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Abstract

This thesis explores the potential of Explainable Artificial Intelligence (XAI)
in the context of time-series anomaly detection and diagnosis. By enhancing
the transparency of traditionally opaque models and offering immediate and
intelligible explanations, we have set the stage for more informed decision-
making processes across diverse sectors.

Prior to our practical exploration, we reviewed the existing literature on
XAI, anomaly detection, and diagnosis. Then, our experiments start with a
study of the Counterfactual Explanation Method (CEM) in time-series tasks.
This investigation revealed both the advantages and limitations of CEM. Ac-
knowledging its shortcomings, particularly its time-consuming nature. Then,
we present the Real-Time Guided Counterfactual Explanations (RTGCEx)
method. This innovative method is a model-agnostic approach that provides
user-driven counterfactual explanations in real-time across different domains
and data types.

Afterward, to avoid losing essential information that anomaly detectors
might contain and that model-agnostic methods might miss, we address the
challenge of creating intrinsically interpretable models. To achieve this, we first
introduce the Diagnostic Fourier-based Spatio-temporal Transformer (DFS-
Trans). This tool combines the capabilities of 1D Convolutional Neural Net-
works with a Transformer-inspired structure. This model effectively learns
spatial and temporal dependencies in multivariate sensor data, proving to be
a potent tool for diagnosing anomalies. Recognizing the challenges associated
with obtaining labeled data, we developed an unsupervised variant, termed
uDFSTrans. This model incorporates a dual strategy: a multi-masking tech-
nique and a context-oriented attention mechanism, facilitating the detection
and elucidation of anomalies without the necessity for labeled data.





Laburpena

Tesi honek Explainable Artificial Intelligence-ek (XAI) denborazko serieetan
anomaliak detektatzeko eta diagnostikatzeko duen ahalmena aztertzen du,
Tesiak tradizionalki opakoak izan diren ereduen gardentasuna handitzean
eta berehalako azalpen ulergarriak ematean hainbat sektoretan erabakiak
hartzeko prozesu informatuagoak egiteko oinarriak ezartzen ditu.

Gure ahalegin esperimentalen aurretik, XAIri, anomalien detekzioari eta
diagnostikoari buruz argitaratutakoa berrikusten da. Miaketa praktikoa denbo-
razko serieen datuetan zentratutako Contrastive Explanation Method (CEM)
algoritmoaren azterketarekin hasten da. Ikerketa honek CEM-en abantailak
eta mugak erakusten ditu, eta bere gabeziak ezagutzean, zeinetatik geldota-
suna nabarmentzen den, Real-time Guided Counterfactual Explanations (RT-
GCEx) izeneko metodoa aurkezten da. Eredu berritzaile hori azaldu beharreko
modeloarekiko agnostikoa da eta erabiltzaileak gidatutako azalpenak denbora
errealean ematea ahalbideratzen du hainbat domeinu eta datu motatarako.

Gure xedea anomalia detekziorako ereduen erabakiak zertan oinarritzen
diren azaleratzea denez eta modelo agnostikoek barne funtzionamenduari er-
reparatzen ez diotenez, berez interpretagarriak diren eruduak sortzeko er-
ronkari heltzen zaio informazio garrantzitsua gal ez dadin. Behar horri er-
antzuteko, lehenik eta behin, Diagnostic Fourier-based Spatio-temporal Trans-
former (DFSTrans) algoritmoa proposatzen da. Tresna honek dimentsio bateko
sare neuronal konboluzionalen gaitasunak eta Transformerretan oinarritutako
egitura bat konbinatzen ditu. Eredu honek aldagai anitzeko sentsoreen dat-
uen mendekotasun espazialak eta tenporalak eraginkortasunez ikasten ditu
anomaliak diagnostikatzeko tresna indartsua dela erakutsiz. Etiketatutako
datuak lortzeko zailtasunak medio, uDFSTrans izeneko aldaera ez superbisatu
bat garatzen dugu; izan ere, eredu honek, modu ez superbisatuan anomaliak
antzeman eta diagnostikatzeko estrategia bikoitza erabiltzen du: maskaratze-
teknika bat eta testuingurura bideratutako arreta-mekanismo bat.
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Resumen

Esta tesis explora el potencial de la Inteligencia Artificial Explicable (XAI) en
el contexto de la detección y diagnóstico de anomaĺıas en series temporales.
Al aumentar la transparencia de modelos tradicionalmente opacos y ofrecer
explicaciones inmediatas e inteligibles, hemos sentado las bases para procesos
de toma de decisiones más informados en diversos sectores.

Antes de empezar con la fase experimental, revisamos la literatura ex-
istente sobre XAI, detección de anomaĺıas y diagnóstico de anomalias. La
exploración práctica comienza con un estudio del algoritmo Contrastive Ex-
planation Method (CEM) en tareas de series temporales. Esta investigación
revela tanto las ventajas como las limitaciones del CEM. Tras reconocer sus de-
ficiencias, en particular su lentitud, presentamos el método llamado Real-time
Guided Counterfactual Explanations (RTGCEx). Este innovador método es
un enfoque agnóstico del modelo que proporciona explicaciones contrafácticas
guiadas por el usuario en tiempo real para diferentes dominios y tipos de
datos.

Posteriormente, para evitar la pérdida de información esencial que podŕıan
contener los detectores de anomaĺıas y que los métodos agnosticos podŕıan
pasar, abordamos el reto de crear modelos intŕınsecamente interpretables.
Para ello, presentamos en primer lugar el algoritmo Diagnostic Fourier-based
Spatio-temporal Transformer (DFSTrans). Esta herramienta combina las ca-
pacidades de las redes neuronales convolucionales 1D con una estructura inspi-
rada en los Transformers. Este modelo aprende eficazmente las dependencias
espaciales y temporales de los datos temprales multivariantes, demostrando
ser una potente herramienta para diagnosticar anomaĺıas. Reconociendo las
dificultades asociadas a la obtención de datos etiquetados, desarrollamos una
variante no supervisada, denominada uDFSTrans. Este modelo incorpora una
doble estrategia: una técnica de multienmascaramiento y un mecanismo de
atención orientado al contexto, que facilita la detección y elucidación de
anomaĺıas sin necesidad de datos etiquetados.
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Introduction

This dissertation addresses various challenges in Explainable Artificial Intelli-
gence (XAI) as applied to the field of anomaly detection, with a primary focus
on enhancing the diagnosis of anomalies. In order to provide a comprehensive
understanding of the research presented, the current chapter offers essential
background information. To begin, Section 2.1 presents an overview of XAI,
including fundamental definitions and a taxonomy of XAI methods. Following
this, Section 1.2 introduces key concepts related to anomaly detection and di-
agnosis, as well as a taxonomy for categorizing different approaches. Section
1.3 then explains the motivation behind this thesis, and Section 3.1 outlines
the hypothesis and objectives of the research. Lastly, Section 1.4 provides an
overview of the dissertation structure.

1.1 Explainable Artificial Intelligence

Artificial Intelligence (AI) and Machine Learning (ML) have made remarkable
strides in recent years, giving rise to sophisticated models that excel at var-
ious tasks across domains such as healthcare, finance, and natural language
processing. Deep neural networks exemplify such models, but their increasing
complexity has led to a lack of interpretability, commonly known as the black-
box problem. This absence of interpretability presents challenges for human
users who need to comprehend, trust, and validate the models’ decisions for
ethical, legal, and practical reasons.

Explainable Artificial Intelligence (XAI) is a subfield of AI dedicated to
making the decision-making process of ML models more comprehensible and
interpretable for humans. The growing complexity of AI models, including
deep neural networks, has caused the black-box problem to become more pro-
nounced. XAI tackles this issue by offering insights into the rationale behind
a model’s predictions, allowing users to trust and validate the decisions made
by the model.
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1.1.1 Concepts and definitions

The most common concepts related to XAI will be defined in this section.
Defining these concepts is important for providing a foundation for better
understanding the following sections on XAI. Before delving into these defi-
nitions, we define the Explainable Artificial Intelligence concept:

Definition 1. (Explainable AI). Explainable AI refers to the effort of making
the decision-making process of machine learning models more understandable
and interpretable for humans.

A. Model Understandability and Accessibility

The transparency and understandability of machine learning models are cen-
tral to their acceptance and usability. The concepts of black-box and white-box
models provide insights into this spectrum.

Definition 2. (Black-box). Black-box models refer to machine learning models
whose decision-making process is opaque and incomprehensible to humans.

Definition 3. (White-box). White-box models refer to machine learning mod-
els whose decision-making process is transparent and understandable to hu-
mans.

These terms relate to the three main concepts of XAI: explainability, in-
terpretability, and transparency.

Definition 4. (Explainability). Explainability refers to the provision of knowl-
edge about the internal functioning of an algorithm and clarifying why it be-
haves in a certain way in human terms.

Definition 5. (Interpretability). Interpretability refers to the ability to un-
derstand and explain the relationship between the algorithm’s input, output,
and internal workings. Interpretability clarifies how an algorithm reaches a
decision.

Definition 6. (Transparency). The transparency of a model refers to the de-
gree of comprehensibility and interpretability of a specific model by itself, that
is, whether the overall functioning of the model, its individual components,
and its learning algorithm are intelligible or understandable to a human.

—

B. Model Ethics and Integrity

Using machine learning models responsibly and understanding them prop-
erly is crucial. Key ideas include algorithmic bias, robustness, fairness, and
trustworthiness.
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Definition 7. (Algorithmic bias). Algorithmic bias refers to the systematic
and repeated errors or unfair outcomes that can result from using AI systems,
usually when the data used to develop and train the algorithm contains implicit
or explicit biases.

Definition 8. (Robustness). Robustness in machine learning refers to the ca-
pability of a model to maintain its performance level despite the presence of
errors, perturbations, or variations in the input or execution environment.

Definition 9. (Fairness). Fairness refers to the absence of unjustified or dis-
criminatory biases towards individuals or groups based on their protected char-
acteristics, such as gender, race, or age, in the development, deployment, and
use of machine learning models.

All these considerations inform a model’s trustworthiness.

Definition 10. (Trustworthiness). Trustworthiness refers to the extent to
which users can rely on the predictions, decisions, or recommendations gen-
erated by machine learning models.

—

C. Explanation Techniques

To better understand and trust machine learning models, various techniques
and explanations have been developed, including feature importance, coun-
terfactual explanation, rule-based explanation, gradient-based attribution, and
attention-based explanation.

Definition 11. (Feature importance). Explanations based on feature impor-
tance are techniques used to measure the significance or impact of each input
or feature on the model’s output or decision.

Definition 12. (Counterfactual explanation). Counterfactual explanations de-
scribe how a model’s output or decision would have changed if certain input
variables or features had been different.

Definition 13. (Rule-based explanation). Rule-based explanation refers to ex-
planations that are based on explicit rules or decision-making criteria used by
a model to arrive at a prediction or decision.

Definition 14. (Gradient-based attribution). Gradient-based attribution meth-
ods give insights into a model’s decision by showing the gradient of the output
with respect to the input.

Definition 15. (Attention-based explanation). Attention-based explanations
provide insights by highlighting parts of the input that the model finds most
relevant when making a prediction. It can help visualize which parts of the
input data the model is focusing on.
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1.1.2 Taxonomy

To systematically study and apply XAI methods, it is essential to classify
them based on their characteristics and goals. The literature offers numerous
taxonomies to distinguish between these methods. For the purposes of this
thesis, we adopt a taxonomy akin to that presented in Kamth et al.’s book [1].
As shown in Figure 1.1 this categorization system delineates explainability
techniques into three overarching groups: interpretability scope, application
stage, and model depedency.

Explainable AI

Interpretability
scope

Application
stage

Model
dependency

Global
interpretability

Local
interpretability Pre Intrinsic Post-hoc Model

specific
Model

agnostic

Fig. 1.1: Taxonomy of Explainable AI.

A. Interpretability scope.

Interpretability methods can be classified based on the scope of interpretabil-
ity, which encompasses two primary categories: global interpretability and lo-
cal interpretability. Global interpretability aims to understand a model’s
functionality across the entire dataset, while local interpretability focuses
on explanations for specific instances within the dataset. The difference be-
tween both interpretability scopes is illustrated in Figure 1.2.

Global Interpretability

Local Interpretability

Fig. 1.2: Global vs local interpretability.

Methods for interpretability are different depending on the scope:
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1. Local methods: These explainers offer localized explanations by eluci-
dating a model’s output for a specific instance. Typically, such explana-
tions are generated by assessing the contribution of individual features for
a particular prediction derived from a given input or by approximating
the model within a small region of interest using a simpler model.

2. Global methods: Employing the entire training dataset, global explain-
ers provide insights into the overall influence of input features on the
model’s predictions. Consequently, these explanations enable a deeper un-
derstanding of how the model’s structures and parameters impact its pre-
dictions, ultimately fostering greater transparency in the decision-making
process.

B. Application stage.

Interpretability models can also be classified based on their application stage.
Depending on when interpretability methods are applied, they can be divided
into three groups: (i) pre-model explanations, which are applied to the data
before training the models; (ii) intrinsic explanations, which are obtained us-
ing model internals; (iii) and post-hoc explanations, which are applied after
training the model without relying on model internals.

PRE
DATA

INTRINSIC

POST-HOC

DATA

DATA

EXPLAINABLE AI

EXPLAINABLE AI

MODEL

MODEL

EXPLAINABLE
MODEL

MODEL
USER

USER

USER

Fig. 1.3: Explainable AI methods classified by the application stage.

Figure 1.3 shows the differences between the three groups and they are
described below:

1. Pre-model interpretability, as the name suggests, is applied before train-
ing the model, on the input data. This interpretability is used to under-
stand and process the data and involves exploratory data analysis, knowl-
edge graphs, feature engineering, or data visualization. The pre-model
interpretability is essential for the design of the model.



6 1 Introduction

2. Intrinsic interpretability refers to the ability of an algorithm or model to
provide an explanation of its decision-making process inherently within
the algorithm itself, without requiring any additional tools.

3. Post-hoc interpretability. While intrinsic interpretability is a built-in ex-
planation within the algorithm, post-hoc methods are techniques or tools
applied after an algorithm or model has made its decisions to understand
or explain its behavior. Post-hoc methods can be applied either to intrin-
sically interpretable methods or to opaque black-box models.

C. Model dependency.

Model dependency serves as an alternative classification scheme for XAI tech-
niques, indicating if an explainability approach is universally applicable to
all models (model-agnostic) or designed exclusively for certain model types
(model-specific).

MODELMODEL A MODELMODEL B MODELMODEL C

EXPLAINER

MODELMODEL A MODELMODEL B MODELMODEL C

EXPLAINER BEXPLAINER A EXPLAINER C

EXPLAINATION A EXPLAINATION B EXPLAINATION C EXPLAINATION A EXPLAINATION B EXPLAINATION C

MODEL AGNOSTIC MODEL SPECIFIC

Fig. 1.4: Explainable AI methods classified by model dependency.

The differences between these two groups are illustrated in Figure 1.4 and
described below:

1. Model-specific methods: These techniques can only be applied to spe-
cific models, as they are designed to exploit the internal structure of the
model to generate explanations. Generally, these methods yield more de-
tailed explanations compared to model-agnostic approaches. For instance,
attention mechanisms fall into this category.

2. Model-agnostic methods: These techniques require only the input and
output of a model, without needing access to the model’s internal struc-
ture, allowing their application across various models. Techniques such as
SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable
Model-agnostic Explanations) serve as examples of model-agnostic ap-
proaches.
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1.2 Anomaly detection and diagnosis

The detection of anomalies in time-series consists of identifying unusual
or anomalous patterns or events that significantly differ from the normal or
expected behavior of a data series over time. This involves analyzing and com-
paring the historical values and trends of the time-series with current data,
in order to detect any significant deviation that may indicate an anomaly.
On the other hand, the diagnosis of anomalies involves providing more
information about the anomaly that has been detected at a certain moment,
as well as reporting which sensors have been affected at that time. The com-
bination of detection and diagnosis of anomalies in time-series is crucial for
making informed decisions and preventing major damage in critical systems
and processes. Both detection and diagnosis are important aspects in anomaly
detection, where detection identifies when a deviation from the expected be-
havior occurs, while diagnosis seeks to identify the cause and impact of the
anomaly and provide further information to aid in decision-making.

1.2.1 Concepts and definitions

This section defines some concepts related to AD in time-series data.

Definition 16. (Time-series). A time-series X = {x1. . . . ,xT } can be de-
scribed as a sequence of ordered, real-valued observations of length T , where
at each timestamp t, xt ∈ Rm represents a set of points collected from m
different sensors. Similarly, we can define a corresponding label sequence
Y = {y1, . . . ,yT } for the time-series X.

A time-series can be categorized as either univariate or multivariate based
on the number of sensors used to collect observations.

Definition 17. (Univariate time-series). A univariate time-series is a time-
series in which the observations are collected from a single sensor. That is,
X = {x1. . . . ,xT }, where xt ∈ R

Definition 18. (Multivariate time-series). A multivariate time-series is a
time-series in which the observations are collected from multiple sensors. That
is, X = {x1. . . . ,xT }, where xt ∈ Rm, being m > 1.

In this context, we can distinguish between two concepts: anomaly detec-
tion and anomaly diagnosis.

Definition 19. (Anomaly detection). Anomaly detection refers to the process
of predicting the label yt ∈ {0, 1} for an unseen datapoint xt. A label of 0
indicates that the point xt is normal, while a label of 1 indicates that it is
anomalous.
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Definition 20. (Anomaly diagnosis). Given an anomalous point xt, anomaly
diagnosis is the process of providing additional information I about the de-
tected anomaly. This information can be given in different ways:

• Visualization of features: Visual analysis of the features associated with
the anomaly.

• Information based on attention mechanisms: Utilizing attention
mechanisms to focus on specific data components that contribute to the
anomaly.

• Information based on feature importance: Quantifying the signifi-
cance of each feature in the anomaly detection process.

• Sensor-wise label prediction: Predicting the label yt = {0, 1}m corre-
sponding to each of the m sensors at timestamp t.

Generally, the anomalies that can be found in AD problems are categorized
into three groups: point anomalies, subsequence anomalies, and time-series
anomalies. Each group is described next:

A. Point anomalies

Definition 21. (Point anomaly). Point anomalies refer to individual points
which are far outside the normality ranges of the time-series to which they
belong.

It is the simplest type of anomaly and most of the AD research has been
focused on detecting these types of anomalies. Some point anomalies are il-
lustrated in Figure 1.5

time

o1

o2
2001000

Fig. 1.5: Example of a univariate time-serie containing two point anomalies, high-
lighted in red.
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B. Subsequence anomalies

A subsequence anomaly is a pattern or sequence of values that stand out as
being significantly different from the rest of the data. Two types of anomalies
can be distinguished within this category: contextual anomalies or collective
anomalies.

Definition 22. (Contextual anomaly). Contextual anomalies refer to a set of
points that are anomalous in a specific context, but not otherwise.

0 500 1000
time

Fig. 1.6: Example a univariate time-series containing contextual anomalies, which
are highlighted in red.

In Figure 1.6, we present a univariate time-series that exhibits a contex-
tual anomaly, which is visually identified by highlighting it in red. The red
highlighted points display low values instead of the expected high values, in-
dicating that they deviate from the usual contextual behavior.

Definition 23. (Collective anomalies). Collective anomalies refer to a col-
lection of related data points that are anomalous with respect to the entire
time-series. The instances that belong to that family, may not be singularly
anomalous but the occurrence of all of them together is anomalous.

An example of a collective anomaly is illustrated in Figure 1.7, where the
occurrence of several points during the period highlighted in red does not
correspond to the expected pattern of the data.
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0 500 1000
time

Fig. 1.7: Example of a collective anomaly.

C. Time-series anomaly

Definition 24. (Time-series anomaly). A time-series anomaly is a time-
series Xi that, as a whole, deviates significantly from the other time-series in
a given dataset D = {X1, . . . ,XN} of univariate or multivariate time-series.
This can be seen as a generalization of subsequence outliers to a set of time-
series.

An example of a time-series anomaly is illustrated in Figure 1.8, in which
the red colored time-series is anomalous with respect the the other time-series-

1.2.2 Taxonomy

In order to systematically classify deep learning algorithms employed for
anomaly detection in time-series data, we will adhere to the taxonomic frame-
work illustrated in Figure 1.9. This framework organizes the algorithms using
two primary criteria.

