solutely flexible architecture based on an internal bus that

allows communications of 400 MBps between the modules.

These carrier boards have been equipped with the following

modules:

• Two HERON-IO2V2 modules with 4 analog inputs and

4 analog outputs of up to 125 MSPS with 12 and 14 bits

of resolution, respectively. These modules provide many

digital ports and a VirtexII FPGA of 1M gates and allow

real-time in-system debugging through JTAG interface

employing Xilinx Chipscope. This JTAG interface even

allows to co-simulate Simulink, System Generator and

Xilinx hardware. Apart from the real-time application,

these modules can be used off-line as signal generation

or acquisition tools if a higher than 20 MSPS sampler

rate is required.

• Two HERON-FPGA3 modules with a VirtexII FPGA of

1M gates.

• Two HERON-C6701 modules, which carry a Texas

Instruments TMS320C6701 16-bit floating point DSP

processor running at 167 MHz.

These HEPC9 boards are controlled through an API that

allows to configure the system, program the Xilinx FPGAs

and communicate with the board. A C-based application has

been developed to send bit streams to and from the board in

real-time implementations.

3.4 Design, synthesis and simulation software

Simulink and Xilinx System Generator have been selected

as the main design tools to allow co-simulation of Matlab

algorithms and simulated VHDL hardware designs. This solu-

tion, offers a simple and intuitive GUI-based hardware design

and simulation tool for DSP algorithm engineers, achieving a

balance between hardware abstraction level and performance.

System Generator environment allows to run a selected part

of the algorithms on real hardware through a JTAG interface.

Simulation of existing or standard IP cores, such as those

provided by Xilinx Core Generator, can also be included in the

simulation through System Generator’s ModelSim blackbox.

A Simulink MIMO system has been developed including

Matlab algorithms through S-function blocks and has been

progressively translated to a System Generator architecture,

allowing parallel simulation of ideal Matlab algorithms and

hardware blocks. Once the algorithms have been tested in

Simulink, VHDL netlist designs have been automatically

created with System Generator and translated to a Xilinx ISE

project, which has been used to manage and synthesize the

final design.

4 Application examples

This platform has many modes of operation and can be used

in several stages of the implementation of a wireless system.

The following subsections show the most representative ap-

plication examples.

4.1 Matlab/Simulink-based MIMO off-line transmission

Fig. 3 summarizes a 2x2 system transmitting real frames,

which are processed off-line in Matlab. The transmitted sig-

nals are created and modulated in an intermediate frequency

by Matlab and up-converted to the 2.437 band using synchro-

nized signal generators.

Fig. 3. Platform for off-line evaluation of a frame-based wireless MIMO
system.

The transmitted signals are received in two of the Maxim’s RF

transceivers, which down-convert and demodulate the signal

generating 2 baseband IQ stream pairs to be acquired by 4

analog inputs. This system allows to test off-line the selected

MIMO algorithms with real transmitted bursts.

4.2 Co-simulation of Matlab/Simulink and VHDL designs

Fig. 4 shows a Simulink model which has been used to evolve

from a matlab implementation to a full System Generator

implementation of a MIMO receiver for the system described

in the previous section. As can be seen in Fig. 4, some of

the processes are coded in Matlab and included in Simulink

through S-function interface blocks. The whole receiver has

been implemented using System Generator Blocks.

This configurations allows to execute the Matlab-coded re-

ceiver algorithms in parallel with the System Generator im-

plementation, even running on-chip through the JTAG inter-

face. This makes it possible to compare results such as the

channel estimation error or bit error rates for the ideal Matlab

algorithms and the implemented solutions. Note that this co-

simulation can be combined with the aforementioned real

transmissions if necessary.

4.3 Complete real time implementation

As stated before, this platform offers a relatively cost-

effective, easy and safe flow towards the FPGA implemen-

tation of real-time MIMO algorithms. Once all the algorithms
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Fig. 4. Simulink/System Generator model which allows test real FPGA
implementations in Matlab-based systems.

are tested and co-simulated with the Simulink-based platform,

the receiver and transmitter systems can run stand-alone on

the Heron HEPC9 boards, which are connected directly to the

RF transceivers.

Fig. 5 shows a diagram of the HEPC9 implementation of

the 2x2 MIMO transceiver with the distribution of the signal

processing algorithms through the Heron modules available.

Note that the capacity of this platform has been already

shown in [2] for the development of a MIMO-OFDM wireless

modem prototype.
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Fig. 5. Structure of a 2x2 real-time MIMO implementation on the Heron
modules of the HEP9 board.

5 Conclusion and future work

This contribution describes a simulation and hardware val-

idation platform suitable for a progressive implementation

of a real-time MIMO wireless system. A platform has been

described which allows to share Matlab, simulated VHDL

and real hardware designs while transmitting through a real

MIMO channel. A Simulink-based simulation platform has

been developed using Xilinx System Generator, which is a

relatively simple and effective solution from a DSP designer’s

point of view.

The applicability and first results of this platform have been

shown for a narrowband 2x2 spatial multiplexing system

operating in the 2.4 GHz band. A Matlab model has been pro-

gressively translated to Xilinx System Generator blocks and

validated through simulation. Finally, a real-time implemen-

tation of the generated VHDL designs has been implemented

on hardware to validate the whole design flow.

This platform is expected to host the real-time implementation

of a more realistic wideband MIMO system, based in multi-

carrier techniques and frequency-domain equalization. This

platform will also be the tool to design and validate implemen-

tation aspects of specific signal processing and codification

algorithms.
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ABSTRACT

This contribution analyzes the integration of the sphere
decoder (SD) in a complete field-programmable gate
array (FPGA)-based real-time multiple input-multiple output
(MIMO) platform. The algorithm achieves the performance
of the maximum likelihood detector (MLD) with reduced
complexity. However, its non-deterministic complexity, de-
pending on the noise level and the channel conditions, hin-
ders its integration process. This paper evaluates the perfor-
mance and limitations of the SD in a real-time environment
where signal impairments, such as symbol timing, imperfect
channel estimation or quantization effects are considered.

1. INTRODUCTION

The use of multiple input-multiple output (MIMO) technol-
ogy in wireless communication systems enables high-rate
data transfers and improved link quality through the use of
multiple antennas at both transmitter and receiver [1]. It has
become a key technology to achieve the bit rates that will
be available in next-generation wireless communication sys-
tems, combining spatial multiplexing and space-time cod-
ing techniques [2]. In addition, the prototyping of those
MIMO systems has become increasingly important in re-
cent years to validate the enhancements advanced by ana-
lytical results [3], [4]. For that purpose, field-programmable
gate arrays (FPGAs), with their high level of parallelism and
embedded multipliers, represent a suitable prototyping plat-
form.

In the case of spatially multiplexed uncoded MIMO sys-
tems, the sphere decoder (SD) is widely considered the most
promising approach to obtain optimal maximum likelihood
(ML) performance with reduced complexity [5], [6]. The SD
has been previously implemented in real-time [7], [8], indi-
cating that its variable throughput could potentially represent
a problem when integrating it into a complete communica-
tion system. However, the problem of the actual integration
of the SD into a real-time MIMO system has not been ad-
dressed yet.

This paper presents a complete real-time FPGA MIMO
system where the SD has been used as the detection algo-
rithm. The SD has been integrated into the MIMO proto-
typing platform presented in [9]. Thus, the effects of real-
time transmission impairments, like imperfect symbol timing
and channel estimation or fixed-point precision, have been
included in the performance evaluation of the SD.

2. SPHERE DECODER (SD)

2.1 MIMO System Model

The theoretical system model considered has, in the general
case, M transmit and N receive antennas, with N ≥ M, de-
noted as M ×N. The transmitted symbols are taken inde-
pendently from a quadrature amplitude modulation (QAM)
constellation of P points. Assuming symbol-synchronous re-
ceiver sampling and ideal timing, the received N-vector, us-
ing matrix notation, is given by

r = Hs+n (1)

where s = (s1,s2, ...,sM)T denotes the vector of transmitted

symbols with E[|si|
2] = 1/M, n = (n1,n2, ...,nN)T is the vec-

tor of independent and identically distributed (i.i.d.) com-
plex Gaussian noise samples with variance σ

2 = N0 and
r = (r1,r2, ...,rN)T is the vector of received symbols. H de-
notes the N × M channel matrix where hi j is the complex
transfer function from transmitter j to receiver i. The entries
of H are modelled as i.i.d. Rayleigh fading with E[|hi j|

2] = 1
and are perfectly estimated at the receiver.

2.2 SD Algorithm

The main idea behind the SD is to reduce the computational
complexity of the maximum likelihood detector (MLD) by
searching over only those noiseless received points (defined
as Hs) that lie within a hypersphere of radius R around the re-
ceived signal r. In this paper, the complex version of the SD
is applied directly to the complex lattice Λ(H) = {Hs} [10].
Avoiding the more common real decomposition of the sys-
tem results in a more efficient hardware implementation [8].