Initially, the algorithms are sorted according to their learning paradigms,
which can be segregated into three distinct categories: supervised learning,
semi-supervised learning, unsupervised learning, and self-supervised learning.
Subsequently, the algorithms are further categorized based on the objective of
their training objective, resulting in four different approaches: classification-
based models, forecasting models, reconstruction-centric models, and cluster-
ing techniques.
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series
ts1
ts2
ts3
ts4

0 100 200
time

Fig. 1.8: Example of a time-series anomaly. The red colored time-series is
anomalous with respect to the other time-series.

Deep-learning based
AD in time-series

Approach type

ReconstructionClassification Forecasting Clustering

Learning scheme

Self-supervisedSupervised Semi
supervised Unsupervised

Fig. 1.9: Taxonomy of deep learning approaches for time-series anomaly de-
tection.

1.2.2.1 Learning schemes

Which learning approach to use often depends on the type of data at hand and
what the task demands. There are four main ways to learn: supervised, semi-
supervised, unsupervised, and self-supervised. The following section explains
each of these methods, their workings, benefits, and challenges.

A. Supervised learning

As depicted in Figure 1.10, in the supervised learning scheme, the model is
trained on labeled data, using a training set with observations labeled as
either normal or anomalous. The goal is to teach the model to distinguish
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DL	MODEL
Labeled	training

data OUTPUT

Fig. 1.10: Supervised learning scheme.

between normal and anomalous instances. Supervised learning can be partic-
ularly effective when a sufficient amount of labeled data is available for both
normal and anomalous cases. However, given that anomalies tend to be infre-
quent or hard to characterize in advance. obtaining such labeled data can be
challenging.

B. Semi-supervised learning

DL	MODEL OUTPUTNormal	samples
for	training

Fig. 1.11: Semi-supervised learning scheme.

When acquiring labeled anomalous data proves challenging, or when only
samples of normal data are available, the semi-supervised learning scheme is
employed. Models trained in a semi-supervised manner for anomaly detection
utilize only normal samples during the training process. This approach enables
the model to capture the essence of normality, subsequently facilitating the
detection of atypical occurrences. Figure 1.11 illustrates the semi-supervised
learning scheme.

C. Unsupervised learning

DL	MODEL

Unlabeled
training	data OUTPUT

Fig. 1.12: Unsupervised learning scheme.
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In the unsupervised learning scheme, no label information is utilized, nei-
ther explicitly nor implicitly, during the training process. The models are
designed to autonomously discover underlying patterns or features that facil-
itate the distinction between normal and anomalous instances. This approach
is particularly advantageous when labeled data is scarce or not readily obtain-
able, as the models can learn to identify inherent structures or relationships
in the data without any prior knowledge. Figure 1.12 illustrates how unsuper-
vised models are trained.

D. Self-supervised learning

In the self-supervised learning scheme, label information may or may not be
used directly. The key idea is to leverage a re-labeling strategy or auxiliary
task to create surrogate labels from the data itself. These surrogate labels
are then used to train the model in a supervised manner, even though the
original labels may not be available or utilized. Figure 1.13 illustrates how
self-supervised approaches work.

DL MODEL
Partially labeled

training data
OUTPUTRe-labeled

training data

Fig. 1.13: Self-supervised learning scheme.

1.2.2.2 Training objective

When discussing anomaly detection, it is crucial to understand the varied
training objectives, as each offers a unique approach to identifying irregulari-
ties within data. In this section, we distinguish between four primary strate-
gies: classification, forecasting, reconstruction, and clustering.

A. Classification

Classification methods in anomaly detection involve supervised training of al-
gorithms to categorize time-series data as either anomalous or non-anomalous.
To train these models, a dataset D ≜ {(Xi, yi) | i = 1, . . . , N} consisting of
labeled time-series is used, where each instance Xi ∈ RT represents a time-
series of length T and yi ∈ {0, 1} denotes its corresponding binary label.
Here, the label yi = 0 indicates that the time-series Xi is non-anomalous,
while yi = 1 signifies the presence of an anomaly within the time-series or the
overall time-series being considered anomalous. A model M is defined as a
function M : RT → {0, 1} that performs the mapping from the input time-
series Xi to the binary labels yi. An example of how a classification model
works classifying anomalies is shown in Figure 1.14.
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Fig. 1.14: Classification approach.

The error between the predicted labels M(Xi) and the actual labels yi

can be measured using an objective function L(M,D). One commonly used
objective function in this context is the binary cross-entropy loss, defined as:

L(M,D) = − 1
N

N∑
i=1

[yi log(M(Xi)) + (1− yi) log(1−M(Xi))] . (1.1)

Other objective functions or metrics can also be employed, depending on
the specific requirements of the problem and the characteristics of the data.

B. Forecasting

Forecasting-based approaches in anomaly detection rely on predicting fu-
ture values in a time-series and comparing them with the actual values to
identify anomalies. Given a time-series X ∈ RT of length T , the dataset
D ≜ {({xt−1−K , ...,xt−1}, {xt, ...,xt+n−1}), | t = K + 1, ..., T} used for train-
ing these methods is usually obtained by employing a sliding window ap-
proach. That is, given a segment {xt−1−K , ...,xt−1} ∈ RK of size K, the
model is trained to predict the next n ≥ 1 values in the sequence, as illus-
trated in Figure 1.15. The objective is to assess the discrepancy between the
predicted values and the actual values, and based on a predefined threshold τ ,
determine whether the predicted points are anomalous or not. Unlike classi-
fication methods, labels are not explicitly used in this approach. Instead, the
models are typically trained in a semi-supervised or unsupervised manner, as
defined in the previous section.

A model M is defined as a function M : RK → Rn, where K is the
window size of the input time-series and n is the number of values to predict.
Defining Xt = {xt−1−K , ...,xt−1} and Yt = {xt, ...,xt+n−1}, the objective



1.2 Anomaly detection and diagnosis 15

time
2001000

variable
x1

x2

x3

Fig. 1.15: Forecasting approach.

function L(M,D) measures the error between the predicted values M(Xt)
and the actual values Yt. One common loss function used for training this
type of model is the mean squared error, defined as:

L(M,D) = 1
N

T∑
t=K+1

[M(Xt)− Yt]2 . (1.2)

C. Reconstruction

Reconstruction-based approaches in anomaly detection involve reconstruct-
ing certain values (or all) in a time-series given a window of input val-
ues and comparing the reconstructed values with the actual values to iden-
tify anomalies. Given a time-series X ∈ RT of length T , the dataset D ≜
{({xt−k1 , . . . ,xt−k2}, {xt−n1 , . . . ,xt+n2}) | t = k1, . . . , T − k2} used for train-
ing these methods is usually obtained by employing a sliding window ap-
proach, where 0 ≤ n1 ≤ k1 and 0 ≤ n2 ≤ k2. That is, given a segment
{xt−k1 , . . . ,xt−k2} ∈ RK of size K = k1+k2+1, the model is trained to recon-
struct the target values {xt−n1 , . . . ,xt+n2} ∈ Rn, where n = n2 +n1 + 1. The
objective is to assess the discrepancy between the reconstructed values and
the actual values, and based on a predefined threshold τ , determine whether
the reconstructed points are anomalous or not. As in forecasting models, the
model is trained semi-supervisedly or unsupervisedly. Figure 1.16 illustrates
how reconstruction-based models work.

A reconstruction-based model M is defined as a function M : RK → Rn,
where K is the window size of the input time-series and n is the num-
ber of values to reconstruct. Defining Xt = {xt−k1 , . . . ,xt+k2} and Yt =
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Fig. 1.16: Reconstruction-based approach.

{xt−n1 , . . . ,xt+n2}, the objective function L(M,D) measures the error be-
tween the reconstructed values M(Xt) and the target values Yt.

D. Clustering
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Fig. 1.17: Clustering approach.

Clustering-based approaches in anomaly detection involve grouping simi-
lar time-series data points together and identifying anomalies as data points
that are distant from their corresponding cluster centroids. Given a time-series
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X ∈ RT of length T , the dataset D ≜ {xt | t = 1, . . . , T} used for training
these methods is usually composed by points or features extracted from the
time-series. In clustering-based approaches, the aim is to identify data points
that are distant from their corresponding cluster centroids or those that do
not fit well into any of the clusters. Usually, these data-points are catego-
rized into two clusters, one cluster representing normal data and the other
containing data falling outside the normality. The data is often mapped into
a lower-dimensional feature space and then a hyperplane is used to separate
these two clusters, with the data points falling outside the normality consid-
ered anomalous, as shown in Figure 1.17. Similarity is often measured using
distance metrics, such as Euclidean distance.

A clustering model M can be represented as a function M : xt ∈ X →
{1, . . . ,K} that assigns each data point in the time-series to one of the K
clusters. The clustering objective function L(M,D) evaluates the quality of
the clustering, often by measuring the sum of the distances between the data
points and their corresponding cluster centroids. By minimizing this sum, the
algorithm seeks to create compact and well-separated clusters.

1.3 Motivation

The motivation of this project is to address the needs of the industry for
artificial intelligence (AI) solutions, specifically in the area of anomaly and
defect detection in industrial processes. In such processes, even minor failures
can result in significant financial losses for a company, highlighting the criti-
cal importance of detecting anomalies and defects. To achieve this, numerous
sensors collect data on machine operation, which can be utilized to train Deep
Learning (DL) models for anomaly detection. Despite the potential benefits of
these models, the data is often underutilized in industry, resulting in a
lag in comparison to academic research. However, there is a growing trend
in industry to adopt DL models for automatic anomaly detection,
and they have shown promising results. Nonetheless, the complexity of these
models can hinder understanding of their predictions. Thus, there is a need
to balance the effectiveness of these models with their interpretabil-
ity to increase confidence and trust in DL solutions in industry. Key
objectives for the development of Explainable AI (XAI) include trustworthi-
ness, ethics, causality, and improbability, which should be prioritized in the
pursuit of more interpretable and trustworthy AI solutions for the industry.

• Trustworthiness: AI systems often face greater scrutiny when making
mistakes compared to humans, as humans can explain their decisions while
AI systems usually cannot. Prioritizing interpretability helps reveal the
decision-making process, fostering trust in the model.

• Ethics: In certain situations, AI models can significantly impact individ-
uals’ lives, such as in medicine, defense, justice, and autonomous vehicles.
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Ethics play a crucial role in these cases, making XAI essential to prevent
negative outcomes. The UK Parliament Select Committee on Artificial In-
telligence has stated that deploying AI systems with substantial impact
on an individual’s life is unacceptable unless they can provide a full and
satisfactory explanation for their decisions.

• Causality: Comprehending the underlying causal mechanisms of prob-
lems is vital in many domains. For instance, in industrial process anomaly
detection, understanding the rationale behind a decision can help identify
the root cause of an issue.

• Improbability: Gaining insights into the causes of decisions, the influ-
ence of variables on the final decision, and the model’s inner workings can
contribute to enhancing the model’s performance.

1.4 Outline of the Dissertation

This thesis is organized into different sections. First, Chapter 2 covers the state
of the art in the field of explainable artificial intelligence (XAI) and anomaly
detection (AD) in time-series data. Based on the critical analysis of the state
of the art, in Chapter 3 we present the hypothesis and the objectives that we
set for filling the gaps found in the literature, and we present the contributions
of the thesis. Following this, Part I delves into the contributions related to
counterfactual explanations. In this part, Chapter 4 presents an application
of a well-known CEM method for time-series data and Chapter 5 introduces
a novel counterfactual explanation method for generating real-time counter-
factual explanations in time-series data. Moreover, Part II focuses on the
contributions related to transformer-based approaches for anomaly detection
and diagnosis. Here, Chapter 6 presents a supervised spatio-temporal depen-
dency discovery framework, which can provide readily consumable diagnostic
information in both spatial and temporal directions in multi-sensor anomaly
detection scenarios. To finish with the contributions, Chapter 7 presents an-
other architecture for providing this diagnostic information in an unsupervised
manner.

Subsequently, Part III presents the general conclusions drawn from this
thesis, as well as potential future lines of research. The main achievements
and contributions are also summarized in this final section. Lastly, in Part IV
the appendices provide supplementary information and resources related to
the topics explored throughout the thesis.



2

State of the art review

In this chapter, we explore the latest developments in Explainable AI (XAI)
with an emphasis on using these models for anomaly diagnosis. Our primary
goal is to use XAI models to identify and understand unusual data patterns.
By examining the current best practices and methods, our aim is to connect
the dots between detecting anomalies and explaining them. This exploration
offers a clear understanding of current techniques, helping us move towards
better and clearer anomaly diagnosis using XAI.

2.1 Explainable Artificial Intelligence

To diagnose anomalies effectively, it is essential to first delve into the realm of
Explainable AI. This branch of AI focuses on making machine learning deci-
sions transparent and understandable. In this section, we explore some of the
most significant works in the field of XAI. As depicted in Figure 2.1, we have
organized the literature into three main categories: pre-model interpretabil-
ity, intrinsic interpretability, and post hoc interpretability. This categorization
guides us in understanding the various methods available for explaining AI
actions.

2.1.1 Pre-model interpretability

Pre-model interpretability, also known as data-interpretability, is typically
conducted before building the model. It plays a crucial role in understanding
the input data and is an important phase in any machine learning (ML) prob-
lem. The primary component of pre-model interpretability involves perform-
ing exploratory analysis of the data [2], which can include visualization
charts, summary statistics, clustering, and more.

Data visualization is a fundamental aspect of pre-model interpretabil-
ity since data with similar statistics can exhibit significant differences [3, 4].
Given that datasets often contain numerous features, dimensionality reduction
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Fig. 2.1: Taxonomy of XAI literature.

techniques are commonly employed for data visualization, including Princi-
pal Component Analysis (PCA) [5], Individual Component Analysis (ICA)
[6], or t-Distributed Stochastic Neighbor Embedding (t-SNE) [7]. However,
t-SNE can be relatively slow, especially for large datasets. In such cases, tech-
niques like Uniform Manifold Approximation and Projection (UMAP) [8] can
be used.

Clustering algorithms are also utilized to gain insights into the data.
Clustering algorithms provide an understanding of data distribution, the com-
plexity of the dataset, and the relationships between different classes [9].
Among the commonly used clustering algorithms for extracting this infor-
mation are K-means and k-Nearest Neighbors (k-NN).

While global displays of data distribution help in understanding the data
on a broader scale, it is often necessary to examine individual data points as
well. Since large amounts of data are typically used to train models, selecting
which data to visualize can be challenging. One approach to decide which data
to visualize is through prototypes [10] and criticisms [11]. Prototypes are
instances that best represent the data distribution, while criticisms are data
instances that deviate the most from the data distribution. Both prototypes
and criticisms can be identified using greedy search, and one widely-used
technique for finding these instances is the Maximum Mean Discrepancy-Citric
(MMD-Citric) [11].

2.1.2 Intrinsic interpretability

Model internal interpretability comes from models that are interpretable
by themselves or knowledge can be extracted from their internals, either
through weight analysis, internal feature visualization, saliency maps, etc.
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Interpretability referring to model internals is, by definition, intrinsic inter-
pretability.

A. White-box models

One way to obtain intrinsic explanations is through models that are purely
interpretable by themselves, which are called white-box models.

Among this family of models, we can find linear models such as Linear
Discriminant Analysis (LDA) [12], Logistic Regression, and Linear Classi-
fiers [13] whose decisions are easily interpreted, since it allows associating the
input features and the output linearly: a linear change in the input feature
leads to a linear change in the output.

Other methods like Decision Trees [14], Rule sets [15], or Decision sets [16]
represent distinct but related rule-based methodologies. Decision trees op-
erate through a hierarchical, tree-like structure where each node encapsulates
a decision rule guiding the data flow. Rule sets employ a collection of con-
ditional “if-then” statements to determine classification outcomes. Decision
sets also use a list of rules, however, they incorporate an order to these rules
and include an “else” clause for situations when the rule’s conditions are not
fulfilled. All three methodologies offer significant transparency due to their
rule-centric nature

Case-based reasoning [17], Generalized Additive Models (GAMs) [18], and
Interpretable Fuzzy Systems can also be considered as white boxes. Case-
based reasoning uses memory-based problem solving, leveraging existing
cases to understand new ones, thus providing transparent decision-making.
Generalized additive models model the response variable as an inter-
pretable sum of smooth functions of predictors, enabling them to handle com-
plex, nonlinear relationships. Interpretable fuzzy systems employ fuzzy
logic, sets, and rules to manage uncertainty, with their interpretability arising
from their use of easily comprehensible linguistic variables and rules.

Falling Rule Lists [19] is a method designed for binary classification.
This method generates outputs in the form of probabilistic if-then rules for
decision-making. Unlike other rule-based approaches such as Decision Trees,
the if-then rules in Falling Rule Lists are organized according to the estimated
probability of success. This means that the conditions are presented in ’if’
clauses and the probabilities of the desired outcome are expressed in the ’then’
clauses, with these probabilities decreasing monotonically down the list.

A more recent development in this field is the Generalized Linear Rule
Models (GLRM) [20]. GLRM combines decision rules with GAMs, integrat-
ing features of generalized linear models with additive models. Consequently,
they offer both non-linear modeling capabilities through the decision rules,
while also maintaining interpretability via the linear model.

Despite their inherent transparency, the explainability of white-box mod-
els is not guaranteed without the requisite of understanding how to interpret
them correctly [21]. Furthermore, these models, due to their simplicity, may
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not be suitable for handling non-linear complex contexts, limiting their ap-
plication [22, 23, 24]. In such scenarios, more sophisticated models like Deep
Learning are employed, necessitating the use of alternative techniques to eval-
uate interpretability.

B. Attention based explanations

Attention mechanisms elucidate the regions a model emphasizes during
the prediction process, offering valuable insights into its operational dynamics.
These mechanisms have been employed particularly in the context of sequen-
tial data due to the fact that attention mechanisms are commonly applied on
recurrent networks or Transformers. Moreover, in the realm of image data,
when applied to Convolutional Neural Networks (CNNs), attention mecha-
nisms afford a visual mapping of the areas the model prioritizes.

Concerning sequential data interpretability, Choi et al. [25] devised an in-
terpretable model, termed as the REverse Time Attention (RETAIN), to
predict the risk associated with hospital visits and event records of heart fail-
ure patients. The RETAIN model, which is based on a two-level neural atten-
tion mechanism, provides clinically interpretable outcomes without compro-
mising on prediction accuracy. This approach employs two Recurrent Neural
Networks (RNNs); one for determining patient visit-level attention and the
other for variable-level attention. The patient visit-level attention weights,
represented as α, act as a measure of the influence of each visit embedding.
Conversely, the variable-level attention weights, denoted as β, measure the
influence of each variable within the visit embedding. The versatility of the
RETAIN mechanism extends beyond healthcare and has been effectively em-
ployed in time series prediction tasks [26]. Here, the attention weights α and
β ascertain the contribution of each input at specific time steps. In a similar
vein, Bai et al. [27] proposed the utilization of code-specific disease progres-
sion functions and attention mechanisms [28] to gauge the contribution of
each medical code. This approach considers the occurrence and the nature
of the medical code. Consequently, the weights corresponding to the embed-
dings created by the attention and the disease progression function offer a
perspective on the importance accorded by the network to each code.

In the system logs anomaly detection, attention-based explanations foster
a sense of trust among analysts and administrators towards the models in
use. As exemplified by DeepLog, an LSTM-based model presented by Du et
al. [29], Recurrent Neural Networks (RNNs), specifically LSTM, have proven
to be effective for anomaly detection and diagnosis from system logs. Subse-
quently, Tuor et al. [30] proposed four distinct LSTM-based models for cyber
anomaly detection, providing the foundation for Brown et al. [31] who in-
corporated various attention mechanisms over these models. This adaptation
not only assured superior performance but also offered insights into feature
importance and relational mapping between features.

As for time series data, attention mechanisms have showcased
their effectiveness in both anomaly detection and prediction tasks.
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Giurgiu et al. [32] proposed an approach for detecting anomalous events in
storage environments based on Key Performance Indicators (KPIs). By lever-
aging an attention mechanism and a contribution function, the authors were
able to represent each event window and estimate its individual contribution
toward future failure predictions.

Regarding multivariate time series, Schockaert [33] presented an approach
utilizing an attention mechanism and guided backpropagation for generating
spatio-temporal explanations. Here, the regression model, which predicts the
temperature of hot metal produced by a blast furnace, consisted of a blend
of 1D CNNs and an LSTM. A backpropagation-based approach highlighted
which dimensions of the input were inducing the gradient in the hidden state.

Similar spatio-temporal explanations for multivariate time-series data can
also be achieved using Grad-CAM [34], as demonstrated by Assaf et al. [35].
Given that time-series data is often processed by RNNs, various tools have
been developed to visualize attention heatmaps on RNNs, such as Attention-
Heatmaps [36] and ViSFA [37], to facilitate explanations based on attention
mechanisms.

On image data, attention mechanisms applied to CNNs are gaining strength
in recent years. Advancements such as attention residual nets [38] and
squeeze networks [39] have demonstrated that the inclusion of attention
mechanisms in image data architectures can enhance both their accuracy and
interpretability.

Qin et al. [40] proposed an attention-focused convolutional layer, named
Autofocus, for semantic segmentation. This approach parallelizes multiple
CNNs with varying dilation rates, with the optimal scales being learned
through an attention mechanism. The attention maps generated can facili-
tate the detection of patterns at different scales, since each attention map
denotes the degree of focus allocated to each scale.

Recently, an attention-based methodology named IASSA was introduced
by Vasu et al. [41]. This technique identifies crucial regions within an image
and is versatile enough to be employed in any application that utilizes deep
neural networks for feature extraction. The procedure involves passing an im-
age through a black-box classifier that provides logit scores for each sample;
these scores are then used to weight image regions. The derived map is com-
bined with an attention map produced by a long-range and parameter-free
spatial attention module (LRPF-SA), resulting in a saliency map that un-
derscores the most significant regions. This attention map is employed in the
subsequent iteration to sample the relevant regions, a process that is repeated
until convergence.

Shitole et al. [42] present an innovative approach, termed Structured
Attention Graphs (SAGs), which goes beyond generating a single saliency
map to creating visualizations of collective attention maps for each image.
This effectively illustrates the cumulative effect of varying image regions on
the classifier’s confidence. The incorporation of the beam search algorithm
in their research further enriches interpretability by generating multiple ex-
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planations for each image, thereby offering a more extensive understanding
of the classification process. A user study conducted to test the efficacy of
SAGs demonstrated its significant potential in enhancing user comprehension
of decision-making processes within CNNs.

(a) Input data containing an anomaly in
the middle of the journey.

(b) Attention activations of the input fed
to the classifier.

Fig. 2.2: The attention mechanism allow us to detect where the model is focusing
when classifies the journey as anomalous.

Figure 2.2a provides an illustrative example of an anomalous elevator jour-
ney. The model in use broadly categorizes the journey as either normal or
anomalous without specifying the anomaly’s precise location. However, with
the integration of the attention mechanism, we can extract more insights. The
attention weights reveal the exact location of the anomaly, as highlighted in
Figure 2.2b. This demonstrates the capability of attention mechanisms to offer
enhanced information about anomalies.

2.1.3 Post-hoc interpretability

A. Feature visualization and saliency maps

Due to the success of the CNNs for a variety of problems, many works have
used the filters of these layers to visualize them and understand what
the model is learning at each step [43]. The visualization techniques extend
to Global Average Pooling (GAP) layers and Class Activation Maps
(CAM) [44]. These techniques underscore the significant regions of the input,
which proves useful for object localization tasks. Visualization of convolutional
filters is particularly informative in image data analysis, offering intuitive
insights into the learned features [45, 46]. Despite this, filter visualization
remains less common in interpreting models in time-series data. Nonetheless,
Siddiqui et al. propose a framework for decoding convolutional Deep Learning
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(DL) models applied to time-series analysis in [47]. This aids in identifying
predictive regions and comprehending the importance of each filter.

Deep Learning models usually feature a design where part of the model
extracts characteristics from input data, and the other uses these character-
istics to address the problem at hand. Analyzing this latent space can
be informative to understand what the model has learned. In this context,
Pereira et al. [48] suggested employing a variational Bi-LSTM Autoencoder
with attention for anomaly detection in solar energy data. The latent space
formed by the encoder is visualized using PCA and t-SNE, and different types
of faults are examined within this space. t-SNE visualizations are also utilized
by Xu et al. [49] for cluster analysis of embeddings created by different
DL models in a wide-range of datasets.

In addition to model weights, gradients play a crucial role in identifying
the areas upon which the model primarily focuses. These gradient-based
techniques are calculated via the partial derivatives of the target concerning
the input features. Ancona et al. [50] have performed an analysis compar-
ing five such methods: Saliency Maps [51], Gradient*Input [52], ϵ-LRP
[53], DeepLIFT [54], Integrated Gradients (IG) [55], and an Occlusion
method, which is a perturbation-based approach [43].

LRP, one of the pioneering gradient-based techniques, quantifies the con-
tribution of each individual pixel in an image to the final prediction. An evo-
lution of such methods, DeepLift, traces the influence of all neurons back to
each input feature, subsequently deriving an importance score by contrasting
the activations within the network with a set of reference activations.

In response to the challenges of LRP and DeepLIFT, particularly their
inability to ensure implementation invariance, IG was introduced. Implemen-
tation invariance refers to the necessity for identical attributions for networks
that are functionally equivalent, regardless of differences in their structure.
To resolve this, IG utilizes continuous gradients for attribution backpropaga-
tion, a departure from the discrete gradients used by LRP and DeepLIFT. IG
achieves this by envisioning a linear path from a baseline input to the origi-
nal input and cumulatively adding all gradients along this path. Specifically,
integrated gradients are delineated as the path integral of gradients along the
straight-line path.

Among the intrinsic gradient-based approaches, GradCAM [34] is widely
implemented in image analysis [56, 45]. In GradCAM, the gradients of the
targets are directed into the concluding convolutional layer, facilitating the
generation of visual class-discriminative explanations. Figure 2.3 displays two
saliency maps generated by GradCAM. These maps highlight the locations of
the butterfly and flowers within the input image.

B. Attribution-based methods

Attribution-based methods aim to explain model decisions based on the im-
portance that each variable has had in the model output.
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original butterfly flower

Fig. 2.3: Example of saliency maps produced by GradCAM.

LIME [57] is a widely adopted interpretability method for quantifying
feature influence. Let X = {x|x ∈ RV } be the original input space in which
x ∈ X is the original representation of an instance being explained, i.e an
input of the black-box f : RV → R, and let X ′ = {x′|x′ ∈ {0, 1}V ′} be the in-
terpretable feature space, in which x′ ∈ X ′ is the interpretable representation
of the instance x, in the form of a binary vector. Using this notation, LIME
performs four steps to obtain the explanations:

1. N perturbed instances are sampled around x′ by drawing nonzero ele-
ments of x′ uniformly at random. Let Z = {z′

i ∈ X ′|i = 1, ..., N} be the
set of these perturbed instances.

2. Recover each sample x′
i ∈ Z in the original representation zi ∈ RV .

3. For each zi, f(zi) is obtained, which is used as a label for the explanation
model.

4. Given the dataset Z of the perturbed instances with their associated la-
bels, the explanation is given by optimizing the following equation:

ξ(x) = argmin
g∈G

{L (f, g, πx) +Ω(g)} (2.1)

In some cases examining all the predictions given by a model can be difficult.
Thus, a variant called SP-LIME is also proposed in [57], called SP-LIME,
that uses the concept of submodular functions (functions that exhibit dimin-
ishing returns) to select a representative set of instances and corresponding
explanations that together provide a global insight into the model’s behavior.

In the literature, there are numerous variations of this method. For in-
stance, Mishra et al. [58] proposed SLIME, a variation of LIME for gen-
erating temporal and time-frequency explanations on music content analysis
tasks. Moreover, Peltola et al. [59] presented KL-LIME, an approach com-
bining LIME with Bayesian projection predictive variable selection methods,
which is used for explaining MNIST digit classifications made by a Bayesian
deep convolutional neural network.

Following LIME, several other methods have emerged in the field of feature
attribution. Deep Learning Important FeaTures, better known as DeepLIFT
[54], is a model-specific gradient-based attribution method [50] that explains
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the change in output from some “reference” output in terms of the change
of the input from some “reference” input. Let xi be an input neuron and
x0

i be the “reference” input, and let t represent a target output neuron and
t0 the “reference” activation of t. Let ∆xi = xi − x0

i and ∆t = t − t0 be the
differences between the input and the target to their corresponding references.
DeepLIFT attributes a value C∆xi,∆t to each input xi, representing the effect
of the input being set to a reference value as opposed to its original value.
DeepLIFT uses a summation-to-delta property that states:

V∑
i=1

C∆xi,∆t = ∆t (2.2)

Since DeepLIFT is a backpropagation method, they define some multipli-
ers that are useful during backpropagation. For an input xi, the multiplier
m∆xi,∆t is the contribution of ∆xi to ∆t divided by ∆xi.

m∆xi∆t = C∆xi∆t

∆xi
(2.3)

The backpropagation consists of applying a chain rule to calculate the mul-
tipliers for each neuron. The authors propose a chain rule that is consistent
with the summation-to-delta property. For an input neuron xi, a hidden layer
with neurons h1, ..., hk and a target output neuron t, given the values of the
multipliers m∆xi,∆hj and m∆hj ,∆t, the chain rule for multipliers is defined as:

m∆xi∆t =
∑

j

m∆xi∆hj
m∆hj∆t. (2.4)

SHapley Additive exPlanations (SHAP) [60], which stands as one of the
most widely adopted interpretability methods, interprets model decisions
based on game theory principles. SHAP explanations employ Shapley values,
viewing the black box problem through the lens of coalitional game theory.
In order to understand the intuition behind how SHAP works, first Shapley
values need to be defined.
Definition 25. Let N be the set of n players, v a function that gives the value
for any subset S ⊆ N . Then the Shapley value for a player i is defined as
(Equation (2.5)):

ϕi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
|N |! (v(S ∪ {i})− v(S)). (2.5)

Let g be the explanation model used to explain the black-box model f .
Despite the global interpretation that can be deduced from local explanations,
SHAP is a local method, designed to explain the prediction f(x) given to an
input x ∈ X. Let x′ ∈ X ′ be a simplified input and hx : X ′ → X be a
mapping function, such that x = hx(x′). Whenever z′ ≈ x′, local methods try
to ensure g (z′) ≈ f (hx (z′)).
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Definition 26. In Additive feature attribution methods the explanation
model g is a linear function of binary variables:

g (z′) = ϕ0 +
M∑

i=1
ϕiz

′
i (2.6)

where z′ ∈ {0, 1}M is the coalition vector, being M the number of simplified
input features, and ϕ ∈ R.

When the coalition vector z equals to one indicates that the relevant fea-
ture value is “present”, whereas z = 1 indicates that the feature is “missing”.

The original paper on SHAP establishes three desirable properties for fea-
ture attribution methods, with Shapley values being the only explanations
capable of meeting these criteria. However, the exact computation of SHAP
values can be challenging. Therefore, SHAP values are often approximated by
incorporating insights from other additive feature attribution methods such
as DeepLIFT, LIME, or IG. SHAP offers various approximation techniques
for estimating these values. Kernel SHAP, for instance, is a model-agnostic
explainer that builds upon LIME’s approach. It employs specially weighted
local linear regression to estimate SHAP values, enabling the interpretation
of complex models across different data types, including tabular, sequential,
and image data [61]. Additionally, SHAP provides a variation called TreeEx-
plainer, designed specifically for explaining tree-based models [62].

Regarding the interpretability of DL models, SHAP provides two differ-
ent explainers: GradientExplainer and DeepExplainer. On the one hand,
GradientExplainer combines ideas from IG, SHAP, and SmoothGrad [63] into
a single expected value equation. The entire dataset is used as a background
distribution and allows local smoothing. Approximating the model with a lin-
ear function between each background data sample and the current input to
be explained, and assuming that the input features are independent, SHAP
values are approximated by the expected gradients. Unfortunately, Gradient-
Explainer is slightly slow. On the other hand, DeepExplainer is a high-speed
algorithm for approximating SHAP values, which is faster than Gradient-
Explainer and works with DL models. DeepExplainer approximates SHAP
values with an adaptation of DeepLIFT, which becomes a compositional ap-
proximation of SHAP values. It combines SHAP values computed for smaller
components of the network into SHAP values for the whole network by recur-
sively passing DeepLIFT’s multipliers, which are defined in terms of SHAP
values.

Figures 2.4a and 2.4b showcase SHAP’s application in a credit risk scor-
ing context, where diverse data inputs, from financial history to demograph-
ics, drive creditworthiness assessments. Figure 2.4a, the force plot, provides
a granular analysis for an individual case. The bold value signifies the loga-
rithm of the odds ratio, with forces in blue indicating features that decrease
the probability of default, and those in red suggesting a higher risk. This plot
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Fig. 2.4: SHAP visualizations for credit risk assessment: (a) Force plot show-
casing individual predictions and (b) Summary plot revealing global model
trends.

aids in understanding the specific reasons behind a model’s decision on credit
approval, with particular factors such as longitude and initial payment delay
playing pivotal roles in the illustrated instance. Conversely, Figure 2.4b de-
livers a more expansive perspective. The SHAP summary plot ranks features
based on their overall influence, with each dot corresponding to a distinct
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individual. This global view offers insight into the overarching patterns and
dominant features steering the model’s decisions, notably payment delays and
geographical data.

C. Example based methods

By definition, an example is a representative instance or a fragment of some-
thing, selected to illustrate the nature of the entire entity. Various methods
in academic literature employ examples to elucidate model decisions.
These examples can either be existing instances or entirely new instances.

Examples based on existing instances can either be given as proto-
types or criticisms. Prototypes and criticisms are effective in comprehending
the data distribution, highlighting instances that best represent the distribu-
tion and those that are the most deviant. When it comes to interpreting model
decisions, they help identify examples that significantly influence a specific set
of predictions. In the literature, numerous works have focused on the selection
of prototypes [64, 65, 66, 67].

In the context of prototype selection via Deep Learning (DL) models,
Li et al. [67] proposed an architecture capable of learning prototype vectors.
This architecture is validated across various image-classification tasks. The
proposed architecture comprises an AE, which is employed to decrease the di-
mensionality of input data and to learn pertinent features for prediction, and
a prototype layer that learns prototype vectors. The prototype layer calcu-
lates the squared L2 distance between the encoded input and each prototype
vector. These prototype vectors are then input into a fully connected network
equipped with a softmax activation function, which generates a probability
distribution over all classes. The loss function, a key part of the architec-
ture, is a sum of four terms. The first term penalizes misclassification via a
cross-entropy loss between the model’s output and the training data labels.
The second term is derived from the Mean Squared Error (MSE) between
the reconstructed samples and the original ones. The final two terms of the
loss function serve as regularization terms for interpretability. The first reg-
ularization term ensures each prototype vector is as proximate as possible to
at least one training example in the latent space, while the second ensures
every encoded training example is as close as feasible to one of the prototype
vectors. Besides image data, this architecture has been implemented by Gee
et al. [68] for time-series data, where the prototypes of latent space prompted
by DL models are visualized to yield explainable insights on three distinct
time series classification tasks.

Continuing with methods based on examples, counterfactual explana-
tions are a prevalent approach for elucidating the decision-making processes
of opaque, or ’black box’, models. Such explanations address what-if scenar-
ios. Specifically, a counterfactual explanation for a prediction outlines the
minimal alteration to feature values that would result in changing
the prediction to a predefined outcome.
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Counterfactual explanations were initially introduced by Wachter et al.
[69], where they were characterized as adversarial perturbations [70]. Until
that point, adversarial perturbations were depicted as minor adjustments ap-
plied to numerous variables with the intention of altering the classification,
but not necessarily with the objective of rendering these changes interpretable
to humans. This is because many of these perturbations while having a signif-
icant impact on the classifier’s response, are barely noticeable to the human
eye. In earlier works related to adversarial samples, the newly produced sam-
ples often do not appear to reside in the realm of real samples. Therefore,
the authors highlight that incorporating suitable distance functions between
the generated and real samples within the optimization problem aids in the
creation of interpretable counterfactuals.

Dhurandar et al. [71] proposed a method called Contrastive Explana-
tions Method (CEM). CEM is a perturbation-based model-agnostic method
that provides local explanations. The method consists of solving two differ-
ent optimization problems, one for finding Pertinent Negatives (PN) and the
other for finding Pertinent Positives (PP).

1. Finding pertinent negatives: Finding pertinent negatives consist of
finding an interpretable minimal perturbation of the input that differen-
tiates it from the closest different class Let x0 be an input of a black-box
model f for which we want to explain the prediction f(x0) and y0 its cor-
responding class. Let AE(·) be an autoencoder trained for reconstructing
an input. Denoting X/x0 to the space of missing parts with respect to x0,
finding pertinent negatives consist of finding an interpretable minimal per-
turbation δ ∈ X/x0 such that arg maxi [f (x0)]i ̸= arg maxi [f (x0 + δ)]i.
For finding pertinent negatives, the authors propose solving this optimiza-
tion problem (Equation (2.7):

min
δ∈X /x0

c · fneg
κ (x0, δ) + β∥δ∥1 + ∥δ∥2

2 + γ ∥x0 + δ −AE (x0 + δ)∥2
2 (2.7)

where c, β, γ ≥ 0 are regularization parameters. The second and the third
terms, β∥δ∥1 and ∥δ∥2

2 respectively, are jointly called the elastic net reg-
ularizer and it is used for efficient feature selection in high-dimensional
learning spaces. The third term γ ∥x0 + δ −AE (x0 + δ)∥2

2 ensures that
the modified input x0 + δ is close to the data manifold. The first term
fneg

κ (x0, δ) is defined in this way:

fneg
κ (x0, δ) = max

{
[f (x0 + δ)]y0

−max
i̸=y0

[f (x0 + δ)]i ,−κ
}

(2.8)

where [f (x0 + δ)]i is the score given by the model f to the i-th class
prediction. Introducing fneg

κ (x0, δ) to the Equation 2.7, ensures x0 + δ
to be predicted as a different class than y0. The parameter κ ≥ 0 is a
confidence parameter to control the separation between [f (x0 + δ)]y0

and
maxi ̸=y0 [f (x0 + δ)]i.
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2. Finding pertinent positives: Finding pertinent positives consist of
finding an interpretable perturbation, such that removing it from the orig-
inal input the class does not change For finding pertinent positives, let
X ∩x0 be the space of existing components of x0 and let δ ∈ X ∩x0 be an
interpretable perturbation such that removing it from x0 the prediction is
still the same, i.e arg maxi [f(x0)]i = arg maxi [f(δ)]i. To this end, similar
to finding pertinent negatives, we need to solve the following optimization
problem:

min
δ∈X ∩x0

c · fneg
κ (x0, δ) + β∥δ∥1 + ∥δ∥2

2 + γ ∥δ −AE (δ)∥2
2 (2.9)

where the first term fneg
κ (x0, δ) is defined in this way:

fneg
κ (x0, δ) = max

{
max
i̸=y0

[f (δ)]i − [f (δ)]y0
,−κ

}
(2.10)

To solve the optimization problems (2.7) and (2.9), a projected fast iter-
ative shrinkage-thresholding algorithm, called FISTA [72], is used.

Combining prototypes with counterfactuals, Van et al. [73] proposed
CFPROTO and showed that the use of prototypes can speed up the search
for counterfactual instances. In this work, the authors present a variation
of the search for pertinent negatives in CEM [71], which are counterfactual
explanations. Here the loss function used is the same as the one defined in
Equation (2.7), but a new term, denoted as Lproto, associated with prototypes
is added. The prototypes in this work are defined as the average encoding over
the K nearest instances belonging to the same class label, denoting as protoi

the prototype belonging to class i. Following the same notation as in CEM,
the Equation (2.7) now becomes in

min
δ∈X /x0

c · fneg
κ (x0, δ) + β∥δ∥1 + ∥δ∥2

2 + LAE + Lproto (2.11)

where
LAE = γ ∥x0 + δ −AE (x0 + δ)∥2

2 (2.12)
and Lproto is defined as follows:

Lproto = θ · ||ENC(xo + δ)− protoj ||22 (2.13)

where ENC denotes an encoder that projects each data onto a lower dimen-
sional latent space. The new term Lproto guides the perturbations towards the
nearest protoj , where j ̸= yo denotes the nearest prototype of class j to the
encoding of x0, which speeds up the counterfactual searching process.