The process can be represented by

ŝml = arg{min
s

‖r−Hs‖2 ≤ R2} . (2)

and is shown in Figure 1, where the dots represent the noise-
less received constellation and the cross represents the ac-
tual received point contaminated with noise. The sphere con-
straint in (2) can also be written, after matrix decomposition
and removal of constant terms, as

‖U(s− ŝ)‖2 ≤ R2 (3)

where U is an M ×M upper triangular matrix, with entries
denoted ui j, obtained through Cholesky decomposition of the

Gram matrix G = H
H
H (or, equivalently, QR decomposi-
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R

Figure 1: Schematic of the sphere decoder principle for the
2-dimensional case - only the points inside the circle are
searched

tion of H) and ŝ = (HH
H)−1

H
H
r is the unconstrained ML

estimate of s [10].
The solution of the sphere constraint (SC) in (3) can be

obtained recursively using a tree search algorithm, starting
from i = M and working backwards until i = 1. For each
level, the constellation points si that satisfy

|si − zi|
2 ≤

Ti

u2
ii

(4)

are selected as partial ML candidates, where

zi = ŝi −
M

∑
j=i+1

ui j

uii

(s j − ŝ j) (5)

and

Ti = R2 −
M

∑
j=i+1

u2
j j|s j − z j|

2
. (6)

When a new point is found inside the hypersphere (at i = 1)
the radius is updated with the new minimum Euclidean dis-
tance and the algorithm continues the search with the new
SC. This process can be seen as a tree search through M

levels where each node on each level contains P branches. If
Ti ≤ 0, in any level i, the squared Euclidean distance from the
root to that node has exceeded the SC and the entire branch
plus all its descendants can be discarded, yielding a speed in-
crease compared to an exhaustive search. The search finishes
when the radius has been reduced so that no more points are
found that satisfy the SC: the last point found satisfying the
SC is the ML solution ŝml.

In order to further reduce the complexity of the SD, the
points that satisfy (4) are searched according to increasing
distance to zi, following the Schnorr-Euchner (SE) enumera-
tion [11]. The use of this enumeration has two effects:

• On a particular node, The SE enumeration follows the
branches with lowest distance increment |si − zi|

2 first in
any level i. Thus, the first points searched are more likely
to be the ML solution, reducing the overall complexity of
the search.

• Although the initial radius R is normally set according
to the noise variance per antenna σ

2, the use of the SE
enumeration reduces the effect the initial radius has on
the complexity of the SD. From a simulation point of
view, the initial radius still has a marginal effect on the
complexity of the SD [6]. However, in a parallel imple-
mentation of the algorithm, the initial value can be set to
the end of the scale so that no estimate of the noise level
is required at the receiver [8].

3. MIMO PROTOTYPING PLATFORM AND TOOLS

The MIMO system and algorithms described in this pa-
per have been implemented on a rapid prototyping platform
based at the University of Mondragon. This platform, whose
main features and operating modes have been previously
presented in [9], consists of the following three elements:
HERON rapid prototyping boards from Hunt Engineering
Ltd. [12], RF transceivers and software tools.

3.1 Rapid Prototyping Boards

The platform is based on modular rapid prototyping HERON
HEPC9 boards. The main advantage of those peripheral
component interconnect (PCI)-based carrier cards consists
of its very flexible architecture, based on an internal bus
which allows communication of up to 400 mega bytes per
second (MBps) between the modules. The following mod-
ules have been chosen for the implementation described in
this work:

• Two HERON-IO2V2 modules with 4 analog inputs and
4 analog outputs of up to 125 mega samples per second
(MSPS) with 12 and 14 bits of resolution, respectively.
These modules include a 1-million (M)-gate Xilinx Vir-
texII FPGA and allow real-time in-system debugging
with Xilinx Chipscope [13]. In addition, it is possible to
perform co-simulation in a MATLAB/Simulink environ-
ment for Xilinx System Generator-based designs [14].

• One HERON-IO5 module with 2 analog inputs and 2
analog outputs of up to 210 MSPS with 12 and 16 bits of
resolution, respectively. This module includes a 3M-gate
VirtexII FPGA, which also contains a JTAG debugging
interface.

• One HERON-FPGA3 module with a 1M-gate VirtexII
FPGA.

3.2 RF Transceivers

The platform is equipped with Maxim’s MAX2827EVKit
boards, which can transmit or receive radio frequency (RF)
signals in the 2.4 and 5 GHz bands. These transceivers can
modulate and demodulate baseband IQ signals of a band-
width of up to 20 MHz. This solution avoids the need for
an implementation of algorithms such as modulators, digi-
tal up converters, etc., in order to generate the analog sig-
nals required by a transceiver. The combination of the ana-
log ports of the aforementioned prototyping boards and these
transceivers allow the implementation of systems with up to
three transmit and receive antennas. Figure 2 shows two of
these RF transceivers with the HEPC9-based rapid prototyp-
ing platform.

3.3 Software Design and Simulation Tools

A combination of MATLAB/Simulink and Xilinx System
Generator has been selected as the main design tool to allow
co-simulation of MATLAB algorithms, simulated VHDL im-
plementations and FPGA-running blocks. This solution of-
fers a simple and intuitive GUI-based hardware design and
simulation tool for DSP algorithm engineers, achieving a bal-
ance between hardware abstraction level and real-time per-
formance.

All the algorithms mentioned in this paper have been
first tested in MATLAB and then translated to hardware
blocks using Xilinx System Generator. Once the design has
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Figure 2: Main elements of the HEPC9-based MIMO signal
processing prototyping platform.

been completed, Xilinx synthesis tools have been used to
generate the bitstreams required for the hardware-based co-
simulation, as well as the VHDL netlists for the final imple-
mentation. Xilinx Chiscope has been selected as the real-
time on-hardware debugger.

4. REAL-TIME MIMO IMPLEMENTATION

4.1 MIMO System Model and Algorithms

4.1.1 System Model

Figure 3 shows the basic 2×2 MIMO spatial multiplexing
model that has been implemented. The data bits are split into
two 16-QAM streams which are transmitted independently
and received synchronously at the two receive antennas.

A complete MATLAB-based model has been created and
adapted to Simulink. A burst frame-based transmission sys-
tem has been assumed with 128 data symbols transmitted per
antenna. In addition, a 32-symbol preamble is transmitted
per antenna to allow for effective synchronization and chan-
nel estimation to be performed at the receiver. The analog to
digital converters (ADCs)’ 12-bit resolution has been chosen
for the precision of the input signals.

4.1.2 Algorithms

The following algorithms have been implemented:

• Frame synchronization: a multi-antenna extension of the
double-sliding window technique has been applied [15].

• Sample-time synchronization: an ML approach has been
chosen according to [16].

• Frequency Offset Estimation: a reduced complexity iter-
ative offset estimation technique has been used as in [17].

• Channel Estimation: a basic training-based LS (Least-
Squares) MIMO channel estimator has been imple-
mented.

• Inverse calculation and normalized Cholesky decomposi-
tion: required by the SD for the initial zero forcing (ZF)
equalization and the tree search.

• MIMO detection: The SD algorithm described in section
2 has been implemented with System Generator and in-
cluded in the MIMO design. Details of the implementa-
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Figure 3: Structure of a basic 2×2 MIMO spatial multiplex-
ing system.

Figure 4: Top-level block diagram of the implemented
MIMO receiver

tion can be found in [7] for a 4×4 system.

• Inline MIMO channel emulator: A flat Rayleigh chan-
nel emulator has been created to allow hardware co-
simulation of the full system. This channel emulator is
based on Gaussian noise generators and channel coeffi-
cients stored in a large RAM block. This allows to test
the hardware implementation at its maximum rates with-
out breaking the flat-fading channel assumption.

4.2 High-Level Design and Hardware Co-Simulation

A fully flexible hardware co-simulation system has been im-
plemented, allowing the progressive testing of the SD algo-
rithm. The following implementation steps have been exe-
cuted in order to evaluate the effect of real-communication
impairments and quantization on the performance of the SD:

• Ideal simulation: The first simulation system, with per-
fect synchronization, known channel and no filters has
been implemented initially to validate the integration of
the SD and the 12-bit quantization error floor.

• Estimated channel, real-time calculated inverse and
Cholesky: This version has been implemented to evalu-
ate the effects of imperfect channel estimation and fixed-
point calculations when obtaining the Cholesky decom-
position and the inverse of the channel.

• Complete System: A final system has been implemented
with all the algorithms required to interface with the real
RF transceiver signals or the hardware-emulated channel.

Figure 4 shows the top-level block diagram of the MIMO
receiver implemented with System Generator.
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Figure 5: Structure of a 2×2 real-time MIMO implementa-
tion on the HERON modules of the HEPC9 board.

4.3 Final Real-Time Implementation

Figure 5 shows a diagram of the HEPC9 implementation of
the 2×2 MIMO system with the distribution of the signal
processing algorithms through the Heron modules available.
The resource use has been distributed among four FPGA
modules, which are connected through HEPC9’s data bus.
All the data flow of the real-time system is controlled through
the PCI bus by a C++ application running on a host PC. Al-
though the system can run at a higher symbol rate, we have
reduced it to 100 kilo symbols per second (ksps) to allow for
the flat-fading channel assumption of (1) to be valid with real
transmission. Higher symbol rates can still be tested on the
platform with the inline channel emulator.

5. RESULTS

Table 1 shows the FPGA resources of the complete MIMO
system using 16-QAM modulation. For clarity purposes,
only the number of multipliers and slices are shown. They
are compared against the total number of multipliers and
slices available on the HEPC9 boards. The three main blocks
of the receiver are also shown to indicate the distribution of
the resources. The calculation of the inverse of the chan-
nel matrix and the Cholesky decomposition of the Gram ma-
trix are the most computationally intensive tasks. It should
be noted that those two operations have not been optimized
from an implementation point of view given that the focus
of this work was on the integration of the SD in a MIMO
system. The implementation of the SD requires a relatively
small FPGA area, indicating that several SDs could be imple-
mented in parallel on the same prototyping platform. The al-
gorithm named ’Comm. & Control’ corresponds to the logic
required for the inter-module data communication and the
PCI-based control of the real-time execution flow.