Counterfactual explanations have also been given using SHAP.
Rathi et al. [74] give the explanations in response to “Why [predicted-class]
(P) not [desired-class] (Q)?” For this, they calculate the Shapley values for
each possible class. The explanations are given as text, so they divide the
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question to be answered into two parts: “Why P?” and “Why not Q?”. The
answer for these two segments is constructed using the Shapley values for class
P and class Q and counterfactuals are obtained by mutating the features that
work against the classification of the desired category.

Original sample of class 8 Counterfactual of class 3

Fig. 2.5: Example of a counterfactual explanation applied to MNIST dataset.

Figure 2.5 presents an example of a counterfactual explanation applied
to a sample from the MNIST dataset, which represents the digit ”8”. This
explanation elucidates the minimal alterations on that sample needed for the
model to modify its prediction from the digit ”8” to the digit ”3”.

D. Rule extraction methods

Explaining model decisions in the form of decision rules is another
common approach. The RuleFit algorithm [75] is a regression and classifica-
tion method that incorporates decision rules within a linear model. RuleFit
has two main components: the first is responsible for generating rules, and the
second is for training a linear model using these rules.

Initially, the Gradient Boosting technique [76] is utilized to fit an ensem-
ble of Decision Trees, from which multiple rules are extracted by converting
each path in a tree into a decision rule. To minimize the number of rules
produced from the tree ensembles, these rules are further condensed in the
second step using linear models like Lasso or L1 regularized regression. In this
step, each rule is treated as a feature and assigned a weight estimate, with
many estimates defaulting to zero.

Skope Rules offer another approach for extracting rules using tree en-
sembles. However, the rule selection in Skope Rules is based on recall and
precision thresholds. This means that Lasso is not used for rule selection. In-
stead, only the out-of-bag F1-score and the logical terms that compose the
rules are considered.

Anchors [77], is one of the most popular rule-based algorithm. It is used
for interpreting black-box models and it is a model-agnostic method. Anchor
was proposed for addressing an issue regarding local explanation methods like
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LIME, which represent the local behavior of the model in a linear fashion. In
[77], an interesting example of how LIME and Anchors explain the outcome
given by an LSTM in a sentiment analysis task is given. The example is
analyzing if each word in these two sentences is positive or negative:

+ This movie is not bad.

- This movie is not very good.

Using LIME, for example, the influence that the “not” has had in the first case
is not applicable to the influence that it has had in the second case, so with
the explanations of LIME it is unclear when the word “not” has a negative
influence and when it has a positive influence. In Anchors, the explanation for
the word “not” is not given alone, instead, the explanations are given in this
form:

{“not”,“bad”} → Positive ; {“not”,“good”} → Negative

To obtain this type of explanation, first, the candidate rules are chosen so
that they can explain a data point. Then, permutations are made on the data
point to be explained so that these permutations do not alter the output of the
model to be explained. Finally, the chosen rules are evaluated. To optimize the
search and evaluation of these rules, a reinforcement learning approach, Multi-
Armed Bandit (MAB) [78], is used, which assigns a payoff to the candidate
rules according to predefined convergence criteria, filtering the rules according
to a precision threshold and selecting the rules with the highest coverage.

Guidotti et al. [79] introduced an algorithm known as Local Rule-Based
Explanations (LORE). LORE, a model-agnostic rule-based method, sur-
passes both LIME and Anchors in performance and explanatory clarity. LORE
constructs an interpretable predictor to explain a black box decision for a spe-
cific instance. This is achieved by generating a set of neighboring instances
around the instance to be explained using a genetic algorithm and subse-
quently deriving a decision tree from this set. From this tree, decision rules
are extracted to elucidate the black box decision, and a set of counterfactual
rules are presented.

Unlike LIME, where the number of features composing an explanation
is a user-specified input parameter, LORE automatically provides only the
features necessary for explaining the black box. Furthermore, the use of deci-
sion trees for rule generation enables the splitting of continuous features. This
overcomes the issue with Anchors and continuous features, which necessitates
prior discretization.

2.2 Anomaly detection

In the pursuit of diagnosing anomalies, understanding the underlying meth-
ods of anomaly detection is crucial. Anomaly detection involves identifying
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patterns in data that do not conform to expected behavior. Within this sec-
tion, we will delve into some of the significant works in the domain of anomaly
detection. As illustrated in Figure 2.6, the literature can be broadly divided
into four primary categories: classification methods, forecasting methods, re-
construction methods, and clustering methods. This structure aids us in com-
prehending the diverse techniques employed to detect anomalies.

Anomaly detection  literature

Classification Forecasting Reconstruction Clustering

Unbalanced
scenarios

CNN-based
models

RNN-based
models

Hybrid models

Extreme Learning
Machines

CNN-based
models

RNN-based
models

Hybrid models

Graph Neural
Networks

Autoencoders

Gaussian Mixture
Models

Gaussian Mixture
Models

Variational
Autoencoders

Genreative
Adversarial
Networks

Transformers

One-class
classifiers

Neighborhood-
based

Density-based

Fig. 2.6: Taxonomy of anomaly detection literature.

2.2.1 Classification methods

Supervised techniques, utilized when labeled data is accessible, involve
learning a mapping between input features and corresponding labels. While
supervised AD resembles a standard classification problem, it often faces
unbalanced data in AD scenarios due to the difficulty and expense
of acquiring anomaly data. This imbalance necessitates addressing biased
performance towards the majority class in supervised unbalanced situations.
A common solution involves adjusting data distribution [80, 81]. This
can be achieved through oversampling techniques, which increase minority
class data via random duplication or methods like SMOTE [82], ADASYN
[83], or RACOG [84], among others. Alternatively, reducing majority class
data balances classes in unbalanced scenarios through random deletion of
samples [85] or undersampling techniques like NearMiss [86] or Con-
densed Nearest Neighbor Rule [87]. However, applying these techniques
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to time-series data, particularly synthetic data generation, remains com-
plex [88, 89, 90].

Handling unbalanced scenarios with supervised algorithms poses difficul-
ties; however, numerous approaches have been developed to tackle these chal-
lenges. Among them are cost-sensitive decision tree ensembles [91],
which construct classifiers based on a cost matrix to account for class im-
balance. Park et al. [92] also use decision tree ensembles, applying an
alpha-divergence splitting criterion and a lift-aware stopping criterion to min-
imize tree correlation. SVM ensembles have also been applied in anomaly
detection [93]. Additionally, other methods combine cost-sensitive learn-
ing and sampling techniques [94, 95, 96] within a gradient boosting frame-
work, which has been employed in AD scenarios [97].

Another approach frequently used when working with unlabeled or par-
tially labeled data are the self-supervised approaches. Mahmoud et al. [98]
proposed a two-stage anomaly detection approach combining self-supervised
with unsupervised approaches to detect cyber physical attacks in water dis-
tribution systems. Blazquez-Garcia et al. [99] use a self-supervised method-
ology for detecting water leaks within a water distribution company. In this
methodology, they apply a time series classification algorithm called Ran-
dom Interval Spectral Ensemble (RISE) [100], resulting in an optimal
equilibrium between accurately identifying water leaks and having a high true
positive rate. In [101] TimeAutoAD is proposed, an algorithm that uses a
self-supervised contrastive loss approach to perform autonomous anomaly de-
tection in multivariate time series. Ircio et al. [102] propose a methodology
for hard drive degradation detection that operates in two rounds: in the first
round, they train a classifier using labeled data under two assumptions, that
the initial time windows represent normal behavior, and for failed disks, the
final time window shows anomalous behavior. Subsequently, in the second
round, they apply the classifier learned in the first step to identify and label
the remaining windows with signs of malfunction. Finally, the final classifier is
trained using all the labeled windows. It should be noted that both classifiers
are optimized to minimize the minimum of the recalls between the two classes
for dealing with the imbalanced situation.

When working with multivariate time series data, feature extraction or
selection is often required before training classification models [103]. These
transformations tend to be complex and time-consuming, necessitating expert
knowledge to comprehensively understand the contribution of each variable.
In contrast, deep learning (DL) models can be directly applied to raw data,
as they perform these transformations automatically and efficiently. Given a
raw time-series X ∈ X , a transformation function T : X → F is applied to
obtain a set of features F ∈ F . Then, a classification function C : F → {0, 1}
is used to map the features F to their corresponding predicted labels, where
0 denotes a normal instance and 1 represents an anomaly:
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C(T (X)) =
{

0, if X is a normal instance,
1, if X is an anomaly.

(2.14)

One approach to extract features is by applying 1D convolutions.
As adjacent temporal readings are likely correlated, 1D convolutions in mul-
tivariate time series can capture local dependencies, applied either across all
dimensions simultaneously [104] or individually [105]. Canizo et al. [106] found
that applying 1D convolutions to each sensor separately yields better results
for heterogeneous multi-sensor data, as using identical filters for different sen-
sors may lead to suboptimal performance. Analyzing each sensor indepen-
dently also facilitates network adaptation to new sensor configurations using
transfer learning [107]. However, this approach may not capture the correla-
tion between sensors. Cha et al. [108] employed convolutional neural net-
works (CNNs) as feature extractors, followed by multilayer perceptrons
(MLPs) for crack damage detection. Similarly, 1D CNNs combined with MLPs
have been utilized for time series anomaly detection [109] and cyber attack
detection [110]. Ren et al. [111] proposed a method for training a CNN model
in a self-supervised manner. This approach involves the use of the Spectral
Residual algorithm to generate saliency maps, which are then used to iden-
tify anomalies within a sequence based on a predefined threshold. Following
this, the identified data is relabeled, and a CNN is employed for the task of
classifying these points.

...

CNN

RNN

CONCATENATE CLASSIFIER

(a) CNN-RNN in parallel.

... CNN RNN CLASSIFIER

(b) CNN-RNN serially.

Fig. 2.7: CNN-RNN architectures.

While CNNs are able to capture spatial relationships, RNNs per-
form better in capturing temporal relationships, so, the combination
of both is reaching great results in processing multivariate time-series data. In
a parallel architecture (Figure 2.7a), spatial and temporal features are concur-
rently extracted via CNNs and RNNs respectively, then merged. Conversely,
in a serial architecture (Figure 2.7b), CNNs first extract spatial features,
which then undergo temporal extraction via RNNs. Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Units (GRUs), or their bi-directional vari-
ants (Bi-LSTM, Bi-GRU), are commonly implemented as the RNNs in these
structures. The serial CNN-LSTM architecture is prevalent in applications
such as multimodal wearable activity recognition [112], automated arrhyth-
mia diagnosis [113], gait anomaly detection in Parkinson’s disease [114], and
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web traffic anomaly detection [115]. Canizo et al. [106] recommend eschewing
traditional RNNs in favor of LSTMs, GRUs, or their bi-directional variants,
however, the optimal RNN type remains ambiguous. For instance, Xie et al.
[116] report superior performance using GRUs over LSTMs in anomaly de-
tection for industrial control systems. Liu et al. [117] propose using a hybrid
network composed of a bidirectional LSTM with attention and 1D CNN with
attention. These two networks are used serially as shown in Figure 2.7b, but
in this case, the recurrent part is applied first. Alternatively, parallel CNN-
RNN architectures have demonstrated success in predicting price development
[118] and time-series classification tasks. Du et al. [119] incorporated an atten-
tion mechanism into the LSTM, a promising approach that appears to yield
promising results in Natural Language Processing tasks [120] and supervised
anomaly detection tasks.

Classification algorithms for AD also include Extreme Learning Ma-
chines (ELM), an algorithm used to train Single Layer Feedforward
Networks (SLFN), in which the input weights and biased are randomly
assigned and the output weights are approximated by solving a linear sys-
tem mapping the inputs with the targets. Imamverdiyev et al.[121] use ELMs
in network traffic AD to detect network attacks. In their work, three dif-
ferent activation functions have been used for ELMs: radial basis activation
function (RBF), triangular basis activation function (Tribes), and Gaussian
activation function with different parameter values sigma and mu. The results
obtained in the NSL-KDD dataset [122] demonstrate that the ELM method
provides an acceptable quality of attack classification. Others, like Wang et
al. [123] propose to use L1-norm minimization ELMs to avoid overfitting,
since due to the randomness of input weights many neurons may be closely
correlated. With L1-norm minimization ELM, the output weights vector of
the hidden layer are more sparse, which helps reducing the complexity of the
model. For intrusion detection in Big Data scenarios, Xiang et al. [124] pro-
pose MR-ELM, a distributed implementation of ELM. Recently, Iturria et al.
[125] proposed a framework that adapts predictions algorithms into anomaly
detection algorithms, specifically, it proposes EORELM-AD, an ensemble of
the forecasting algorithm Online Recurrent Extreme Learning Machine
(OR-ELM) [126] adapted to AD.

2.2.2 Forecasting methods

As previously stated, forecasting methods are commonly employed for
anomaly detection because they do not require labels. Deep learning tech-
niques are typically applied to process time series data using one-dimensional
convolutional neural networks (1D CNNs), recurrent neural networks (RNNs),
or a combination of both. These networks can be used for unsupervised
anomaly detection in time-series data. Munir et al. [127] introduced Deep-
AnT, which is an architecture that utilizes several 1D CNN layers followed by
a fully connected network (FCN) that predicts the next value in a time series.
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The Euclidean distance between the estimated point and the actual value is
then computed, and the threshold for determining whether it is an anomaly
or not is determined based on the type of time series, using either the k-σ
deviation rule or the density distribution [128]. For increasing the receptive
field of the convolutions within a sequence, He et al. [129] propose using di-
lated convolutions in a forecasting model called Temporal Convolutional
Network (TCN). The anomaly score proposed in this work is based on the
reconstruction error and the anomalies are detected using the threshold that
maximizes the harmonic mean between precision and recall.

The most common forecasting models used for anomaly detection are the
ones based on RNNs. Particularly, LSTM networks have shown to be effec-
tive in many domains [130, 131]. Chauhan et al. [132] were one of the first ones
to use LSTM networks for anomaly detection in ECG signals. The threshold
employed in their work was selected based on F-score maximization. Similarly,
Qin et al. [133] proposed an LSTM-based architecture for detecting abnormal
traffic events. In this case, they employ a 5-σ deviation rule for selecting
the anomaly threshold based on the reconstruction error. LSTM networks
have also been shown to be effective in detecting spacecraft anomalies [134].
Although their method is applied to multivariate telemetry data, each chan-
nel is treated independently, training multiple LSTM networks. For detecting
channel-wise anomalies, they propose using a dynamical threshold over the
smoothed reconstruction error obtained using exponentially-weighted mov-
ing average (EMWA) [135]. Instead of calculating a threshold independently
for each sensor, Goh et al. [136] propose applying a unique threshold over
the cumulative sum of the errors. Ding et al. [137] propose a hybrid model
combining LSTM and Gaussian Mixture Models (GMM). The LSTM is first
used to detect anomalies in univariate data and the GMM is used to give a
multidimensional joint detection of possible anomalies.

The combination of CNNs and RNNs has been also employed in forecasting
models for anomaly detection. Sun et al. [?] use CNNs and a bidirectional
LSTM with attention applied serially to process the input time-series window
by window and predict the next window within a sequence. Then, the root-
mean-squared error is applied as the anomaly score and, based on a predefined
threshold, they detect anomalies in vehicle network data. Zhong et al. [138]
proposed the use of ConvLSTM networks, which are similar to LSTMs but
include internal convolutional operations.

To conclude the discussion on forecasting models, it is important to high-
light the use of Graph Neural Networks (GNNs). These are particularly
beneficial when dealing with multivariate time-series data as they
effectively model spatial dependencies among sensors. Deng et al. [139]
introduced the Graph Deviation Network (GDN), a model that leverages
deviations from learned inter-sensor relationships for anomaly detection. The
GDN is structured around three key components: sensor embedding, graph
structure learning, and a graph attention network.
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• Sensor embedding: This extracts embeddings from multivariate time-
series data on a sensor-by-sensor basis.

• Graph structure learning: This forms a directed graph that uncovers
the relationships between sensors.

• Graph attention network: This forecasts future sensor values based on
a graph attention function applied over its neighbors.

Then, anomaly detection is done based on the reconstruction error obtained
for each time-step and each sensor.

Chen et al. proposed GTA [140], a model that merges a Transformer with a
graph-based learning architecture. This fusion aims to detect anomalies within
multivariate time series by incorporating a graph convolution structure that
simulates the influence propagation process within a network. To integrate
global information into the analysis, GTA replaces the standard multi-head
attention with a multi-branch attention mechanism. This mechanism is a com-
bination of global-learned attention, conventional multi-head attention, and
neighborhood convolution. Through this modification, GTA can perform a
more detailed analysis of data.

2.2.3 Reconstruction methods

As stated before, the reconstruction-based methods consist of recon-
structing certain values (or all in the case of autoencoders) and
comparing the input values with the reconstructed ones.

Starting with the works that use AEs for this purpose, Sakurada et al.
[141] used a simple fully-connected AE to perform anomaly detection in multi-
variate data, improving the results obtained with other dimensionality reduc-
tion techniques like PCA. However, this approach does not take into account
the temporality of the data. To include temporality in the model, Malhotra
et al. [142] proposed using an AE based on LSTMs. Then, they define an
anomaly score based on the reconstruction error and determined the thresh-
old that maximizes the Fβ =

(
1 + β2) × P × R/ (β2P +R

)
metric, where P

represents precision, R represents recall, and β is a parameter that depends
on the fraction of anomalous data.

The Deep Autoencoding Gaussian Mixture Model (DAGMM) [143]
is a more complex model that combines AEs with Gaussian Mixture Models
to detect anomalies in multivariate time-series data. The model consists of
two sub-networks, a compression network, and an estimation network. The
compression network is a deep AE composed of an encoder h(·) and a de-
coder g(·), that, given an input x, computes the reconstruction x′ and a lower
dimensional representation z as follows:

zc = h (x; θe) and x′ = g (zc; θd) (2.15)
zr = f (x,x′) (2.16)
z = [zc, zr] (2.17)
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where θe and θd are the parameters of the encoder and the decoder, respec-
tively, zc is the reduced low-dimensional representation, and zr includes the
features derived from the reconstruction error. Then, the estimation network
consists of a GMM trained to minimize the following objective function:

J (θe, θd, θm) = 1
N

N∑
i=1

L (xi,x′
i) + λ1

N

N∑
i=1

E (zi) + λ2P (Σ̂). (2.18)

where N denotes the number of samples in the dataset. The first term of the
objective is the L2 norm between the input x and the reconstruction x′, i.e.
L (xi,x′

i) = ∥xi − x′
i∥

2
2. The second term E(zi) models the probabilities that

we could observe the input samples. And the last term, defined as P (Σ̂) =∑K
k=1

∑d
j=1

1
Σ̂kjj

(d denotes the number of dimensions in the low-dimensional
representation), penalizes the small values on the diagonal of the covariance
matrix, to avoid trivial solutions. The main drawback of DAGMM is that the
temporality is not taken into account.

Multi-Scale Convolutional Recurrent Encoder-Decoder (MSCRED)
[144] is another popular reconstruction-based algorithm that uses signature
matrices to encode inter-sensor relationships in multivariate time-series data
with a convolutional encoder and uses an attention-based ConvLSTM to in-
corporate temporal patterns. MSCRED is used for three tasks: anomaly de-
tection, anomaly diagnosis, and anomaly severity. The signature matrix used
in this work is a matrix that measures the inter-sensor correlations in a partic-
ular time window of length w. For two sensors i and j and their corresponding
time window xw

i = {xt−w
i , ..., xt

i} and xw
j = {xt−w

j , ..., xt
j}, respectively, their

correlation mt
ij ∈M t is computed as:

mt
ij =

∑w
δ=0 x

t−δ
i xt−δ

j

κ
(2.19)

being κ a reescaling factor (κ = w). In their work, they use three different
signature matrices with lengths w = 10, 30, 60 for each time-step t. Using these
matrices makes the method to be more robust to noise. Moreover, using these
three matrices with short (w = 10), medium (w = 30), and large (w = 60)
duration, the method is able to distinguish the anomaly severity.