The bit error ratio (BER) performance as a function of
the signal to noise ratio (SNR) per bit of the different ver-
sions of the system is shown in Figure 6. The results have
been measured using the FPGA-based channel emulator, av-
eraging over 5,000 channel realizations. Five curves, rep-
resenting the different implementation stages are shown, to-
gether with the floating-point MATLAB version of the SD.
It can be seen how the quantization process causes an error
floor to appear at high SNR, which is larger when 12 bits
are used for the input data instead of the initial 16 bits (con-
sidering ideal channel estimation and floating-point matrix
calculations in both cases). The BER performance addition-
ally degrades when the channel estimation block is added and
fixed-point inverse and Cholesky calculations are performed.

Algorithm Mults Slices % Slices

Transmitter 0 1,320 5.3%

Receiver 74 11,923 48.3%

Sync & Ch. Est. 18 2,693 10.9%

Inv. & Chol. 33 4,608 18.6%

SD 23 3,370 13.7%

Ch. Emulator 20 1,771 7.2%

Comm. & Control 0 1,542 6.2%

Total Used 96 16,556 67.0%

Total Available 216 24,696

Table 1: FPGA Resources used by the final real-time imple-
mentation.
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Figure 6: BER of the SD at different implementation stages

Finally, the last curve represents the BER performance of the
complete system when transmit and receive filters are added.
It can be seen how the quantization process and the effect it
has on the channel estimation and the matrix calculations are
the main factors determining the BER performance degrada-
tion compared to an ideal system.

Figure 7 shows the throughput of the SD for the afore-
mentioned implementation levels. The throughput in mega
bits per second (Mbps) is calculated according to

Qavg = M · log2 P · fclock /Cavg (Mbps) (7)

where fclock is the clock frequency of the system in MHz and
Cavg is the average number of clock cycles required to detect
a MIMO symbol. The maximum clock frequency of the SD,
fclock = 50MHz, has been considered for the calculations al-
though real transmission has been performed at a lower fre-
quency. The minimum number of cycles is Cmin = 13 result-
ing in a maximum throughput Qmax = 30.77Mbps. It can be
seen how the 16-bit implementation of the SD approximates
Qmax at high SNR per bit. A lower throughput is achieved
by the other systems due to the effect the quantization has
on the tree search of the SD. It causes some additional paths
of the tree to be searched, slowing down the detection of the
symbols. The degradation in performance is larger at high
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Figure 7: Throughput of the SD at different implementation
stages

SNR per bit where the quantization noise is larger than the
Gaussian noise. Finally, more SDs could be implemented in
parallel to increase the average throughput like in [7],[8].

6. CONCLUSION AND FUTURE WORK

This paper has analyzed the integration of the SD in a real-
time MIMO system where actual impairments, such as im-
perfect channel estimation, quantization and synchronization
effects are considered. A 2×2 low-rate system has been de-
veloped using Xilinx System Generator in order to obtain
BER and throughput results, evaluating the performance of
the SD at several implementation steps. The main conclu-
sions from this work can be summarized as:

• The BER performance of the SD on the FPGA ap-
proximately matches that of MATLAB, except at high
SNR. The difference appears due to the fixed-point pre-
cision used for the input data and for the operations per-
formed to obtain the input matrices (channel inverse and
Cholesky decomposition).

• The throughput of the SD decreases as the system ap-
proaches a realistic transmission and reception case. A
throughput loss of approximately 6% has been observed
at high SNR.

• The MIMO platform and tools have been proved to be
very practical in order to test the validity of the SD imple-
mentation in a real MIMO system. The homogeneity of
the design flow has favoured the integration of the work
of the two research groups involved.

As future work lines, the results of this paper can be ex-
tended to larger MIMO systems where additional resources
would be required. In addition, a more detailed analysis of
the fixed-point precision blocks could help identifying what
the main causes of the quantization errors are. Finally, the
inclusion of a robust channel equalizer and adaptive channel
estimation could help evaluating the SD in higher rate trans-
missions with larger data bursts.
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ABSTRACT

Analytical extrinsic information transfer (EXIT) func-
tions provide an accurate and flexible method to analyze and
calculate the performance of iterative linear multiple input-
multiple output (MIMO) receivers through their decomposi-
tion into independent elementary blocks, such as the linear
combiner or the demapper. These analytical functions have
been shown to be very accurate to evaluate the performance
of linear MIMO receivers with perfect channel knowledge in
Rayleigh-fading channels.

This contribution extends this analysis to MIMO re-
ceivers with channel estimation, deriving new analytical
transfer functions and adapting the performance evalua-
tion algorithm. Bit error rate (BER) results are provided
for training-based and soft decision directed expectation-
maximization (EM) channel estimation techniques, showing
the validity and accuracy of this analysis method.

1. INTRODUCTION

Multiple input-multiple output (MIMO) techniques enable
high-rate data transfers and improved link quality through the
use of multiple antennas at both transmitter and receiver [1].
When the number of transmit antennas grows or a forward
error correcting (FEC) coding scheme is used, the optimal
detection of the transmitted information bits becomes pro-
hibitively complex. Iterative receivers, based on the turbo
principle, can approach the optimal performance limits of
these coded MIMO systems with reduced complexity, by
transferring extrinsic soft information between the outer soft-
input soft-output (SISO) decoder and the inner SISO MIMO
detector [2].

The performance of MIMO receivers depends on the ac-
curacy of the channel matrix estimate, which can be obtained
using training-based or semi-blind techniques. Several anal-
ysis of channel estimation effects and iterative estimator al-
gorithms have been conducted for turbo MIMO receivers,
mainly based on adaptive filter theory and the EM algorithm
[3, 4].

EXIT charts have been shown to be powerful semi-
analytical tools for analyzing and calculating the perfor-
mance of iterative MIMO receivers [5, 6]. Nevertheless,
the EXIT transfer chart of each MIMO detector depends on
the channel state, leading to lower accuracy when Rayleigh-
fading channels are used and the mean of output mutual
information values is used to calculate an unique EXIT
chart for each signal to noise ratio (SNR) [5]. This lim-
itation may be overcome if the MIMO detector is decom-
posed into elementary blocks, such as the linear combiner
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Figure 1: Diagram of a MIMO transmitter with coding and
interleaving.

(LC) or the non-linear soft symbol demapper, and analyt-
ical EXIT transfer functions are used to describe their be-
havior [7]. This method provides a more flexible and accu-
rate tool for the analysis and BER performance evaluation
of turbo MIMO receivers. Its validity has been shown in [7]
for quasi-static Rayleigh-fading MIMO channels, where only
the EXIT function of the MIMO detector needs to be calcu-
lated online for each channel state, which is perfectly known
at the receiver.

This contribution extends these analytical EXIT func-
tions to channel estimation-based MIMO receivers. A new
transfer function is derived for minimum mean square error-
parallel interference cancellation (MMSE-PIC) receivers
with channel estimation error and the performance evalua-
tion algorithm of [7] is adapted. The accuracy and valid-
ity of these functions are shown for classical training-only
based and soft decision-directed EM channel estimation al-
gorithms. The results shown here can be extended to other it-
erative linear receivers, such as turbo-equalizers or multiuser
detectors.

2. SYSTEM MODEL

The considered theoretical system model has, in the general
case, M transmit and N receive antennas, with N ≥ M, de-
noted as M ×N. Figure 1 shows the structure of the trans-
mitter. The information symbol bits x(q) are encoded, inter-
leaved and demultiplexed. The resulting bits ck(n) are inde-
pendently mapped onto a generic constellation of B points,
modulated and transmitted simultaneously by M antennas.

Assuming symbol-synchronous receiver sampling and
ideal timing, the received N-vector, using matrix notation,
is given by

r(n) = Hs(n)+ η(n), (1)

where s(n) = [s1(n),s2(n), ...,sM(n)]T denotes the vec-

tor of transmitted symbols with E[|si(n)|2] = 1, η(n) =
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Figure 2: Diagram of a generic interference cancell ati on- based iterative MIMO receiver with channel estimation.

[η1(n),η2(n), ...,ηN(n)]T is the vector of independent and
identically distributed (i.i.d.) complex Gaussian noise sam-
ples with covariance matrix E{η(n)ηH(n)} = INN0, r(n) =
[r1(n),r2(n), ...,rN(n)]T is the vector of received symbols
and n = 1, ...,L, where L represents the number of symbols
in a frame. H denotes the N ×M channel matrix, which is
assumed constant for a frame.

Figure 2 shows the structure of the iterative receiver. The
received symbols r(n) are processed by the SISO MIMO de-
tector, whose outputs are the soft symbol estimates y(n) =
[y1(n),y2(n), ...,yM(n)]T . A MIMO detector that carries out
parallel interference cancell ati o n( PI C)an d mi ni mu mmean
squared error (MMSE) combining operations will be as-
sumed for the rest of this paper, which can be summarized
as:

r′k(n) = r(n)−
M

∑
m=1
m6=k

ĥms̃m = r(n)− [Ĥs̃(n)− ĥks̃k(n)] (2)

and
yk(n) = wH

k r′k(n), (3)

where k denotes the detected branch, ĥk is the kth column of

channel matrix estimate Ĥ and s̃(n) is an M×1 vector of soft
symbols s̃k(n), which are derived from a priori log-likelihood
ratio (LLR) metrics Λa

ck,l
(n) fed back from the decoder [8].