UnSupervised Anomaly Detection for multivariate time-series
(USAD) [145] is another method that uses AEs for anomaly detection. In this
case, the model is composed of an encoder (E) and two decoders (D1 and
D2), forming the autoencoders AE1 and AE2, which share the same encoder
network. The system is trained in two phases. In phase 1, each AE minimizes
its reconstruction error between an input window W and its reconstruction
Ŵ , and in phase 2, AE1 tries to match its output to the real data, while AE2
tries to discern the real data from AE1’s reconstructions. AE2 does not strictly
act as a discriminator in the GAN sense, as its objective changes depending
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on whether its input is original or reconstructed data. For anomaly detection,
the following anomaly score is proposed:

A(Ŵ ) = α
∥∥∥Ŵ −AE1(Ŵ )

∥∥∥
2

+ β
∥∥∥Ŵ −AE2

(
AE1(Ŵ )

)∥∥∥
2

(2.20)

where α+β = 1 are used to parameterize the trade-off between false and true
positives.

Regarding Variational Autoencoders (VAEs), Park et al. [146] pro-
posed using an LSTM-VAE to detect anomalies in the sensor data collected
from a robot-assisted feeding system. The proposed framework uses LSTM
networks for both the encoder and the decoder networks. Using the assump-
tion that in the anomalous samples, the reconstruction probability will be
lower, the anomaly score (fs) used is the negative log-likelihood of an ob-
servation with respect to the reconstructed distribution, i.e. fs (xt, ϕ, θ) =
− log p (xt;µxt

, Σxt
).

Xu et al.[147] propose Donut, a VAE that tackles the problem of time-
series data with missing values. Instead of using synthetic data for inputting
the missing values, they treat these values as zeros, and they use M-ELBO
as the training objective, which is a modified version of ELBO that excludes
the contribution of anomalies and missing points. However, Donut is not a
sequential model and cannot deal with temporal information. Thus, as an al-
ternative solution that can handle temporal information, Chen et al. presented
Buzz [148]. Buzz is composed of three networks that are trained adversarially.
First, a variational network is used to find the pattern qθ(z|x) given a window
x. Then, a generative network (G) is designed to obtain the reconstruction,
by applying fully connected layers and transposed convolutions. After that, a
discriminative network distinguishes between real windows x and the recon-
structed ones G(z).

Su et al. [149] proposed OmniAnomaly, a stochastic recurrent neu-
ral network for multivariate anomaly detection. OmniAnomaly consists of
two networks: an inference network qϕ(zt|xt) (qnet) and a generative net-
work pθ(xt|zt) (pnet). In this approach, the output of the inference net-
work, denoted as z0

t , follows a diagonal Gaussian distribution sampled from
N (µzt

, σ2
zt

I), which is a common practice in VAEs [150]. However, to handle
non-Gaussian posterior densities, the authors employ the planar normaliz-
ing flow (NF) [151], allowing the transformation of z0

t through a series of
invertible mappings. The stochastic variable zt is obtained by applying K
transformations fk to z0

t . Additionally, to establish temporal dependencies
among the z-space variables in the inference network, the authors utilize the
Linear Gaussian State Space Model (LG-SSM) [152]. Specifically, zt is
computed as zt = Oθ (Tθzt−1 + vt) + ϵt, where Tθ and Oθ are transition
and observation matrices, and vt and ϵt represent transition and observa-
tion noises. For AD, the reconstruction probability is utilized as the anomaly
score. Considering that OmniAnomaly takes a sequence xt−T :t of T consecu-
tive multivariate observations as input, the posterior probability at time t can
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be calculated as pθ(xt|xt−T :t ∼ N (µxt
, σ2

xt
I)). Therefore, following the sug-

gestion in [153], the reconstruction probability can be evaluated through the
conditional probability log(pθ(xt|zt−T :t)). Consequently, the anomaly score at
time t is denoted as St = log(pθ(xt|zt−T :t)), which is then utilized for AD by
employing a threshold defined using the Extreme Value Theory [154].

Other generative networks like GANs have also been employed for
anomaly detection. Zhou et al. [155] introduced BeatGAN, an adversarial
autoencoder composed of an encoder GE and a decoder GD. The generator
GD encodes the input x into a hidden vextor z and then GD uses z to gener-
ate the reconstruction x′. Then a discriminator D is used to play a two-player
game with the generator. While the discriminator tries to distinguish real sam-
ples from synthetic samples, the generator tries to fool the discriminator by
generating realistic samples. The discriminator aims to optimize the following
loss function

LD = Ex ∼ Pr[logD(x)] + Ez ∼ Pz[log(1−D(G(z)))], (2.21)

This function seeks to differentiate between the original data x and the gen-
erated data x′, with different class labels 0 and 1. On the other hand, the
generator G optimizes its own loss function LG:

LG = Ez∼Pz
[log(1−D(G(z)))] (2.22)

The goal of the generator is to produce data that cannot be distinguished by
D(·), effectively creating output that closely aligns with class label 1. Since
the model is trained using normal data, when an anomaly occurs the recon-
struction error is higher and this serves as an anomaly score. Similarly, Chen
et al. [156] proposed DAEMON, an adversarial autoencoder that uses two
discriminators to adversarially train an autoencoder to learn the normal pat-
tern of multivariate time series and then use the reconstruction error to detect
the anomalies. The architecture of DAEMON has three parts: an autoencoder
GA that consists of an encoder GE and a decoder GD, a discriminator DE ,
and another discriminator DD. The key difference here is that one discrimi-
nator DE is used to guide the posterior q(z) to match a prior p(z) while the
encoder GE tries to fool the discriminator. And the other discriminator DD is
used to distinguish realistic and synthetic data, while the generator GD tries
to fool DD.

The use of Transformer models for anomaly detection is an emerging
area [157]. Recently, Xu et al. propose Anomaly Transformer [158], a model
that employs a modified version of the self-attention mechanism known as
Anomaly-Attention, which includes two branching structures that model prior
and serial associations at each time point respectively. The Anomaly-Attention
in the l-th layer is formulated as:
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Initialization: Q,K,V, σ = X l−1W l
Q,X l−1W l

K,X l−1W l
V ,X l−1W l

σ

Prior-Association: P l = Rescale
([

1√
2πσi

exp
(
−|j − i|

2

2σ2
i

)]
i,j∈{1,··· ,N}

)

Series-Association: Sl = Softmax
(
QKT
√
dmodel

)
Reconstruction: Ẑ l = SlV,

where Q,K,V ∈ RN×dmodel , σ ∈ RN×1 are the query, key, and values, re-
spectively, and W l

Q,W
l
K,W

l
V ∈ Rdmodel×dmodel ,W l

σ ∈ Rdmodel×1 represent the
parameter matrices for Q,K,V, σ in the l-th layer respectively. After this, the
model calculates an Association Discrepancy

AssDis(P,S;X ) =
[

1
L

L∑
l=1

(
KL
(
P l

i,:∥Sl
i,:
)

+ KL
(
Sl

i,:∥P l
i,:
))]

i=1,··· ,N

, (2.23)

where L denotes the number of layers, KL is the Kullback-Leiber divergence.
The association discrepancy quantifies the distance between prior and serial
association at each point and acts as an anomaly score. The assumption is that
anomalous associations are more likely to be noticed at adjacent time-points,
and thus, the anomalies will have smaller discrepancies.

TransAnomaly [159] is a model that combines VAEs with a Transformer
structure. The principal objective of this fusion is to boost parallelization
within the model, and subsequently reduce the computational cost of training.
Notably, this approach leads to an almost 80% reduction in training costs.
Thus, TransAnomaly serves as a powerful tool for optimizing computational
resources and improving the efficiency of training complex machine learning
models.

MT-RVAE, introduced by Wang et al. [160], uses a multiscale Trans-
former to process time-series data. This model’s main goal is to extract and
integrate information from time-series data at various scales. Unlike many
conventional Transformer models, MT-RVAE is designed to handle data at
multiple levels of scale. As such, it provides a more comprehensive approach
to time-series analysis. Furthermore, in scenarios characterized by low dimen-
sionality or sparse interdependencies amongst sequences, MT-RVAE modifies
the positional encoding module and introduces a feature-learning module.

Tuli et al. [161] recently introduced TranAD, a sophisticated transformer
network architecture that incorporates two encoder-decoder pairs. For a given
time instance t, TranAD operates with an input window Wt of length K,
along with the temporal slice up to the current time, denoted as Ct. TranAD
functions in two phases. In phase one, the complete temporal sequence Ct is
concatenated to a focus score matrix F (originally a zero matrix of length
K), and the encoder aims to encapsulate the temporal dynamics of the full
sequence through multi-head attention, yielding an encoded representation
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I1. A secondary encoder, termed the window encoder, ingests the input win-
dow Wt. It first applies masked multi-head attention to yield an enriched
representation I2, followed by multi-head attention on I1 and I2 to generate
a context-based representation, analogous to standard transformer architec-
tures. Subsequently, two identical decoders are employed to produce the out-
puts O1 and O2. In phase two, the procedure is repeated, with the focus score
recalculated as F = ||O1 −W ||, enabling the attention mechanism to priori-
tize sub-sequences with high deviations. A second output, Ô2, is derived from
the second decoder. During the inference phase, for unseen data (Ĉ, Ŵ ), an
anomaly score is utilized to identify anomalies, calculated as follows:

s = 1
2

∥∥∥O1 − Ŵ
∥∥∥

2
+ 1

2

∥∥∥Ô2 − Ŵ
∥∥∥

2
. (2.24)

Yu [162] introduced a structure known as the Dual Temporal Con-
volutional Network-Attention (DTAAD) architecture. This methodology
integrates the functionalities of causal and dilated convolutional networks
(TCN) and a Transformer-based encoder network. The structure is configured
to first use two layers of TCN. The first branch, referred to as the local TCN,
utilizes causal convolutions to identify local dependencies within a sequence.
The second branch, termed the global TCN, employs dilated convolutions to
discern global dependencies. Following this, a Transformer encoder is imple-
mented, allowing the model to focus on varied spatial and temporal locations.

2.2.4 Clustering methods

Clustering methods for AD normally rely on enclosing normal data
points into one cluster, separating them from anomalous points.
These networks are called one-class classifiers.

Classic one-class classifiers, such as One-Class Support Vector Ma-
chine (OCSVM) or Support Vector Data Description (SVDD), do not
take into account the temporal nature of the input data. Consequently, a fea-
ture extractor is often employed when dealing with time-series data. Ergen
et al.[163] suggest the joint use of LSTM with either of these two methods,
optimizing it in an end-to-end fashion using Quadratic Programming. Fur-
thermore, Shen et al.[164] propose the combination of Temporal Hierar-
chical Networks with Multiscale Support Vector Data Description
(MSVDD), a variant of SVDD that incorporates multiple layers with multiple
hypersphere centers.

Another classic anomaly detection method, called Isolation Forest (iFor-
est) uses the Random Forest algorithm to compute an isolation score for each
sample of the data. This method has been applied across various tasks, such as
intrusion detection, cancer detection, and arrhythmia detection, as discussed
by Liu et al. [165]. Numerous adaptations of iForest have been proposed in
scientific literature, one of which is the work of Qin et al. [166]. Within the
standard iForest algorithm, the anomaly score for each node is derived from
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the path length across all iTrees. However, the establishment of the anomaly
threshold remains ambiguous. In response, Qin et al. proposed the integra-
tion of the K-means algorithm to adaptively segregate anomalous and normal
values. A similar approach that fuses K-means with iForest was presented by
Karczmarek et al.[167]. Furthermore, Chater et al.[168] introduced the Deep
iForest (DIF), a method that allows for non-linear partitions in contrast to
solely linear isolation. Despite the advancements, these techniques do not take
into account the temporal aspect of the data. To address this, recent studies
have proposed the combination of iForest with LSTM networks [169, 170, 171].

The Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm is a well-regarded method for anomaly detection. Ce-
lik et al.[172] applied DBSCAN for identifying atypical patterns in monthly
temperature data. Given that DBSCAN does not consider the temporal com-
ponent of the data, they proposed the removal of the seasonal aspect from the
time-series data by implementing the z-score technique as outlined in[173].
Similarly, Wibisono et al. [174] leveraged the DBSCAN algorithm to identify
uncommon weather anomalies through the examination of multiple variables.

Anomaly detection can also be achieved by considering informa-
tion from proximal instances to ascertain the anomalous nature of a
point or a set of points. Within this context, the k-Nearest Neighbour-
hood (k-NN) method [175] is commonly used. Here, the closest k instances to
each sample in the dataset are computed and an anomaly score based on this
distance is derived. The score calculation could either be accomplished by de-
termining the distance d from a sample to its k-th nearest neighbor [176] or by
averaging the distance to its k closest neighbors [177]. Subsequently, samples
are ranked based on this computed distance d, and a predetermined threshold
τ is used to declare a sample as anomalous. In alternative approaches like the
Local Outlier Factor (LOF) [178], the k nearest instances of each entry are
used to calculate a local density and consequently compute a score depicting
the ratio of local densities. For a more accurate estimation of the densities of
a point p, its reverse nearest neighbors, or those instances that include p in
their k nearest neighbors, are also considered [179]. For time-series data, the
concept of neighborhood is more intricate due to the ordered nature of the
data. Consequently, some works have applied these methods within a sliding
window context for a more accurate representation [180, 181, 182].

2.3 Anomaly diagnosis

For a deeper understanding of anomalies, it is not just about detecting them;
it is about diagnosing the root causes and characteristics behind them. In the
realm of anomaly diagnosis, various methodologies have been explored in the
literature. Referring to Figure 2.8, we have categorized the literature into five
primary areas: generative networks, attribution-based methods, rule-based
methods, counterfactual explanations, and attention-based explanations. This
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section will delve into the workings of each approach, guiding us through the
different mechanisms employed to interpret and diagnose anomalies.

Anomaly diagnosis literature

Generative
networks

Attribution-based
methods

Rule-based
methods

Counterfactual
explanations

Attention-based
explanations

Fig. 2.8: Taxonomy of anomaly diagnosis literature.

2.3.1 Generative networks

Generative networks are neural networks designed to generate new data
samples that resemble a given set of training samples.

Among these, Variational Autoencoders (VAEs) or Generative Ad-
versarial Networks (GANs) have proven to be effective for anomaly de-
tection and interpretation. Ikeda et al.[183], proposed training a VAE in a
semi-supervised manner, only using normal data for training. Then, the neg-
ative of the Evidence Lower Bound (ELBO) is used as the anomaly score. If a
data sample is close to the normal distribution learned by the VAE, the ELBO
tends to be higher and vice versa. For interpretation, the algorithm explores
the latent distribution of normal data and estimates the contributing dimen-
sions for the anomaly and its degree based on the log-likelihood computed by
the latent distribution.

In [184], a hybrid model consisting of a VAE and One-Class Sup-
port Vector Machines (OCSVM) for anomaly detection is interpreted using
Local Interpretable Model-Agnostic Explanations (LIME). Here, the VAE is
used for feature extraction and these features are fed to the OCSVM for
detecting anomalies and distinguishing between two different faults and un-
known factors. The results are then interpreted with LIME, which helps the
engineer to make a judgment by prioritizing a set of sensor data that affect
the model’s decision in detecting abnormality.

As previously mentioned, Su et al. [185] presented OmniAnomaly, an
anomaly detection model based on a VAE with Gated Recurrent Units (GRU).
They also make an effort to interpret the results obtained in addition to pre-
senting a novel approach for detecting anomalies in multivariate time-series
data. The interpretation is based on the reconstruction probabilities
of the time-series, which are used to estimate the contribution that each
dimension had on a detected anomaly. Considering that at time t, the ob-
servations xt are considered anomalous, pθ (xt|zt−T:t) ∼ N

(
µxt

,σ2
xt

I
)
, an

thus, pθ (xt|zt−T:t) =
∏M

i=1 pθ

(
xi

t|zt−T:t
)
. The purpose is to factorize the

conditional probability, log(pθ(xt|zt−T:t)), as
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log (pθ (xt|zt−T:t)) =
M∑

i=1
log(pθ(xi

t|zt−T:t)) (2.25)

in order to estimate the contribution (i.e., the reconstruction probability)
of each dimension. Therefore, for each time t, the contribution of each i ∈
{1, ...,M} dimensions is given by Si

t = log
(
pθ

(
xi

t|zt−T:t
)

.
Zhou et al. [186] propose Sparse GAN. Here, in addition to presenting an

effective method for retinal disease detection on tomography (OCT) images,
explanations of model decisions are given visualizing lesions with
Anomaly Activation Maps (AAM). AAMs are a variation of CAMs in
which GAPs are applied over the latent features (Hin) of the generator’s en-
coder and over the latent features (Hre) of the reconstruction encoder. Then,
a vector weight Waam, obtained by Waam = ∥GAP (Hin)−GAP (Hre)∥1 is
multiplied with Hin, obtaining the anomaly activation map.

Chen et al. [156], in their GAN-based model DAEMON, compute the
anomaly score as the sum of the reconstruction error of each dimension of a
given observation xt, i.e.

Sxt
= ∥xt − x′

t∥1 =
M∑

j=1

∣∣∣xj
t − x

′j
t

∣∣∣ =
M∑

j=1
Sj

xt
(2.26)

where M is the number of dimension, and Sj
xt

is the reconstruction error of the
j-th dimension. For anomaly diagnosis, they order the scores Sj

xt
in descending

order to identify the top-k anomalous dimensions.

2.3.2 Attribution-based methods

Attribution-based methods provide insights into which specific in-
put features contribute most to a model’s decision, making them
highly valuable for anomaly diagnosis. By highlighting significant fea-
tures, these methods allow practitioners to identify potential causes of anoma-
lies.

SHAP has been demonstrated to be effective in supervised sce-
narios, but its effectiveness in unsupervised or semi-supervised sce-
narios has not been widely validated. Antwarg et al. [187] propose a
methodology for using SHAP in unsupervised scenarios. In this work, an Au-
toencoder (AE) is used to reconstruct the input data, and anomalies are de-
tected by inspecting the reconstruction error. Based on the interquartile range
of reconstruction errors, a list of top anomalies is given to 10 field engineers.
A visual explanation is then given to the engineers by calculating the negative
and positive SHAP values that contribute to and offset the anomaly, respec-
tively. These SHAP values are computed for the top M features that have
large reconstruction errors. The field engineers are instructed to decide, using
both their systems and the visual depiction provided by SHAP, whether the
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anomaly should be further inspected. Takeishi et al. [188] propose a method
for computing Shapley values of reconstruction errors of Principal Component
Analysis (PCA). The probabilistic view of PCA is used to exactly compute
a value function for the Shapley values. In this paper, anomaly detection is
done using reconstruction errors obtained with probabilistic PCA. The main
problem with this approach lies in how to define the value function v for Shap-
ley values. The authors propose two value functions, v1 and v2. While v1 is
inefficient because it requires training PCA for each subset S, v2 is defined
by performing marginalization with respect to unused features to avoid re-
training. v2 is defined as the expected value of the reconstruction error over
p(xSc|xS), where xS denotes the subvector of x corresponding to the indices
in S and xSc denotes the complement of S. In this way, Shapley values are
computed without the independence assumption using probabilistic PCA.

Giurgiu et al. [189] present another method that utilizes SHAP for de-
tecting anomalies in multivariate time-series data. In this approach, SHAP
is used to provide explanations for anomalies detected by a Gated Recurrent
Unit (GRU)-based Autoencoder (AE) in an unsupervised manner. Influence
weighting is employed to generate informative neighborhoods of samples for
computing SHAP values for each signal in a time-series sample. Based on
the reconstructed values, the signals are categorized into negative SHAP val-
ues, indicating contributing signals when the reconstructed value x′

i is higher
than the original value xi, and positive SHAP values, indicating counteracting
signals. The opposite holds true when xi < x′

i. By leveraging SHAP values,
lists of the most contributing and counteracting signals for anomalies can be
generated.