The spatial combining matrix wk is calculated from the

estimated channel matrix Ĥ as follows:

wk = (ĤV̄Ĥ
H

+(1− v̄k)ĥkĥ
H
k + IN0)

−1

ĥk, (4)

where matrix V̄ = diag(v̄1, ..., v̄M) represents the mean
of symbol variance matrices V(n) = diag(v1(n), ...,vM(n))
with [6, 7]:

vk(n) = E{|sk(n)− s̃k(n)|2} = E{|sk(n)|2}− |s̃k(n)|2.

As can be seen in the figure, a channel estimate Ĥ is pro-
vided to the MIMO detector by a channel estimation block,
whose inputs are the received symbols, the training sym-
bol matrix ST and soft information from decoded informa-
tion bits. For the sake of simplicity, only the a posteriori
probability (APP) LLR metrics ΛD

c (m) will be considered for
iterative channel estimation, as in [3, 4].

The symbol estimates y(n) are soft-demapped [8], pro-
viding the extrinsic LLRs of the coded bits Λex

ck,l
, which be-

come the input of the SISO decoder, after multiplexing and
de-interleaving operations. The soft decoder delivers the fol-
lowing metrics:

• APP LLRs of the uncoded bits ΛD
x (m), whose signs de-

fine the finally detected bit values.

• Extrinsic LLRs of coded bits Λex,D
c (n), which are fed

back to the MMSE-PIC for interference cancell ati on.

• APP LLRs of the coded bits ΛD
c (m) for channel re-

estimation.

3. ANALYTICAL EXIT FUNCTIONS FOR BER

PERFORMANCE EVALUATION

The EXIT transfer function-based performance evaluation
method of [7] divides a generic front-end (FE) into two el-
ementary blocks, a LC and a non-linear demapper. In this
paper the FE is the MIMO detector, which will be decom-
posed into three elementary devices: the MMSE-PIC linear
combiner, the non-linear demapper and the channel estima-
tion block. In [7], where the channel is perfectly known at
the receiver, the FE is represented by the following paramet-
ric transfer functions:

Γk = Fk(I
R
in;H,N0),

IR
out,k = G(Γk, I

R
in) (5)

144



Appendix A. Publications

and

IR
out =

1

M

M

∑
k=1

IR
out,k . (6)

Function Fk describes the LC behaviour for a certain
channel state and SNR, giving an effective signal to inter-
ference and noise ratio (SINR) value Γk for each branch de-
pending on the input mutual information (MI) IR

in. Function
G characterizes the soft demapper, as described in [7], and its
output is the MI at each demapped branch IR

out,k. Parting from

these analytical functions and the EXIT transfer function of
the SISO decoder, which does not depend on any system pa-
rameter, the authors in [7] introduced a performance evalu-
ation algorithm that reduces drastically the simulation time
and shows good accuracy in quasi-static Rayleigh-fading
MIMO channels. Only Fk must be calculated online for each
channel realization, while the rest of the functions are gener-
ated off-line.

4. ANALYTICAL EXIT FUNCTIONS WITH
CHANNEL ESTIMATION ERRORS

Only one of the aforementioned EXIT transfer functions, Fk,
needs to be changed if channel estimation error is included
in the analysis method. Function Fk will now be defined by a

new parameter, the estimated channel error matrix H̃:

Γk = Fk(I
R
in;H,N0,H̃), (7)

where H̃ = H−Ĥ is the channel estimation error. These
variables will be generated for each channel realization by
the channel estimation block, whose generation function Hest

can be represented for the jth iteration as:

Ĥ
( j) = Hest(H,No,ST , I

R,( j)
in ), (8)

where I
R,( j)
in is the input MI at the jth iteration. Therefore, the

randomly generated channel estimate depends on the chan-
nel state, the noise, the transmitted training sequence and the
mutual information statistics fed back from the decoder, if
iterative channel estimation is used.

4.1 Analytical transfer function of MMSE-PIC with
channel estimation error

The output SINR Γk at the kth branch of a generic MMSE
receiver can be defined as [9]:

Γk =
E{sksH

k }

tr(E{ekeH
k })

−1 =
1

E{ekeH
k }

−1, (9)

where ek = sk − yk. Parting from Equations (1-3) and
omitting the symbol index n, ek can be written as:

ek = sk −w
H
k




hksk +

M

∑
m=1
m6=k

hmsm −
M

∑
m=1
m6=k

ĥms̃m + η






= sk −w
H
k




hksk +

M

∑
m=1
m6=k

hm(sm − s̃m)+
M

∑
m=1
m6=k

h̃ms̃m + η




 ,

where h̃m is the mth column of the channel estimation

error matrix H̃.
Assuming E{sksH

k }= 1, E{(sk − s̃k)(sk − s̃k)
H} = vk and

E{(s̃ks̃H
k )} = E{(sks̃H

k )} = 1− vk, the error variance can be
expressed as

E{ekeH
k } = 1−w

H
k hk −h

H
k wk +w

H
k Rrrwk,

where

Rrr = hkh
H
k + N0IM +

M

∑
m=1
m6=k

hmvmh
H
m +

M

∑
m=1
m6=k

h̃m(1− vm)h̃H
m

︸ ︷︷ ︸

T

.

(10)
As can be seen, the effect of wrong channel estimate is

twofold: the combining vector w
H
k is not matched to the ac-

tual channel H and a new error term T appears in Equation
(10) due to the wrong cancell ati o nof det ect e dsy mbols.

4.2 Adaptation of the performance evaluation algorithm

The performance evaluation algorithm of [7] can be extended
to Rayleigh-fading iterative receivers with channel estima-
tion, independently of the estimation technique:

Performance Evaluation Algorithm

(0) Generate H.

(1) Initialization: j = 1; I
D,(0)
out = 0.

(2) Get FE input MI. I
R,( j)
in = I

D,( j−1)
out .

(3) Generate estimate Ĥ
( j) = Hest(H,No,ST , I

R,( j)
in ).

(4) Compute V̄ from I
R,( j)
in , as in [7].

(5) Calculate wk vectors from (4) and Γk values from (9).

(6) Compute I
R,( j)
out,k and I

R,( j)
out via (5) and (6).

(7) Obtain the decoder’s output I
D,( j)
out = f D(I

R,( j)
out ).

(8) Calculate BER( j) = fBER(I
D,( j)
out ).

(9) Return to step (2) with j = j + 1.

Algorithm 1: BER performance evaluation algorithm for
each channel realization of an iterative MIMO receiver with
channel estimation.

As can be seen in Algorithm 1, a new step has been in-
cluded, numbered as (3), where a new channel estimate is
generated for each channel realization and turbo iteration.
The rest of the algorithm works as detailed in [7], transfer-
ing MI values between the MIMO detector and the outer soft
decoder. Functions f D and fBER represent the EXIT trans-
fer function and the BER estimation function of the decoder,

respectively. I
D,( j)
out is the output MI of the decoder and j rep-

resents the iteration index.

5. APPLICATION EXAMPLES

Function Hest(H,No,ST , IR
in) calculates a channel estimate

for each channel realization based on the information fed
back from the decoder as APP LLRs and the statistics of
the training process. Two classical channel estimation tech-
niques will be considered: training-based least squares (LS)
and soft decision-directed EM.
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5.1 Training-based LS channel estimation

If a training symbol matrix ST of dimensions M×LT is sent
before data transmission and LS channel estimation is ap-
plied, the estimated channel is:

Ĥ = RS
H
T

(

ST S
H
T

)−1
,

where R is an N ×LT matrix with the received training

signal. Ĥ is an unbiased estimate of H, the estimation er-
ror is uncorrelated among the N receivers and the covariance
matrix for each row is [10]:

E{h̃H
n h̃n} = N0

(

ST S
H
T

)−1
.

If ST is formed by orthogonal training sequences, i.e,

ST S
H
T = LT IM , the elements of the error matrix H̃ become

i.i.d. complex random variables with mean zero and variance
N0/LT .

The estimate generation function H
(1)
est (H,No,ST ),

which does not depend on IR
in if only training symbols are

used for channel estimation, must then create an estimate Ĥ

according to the aforementioned statistics for each channel
realization of the performance evaluation method described
in Algorithm 1.

5.2 EM channel estimation

Training-only based channel estimation techniques do not
profit from the iterative nature of turbo receivers. Many algo-
rithms have been developed to re-estimate the channel from
hard and soft decision statistics fed back from the SISO de-
coder. The classical EM channel estimation technique [3, 4]
has been chosen here to show how iterative estimation can be
included in the analytical EXIT function-based performance
evaluation method. Based on [3, 4], the EM channel estimate
obtained as

Ĥ
( j+1) = R̄

( j)
rs

[

R̄
( j)
s

]−1

.

If the iteration index j is omitted, the correlation matrices

R̄
( j)
rs and R̄

( j)
s become:

R̄rs =
Ns

∑
n=1

r(n)̄sH(n) = HR
′
s + θ ,

R̄s(i,k) =

{

Ns ; i = k

∑
Ns
n=1 s̄i(n)̄s∗k(n) ; i 6= k

(11)

and

R
′
s =

Ns

∑
n=1

s(n)̄sH(n) , θ =
Ns

∑
n=1

η(n)̄sH(n), (12)

where s̄(n) are the soft symbol estimates obtained from
the APP LLRs fed back to the channel estimation block [8],
while θ is the matrix of weighted noise samples with auto-
covariance N0R

′′
s , where

R
′′
s =

Ns

∑
n=1

s̄(n)̄sH(n). (13)

The estimated channel Ĥ is a biased estimate of H and
can be written as:

Ĥ = HR
′
sR̄

−1
s + θR̄

−1
s . (14)

The estimation function Hest(H,No,ST , I
( j,R)
in ) must gen-

erate an estimate H( j) for all the iterations j > 1 fol-
lowing Equation (14), while the training-based function
Hest(H,No,ST ) is used at the first iteration. Thus, matri-
ces of Equations (11-13) must be calculated from the output
statistics of the decoder. A very simple approach has been
followed which calculates the aforementioned matrices ac-
cording to the following approximations:

ˆ̄
Rs(i,k) =

{

Ns ; i = k

Ns(1−σp)w
H
i hkh

H
k wi ; i 6= k

(15)

R̂
′
s(i,k) =

{

Nsσp ; i = k

Ns(1−σp)h
H
k wi ; i 6= k

(16)

R̂
′′
s (i,k) =

{

Nsσp ; i = k

Ns(1−σp)w
H
i hkh

H
k wi ; i 6= k .

(17)

The value of σp = E{s̄ks̄
H
k } has been calculated off-line

for each constellation alphabet when generating the EXIT
transfer function of the decoder. The approximations of
Equations (15-17) have been tested for quaternary phase shift
keying (QPSK) modulation with several different channel re-
alizations.

6. RESULTS

A system with M = 4 transmit and N = 4 receive anten-
nas has been chosen to validate the performance evaluation
method. Simulations with QPSK modulation have been con-
ducted to compare the classical Monte-Carlo (MC) simula-
tion and the EXIT-based analytical performance evaluation
method with channel estimation error. Up to 10000 data
blocks of 2048 coded bits have been simulated with a quasi-
static Rayleigh-fading MIMO channel. Walsh codes of 4×8
and 4× 16 symbols have been sent as training symbols and
perfect timing and demodulation have been assumed at the
receiver. A non-recursive non-systematic convolutional code
with generator polynomials {5,7}8 and the common log-map
BCJR algorithm have been selected for FEC encoding and
decoding, respectively, with a random interleaver.

Figure 3 shows the BER comparison of EXIT and MC
techniques for the iterative MMSE-PIC receiver with LS
channel estimation and a 4× 8 training matrix. As can be
seen, the EXIT-based analysis gives slightly optimistic and
quite accurate results for training-based channel estimation.
MC simulation with perfect channel estimation has been in-
cluded in the figures as reference. Figure 4 shows the same
comparison for a training matrix of dimensions 4×16 sym-
bols with similar results.

Figure 5 extends the comparison to EM-based channel
estimation with the techniques and simplifications of section
4.3. The BER estimation accuracy is shown for a system with
iterative channel estimation and initial training matrix of di-
mensions 4×8. These results show that this method and the
simplifications assumed can be used to estimate or predict
the BER performance of iterative channel estimation-based
MIMO receivers. For the case of EM channel estimation,
further analysis is required to extend the aforementioned as-
sumptions to other modulations and MIMO detectors.
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Figure 3: Comparison of EXIT fuction-based and MC simu-
lation with LS channel estimation and a 4×8 training matrix.
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Figure 4: Comparison of EXIT fuction-based and MC simu-
lation with LS channel estimation and a 4× 16 training ma-
trix.

7. CONCLUSION AND FURTHER RESEARCH

This paper has shown an effective and complexity-reduced
method to include channel estimation errors on analytical
EXIT function-based performance evaluation methods. An
analytical transfer function has been derived for an MMSE-
PIC receiver with channel estimation error. An algorithm
has been shown which allows to evaluate the performance
of different channel estimation techniques in iterative linear
turbo receivers and comparative results have been provided
for QPSK transmission with trained LS and soft decision-
directed EM channel estimation.

As future work lines, these results can be extended to
other modulations or different turbo-based applications, such
as multiuser detection or turbo-equalization. Other interest-
ing work lines include the analysis of other channel estima-
tion techniques, based on soft or hard decisions, and the use
of the different LLR metrics available at the decoder.
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Figure 5: Comparison of EXIT fuction-based and MC simu-
lation with soft decision-directed EM channel estimation and
an initial 4×8 training matrix.
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Abstract— This contribution describes a MIMO simulation and
hardware validation platform suitable for a progressive imple-
mentation of a real-time MIMO wireless system. We describe a
platform which allows to share Matlab, simulated VHDL and
real hardware designs while transmitting through a real MIMO
channel. The applicability and first results of this platform
are shown for a narrowband 2x2 spatial multiplexing system
operating in the 2.4 GHz band.

I. INTRODUCCIÓN

Las técnicas de transmisión MIMO (Multiple-Input

Multiple-Output), cuyas elevadas capacidades teóricas comen-

zaron a vislumbrase una década atrás, se han convertido en

el principal recurso para alcanzar los lı́mites que los nuevos

estándares de comunicaciones inalámbricas exigen. A modo

de ejemplo, las propuestas para las futuras redes WLAN

802.11n pretenden alcanzar tasas de bits de entre 100 y 300

Mbps empleando técnicas MIMO, tales como la codificación

espacio-temporal o la multiplexación espacial [1].

Las principales desventajas de la transmisión multiantena

consisten en la multiplicación del hardware requerido, debido

al incremento del número de cadenas de transmisión y re-

cepción, y en un incremento notable en la complejidad del

tratamiento de señal, que puede llegar a crecer exponencial-

mente con el número de antenas de transmisión y recepción.

Esta elevada complejidad es la que provoca que la mayorı́a

de prototipos MIMO sean de los denominados ”off line”, es

decir, con señales reales transmitidas y almacenadas, proce-

sadas posteriormente empleando tiempo y recursos excesivos,

como por ejemplo, una aplicación matlab sobre un PC. Debido

a la inminente inclusión de MIMO en los estándares de trans-

misión inalámbrica, se está generando un gran interés entorno

a la implementación en tiempo real de estos sistemas, como

muestran los recientes productos y prototipos presentados

[2][3].

Esta contribución presenta una plataforma que permite pasar

paulatinamente de la simulación Matlab de un sistema de

transmisión inalámbrica MIMO a sistemas de transmisión de

tiempo real implementados empleando dispositivos DSP o

FPGA.

Como se puede observar en la figura 1, se ha tomado como

punto de partida un modelo basado en simulaciones Matlab y

VHDL . El objetivo final, en cambio, consiste en un sistema

de transmisión en tiempo real implementado ı́ntegramente en

dispositivos FPGA. Se han destacado dos entre los varios

FPGA 

FPGA 

Matlab + 
hardware 

VHDL 

FPGA

Sim 
Matlab / 
VHDL 

Matlab / 
VHDL sim 

Matlab + 
VHDL 
sim 

Fig. 1. Diferentes estadios para la simulación/validación progresiva de
sistemas de transmisión MIMO de tiempo real.

estadios que pueden darse: el de la transmisión real ”off line”

empleando únicamente código ejecutado en el PC (Matlab y

VHDL simulado) y aquél en el que parte de los algoritmos

son ejecutados en las FPGA. Este último es el que posibilita el

paso progresivo desde el entorno de simulación a la ejecución

en tiempo real.

La estructura de este artı́culo es la siguiente: en la segunda

sección se resume el modelo básico MIMO considerado, ası́

como los algoritmos que se requieren para su funcionamiento

en una transmisión real. En el tercer apartado se describen

los elementos de que consta la plataforma y su especificación

técnica. En la cuarta sección se muestran las diferentes posi-

bilidades que ofrece la plataforma. En el último apartado se

resumen los principales resultados obtenidos, ası́ como las

conclusiones que se derivan del trabajo presentado en este

documento.

II. MODELO Y ALGORITMOS MIMO

A. Modelo del sistema MIMO escogido

Se ha decidido escoger un sistema MIMO sencillo, con-

sistente en una transmisión de multiplexación espacial de

portadora única y banda estrecha. A modo de ejemplo, se

ha empleado una tasa de 50 Ksps en la banda de 2’4 GHz.

La modulación puede variar desde BPSK hasta 16QAM. Se

han empleado dos antenas en cada extremo de la transmisión.

Como ya se explicará más adelante, la plataforma resulta

absolutamente flexible de cara a una futura ampliación u

optimización.

La figura 2 muestra los principales bloques que forman un

sistema multiantena de multiplexación espacial con M antenas
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Fig. 2. Bloques de un sistema MIMO de multiplexación espacial.

de transmisión y N de recepción. Los secuencia de bits de

información a transmitir se divide en M subcadenas, cada una

de las cuales es transmitida simultáneamente por una antena de

transmisión. La señal transmitida es recibida simultáneamente

en N antenas de recepción.

Para el caso más simple, con un canal no dispersivo o

de desvanecimiento plano, el sistema puede modelarse de la

siguiente manera si se supone una perfecta sincronización:

r =

√

Es

M
Hs + n (1)

donde H, r y s representan la matriz del canal MIMO,

el vector de sı́mbolos recibidos y el vector de sı́mbolos

transmitidos, respectivamente. Es y n representan la energı́a

transmitida por cada perı́odo de muestreo y el vector de ruido

en las antenas de recepción, respectivamente.

Se ha realizado un modelo Matlab completo del sistema

que ha sido utilizado para testar la plataforma de simulación

y validación. Para el caso del canal simulado, se ha empleado

un modelo Rayleigh con un grado de correlación variable,

de tal forma que pueda representar diferentes ubicaciones y

separaciones de las antenas [4]. Se ha asumido un modelo de

transmisión por tramas cortas que incluyen un preámbulo para

las tareas de sincronización y estimación del canal, por lo que

éste puede considerarse prácticamente constante durante una

trama.