Rehse et al. [190] describe the process of generating explanations in the
DFKI-Smart-Lego-Factory prediction system. They adopt a previous process
prediction approach [191] that enables the system to (1) predict the next
events and associated resources given an incomplete process instance, (2) es-
timate the remaining time required for completing the current process step or
the entire process, and (3) predict the likely process outcome. For explaining
the outcomes, the authors provide various types of explanations, including
global feature importance, local rule-based explanations, local feature contri-
bution, and textual explanations. Additionally, feature importance methods
in anomaly detection (AD) problems can facilitate root cause analysis, as
demonstrated in [192]. Carletti et al. propose an attribution-based method
called DIFFI to interpret the outcomes generated by the Isolation
Forest (IF) algorithm in AD. The DIFFI algorithm operates in unsupervised
scenarios and requires access to the structure of the IF model. In their study
[192], the algorithm is tested on both a synthetic dataset and an industrial
dataset that consists of pressure profiles collected during the vacuum creation
process in refrigerator manufacturing.
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2.3.3 Rule-based methods

Rule-based methods use predefined conditions and logical con-
structs to determine outcomes, allowing the users to trace and un-
derstand the root causes of identified anomalies.

Regarding rule-based methods, Barbado et al. [193] propose an approach
applied to One-Class Support Vector Machines (OCSVM) models for unsu-
pervised outlier detection. Their methodology draws mainly from the work of
Martens et al. [194], who introduced an algorithm for extracting rules from
an SVM model. In their study [193], the authors extend this idea to OCSVM
models by constructing hypercubes that enclose non-anomalous data points.
The vertices of these hypercubes are then used as rules to explain when a data
point is considered non-anomalous. Furthermore, Kopp et al. [195] employ a
rule extraction method, specifically Random Forest, for explaining anomalies.
In this approach, a set of trees is trained to provide both minimal and maxi-
mal explanations. A minimal explanation comprises a set of rules that contain
the minimum number of features necessary to distinguish an anomaly from
the rest of the data, while a maximal explanation consists of a set of rules
that include all the features in which the anomaly differs from the rest of the
data.

2.3.4 Counterfactual explanations

Counterfactual explanations offer insights by presenting scenarios in
which an observed outcome would have been different. For anomaly
diagnosis, these explanations highlight conditions that help in un-
derstanding the specific factors leading to the anomaly.

The diagnosis of anomalies through counterfactual explanations is an
emerging area. Trifunov et al. [196] introduce a method using the Max-
imally Divergent Interval (MDI) algorithm to detect anomalous inter-
vals, I, in a time-series, X. In-distribution values substitute anomalous values,
xi ∈ I, which are then reevaluated using MDI. If the substituted interval is
less anomalous, the authors conclude that the variables causing the anomaly
have been adjusted, thereby considering this substitution as a counterfactual
explanation.

The model-agnostic method, Native Guide, proposed by Delaney et al. [197],
changes the discriminative regions of a query time-series, Tq, from class c to
a different class, c′. This is achieved by minimizing the distance between Tq

and its modified version T ′ while ensuring a different predicted class for T ′.
The CFDet model [198] is recently introduced to elucidate the decisions of

a Support Vector Data Description (SVDD). In this model, an LSTM network,
f(·), maps a given set of normal sequences, P = {S+

N}N
n=1, into representation

vectors r+
n = f(S+

n ). Subsequently, SVDD establishes a hypersphere enclosing
the normal data with the center, c, defined as c = Mean(r+

n ). The SVDD is
trained to minimize the function LSV DD, with θ being the LSTM parameters:
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LSV DD = 1
N

N∑
n=1

∣∣f (r+
n ;Θ

)
− c
∣∣2
2 + λ|Θ|2F (2.27)

In this model, an unlabeled dataset U is first processed to detect anomalous
sequences Ũ−. Following detection, a second LSTM network g(·) is trained
using Reinforcement Learning to identify the anomalous entries within an
anomalous sequence Z ∈ Ũ−.

Guiding the counterfactual generation process using class rep-
resentative prototypes is a common strategy [199, 200]. Filali et al. [201]
propose the use of prototypes via Dynamic Barycenter Averaging (DBA)
to find centroids for each class. They employ a feature attribution strategy to
create saliency maps and perturb the most significant segments.

Generating only a unique counterfactual might not be sufficient, and thus,
a variant of DICE [202] is proposed by Sulem et al. [203]. In this work, they
propose two algorithms: (a) Interpretable Counterfactual Ensembles
(ICEs) and (b) Dynamically Perturbed Ensemble (DPE), and also
their sparse variant to work with high dimensional data. Both algorithms
work with multivariate time-series data and produce counterfactual ensembles.
ICE is an end-to-end method trained with gradient descent to minimize a loss
function that ensures some desired properties, whereas DPE uses an explicit
dynamic perturbation method [204].

A recent study by Schemmer et al. [205] states that counterfactual ex-
planations derived from AEs, enhance comprehension of the underlying
causes of anomalies. Todo et al. [206] use the generative part of a VAE for
changing the class-based features of the latent space to produce counterfactual
explanations that help to see the differences between healthy ECG signals and
ECG signals with pathological patterns. Recently, in [207] AEs have been em-
ployed for real-time anomaly diagnosis. Specifically, the research elucidates
how the signals from an accelerometer, mounted on a gearbox, alter when
the inner race is affected by a crack. In a recent work by Xiao et al. [208],
they propose using a generative AE, that uses counterfactual subgraphs that
capture the causal relations across different environments,

2.3.5 Attention-based explanations

Attention-based explanations leverage the attention mechanisms in
neural networks to highlight important features or regions in the
input data. In the context of anomaly diagnosis, these methods shed
light on areas within the data that the model pays most attention
to when detecting an anomaly.

Attention-based explanations are also used for anomaly diagnosis, as they
are typically applied in recurrent networks or in transformers, architectures
widely used in anomaly detection due to their ability to process time-series
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data. In the domain of anomaly detection within system logs, RNNs, particu-
larly LSTM networks, have demonstrated effectiveness [29]. The LSTM-based
model, DeepLog, as presented in the aforementioned reference, is designed
specifically for anomaly detection and diagnosis from system logs. This re-
search serves as a foundation for subsequent studies, such as the four distinct
LSTM-based models proposed for cyber anomaly detection in [30]. Building
upon this, Brown et al. [31] incorporated various types of attention mecha-
nisms over these models, thereby achieving state-of-the-art performance whilst
providing insights into feature importance and their relational mapping. In a
distinct study by Giurgiu et al. [32], an approach for the detection of anoma-
lous events in storage environments was proposed. In this approach, Key
Performance Indicators (KPIs) collected from storage environments serve as
the primary data source. Expert-defined threshold rules facilitate the extrac-
tion of many anomalous events with the aim of predicting storage failures
within a three-day window after each 14-day interval. The dataset, denoted
as D, is a collection from d storage devices where a set of M metrics (KPI)
are collected as time series at regular intervals over a period t. Anomalous
events are clustered for each device Di into chronologically ordered windows
WDi

= {W1Di
, . . . ,WpDi

}. These windows are treated as unordered event
sets. For successful future failure prediction, understanding the contribution
of each event is crucial. This is achieved through the use of an attention mech-
anism and a contribution function (dependent on event occurrence time) to
represent each window. These window representations serve as the inputs to
an LSTM model, which predicts whether a critical event will occur within
the interval [t, t + T ]. The attention weights and contribution function then
quantify the contribution of each anomalous event within a window to the
decision-making process.

In multivariate time series scenarios, Schockaert et al. [33] presented an
approach employing an attention mechanism and guided backpropaga-
tion for generating spatio-temporal explanations. This study features
a regression model predicting the temperature of hot metal produced by a
blast furnace. The model comprises a combination of 1D Convolutional Neu-
ral Networks (CNNs) and an LSTM. Initially, the multivariate time series are
processed through a 1D CNN layer, and the output is concatenated with the
original input. The resulting concatenation is then fed into an LSTM layer,
generating a unique hidden state hi for each time step. A Luong’s attention
mechanism [209] is utilized on top of the LSTM layer, which generates dynamic
attention weights. These weights can be interpreted as the contribution of each
time step towards the final prediction. For multivariate time series, spatial in-
formation is critical, indicating which dimension of the time series contributes
the most to the final decision. In this context, a backpropagation-based ap-
proach is employed for each time step t between the attention-adjusted hidden
state ha

t and the input vector x, highlighting the dimension of the input in-
ducing the gradient in the hidden state ha

t . This methodology was validated
on an artificial dataset and an industrial use case, predicting the temperature
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of hot metal produced by a blast furnace. Recently, Ding et al. [210] propose
a multimodal spatio-temporal graph attention network (MST-GAT)
that captures the spatial correlation between different sensors and also the
temporal dependencies. Capturing these dependencies facilitates the diagnosis
of detected anomalies by highlighting the sensors responsible for the anomaly
occurrence.

2.3.6 Transformers

In addition to anomaly detection, transformer-based models have
proven to be effective for diagnostics as well, since the multi-head
attention used in these networks helps to identify critical points
where the model pays attention.

As previously mentioned, TranAD [161] uses an architecture that com-
bines two encoder-decoder pairs with multi-head attention, along with a focus
score that encapsulates the temporal dynamics of the entire sequence. Special
emphasis is given to the task of anomaly diagnosis in their work.

On one hand, they assess the anomaly diagnosis based on the detected
anomalies across all sensors. They utilize two metrics for this purpose. The
first metric, HitRate@P%, evaluates the number of ground truth dimensions
present among the top model predictions. The second metric, Normalized Dis-
counted Cumulative Gain (NDCG) [211], traditionally used in recommender
systems to rank the relevance of top listed products, is applied here to rank
the anomaly scores obtained for each spatial dimension.

On the other hand, they determine anomaly diagnosis based on the focus
and attention scores. This is achieved by visualizing the series along these
values to identify where the model’s focus lies. Overall, it is observed that the
focus and attention scores tend to be higher in regions where anomalies are
present.

The strategy followed in DTAAD [162] is similar. They evaluate the di-
agnosis using the same metrics, HitRate@P% and NDCG, on one side. On
the other side, they visualize the local and global attention provided by the
transformer encoder. Their findings indicate that anomalies and regions with
noisy data tend to receive significant attention.

2.4 Critical Analysis of SOTA

A closer examination of the state-of-the-art techniques reveals a num-
ber of weaknesses that can be further improved upon for more effective
anomaly diagnosis.

The majority of current XAI research concentrates on generating expla-
nations based on the significance each feature has on the model’s
output. This includes techniques like SHAP [60], LIME [57], GradCAM [34],
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IG [55], etc. In the domain of time-series anomaly detection (AD), such ex-
planations can pinpoint where an anomaly has occurred and even provide
insights into the causes of the anomaly.

However, there is a gap in the literature when it comes to apply-
ing these promising methods specifically for anomaly diagnosis. The
application of these techniques in a real-world, industrial context is often over-
looked. Despite there are some works to apply these methods for anomaly di-
agnosis, for example, Antwarg et al.[187] proposing a methodology for employ-
ing SHAP in unsupervised scenarios, or Giurgiu et al.[189] utilizing influence
weighting to generate informative neighborhoods of samples and using SHAP
values for the purpose of diagnosis. However, using SHAP requires com-
puting the Shapley values for different possible outcomes. If there
are not enough anomalous instances, it might lead to incorrect inter-
pretations. Therefore, more research is needed to effectively leverage these
methods in diagnosing industrial anomalies. This means not only understand-
ing where and why anomalies occur but also designing strategies to apply
these methods in a practical, industry-relevant manner. This gap highlights
the need for a focused approach to bridge the chasm between academic ex-
ploration of these techniques and their potential industrial applications.

Anomaly detection operates on an action-reaction basis - once an anomaly
is detected, immediate attention is needed to rectify the issue. In this con-
text, we postulate that counterfactual explanations could be ideal for
anomaly diagnosis. They can not only help in identifying the problem but
also provide guidance for the ensuing actions of the operators, making them
a crucial tool in both detecting and effectively responding to anomalies.

Despite their potential, the application of counterfactual explanations
to time-series anomaly detection comes with certain limitations. Primarily,
the majority of counterfactual explanation methods are both time-
consuming and computationally demanding, which hinders their ef-
ficiency and scalability, particularly in real-time applications. Additionally,
there is a noticeable shortage of methods that have been specif-
ically developed for time-series data, posing a significant challenge for
the application of counterfactual explanations in anomaly detection scenarios.
These limitations highlight the need for more tailored and efficient counter-
factual explanation methods for time-series anomaly detection.

On another front, we believe integrating interpretability into anomaly
detectors could provide enhanced explanations for diagnosis, as the
model is specifically trained for anomaly detection. Transformers, with
their inherent attention mechanisms, may be particularly useful in this con-
text.

However, the application of such methods is not without its challenges.
Firstly, the use of transformer architectures in the domain of XAI
remains significantly unexplored, which is surprising considering their
proven success with sequential data. Additionally, a large proportion of
the existing works using transformers resort to basic positional en-
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coding [212, 158], which is not optimal for identifying high-frequency
patterns in data, a crucial aspect for effective anomaly detection in
time-series data.

The application of transformers for anomaly diagnosis is still an
emerging area, with a limited number of studies delving into it.
Those that do touch upon it tend to use traditional evaluation metrics or
attention visualizations, sometimes leaving room for more in-depth insights
about the anomalies. This represents a significant gap in the current litera-
ture, emphasizing the need for future work to address these shortcomings and
leverage transformers more effectively for anomaly diagnosis.

These weaknesses point to potential directions for future research in XAI
for anomaly diagnosis. Improved efficiency, better handling of time-
series data, more optimized use of transformer architectures, and
more comprehensive methodologies for anomaly diagnosis are among
the improvements that can lead to advancements in the state-of-the-art.





3

Hypothesis, objectives and contributions

In this chapter, we present the hypothesis and the objectives, and detail the
contributions of the thesis.

3.1 Hypothesis and objectives

In this study, we aim to explore the potential of XAI approaches for enhancing
the identification and understanding of anomalies in time-series data. In order
to guide our investigation, we propose two main hypotheses and establish
several objectives.

3.1.1 Hypothesis

• General hypothesis (GH): In time-series anomaly detection, explain-
able artificial intelligence methods can provide valuable insights into the
decision-making process of black box models, which can lead to proper
anomaly diagnosis.

• Hypothesis 1 (H1): Post-hoc XAI methods enable real-time interpreta-
tion of time series data, providing anomaly diagnosis.

• Hypothesis 2 (H2): The integration of interpretability within a black
box model can improve the explainability without compromising perfor-
mance metrics.

3.1.2 Objectives

To address the hypotheses presented above, we set some objectives.

• General objective (GO): Research, design, and validate explainable
solutions for anomaly diagnosis in time-series data.

• Objective 1 (01): Research, design and validate post-hoc real-time ex-
plainability for time-series anomaly detection.



58 3 Hypothesis, objectives and contributions

• Objective 2 (02): Research, design, and validate the integration of intrin-
sic interpretability in black-box models for time-series anomaly detection
and diagnosis.

3.2 Contributions

In this section, we enumerate the contributions of the thesis that are linked
to fulfilling the hypotheses and objectives defined in the previous section.

• Contribution 1 (C1): We conduct a review of the state-of-the-art and
perform a critical analysis to identify the current gaps in the field.

• Contribution 2 (C2): We reformulate the Contrastive Explanation
Method (CEM) on time series data to generate counterfactual explana-
tions and assess its limitations.

• Contribution 3 (C3): We propose a real-time model-agnostic counter-
factual explanation method called “Real-Time Guided Counterfactual Ex-
planations (RTGCEx)” and validate it on both image and time-series data.

• Contribution 4 (C4): The positional encoding used in existing spatio-
temporal transformers has a serious limitation in capturing high frequen-
cies, which tends to ignore mid- and short-range differences in location.
To address this, we propose a positional encoding with a mathematical
guarantee to alleviate this problem.

• Contribution 5 (C5): We propose a supervised architecture based on
transformers, capable of learning inherent spatio-temporal relationships
that aid in the detection and diagnosis of anomalies.

• Contribution 6 (C6): We propose and validate an unsupervised spatio-
temporal transformer that uses a masking strategy to extract embeddings
from multivariate time-series data based on temporal context. We utilize
this architecture for detecting and diagnosing anomalies by measuring the
reconstruction differences and attention variations obtained using different
length maskings.

From these contributions, we authored several articles:

• Article 1 (A1): Labaien, J., Zugasti, E., & De Carlos, X. (2020, Septem-
ber). Contrastive explanations for a deep learning model on time-series
data. In Big Data Analytics and Knowledge Discovery: 22nd International
Conference, DaWaK 2020, Bratislava, Slovakia, September 14–17, 2020,
Proceedings (pp. 235-244). Cham: Springer International Publishing. Sta-
tus: Accepted.

• Article 2 (A2): Labaien Soto, J., Zugasti Uriguen, E., & De Carlos Gar-
cia, X. (2023). Real-Time, Model-Agnostic and User-Driven Counterfac-
tual Explanations Using Autoencoders. Applied Sciences, 13(5), 2912. Sta-
tus: Accepted.
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• Article 3 (A3): Labaien, J., Ide T., Chen, P.Y, Zugasti, E., & De Carlos,
X. (2023). Diagnostic Spatio Temporal Transfomer with Faithfull Encod-
ing. Knowledge-Based Systems. Status: Accepted.

• Article 4 (A4): Labaien, J., Ide T., Chen, P.Y, Zugasti, E., & De Carlos,
X. (2023). Transformers are Efficient Unsupervised Anomaly Detectors.
IEEE Transactions on Pattern Analysis and Machine Intelligence. Status:
Under review.

A diagram illustrating the relationships between the hypotheses, objec-
tives, contributions, and written articles can be found in Figure 3.1.
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Fig. 3.1: Relation between hypothesis, objectives, contributions, and articles.





Part I

Counterfactual Explanations for Time-Series
Data
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As we delve into the first part of this thesis, we focus our attention on
post-hoc methods for time-series data, an area that holds a significant poten-
tial for advancing real-time interpretation and anomaly diagnosis. The study
is specifically tailored to address our first hypothesis (H1): Post-hoc XAI
methods enable real-time interpretation of time series data, providing anomaly
diagnosis. To pursue this hypothesis, our first objective (O1) is to research,
design, and validate post-hoc real-time explainability for time-series anomaly
detection.

Within the broader context of post-hoc XAI methods, we put a particu-
lar emphasis on counterfactual explanations, because they not only pinpoint
the root of detected anomalies but also provide crucial guidance on subse-
quent rectification steps. This part of the thesis, therefore, consists of two
main contributions, both closely linked to the exploration and enhancement
of counterfactual explanations.

The first contribution delves into the use of the Contrastive Explanation
Method (CEM) in time-series classification tasks. We uncover both the poten-
tial and the limitations of CEM, with a particular focus on its time-consuming
nature, which acts as a major hurdle in the path of real-time interpretation.

Motivated by the challenge identified in our initial exploration, the second
contribution introduces a novel method, RTGCEx. This real-time, model-
agnostic method for generating counterfactual explanations aims to improve
upon the time constraints of CEM, offering a more efficient approach.

Together, these contributions form an integral part of our journey to vali-
date our initial hypothesis and fulfill our stated objective, providing a deeper
understanding of post-hoc real-time explainability in time-series anomaly de-
tection, specifically through the lens of counterfactual explanations.





4

Contrastive Explanations for a Deep Learning
Model on Time-Series Data

In the realm of XAI, a variety of methods, prominently including tools like
SHAP, have been employed to explain the decisions made by models. These
methodologies are efficient for many tasks, however, when addressing the chal-
lenges of detecting and comprehending anomalous patterns within sequential
data, a more specialized approach may be necessary.

Our research is particularly motivated by the potential of counterfactual
explanations. Such explanations delve into hypothetical scenarios to answer
questions of ”what if.” Not only do they highlight potential areas of con-
cern, but they also provide insights into alternative outcomes, thereby helping
decision-makers with guidance on potential remedial actions.

In this first exploration, we are particularly motivated by the Counterfac-
tual Explanations Method (CEM) as outlined by Dhurandhar et al. [71]. Our
focus is on the application of this perturbation-based, local explanation tech-
nique to time-series data. Although CEM traditionally provides two modes
of model interpretation, namely pertinent negatives (PN) and pertinent posi-
tives (PP), our study is specifically tailored towards the usage of PNs. Unlike
other methods, our unique approach is grounded in the application of CEM
to time-series data, an area that has yet to be extensively explored.