B. Algoritmos seleccionados para la plataforma

Se han implementado todos los algoritmos necesarios para

la aplicación del modelo Matlab a la transmisión y recepción

de señales MIMO reales. A continuación se enumeran breve-

mente los algoritmos escogidos para el receptor:

• Sincronización de trama: se ha empleado una extensión

multiantena del algoritmo de doble ventana deslizante [5].

• Selección del instante de muestreo: se ha escogido un

algoritmo ML (Maximum Likelihood) similar al descrito

en [6].

• Estimación del offset entre frecuencias: se ha elegido un

algoritmo iterativo de reducida complejidad, presentado

en [7].

• Estimación de canal: se han implementado los algorit-

mos supervisados MIMO básicos LS (Least-Squares) y

LMMSE (Least Minimum Mean Squared Error).

• Detección MIMO: se utilizan los algoritmos lineales

fundamentales ZF (Zero-Forcing) y MMSE (Minimum

Mean Squared Error), ası́ como los no lineales ML y

V-BLAST [8].

III. DESCRIPCIÓN DE LA PLATAFORMA

La plataforma MIMO que se describe en este documento

está compuesto básicamente por un PC dotado de los sigu-

ientes elementos:

• Transceptores RF bibanda a 2’4 y 5 GHz.

• Tarjetas PCI de adquisición y generación de señales

analógicas.

• Tarjetas modulares de desarrollo rápido DSP y FPGA

Heron HEPC9 de Hunt Engineering.

• Software de simulación: Matlab, ModelSim.

• Software de sı́ntesis y programación FPGAs: Xilinx ISE

y herramientas Heron.

En los siguientes apartados se expondrán las especifica-

ciones técnicas de cada uno de estos elementos y su aplicación

dentro de la plataforma que se describe en este documento.

A. Frontales y Generadores RF

La plataforma dispone de varias tarjetas MAX2827EVKit

de la casa Maxim para la transmisión y recepción de señales

en las bandas de 2’4 y 5 GHz. Estas tarjetas permiten modular

y demodular señales IQ de hasta 20 MHz de ancho de banda.

Emplean una referencia externa de 40 MHz que debe estar

sincronizada para todos los transceptores de un extremo de

la comunicación. Al trabajar con las señales IQ en banda

base, estos transceptores permiten omitir la implementación

del modulador, pero requieren la utilización de dos señales (I

y Q) por cada antena.
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Para el caso en el que se quiera aprovechar al máximo

las salidas disponibles, éstas pueden generarse moduladas a

una frecuencia intermedia y ser desplazadas por un generador

RF hasta la frecuencia deseada. De esta manera sólo se

requiere una salida analógica por cada antena de transmisión.

Como ejemplo, esta solución ha permitido emplear sistemas

de prueba de hasta 2x3 empleando dos generadores RF en la

transmisión y los transceptores RF en la recepción.

B. Tarjetas de generación y adquisición

La plataforma dispone de una tarjeta CH-3150 de la casa

Acquitek que permite generar dos señales analógicas con una

precisión de hasta 12 bits y 20 MSps. La tarjeta incluye otras

prestaciones, entre las que destacan dos entradas analógicas

de caracterı́sticas similares. Posee una memoria de hasta 16

MB y ofrece varias interfaces para su control, destacándose la

posibilidad de emplear funciones directas desde Matlab.

Junto con esta tarjeta se ha incluido una tarjeta PCI-

9812A de la casa Adlink que permite muestrear cuatro señales

simultáneamente con una precisión de 12 bits a 20 MSps. Si

se sincroniza esta tarjeta de adquisición con la mencionada

anteriormente, se puede llegar a construir un sistema dotado

de 2 salidas y 6 entradas analógicas de 12 bits de resolución.

Al igual que la anterior, esta tarjeta puede ser controlada

completamente desde una aplicación Matlab.

Estas tarjetas de adquisición y generación permiten un

testado completo de los algoritmos seleccionados en transmi-

siones ”off-line” gobernadas por una aplicación Matlab.

C. Tarjetas de desarrollo rápido HEPC9

De cara a la implementación real de los algoritmos VHDL,

se han incluido dos tarjetas de desarrollo rápido HEPC9 de

la casa Hunt Engineering. Estas tarjetas, de interfaz PCI,

poseen un bus de comunicación interna que llega hasta los

400 MBps y una estructura completamente flexible, gracias

a su modularidad. Los módulos de que dispone las tarjetas

incluidas en la plataforma son las siguientes:

• Dos módulos HERON-IO2V2 que posibilitan hasta 4

entradas y 4 salidas analógicas de hasta 125 MSps de

12 y 14 bits de resolución. Incluyen una FPGA VirtexII

de 1M puertas y múltiples entradas y salidas digitales.

Estos módulos pueden ser utilizados para la adquisición

de señales recibidas para el caso en que se requiere una

tasa de muestreo superior a los 20 MHz de las tarjetas

de adquisición.

• Dos módulos HERON-FPGA3 provistos de una FPGA

VirtexII de 1M puertas. Estos módulos, ası́ como los

anteriores, permiten su depurado in-system y en tiempo

real empleando la herramienta ChipScope de Xilinx.

• Dos módulos HERON4-C6701 provistos de DSPs

TMS320C6701, de coma flotante y 16 bits a 167 MHz,

de la casa Texas Instruments.

Las tarjetas HEPC9 poseen una API en C que permite con-

figurar y comunicarse con cualquiera de sus módulos a través

del bus PCI. Se ha desarrollado una aplicación que gestiona

la transmisión de secuencias de información hacia o desde

la tarjeta, de tal forma que ésta pueda ser introducida en el

flujo de una aplicación simulada en Matlab. Este montaje está

orientado a la transmisión de señales generadas y procesadas

en Matlab a las FPGAs de cara al testado de éstas.

D. Software de simulación y sı́ntesis

La plataforma descrita ha sido combinada con las aplica-

ciones de simulación Matlab y ModelSim. El primero permite

implementar con sencillez todos los modelos y algoritmos

requeridos, siendo el primer paso para la implementación del

sistema. Una vez que los algoritmos sean testados, pueden

ser sustituidos por diseños VHDL empleando la herramienta

”Link for Modelsim” de Matlab. Esto permite el testado de

un diseño dentro de la simulación completa Matlab e incluso

empleando, como ya se expondrá posteriormente, señales

reales de una transmisión ”off-line”.

De cara a la sı́ntesis e implementación real de los diseños

VHDL, se ha utilizado la herramienta de sı́ntesis habitual

de Xilinx junto a las librerı́as y plantillas ofrecidas por la

plataforma Heron para la programación individual de los

módulos del HEPC9 y la transmisión de información a través

del bus PCI.

IV. EJEMPLOS DE APLICACIÓN: MODOS DE

FUNCIONAMIENTO DE LA PLATAFORMA

Este apartado pretende mostrar los diferentes modos en los

que puede operar la plataforma y las posibilidades que ofrece

de cara a la progresiva implementación de algoritmos MIMO

de tiempo real.

A. Sistema Matlab de transmisión real MIMO off-line

Fig. 3. Plataforma de laboratorio para transmisiones MIMO off-line proce-
sadas en Matlab.

Se ha realizado el montaje 2x2 que se resume en la fo-

tografı́a de la figura 3. Las señales a transmitir son generadas y

moduladas a una frecuencia intermedia de 100 KHz dentro de

la aplicación Matlab. Estas señales son transmitidas empleando

las salidas analógicas a dos generadores RF que desplazan la

señal a la frecuencia de 2’437 GHz.

Las señales transmitidas son recibidas en dos frontales,

cuyas salidas IQ son leı́das por Matlab empleando cuatro de
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las entradas analógicas de que dispone el PC. Este montaje ha

servido para testar la validez de los algoritmos Matlab y es el

punto de partida para la validación de los diseños VHDL en

transmisiones reales.

B. Transmisión off-line con implementación VHDL parcial

El montaje citado en el apartado anterior puede combinarse

con la utilización de la plataforma Heron, de tal forma que se

pueda realizar parte del procesamiento de la señal empleando

implementaciones reales VHDL. El diagrama de la figura 4

muestra la estructura y el flujo de las señales en este modo de

operación.

A modo de ejemplo, si se quiere analizar el rendimiento y

la complejidad de la implementación de determinadas técnicas

de detección MIMO, éstas pueden ser comparadas empleando

señales transmitidas reales, mientras que el resto del procesado

de señal se sigue realizando en Matlab. En el diagrama de la

figura 4 es la propia aplicación Matlab la que genera y recibe

los datos, pero parte de esta tarea puede ser implementada

en la plataforma Heron si se desea, por ejemplo, analizar un

sistema en el que todo el receptor está implementado en la

FPGA.

Matlab

API
Heron

DAC

FPGA

ADC

RF TX

RF TX

RF RX

RF RX

Canal

MIMO

2x2

Fig. 4. Esquema de un modelo que permite combinar procesado de señal
implementado en Matlab con implementaciones VHDL reales.

C. Implementación completa real-time

Tal y como se ha expuesto anteriormente, esta plataforma

ofrece un camino relativamente sencillo de cara a la imple-

mentación VHDL de sistemas de comunicación MIMO de

tiempo real. Como ya se ha apuntado, la plataforma Heron

HEPC9 y los módulos de que dispone la plataforma permiten

implementar un sistema 2x2 o incluso 4x4 si se generan y

reciben señales moduladas, en lugar de en banda base. La

figura 5 muestra un diagrama de la plataforma Heron con sus

diferentes módulos y los algoritmos que se implementarán en

cada uno de ellos. La capacidad de esta plataforma ya está

siendo demostrada en [3], donde se está empleando para la

implementación de un sistema MIMO-OFDM 4x4.

V. CONCLUSIONES Y LÍNEAS FUTURAS

Este artı́culo describe una plataforma desarrollada para la

validación de algoritmos y diseños VHDL reales orientados

a sistemas de comunicaciones inalámbricas multiantena. El

objetivo del sistema presentado es el de facilitar el tránsito

desde simulaciones Matlab a diseños VHDL implementados

en una plataforma de desarrollo.

Combinando tarjetas de adquisición y generación de señales

analógicas, frontales RF de 2.4-5 GHz y tarjetas Heron HEPC9

de prototipado rápido para sistemas basados en FPGA/DSP,

IO
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Fig. 5. Posible estructura del sistema MIMO de tiempo real.

esta plataforma permite realizar de manera sencilla la tarea

de simulación y validación conjunta de aplicaciones Matlab,

diseños VHDL implementados en FPGAs y la utilización de

señales reales transmitidas y procesadas ”off-line”.

Esta plataforma está siendo utilizada de cara a la im-

plementación de un sistema MIMO de tiempo real básico,

consistente en un esquema 2x2 de multiplexación espacial

y banda estrecha a 2.4 GHz. Este sistema será el punto de

partida para el análisis de la implementación en tiempo real

de sistemas más realistas y de mayor capacidad.
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Abstract- Multiple-Input Multiple-Output (MIMO) techniques
have become the main solution to reach the data rates expected
for new wireless communications standards. The implementation
of these multi-antenna systems has become specially important to
validate the enhancements advanced by analytical results, requir-
ing the development of specific testbeds and rapid prototyping
platforms.

This contribution shows a real-time “Hardware in the Loop”
(HaLo) approach which eases the rapid prototyping of wireless
MIMO communication systems. A Matlab/Simulink-based HaLo
system is shown for a modular rapid prototyping Heron platform,
whose features allow the implementation of real-time MIMO
wireless algorithms at different design levels. The coexistence
of offline Matlab/Simulink code and real-time hardware running
on various FPGA devices is specially considered. The structure of
the HaLo approach and main implementation issues are shown
with several specific application examples, such as a complete
2x2 spatial multiplexing system.

I. INTRODUCCIÓN

Las técnicas MIMO (Multiple input-multiple output) posi-

bilitan comunicaciones de elevadas tasas de bits y calidad de

enlace superior incluyendo varias antenas, tanto en transmisión

como en recepción [1]. Son una de las tecnologı́as clave

escogidas para los nuevos y futuros estándares de comuni-

caciones inalámbricas [2].

Las principales desventajas de MIMO son la multipli-

cación del hardware, debida al mayor número de cadenas

de transmisión y recepción, y la complejidad inherente a los

algoritmos multi-antena de tratamiento digital de la señal. Esta

complejidad ha ocasionado la aparición de numerosas platafor-

mas “offline”, en las cuales el procesamiento es realizado en

Matlab [3], a pesar de la importancia que tiene la validación

realista de los algoritmos de tiempo real en el prototipado de

los sistemas inalámbricos MIMO [4].

Matlab representa la herramienta perfecta para el análisis,

tanto teórico como simulado, de algoritmos MIMO, gracias

a sus numerosas librerı́as y su entorno matricial de coma

flotante. Sin embargo, las simulaciones basadas en Matlab

están lejos de la evaluación realista de los algoritmos, debido

a las múltiples simplificaciones que implican. Por lo tanto, el

prototipado de sistemas MIMO se ha convertido en un campo

de creciente importancia, permitiendo evaluar aspectos rela-

tivos a la implementación y su complejidad desde los primeros

estadios del proceso de diseño, acelerándolo y volviéndolo más

seguro.

El paso del análisis teórico a la implementación real exige el

desarrollo de plataformas de prototipado rápido y herramientas
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Fig. 1. Modelo básico de un sistema inalámbrico MIMO.

que permitan la co-simulación de diseños implementados en

hardware y código Matlab. Además de la co-simulación, estos

sistemas deben proporcionar medios para la ejecución en

tiempo real de los algoritmos y la realización de transmisiones

inalámbricas a través un canal MIMO real. Es aquı́ donde

interviene el concepto de “Hardware in the Loop” (HaLo), el

cual fue aplicado a sistemas MIMO en [5] y presentado como

producto en [6].

No obstante, la implementación HaLo de un sistema de pro-

totipado MIMO es factible empleando herramientas comunes y

plataformas modulares de desarrollo rápido. Esta contribución

muestra la implementación HaLo de un sistema de desarrollo

para comunicaciones MIMO, combinando herramientas de

alto nivel (Matlab/Simulink, Xilinx System Generator) y de

bajo nivel (herramientas de diseño y sı́ntesis de Xilinx),

ampliando las prestaciones de tiempo real y co-simulación de

la plataforma MIMO presentada en [7].

II. MODELO MIMO BÁSICO

La Fig. 1 muestra un sistema inalámbrico MIMO con M

antenas de transmisión y N de recepción, en el que los bits

de datos son codificados espacial y temporalmente en M

cadenas de sı́mbolos, los cuales son modulados y transmitidos

simultáneamente por M antenas. Estas señales son recibidas

en N antenas de recepción y demoduladas sı́ncronamente. Tras

la demodulación, la sincronización y la estimación de canal,

los bits de datos son recuperados por el algoritmo de detección

MIMO.

Un sistema MIMO de desvanecimiento plano puede repre-

sentarse en banda base de la siguiente forma:

r =

√

Es

M
Hs + n

donde r es un vector de N × 1 con las señales recibidas, s

es un vector de M × 1 con las señales transmitidas y n es
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un vector de N × 1 con el ruido aditivo gaussiano blanco. Es

representa la potencia de la señal transmitida y H la matriz

del canal, de dimensiones M ×N , definida como:

H =









h11 h12 ... h1M

h21 h22 ... h2M

: : : :

hN1 hN2 ... hNM









donde hnm representa la ganancia compleja del canal entre la

antena de tranmisión m y la de recepción n.

La utilización de MIMO multiplica el lı́mite de capacidad

de canal establecido por Shannon. A modo de ejemplo, si las

ganancias de los subcanales MIMO están decorreladas y son

desconocidas en recepción, dicho lı́mite de capacidad de canal

crece linealmente con el mı́nimo de los números de antenas

de transmisión y recepción [1].

A pesar del gran incremento de capacidad que las técnicas

MIMO permiten, su implementación conlleva varias dificul-

tades de coste y complejidad:

• Se requieren M × N antenas y cadenas de radio-

frecuencia (RF), incrementando el coste y el tamaño de

un equipo inalámbrico.

• La complejidad de la mayorı́a de algoritmos de procesado

de la señal crece linealmente con el número de antenas, e

incluso exponencialmente para determinados algoritmos,

tales como la detección MIMO óptima.

• En sistemas en los que la implementación de los al-

goritmos se encuentre distribuida entre varios módulos,

el ancho de banda requerido para el intercambio de

información puede crecer dramáticamente.

• La distribución de los relojes y retardos debe ser con-

trolada, para garantizar la transmisión y recepción si-

multánea de las diferentes cadenas RF.

III. DESCRIPCIÓN DE LA PLATAFORMA

La Fig. 2 muestra los principales elementos de la plataforma

MIMO de prototipado rápido basada en HaLo, que pueden

resumirse de la siguiente manera:

1) Tarjeta modular de prototipado rápido.

2) Transceptores RF Maxim MAX2827EVKit.

3) Mástiles con las antenas de transmisión y recepción.

4) Ordenadores personales para diseño, depuración y mon-

itorización.

A. Tarjeta y módulos de prototipado rápido

La plataforma esta basada en una tarjeta de prototipado

rápido Heron HEPC9 de Hunt Engineering [8]. Esta tarjeta

modular tiene una arquitectura absolutamente flexible, basada

en un bus interno que permite comunicaciones de hasta 400

MBps entre los módulos. Los siguientes cuatro módulos han

sido escogidos e instalados en la tarjeta para la aplicación que

se detalla en este artı́culo:

• 2 módulos HERON-IO2V2 con 1 FPGA Virtex2 de 1

millón (M) de puertas lógicas, con 2 entradas y 2 salidas

analógicas de hasta 125 MSPS, de 12 y 14 bits de

resolución, respectivamente.

• 1 módulo HERON-IO5 con 1 FPGA Virtex2 de 3M de

puertas, con 2 entradas y 2 salidas analógicas de hasta 160

MSPS, de 12 y 16 bits de resolución, respectivamente.

1

2

3

3

4

Fig. 2. Principales elementos de la plataforma MIMO HaLo.

Este módulo, al igual que el citado IO2V2, permite la

depuración en tiempo real a través de una interfaz JTAG,

utilizando la herramienta Chipscope de Xilinx [9]. Esta

interfaz también posibilita la co-simulación de Simulink,

System Generator y hardware Xilinx, por lo que será

utilizado para controlar la ejecución HaLo.

• 1 módulo HERON-C6701, con un microprocesador DSP

Texas Instruments TMS320C6701, de coma flotante de

16 bits y un reloj de hasta 167 MHz.