In this investigation, our hypothesis suggests that employing the Counter-
factual Explanations Method (CEM) to time-series data could lead to valuable
insights, such as ”this time series is classified as class y because a specific point
or group of points have a value of v (PP) instead of w (PN)”. If this hypothesis
holds true, it could indicate that counterfactual explanations serve as power-
ful instruments for diagnosing anomalies within time-series data. Therefore,
our core motivation behind this study lies in dissecting the impact of these
explanations when applied to time-series data, navigating any potential dif-
ficulties specific to this data type, and ultimately, expanding the utility of
counterfactual explanations for anomaly diagnosis.

As CEM needs a model to be explained and an autoencoder to ensure
logical perturbations, for the first research of the thesis, we use an LSTM-
based classifier, with the incorporated autoencoder also being LSTM-based.
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The choice of LSTM networks is motivated by the ability of these models
to process time series data. To ensure a comprehensive understanding, the
following section provides an in-depth background of the models utilized in
this study.

4.1 Background

4.1.1 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks, first proposed by Hochreiter
and Schmidhuber [213], are a specific variant of Recurrent Neural Networks
(RNNs). Although traditional RNNs have demonstrated their worth in var-
ious applications, they struggle with the issues of vanishing and exploding
gradients, which hampers their ability to effectively recognize long-term de-
pendencies. LSTMs incorporate unique adjustments to alleviate these diffi-
culties, thus improving their ability to maintain information over extended
periods.

A key characteristic of RNNs, and by extension LSTMs, is their chain-like
architecture comprised of repeating modules. This design supports the trans-
fer of information over time, allowing each module to relay data to the next.
Within the LSTM structure, each of these repeating segments is termed a
’unit’. Every unit consists of four interconnected neural networks that collab-
oratively manage data processing.
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Fig. 4.1: A visualization of an LSTM cell.

A key component contributing to the success of LSTM networks is the cell
state (Ct). Serving as the network’s memory, the cell state is responsible for
transmitting pertinent information throughout the sequence chain. As illus-
trated in Figure 4.1, the cell state undergoes minimal linear interactions as it
traverses the LSTM units, thus aiding the learning of long-term dependencies.

Each LSTM unit also features its own hidden state (h), which supervises
the unit’s internal condition. The information stored in the cell state is con-
trolled by three gates: the forget gate (ft), the input gate (it), and the output
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gate (ot). The forget gate plays a crucial role in determining what portions
of the cell state information are to be retained and what can be discarded.
The input gate it identifies which components of the cell state need updating.
These updates occur through the addition of new information encapsulated in
the candidate vector C̃t, while simultaneously ’forgetting’ elements identified
by the forget gate ft. The final decision involves determining the unit’s out-
put, which involves the creation of the output gate ot and the hidden state
ht. This intricate procedure is succinctly encapsulated in Equation (4.1).

ft = σ (Wf · [ht−1, xt] + bf )
it = σ (Wi · [ht−1, xt] + bi)
C̃t = tanh (WC · [ht−1, xt] + bC)
Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ (Wo [ht−1, xt] + bo)
ht = ot ∗ tanh (Ct)

(4.1)

Wx, bx being the weights and the biases of each gate respectively, x ∈
{f, i, C, o}.

4.1.2 Autoencoders

Autoencoders (AE) [214] are a type of neural network that is trained in an
unsupervised manner with the goal of reconstructing their input data. The
architecture of an AE includes two main components: an encoder and a de-
coder. Various types of neural networks, such as multilayer perceptrons, con-
volutional neural networks, and recurrent neural networks, can be employed
to construct these components of an autoencoder.

� �̃ 

. . .

. . .

ℎ : � → � � : � → �̃ 

������� �������

�����������

� − →−−−−−

�=(�∘ℎ)(�)

�̃ 

Fig. 4.2: A general structure of an AE.

The structure of an Autoencoder (AE) is illustrated in Figure 4.2. The
encoder component can be defined as a function h : x ∈ Rn → z ∈ Rd,
where d < n. The encoder’s role is to compress the data from the input layer
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into a lower dimensional latent vector, capturing the most critical features.
Conversely, the decoder is a function g : z ∈ Rd → x̃ ∈ Rn that takes the com-
pressed latent vector as input and decompresses it into features that closely
resemble the original input data. Therefore, an AE can be conceptualized as
a function f that maps an input x ∈ Rn to its reconstruction x̃ ∈ Rn. It does
this by finding the optimal network parameters to minimize a loss function
L(x, x̃), commonly referred to as the reconstruction loss. This loss is typically
quantified using Mean Squared Error (MSE) or Mean Average Error (MAE).

4.2 Methodology

In this study, a model designed for a multiclass time-series classification task
is interpreted using Counterfactual Explanations Method (CEM). As outlined
in the previous section, the CEM method revolves around solving the opti-
mization problems of Equations (2.7) and (2.9). Consequently, a classification
model f must first be proposed, and an Autoencoder (AE) needs to be de-
fined to ensure the modified input remains close to the data manifold. This
section presents the proposed classification model and the AE, alongside the
description of CEM’s application.

4.2.1 Classification model

The proposed model for the classification component combines Long Short-
Term Memory (LSTM) with a Fully Connected Layer (FCN). The LSTM
processes the data, while the FCN classifies it, as demonstrated by Zhao et al.
[215]. Figure 4.3 provides a visual representation of the model architecture.
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Fig. 4.3: Proposed classification model.

Initially, the model’s input is processed by the LSTM layer in time-steps.
This procedure allows the LSTM to leverage its previously acquired knowledge
in addition to the current input to update the current hidden state. The final
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hidden state (hn) of the network becomes the input for the FCN. The FCN
activations a are computed as:

a = Wfc · hT
n + bfc (4.2)

where Wfc and bfc are the weights and the biases learned during training
process, and hT

n is the transpose of the last hidden state. After calculating
the activations, a softmax function is applied, which outputs the target as a
probability vector ŷ. Each value ŷi ∈ ŷ is computed as:

ŷi = eai∑
j e

aj
. (4.3)

This value represents the probability of the input belonging to class i. Subse-
quently, the model takes the index of the maximum probability value as the
predicted class. During the training phase, the model’s weights are adjusted
by minimizing the Categorical Crossentropy Loss (CCE) in batches.

4.2.2 Autoencoders

As outlined in Equations (2.7) and (2.9), the optimization problems include
a term associated with an AutoEncoder (AE). This term guarantees that any
modifications to the input remain close to the data manifold. The proposed
AE architecture relies on Long Short-Term Memory (LSTM) networks and
Fully Connected Networks (FCNs), as these structures have proven effective
for processing time-series data. The proposed AE is depicted in Figure 4.4.
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Fig. 4.4: Proposed LSTM-FCN AE.

Initially, the input data is processed using an LSTM network. Subsequently,
the final hidden state of the LSTM, which retains information from the entire
input, is encoded into a lower-dimensional vector through a Fully Connected
Network (FCN). This encoded vector is then replicated to supply the decoder,
which is another LSTM. Ultimately, the hidden states of the decoder are
connected to an FCN layer. This FCN layer transforms the hidden states
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of the decoder into arrays with the same dimensions as the original input,
employing a sigmoid activation function. In this setup, the model’s weights
are adjusted to minimize the Mean Squared Error (MSE).

4.2.3 Contrastive Explanations Method

As stated above, in this work CEM’s PNs are studied. In this scenario,
the x0 of Equation (2.7) is a multivariate time-series x, and the δ denotes
the PN that makes the predicted class to change (i.e. arg maxi [f (x)]i ̸=
arg maxi [f (x + δ)]i), being f the classification model.

Since the changed sample’s prediction has to be different from the orig-
inal class, i.e arg maxi [f (x)]i ̸= arg maxi [f (x + δ)]i, maxi ̸=y [f(x + δ)] >
[f (x + δ)]y. Therefore, [f (x + δ)]y −maxi ̸=y [f (x + δ)]i ∈ [−1, 0), and thus,
κ has to be chosen in the range [0, 1]. In the experiments, a set of different γ
and κ parameters have been proved and it is concluded that the best results
for this case study are given by γ = 0.2 and κ = 0.5.

4.3 Experimental framework

4.3.1 PenDigits dataset description

In this work, a public time-series dataset, named PenDigits, is used. The
PenDigits dataset D is a handwritten digit classification dataset. Each data
sample Xi ∈ D is a 2-dimensional multivariate time-series, denoted as Xi =
{x(i)

1 ,x(i)
2 }, where x(i)

1 ∈ R8 denotes the trajectory of the pen across the
coordinate x of a digital screen and x(i)

2 denotes the trajectory of the pen across
the coordinate y. Each sample is labeled with a single class label, representing
the digit drawn. In Figure 4.5 a sample of the dataset is shown.
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Fig. 4.5: A sample of PenDigits dataset.

The dataset was created by 44 writers and it is divided into two sets:
the training set and the testing set. The training test is composed of 7.494
different samples and the testing set is composed of 3.498 different samples.
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4.3.2 Framework & hyperparameters

The experimental setup was executed on an Nvidia-Docker container operat-
ing on Ubuntu 18.04. The models were constructed utilizing the Keras library
within TensorFlow, specifically version 2.1.0. The optimization of both models
was conducted using the Adam optimizer. Mini-batches of 32 samples were
used for model training, with the process terminating at epoch 163 for the
classification model and at epoch 134 for the AE due to the application of
EarlyStopping. Initially, the learning rate was set to 0.1, but it was expo-
nentially decayed with each passing epoch. The models were trained using
an NVIDIA TITAN V GPU, equipped with 12 GB of memory, on an Intel
i7-6850K 3.6Ghz machine supported by 32 GB of DDR4 RAM.

The individual models employed in this research come with their unique
set of hyperparameters. The classification model is configured with an LSTM
layer comprising 64 units, while the FCN possesses 10 units and utilizes a
softmax activation function. The AE features encoder and decoder LSTMs
with 16 units each. The FCN within the encoder maps the final hidden state
of the initial LSTM into a 4-dimensional vector, thus the encoder’s FCN
employs 4 units. As the AE is responsible for input data reconstruction, the
final FCNs consist of 15 units and use a sigmoid activation function.

4.4 Experimental results of CEM in time-series data

Although the main objective of this work is not to propose a classification
model, the model used achieves 98.11% of accuracy and a micro-average F1
score of 0.979 in validation data. On the other hand, the proposed AEs is
valid to reconstruct the data, since the MSE for validation data is 0.0064.
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Fig. 4.6: Process used for giving explanations using CEM.
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Fig. 4.7: A 1 changed to
a 2.

Fig. 4.8: A 5 changed to
a 6.

Fig. 4.9: A 4 changed to
a 9.

Figure 4.6 illustrates the process used for generating explanations. As de-
picted in the figure, an input x, which represents the number one, is used
to derive its pertinent negatives δ by optimizing Equation 2.7. The pertinent
negatives δ represent the modifications necessary to be made to the input x
for the model to classify it as a different class. In this example, it can be ob-
served that by altering the position along the x axis of the third and seventh
points and adjusting the position along the y axis of the sixth point, x is
transformed from a one to a two.

In this study, the CEM method was applied to various digit representa-
tions, with the explanations provided for three samples illustrated in Figure
4.9. In the first instance, a ”1” is transformed into a ”2” by merely shifting
the third point towards the right, emulating the curved shape of the ”2”. In
the second case, a ”5” is modified into a ”6” by making three minor adjust-
ments. The most substantial changes occur in the last two points; by shifting
them, the CEM creates the round shape at the bottom of a ”6”. In the third
scenario, a ”4” is altered into a ”9” by changing the first four points. These
changes emulate the rounded shape at the top of a ”9”.

We tested the CEM method on 150 samples, and the adjustments gener-
ally make logical sense, leading to a change in the input label. Furthermore,
the relationship between the label of the class x and the label of x + δ is
consistent across all the samples. Table 4.1 presents the percentages of the
changes between the classes of the original and altered samples. It can be
seen that, for example, generally the digit “4” is related to the digit “9”, and
the changes are done for changing from one to another, and this happens also
for all other classes. For example, the digit “2” is converted into a “1” in the
80% of the cases, the changes in digit “7” make it “1” in %54.55 percent of
the cases, the digit “8” changes into a “5” in the 50% of the cases, etc.

4.5 Using CEM for time-series data: strengths and
weaknesses

With this first research, we have written an article that has been accepted
at the 22nd International Conference on Big Data Analytics and Knowledge
Discovery, DaWaK 2020:
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x→ x + δ 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 41.67 0 0 0 50 8.33
1 0 0 25 0 0 12.5 0 25 37.5 0
2 0 80 0 0 0 0 0 0 20 0
3 0 21.43 0 0 0 28.57 0 50 0 0
4 14.29 7.14 0 7.14 0 0 0 14.29 7.14 50
5 0 15.38 15.38 7.7 7.7 0 7.7 0 15.38 30.76
6 23.1 7.7 7.7 0 0 7.7 0 0 53.8 0
7 0 54.55 18.18 0 0 0 0 0 27.27 0
8 11.1 16.67 0 0 0 50 0 0 0 22.22
9 0 16.66 0 0 16.66 16.66 0 0 50 0

Table 4.1: % of changes from x’s class to x + δ’s class.

Article 1 (A1): Labaien, J., Zugasti, E., & De Carlos, X. (2020,
September). Contrastive explanations for a deep learning model on
time-series data. In Big Data Analytics and Knowledge Discovery:
22nd International Conference, DaWaK 2020, Bratislava, Slovakia,
September 14–17, 2020, Proceedings (pp. 235-244). Cham: Springer
International Publishing. Status: Accepted.

This study validates the utilization of CEM in time-series classi-
fication tasks, a promising breakthrough given the limited prior application
of CEM in such contexts. Results demonstrate that CEM can produce mean-
ingful explanations for these datasets, and it also brings a novel perspective
to understanding model decisions via pertinent negatives. Unlike other XAI
methods such as SHAP, LIME, LRP, etc., which primarily focus on feature
importance, CEM’s pertinent negatives offer insights into what alter-
ations are required in the input to classify it into a different class.
Moreover, the efficacy of CEM extends beyond individual classifications, al-
lowing us to uncover interrelationships between various classes and intuitively
comprehend which classes are closely associated.

However, a notable drawback of the CEM approach in its current form
is the time-intensive nature of generating explanations. This can poten-
tially hinder its applicability for real-time decision-making, especially in high-
dimensional data scenarios. So, in the next section, we will talk about
our next step: creating a new way to make real-time counterfactual
explanations that work with any model.
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Real-time model agnostic counterfactual
explanations

Building on the findings from our exploration of CEM, we turn our attention
to the second goal of this thesis. Motivated by the time constraints iden-
tified in the CEM methodology, we decided to develop a method that
could provide counterfactual explanations in real-time, adaptable
to any model. This section introduces this agnostic method, designed to
offer a quicker yet still effective approach.

In order to start with the development of this algorithm, it is crucial to
take into account the specific characteristics that counterfactual explanations
should possess to be effectively applicable, particularly in industrial anomaly
detection scenarios. It is important to note that these properties may vary
depending on the unique context in which they are utilized, as pointed out
by Verma et al. [216]. However, certain general properties remain constant
across different applications. In this regard, we followed the guidelines pro-
vided by [216] regarding the general properties a counterfactual explanation
should satisfy:
• Data closeness: Given an input x, the counterfactual explanation xcf

has to be a minimal perturbation of x, i.e.,

x ≈ xcf . (5.1)

Related to data closeness, Verma et al. [216] also mention sparsity. How-
ever, this property can be a challenge when working with continuous vari-
ables because it may not be possible to find a parsimonious explanation
by only modifying a few features.

• User-driven: The counterfactual explanation has to be user-driven, mean-
ing that the user can indicate whether the class ycf , to which a counter-
factual xcf belongs, can be specified. That is, given a black-box model
f(·)

f(xcf ) = ycf . (5.2)
Otherwise, in multi-class problems, for example, the changes would only
be directed to the closest class, excluding explanations for other classes.
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Note that this property also ensures the validity property pointed out by
Verma et al. [216].

• Amortized inference: The counterfactual explanations have to be straight-
forward, without solving an optimization problem for each input to be
changed. In this way, the explanation model should learn to predict the
counterfactual. The algorithm needs to quickly calculate a counterfactual
for any new input x. Otherwise, the process of generating explanations is
time-consuming.

• Data manifold closeness: In addition to satisfying the property of data
closeness, a counterfactual instance has to be close to the distribution of
the data (pdata), i.e., the changes have to be realistic, i.e.,

xcf ∼ pdata. (5.3)

• Agnosticity: The generation of counterfactuals can be applied to any
machine learning model without relying on any prior knowledge or as-
sumptions about the model.

• Black-box access: The generation of counterfactuals can be achieved
with access to only the predict function of the black-box model.

Given the required properties for efficient counterfactual explanations, it
becomes crucial to optimize a loss function designed to fulfill these proper-
ties. This function needs to penalize significant alterations, out-of-distribution
counterfactuals, and explanations that don’t coincide with the counterfactual
label defined by the user. Earlier methods such as CEM [71] and Van Loov-
eren et al. [73] have made notable contributions, yet their reliance on complex
optimization problems results in less intuitive explanations. More recently,
methods like PIECE [217] and DiCE [202] have emerged, offering more plau-
sible counterfactual explanations. However, they tend to be restricted in their
applicability to certain models or binary classification problems.

The constraints of these techniques, particularly their time-intensive na-
ture and complexity of explanations, have spurred the development of amor-
tized inference methods. These typically generative models, such as GANs [218,
219] or VAEs [220], are trained to provide instantaneous counterfactual ex-
planations. Despite their advantages, they carry their own limitations like
training difficulties, instability, or lower-quality reconstructions.

In response to these challenges, we propose Real-Time Guided Coun-
terfactual Explanations (RTGCEx), a model-agnostic algorithm de-
signed to generate counterfactual explanations in real-time. RTGCEx
leverages autoencoders to optimize a loss function that embodies all the afore-
mentioned properties.
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5.1 Real-Time Guided Counterfactual Explanations

Real-Time Guided Counterfactual Explanations (RTGCEx) is a model-
agnostic algorithm that uses an autoencoder for generating real-time counter-
factual explanations for a given black-box model f(·).

In the RTGCEx framework, as depicted in Figure 5.1, the generation of
counterfactual explanations is achieved through the interaction of three com-
ponents: a Generator (G), an Autoencoder (AE), and a black-box model f(·).
The black-box model f(·) can be any machine learning model, as long as the
predict function is accessible. As discussed, the counterfactual explanations
produced by RTGCEx must satisfy certain criteria, such as data closeness,
closeness to the data distribution, and user-specified explanations, among
others. To ensure that these properties are upheld, given a trained black-box
model f(·), RTGCEx involves two phases of training:

A. Autoencoding phase:

Involves training an autoencoder by minimizing a loss function that measures
the distance between the original samples x ∈ D, where D denotes the dataset
on which f(·) has been trained, and their reconstructions x′.

B. Counterfactual generation phase:

This phase involves training G to ensure the properties discussed in the pre-
vious section, i.e.,

f(x) ≈ x, f(G(x)) = ycf and xcf ∼ ρdata. (5.4)

For this purpose, only the weights corresponding to G are trained, but the
training makes use of the capacities that f(·) has to classify the inputs and
the capacities that AE has to reconstruct the inputs that are similar to the
ones learned during the training phase. Training G involves minimizing the
following loss function:

LG,f,AE(x,xcf ,x′
cf ycf ,y′

cf ) =α · LG(x,xcf )+
β · Lf (ycf ,y′

cf )+
γ · LAE(xcf ,x′

cf )
(5.5)

where α, β, γ > 0 are regularization coefficients. The first term, LG(x,xcf ),
measures the distance between x and the counterfactual sample xcf , which en-
sures that the changes are minimal. The second term, Lf(ycf ,y′

cf ), measures
the distance between the predefined counterfactual class ycf and the predic-
tion given by f(·) to xcf , i.e., y′

cf , which ensures that the input x is changed
to the class ycf defined by the user. Finally, the third term, LAE(xcf ,x′

cf ),
is the reconstruction error of the counterfactual instance xcf when using the
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AE. Because the AE has been trained with instances of the dataset D, the re-
construction error will be smaller when xcf is similar to the samples used
in training, so LAE(xcf ,x′

cf ) penalizes unrealistic changes of the input x,
ensuring the data manifold closeness property.