Esta tarjeta HEPC9 es controlada desde un ordenador personal

a través del interfaz PCI, permitiendo su configuración, la

programación de los dispositivos FPGA y la transferencia de

datos.

B. Transceptores RF

La plataforma está equipada con cuatro tarjetas

MAX2827EVKit de la casa Maxim, las cuales pueden

transmitir o recibir señales RF en las bandas de 2,4 y 5 GHz.

Estas tarjetas son capaces de modular y demodular señales

IQ de hasta 20 MHz de ancho de banda. Esta solución evita

la implementación de los moduladores y demoduladores, pero

obliga a emplear dos señales de transmisión y recepción por

cada transceptor.

IV. PROTOTIPADO RÁPIDO BASADO EN EL SISTEMA

“HARDWARE IN THE LOOP”

Orientado al prototipado rápido de sistemas de comuni-

cación MIMO, se ha adoptado una metodologı́a de diseño que

posibilita:

• La coexistencia de algoritmos distribuidos en varias FP-

GAs, procesando los algoritmos en tiempo real, y de

código Matlab ejecutando offline determinados algorit-

mos del sistema de comunicaciones MIMO.

• El traslado progresivo del código elaborado en Matlab

a una arquitectura eficiente de tiempo real, haciendo

posible su validación en entornos y condiciones reales

en cualquier etapa del diseño.

• Un completo diseño gráfico de todo el sistema desde

Simulink, incluyendo la distribución de recursos es-

pecı́ficos de la plataforma, el establecimiento de las

conexiones entre módulos y la generación de todos los
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Fig. 3. Esquema de un sistema fundamental HaLo MIMO 2x2 controlado desde Simulink.

bitstreams de las FPGAs que conforman la plataforma de

la Fig. 2.

A. Metodologı́a y herramientas empleadas

La metodologı́a que se ha establecido está basada en la

herramienta Matlab/Simulink de Mathworks [10] en combi-

nación con System Generator for DSP e ISE Project Navigator

de Xilinx [9]. Estas herramientas proporcionan un equilibro

entre la abstracción del hardware y un diseño eficiente, de

una manera gráfica e intuitiva.

La metodologı́a de prototipado rápido adoptada para la im-

plementación de un nuevo algoritmo MIMO puede resumirse

en las siguientes etapas:

1) El primer diseño y la validación del algoritmo se realizan

en Matlab. Tal y como se expondrá posteriormente,

el código Matlab se ejecuta dentro del sistema HaLo

mediante bloques S-Function de Simulink.

2) El código Matlab es trasladado a bloques de Simulink.

3) Los bloques de Simulink son reemplazados gradual-

mente por bloques de System Generator, de modo que

pueden ser mapeados directamente en la FPGA. En esta

etapa, la resolución de los datos es modificada selec-

tivamente, pasando progresivamente del tipo doble de

Matlab a cualquier precisión de coma fija. Por otro lado,

los bloques de System Generator pueden ser verificados

de dos formas diferentes:

• Co-Simulación Hardware: El algoritmo se ejecuta

en hardware con el reloj marcado por Simulink, no

en tiempo real.

• HaLo: El algoritmo se ejecuta en hardware y en

tiempo real.

4) Como último paso, las herramientas de bajo nivel

pueden ser empleadas si se requiere mayor eficiencia

en el hardware.

Esta metodologı́a permite, independientemente de la etapa

de diseño en la que se encuentre el nuevo algoritmo, la

posibilidad de testarlo y verificarlo en condiciones finales,

es decir, reales. Asimismo, el código puede ser fácilmente

depurado de una etapa a otra instanciando ambas en paralelo

y comparando sus salidas.

B. “Hardware in the Loop”

Existen dos modos en los que un bloque de co-simulación de

System Generator puede ser sincronizado con su hardware en

la FPGA: la opción “single-stepped”, donde Simulink gestiona

el pulso de reloj de la FPGA, y el modo “free-running”, donde

el código de la FPGA se ejecuta en tiempo real con un reloj

externo. Este último ha sido escogido para la implementación

HaLo, ya que el hardware en la FPGA debe ejecutarse en

tiempo real. De esta manera se establecen dos dominios de

reloj: el dominio de Simulink, en el que se ejecuta el código

offline, y el de tiempo real, en el que se sitúan las FPGAs.

La Fig. 3 muestra el modelo fundamental de un esquema

HaLo MIMO 2x2 que posibilita la transmisión y la recepción

de datos generados desde Matlab, aplicando algoritmos de

procesado de la señal en tiempo real sobre un canal MIMO. La

interfaz de ambos dominios de reloj se lleva a cabo mediante

memorias ası́ncronas situadas dentro de la FPGA, conectadas

a Simulink mediante el puerto JTAG. La Fig. 3 muestra,

en su lado izquierdo, los bloques Simulink encargados del

control HaLo, donde un bloque S-Function con código Matlab

gestiona el envı́o y recepción de los datos, mientras que en el

lado derecho se muestra el esquema básico de los algoritmos

que se ejecutan en tiempo real.

Tal y como se puede observar en la Fig. 3, la unión entre

Simulink y la plataforma se ha establecido en el primer

módulo. Una vez todos los datos han sido cargados en la

memoria de transmisión de la FPGA de dicho módulo, da

comienzo el procesado de la señal en tiempo real:

• En el primer módulo se han implementado los algoritmos

de códificación espacio-temporal, el mapeo QAM y la

etapa de filtrado de transmisión.
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• Los datos son transmitidos y recibidos mediante los

transceptores de RF sobre un canal MIMO real.

• Tal y como se observa en la Fig. 3, los datos recibidos son

filtrados y sincronizados en el segundo módulo, mientras

que la estimación de canal, la igualación y los algoritmos

de detección son aplicados en los módulos posteriores.

• La trama detectada vuelve al primer módulo, cerrando el

lazo, y se almacena en la memoria de recepción.

• Finalmente, la trama es recibida en Simulink, donde el

completo funcionamiento de todo el sistema de comuni-

caciones MIMO puede ser evaluado.

C. Distribución de los recursos

Las plataformas modulares no suelen proporcionar librerı́as

especificas para habilitar sistemas HaLo y requieren que el

código de usuario sea introducido en una estructura fija,

necesaria para asegurar el correcto uso de los recursos de

la plataforma y las conexiones entre módulos. A su vez,

System Generator proporciona librerı́as especı́ficas sólo para

un número limitado de plataformas comerciales. Por lo tanto,

la estructura y los mecanismos de conexión entre módulos

deben ser incluidos en el flujo de diseño.

Por otro lado, la mayorı́a de algoritmos MIMO se basan

en la razonable asunción de que las cadenas de transmisión

y recepción están perfectamente sincronizadas. A medida que

crece el número de antenas de recepción y de transmisión, es

muy probable que un único módulo no pueda albergar todas

las cadenas de transmisión o de recepción, dificultando su

sincronización. Por ello, tal y como se aprecia en Fig. 3, las

cadenas de transmisión y de recepción deben ser distribuidas

en la plataforma empleando retardos deterministas basados en

las conexiones inter-modulares que se hallan establecido.

El equipo de diseño ha desarrollado librerı́as especı́ficas en

System Generator para el control de la comunicación entre

módulos, el manejo de recursos y la sincronización de las

cadenas RF. Al mismo tiempo, la modificación del flujo de

sı́ntesis permite crear todos los ficheros de carga de las FPGAs

de la plataforma. Por lo tanto, se ha conseguido que todo el

diseño pueda ser simulado, generado y testado a tiempo real

desde Simulink.

V. APLICACIONES

A. Sistema completo MIMO 2x2

El sistema HaLo ha sido empleado para implementar un

completo sistema MIMO 2x2 que incluye los siguientes al-

goritmos: detección de trama, sincronización de periodo de

sı́mbolo, corrección de offset en frecuencia, estimación de

canal LS y detección MIMO empleando la pseudoinversa o

un decodificador esférico [11].

B. Emulador de canal

Los canales reales son imprevisibles y no resultan adecuados

para las primeras pruebas de un nuevo algoritmo. Por lo tanto,

se ha desarrollado e implementado en FPGA un emulador

de canal Rayleigh de banda base, que permite depurar los

algoritmos de tiempo real. No obstante, para ciertos tests y

algoritmos, dicho canal Rayleigh puede ser excesivamente

ideal, requiriendo canales más complejos. El sistema HaLo

posibilita la utilización de cualquier canal modelado en Mat-

lab, empleando una configuración como la de la Fig. 4.
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Fig. 4. Ejecución en tiempo real con canal emulado en Matlab

VI. CONCLUSIONES Y LÍNEAS FUTURAS

Esta contribución ha presentado un sistema “Hardware in

the Loop”, desarrollado sobre una plataforma modular y con

un completo diseño basado en Simulink, que posibilita la

integración rápida de nuevos algoritmos MIMO. El sistema

posibilita la validación de un nuevo algoritmo con señales y

requisitos reales, independientemente de la etapa de diseño

en la que se encuentre. Se ha detallado la estructura de la

plataforma y se han mostrado varios ejemplos de aplicación,

entre los que destaca un sistema completo MIMO 2x2.

De cara a la ampliación del trabajo descrito en este artı́culo,

la plataforma será extendida a un modelo MIMO 3x3 y se

realizará una completa revisión de las librerı́as que permita su

utilización con la versión 8.1 del System Generator. Asimismo,

se pretende incluir la simulación y la generación del código

de los DSPs en el flujo de diseño automatizado basado en

Simulink.
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