RTGCEx: Real-Time Guided Counterfactual Explanations

GENERATOR

BLACK-BOX MODEL

AUTOENCODER

Fig. 5.1: Real-Time Guided Counterfactual Explanations.

5.2 Experimental Framework

In this section, we present a description of the experimental setup. Below, we
describe the datasets used, the models employed, and the evaluation metrics.

5.2.1 Datasets

A. MNIST.

The MNIST [221] dataset is a widely-used dataset in the machine learning
community, specifically for the task of image classification. It consists of a
total of 70,000 images, with 60,000 images being used for training and 10,000
images being used for testing. Each image is a 28 × 28 pixel grayscale image
of a handwritten digit, labeled with the corresponding digit (from 0 to 9).



5.2 Experimental Framework 79

B. Gearbox.

The Gearbox dataset is obtained from a gearbox vibration simulator [222].
The simulator generates vibration data for a gearbox with rotating axes that
operate at a fixed speed. The overall operation of the rotatory machine is
illustrated in Figure 5.2. The simulator considers an idealized gearbox in which
the pinion is coupled to an input shaft connected to the primary engine, while
the gear is connected to an output shaft. The shafts are supported by roller
bearings located within the gearbox housing. The behavior of the bearings and
gearbox housing is monitored using two accelerometers, labeled A1 and A2.
In this research, we focus on analyzing the signals obtained from accelerometer
A1, which records the contributions of the two shafts, as well as the coupled
gear. Depending on the types of failures that can occur within the gearbox,
these contributions can vary. In particular, we focus on faults caused by a
crack in the inner race of the bearing (as shown in Figure 5.3). This type
of fault generates high-frequency vibrations in the gearbox structure between
the bearing and the response transducer.

Fig. 5.2: General scheme of the gearbox.

5.2.2 Employed Models

As previously stated, RTGCEx consists of various sub-models. Here we present
the architectures used for each use case for these sub-models.
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Fig. 5.3: Inner race affected by a crack.

5.2.2.1 MNIST

A. Black-box model.

The black-box model f(·) used has the same architecture as the one used by
Van Looveren et al. [73]. That is, the model consists of two convolutional layers
with 32 and 64 2 × 2 filters, respectively, with ReLU activation function. In
addition, a 2 × 2 MaxPooling layer is applied after each convolutional layer to
reduce dimensionality and avoid overfitting. Dropout with a fraction of 30%
is applied during training. After the second MaxPooling layer, the output is
flattened to apply a fully connected layer with 256 units, ReLU activation
function, and 50% dropout. Finally, another fully connected layer with 10
units and a softmax activation function is used for classification. For more
details, see Figure 5.4.

256

313628x28x1
14x14x32

CONV, stride = 1 ReLU Flatten Dropout Maxpool 2x2 Softmax

7x77x64
0.1

0

0
0

0

0

0.9

0

0

0

Fully Connected
Network

256

313628x28x1
14x14x32

CONV, stride = 1 ReLU Flatten Dropout Maxpool 2x2 Softmax

7x77x64
0.1

0

0
0

0

0

0.9

0

0

0

Fully Connected
Network

256

313628x28x1
14x14x32

CONV, stride = 1 ReLU Flatten Dropout Maxpool 2x2 Softmax

7x77x64
0.1

0

0
0

0

0

0.9

0

0

0

Fully Connected
Network

CONV, stride = 1 ReLU Flatten Dropout Maxpool 2x2 SoftmaxCONV, stride = 1 ReLU Flatten Dropout Maxpool 2x2 SoftmaxCONV, stride = 1 ReLU Flatten Dropout Maxpool 2x2 SoftmaxCONV, stride = 1

Fig. 5.4: Black-box model f(·) used in MNIST.
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B. Autoencoder.

The encoder is composed of two convolutional layers with 32 and 64 2 × 2
filters, respectively, with ReLU activation function. The output of the second
convolutional layer is flattened to feed a fully connected layer with 16 units,
from which a 16-dimensional latent vector z is obtained. Then, this vector is
fed to a fully connected layer that transforms the z vector into a vector of the
same dimensionality as the flattened output of the second convolutional layer.
This vector is reshaped into a 7 × 7 × 64 tensor to initialize the transposed
convolutions. The decoder has three transpose convolution layers, with 64, 32,
and one 2 × 2 filters, respectively. All the transpose convolutions are followed
by a sigmoid function. For more details, see Figure 5.5.

31363136

16

28x28x1
14x14x32

7x77x64 7x77x64

CONV, stride = 2 ReLU Flatten

z

Reshape Transpose CONV, stride = 2 Sigmoid

14x14x32
28x28x1

Fully Connected Network

Fig. 5.5: AE used for ensuring data-manifold closeness.

C. Generator.

The architecture of the generator closely resembles that of the AE (see Fig-
ure 5.5), except that in this case the latent vector z is concatenated with
the one-hot representation of the class to which the input has to be changed,
i.e., ycf .

5.2.2.2 Gearbox

A. Black-box model.

The proposed black-box model f(·) for the classification stage is illustrated
in Figure 5.6. This model is based on the anomaly detection model proposed
by Cañizo et al. [106], which is a combination of 1-Dimensional Convolutional
Neural Networks (1D-CNN) with Recurrent Neural Networks (RNNs). The ar-
chitecture is designed to be valid for both multivariate and univariate time
series. The classificator f(·) is composed of three parts: the CNN backbone,
the RNN head, and the classification head.
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Fig. 5.6: Proposed black-box model.

The CNN backbone, as shown in Figure 5.7, is composed of three convo-
lutional blocks, each containing 1D-CNNs with a ReLU activation function,
Batch Normalization, and Dropout regularization layers. The 1D-CNNs in
the convolutional blocks are composed of 128, 64, and 32 filters, respectively,
with a kernel length of 5 and a stride of 1. The proposed architecture processes
the data in a window-based manner, whereby the input data x ∈ RL are di-
vided into a sequence of T windows x = (x1, . . . ,xT ) and the convolutional
blocks are applied to each window separately, resulting in a vector of features
Ft for each time window xt. These extracted features are the inputs of the
RNN head, which is composed of a Bi-LSTM layer that processes the features
in chronological order in both directions, allowing for the identification of hid-
den temporal patterns within the extracted features. Finally, the last hidden
state is input into a fully connected layer with a sigmoid activation function,
and the final output is computed as

y′ = sigmoid(WchT + bc) (5.6)

where Wc and bc are the weights and bias of the fully connected layer, re-
spectively.

B. Autoencoder.

The proposed Autoencoder (AE) is composed of a Bi-directional Long Short-
Term Memory (Bi-LSTM) network with 128 hidden units for both the encoder
and the decoder. The forward and backward hidden states of the encoder are
concatenated to obtain the hidden state representation he

t = [−→he
t,
←−he

t], which
contains the context information around time step t = 1, . . . , T . The last
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Fig. 5.7: Composition of the convolutional blocks of the CNN backbone.

hidden state he
T is used as the vector representation z ∈ Rdz , which contains

the compressed information of the input sequence.
In a traditional sequence-to-sequence learning framework, the vector z is

used by the decoder to transform it back into a sequence x′ = (x′
1, . . . ,x′

T )
as close as possible to the encoder input x = (x1, . . . ,xT ). However, when
dealing with long sequences, the latent representation z may not accurately
capture all the information present in the input. To address this issue, atten-
tion mechanisms have been introduced to allow the decoder to focus on the
most relevant encoder hidden states at each time step. In this work, an atten-
tion mechanism is used, whereby the attention weights are computed with an
alignment score function. The attention weights at time-step t are calculated
as:

αt,i =
exp

(
score

(
hd

t ,he
i

))∑T
j=1 exp(score

(
hd

t ,he
j

)
)
, (5.7)

s.t score
(
hd

t ,he
i

)
= (hd

t )⊤Wahe
i , (5.8)

ct =
T∑

i=1
αi,the

t (5.9)

where αt,i are the attention weights, which represent the importance that
the input at position i has had over the output at time-step t, ct is the
context vector, which is the sum of the hidden states weighted by the attention
weights, and Wa is the weight matrix to be learned. The final reconstruction
of x′

t at time-step t is given by:

x′
t = sigmoid(Wb[ct,hd

t ]) (5.10)

where Wb is the weight matrix of a fully connected layer.

C. Generator.

For the generator to be able to make minimal changes in x that result in it
being classified as a predefined counterfactual class ycf , the generator must
consider both the time series data and the counterfactual class. To accomplish
this, the proposed generator in Figure 5.8 is structured similarly to the au-
toencoder (AE) used for ensuring data manifold closeness, but with the added
step of concatenating each input window xt with the counterfactual class ycf
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so that the information of the counterfactual class is included in each of the
hidden states. That is, each input window xt now becomes [xt,ycf ].

. . .. .
 .

Fig. 5.8: Proposed generator.

5.2.3 Loss Functions

In both use cases, the optimization problem is similar, so the loss functions
that we used in both cases are almost the same. As previously described,
the training process consists of two phases:

• Autoencoding phase: In this stage, we optimize a loss function with
the aim of learning to reconstruct the inputs x from the training dataset.
The loss function employed for this purpose is the mean squared error (see
Equation (5.11)):

LAE(x,x′) = 1
N

N∑
i=1

(x(i) − x′(i))2 (5.11)

where N denotes the number of training samples.
• Counterfactual generation phase: During this phase, the weights of

the autoencoder and the black-box model are maintained constant, and the
generator is optimized to minimize a loss function that incorporates three
distinct terms (as shown in Equation (5.5)).
– Data closeness loss: This loss function has to minimize the distance be-

tween the original samples x and counterfactuals xcf . Thus, we employ
the mean squared error in both use cases:
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LG(xcf ,x′
cf ) = 1

N

N∑
i=1

(x(i)
cf − x′(i)

cf )2. (5.12)

– Validity loss: This loss function has to ensure that the class given by
the black-box model y′

cf matches the counterfactual class defined by
the user, i.e., f(xcf ) = ycf . As the MNIST use case is a multiclass
problem and the Gearbox use case is a binary classification problem,
we use different loss functions here.
On the one hand, for MNIST, we used the categorical cross-entropy
loss:

Lf (ycf ,y′
cf ) = 1

N

N∑
i=1

C∑
j=1

y(i)
cf,j · log(y′(i)

cf,j) (5.13)

where y(i)
cf is the one-hot encoded ground truth label and C is the

number of classes.
On the other hand, for the Gearbox use case, we used the binary cross-
entropy loss:

Lf (ycf ,y′
cf ) = 1

N

N∑
i=1

(y(i)
cf · log(y′(i)

cf ) + (1− y(i)
cf ) · log(1− y′(i)

cf ))

(5.14)
where ycf is 0 for normal data and 1 for anomalous data.

– Data manifold closeness loss: This loss function ensures that the gen-
erated counterfactuals are close to the data manifold. Thus, it has to
minimize the distance between the generated counterfactuals xcf and
the reconstruction given by the AE for the counterfactuals x’cf . There-
fore, the loss used for this was the mean squared error:

LAE(xcf ,x′
cf ) = 1

N

N∑
i=1

(x(i)
cf − x′(i)

cf )2. (5.15)

5.2.4 IM1 and IM2 Metrics

To assess the interpretability of the counterfactuals generated with each
method, two metrics proposed by Van Looveren et al. [73], IM1 and IM2,
have been used. On the one hand, IM1 measures the ratio between the recon-
struction error of the counterfactual xcf using an AE specifically trained with
instances of the counterfactual class (AEycf

) and using another AE trained
with instances of the original class (AEy).

IM1(AEycf
,AEy,xcf ) :=

∥∥xcf −AEycf
(xcf )

∥∥2
2

∥xcf −AEy(xcf )∥2
2 + ϵ

(5.16)

A smaller value of IM1 means that the counterfactual instance is easier
to reconstruct with the AE trained only with instances of the class ycf than
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with the AE trained only with instances of the original class t0. This means
that the counterfactual instance is closer to the data manifold of the ycf class
instances than to those belonging to the original class t0. On the other hand,
IM2 measures how close the counterfactual instance is to the data manifold.
To do so, it compares the reconstructions of the counterfactual instances when
using an AE trained with instances of all classes (AE) and the AE trained with
instances of the counterfactual class (AEycf

). To make the metric comparable
across all classes, IM2 is scaled with the L1 norm of xcf .

IM2(AEycf
,AE,xcf) :=

∥∥AEycf
(xcf )−AE(xcf )

∥∥2
2

∥xcf∥1 + ϵ
(5.17)

When the reconstruction of xcf by AE and by AEycf
is similar, IM2 is low.

A lower value of IM2 makes the counterfactual instance more interpretable,
because the data distribution of the counterfactual class ycf describes xcf

equally well as the distribution over all classes.

5.3 Results of RTGCEx and Discussion

This section analyzes the results obtained with RTGCEx in both the MNIST
and Gearbox dataset.

5.3.1 MNIST

In order to train a generator to produce counterfactual explanations, it is
necessary to first train both an autoencoder (AE) and a black-box model f(·).
The proper functioning of both the AE and the model f(·) is crucial for the
generator to operate correctly. As depicted in Table 5.1, the performance of
both the autoencoder and the black-box models was evaluated before training
the generator. The autoencoder was evaluated using the mean squared error
(MSE) on the test set, resulting in a value of 0.007. This suggests that the
autoencoder is capable of accurately reconstructing the input data. On the
other hand, the black-box model was evaluated using accuracy score, which
resulted in a value of 0.991. This implies that the black-box model is able to
correctly classify the majority of the images in the test set.

Table 5.1: Results obtained for the AE in terms of MSE and for the black-box
model in terms of accuracy.

Model AE Black-Box Model
Metric MSE Accuracy
Value 0.007 0.991



5.3 Results of RTGCEx and Discussion 87

After training the generator, experiments were conducted to investigate
the performance of the proposed RTGCEx method in comparison with a clas-
sical method, Counterfactual Prototype (CFPROTO). Additionally, the im-
pact of the loss function was evaluated by comparing RTGCEx with its variant
without the use of the AE. The results of these experiments are illustrated
in Figure 5.9, which presents a selection of examples of the generated coun-
terfactual instances. The original instances, along with their corresponding
labels, are displayed in the first column, while the counterfactual instances
generated by CFPROTO, RTGCEx without AE, and RTGCEx are displayed
in the second, third, and fourth columns, respectively. The first row of the
figure illustrates how each algorithm converts an original instance of the digit
9 into a 4. In this example, CFPROTO makes minimal modifications to a
small part of the upper side of the 9 by removing a few pixels. On the other
hand, RTGCEx without AE and RTGCEx make larger changes, but the final
result appears more similar to a 4 compared with the counterfactual generated
by CFPROTO. Similarly, in the second example, an 8 is converted into a 3,
and it is observed that the counterfactual instances generated by RTGCEx
without AE and RTGCEx are clearer than the one generated by CFPROTO.
In the third example, a 7 is converted to a 9, and all methods produce counter-
factual instances that closely resemble a 9, although the instance generated
by CFPROTO may be more realistic. Lastly, in the fourth example, a 6 is
changed to a 0 by removing the pixels of the lower circle of the 6 and adding
new pixels to join the upper part, creating a complete circle.

The effectiveness of the proposed RTGCEx and RTGCEx without AE
models were evaluated by generating counterfactual instances for each test
sample. In order to ensure a fair comparison, the nearest prototype class ycf

was first generated using CFPROTO, and then instances of the same class
were generated using RTGCEx and RTGCEx without AE. The results of the
evaluation are presented in Table 5.2, which shows the mean and interquartile
range (IQR) of each method in terms of the metrics IM1, IM2, and speed.
Following the criteria established for evaluation in [73], we multiplied the
IM2 metric by 10.

In terms of IM1, both CFPROTO and RTGCEx performed better than
RTGCEx without AE. The results of CFPROTO and RTGCEx were similar,
but CFPROTO had less variability, with an IQR of 0.39, compared with 0.58
for RTGCEx. For IM2, RTGCEx outperformed the other two algorithms.
When comparing CFPROTO with RTGCEx without AE, it was found that
the mean of the values obtained with RTGCEx without AE was 0.08 points
lower than that of the values obtained with CFPROTO, and the variability
was also lower. The RTGCEx without AE results were significantly improved
by introducing a term that penalizes out-of-distribution changes, resulting in
a decrease in mean IM2 values from 1.12 to 0.91 and a decrease in variability.

In terms of computational efficiency, CFPROTO took 17.40 s per iteration
with a variability of 0.09 s, while RTGCEx without AE and RTGCEx took
0.14 s per iteration with a variability of 0.01 s. It should be noted that RT-
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GCEx without AE and RTGCEx have the same architecture and thus take
the same amount of time at inference.

Table 5.2: Summary of the results obtained in test for each method. Best
results are highlighted in bold.

Method IM1 IM2 (×10) Speed (s/it)
Mean IQR Mean IQR Mean IQR

CFPROTO 1.20 0.39 1.20 0.83 17.40 0.09
RTGCEx wo AE 1.40 0.63 1.12 0.74 0.14 0.01
RTGCEx 1.21 0.58 0.91 0.63 0.14 0.01

Original, 9

Original, 8

Original, 7

Original, 6

CFPROTO, 4

CFPROTO, 3

CFPROTO, 9

CFPROTO, 0 RTGCEx wo  AE, 0

RTGCEx wo  AE, 9

RTGCEx wo  AE, 3

RTGCEx wo  AE, 4 RTGCEx,  4

RTGCEx,  3

RTGCEx,  3

RTGCEx,  0

Fig. 5.9: Examples of original and counterfactual instances generated with
CFPROTO, RTGCEx without AE, and RTGCEx.

In this research, the comparison of models is conducted by examining the
distribution of IM1 and IM2 values, rather than using statistical tests on
large samples. This approach is deemed more appropriate because the use
of statistical tests on large samples can lead to p-values that are extremely
small, which can result in the conclusion of support for results that have
little practical significance [223]. We have a test set with 10,000 instances,
and the distribution of the IM1 and IM2 values obtained from each method are
shown in Figure 5.12. These distributions support the conclusions drawn from
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Table 5.2. Specifically, the means of IM1 values for CFPROTO and RTGCEx
are similar, while those of RTGCEx without AE and RTGCEx have more
variability. Additionally, the mean and variability of IM2 values is lower when
using RTGCEx compared with the other methods.

Furthermore, these distributions allow for the drawing of numerical con-
clusions regarding the comparison of the models, such as the probability that
a counterfactual instance will have lower values in terms of IM1 or IM2 when
using one method versus another. These comparisons are shown in Table 5.3.
For example, the value of 0.66 in the first row and second column of the
table indicates that there is a probability of 0.66 that the IM1 value of an
instance generated by CFPROTO will be less than an instance generated by
RTGCEx without AE. Additionally, we can see that RTGCEx improves dras-
tically over RTGCEx without AE, as an instance generated by RTGCEx has
a probability of having lower IM1 and IM2 of about 0.75 compared with one
generated with RTGCEx without AE. When comparing RTGCEx with CF-
PROTO, in terms of IM2, the probability of obtaining better counterfactual
instances with RTGCEx is 0.62 with respect to CFPROTO. As for IM1, CF-
PROTO and RTGCEx have the same probability that the value will be lower
using one method or the other.

Table 5.3: This table represents the probabilities that a counterfactual instance
has a lower IM1 or IM2 depending on the method used.

Method CFPROTO RTGCEx wo AE RTGCEx
IM1 IM2 IM1 IM2 IM1 IM2

CFPROTO - 0.66 0.53 0.50 0.38
RTGCEx wo AE 0.34 0.47 - 0.26 0.24
RTGCEx 0.50 0.62 0.74 0.76 -

Upon analyzing the metrics used to measure the interpretability of coun-
terfactual instances, we have found that IM1 does not always accurately re-
flect the interpretability of the instances. In some cases, a lower value of IM1
does not necessarily indicate that the counterfactual instances are more inter-
pretable. To illustrate this point, we present two examples of counterfactual
instances generated using CFPROTO and RTGCEx in Figure 5.13.

From the visual representation, it can be observed that the instances gener-
ated using CFPROTO appear to be less realistic than those generated using
RTGCEx. This is reflected in the value of IM2, as instances generated by
CFPROTO have a higher value of IM2 than those generated by RTGCEx.
However, it is also worth noting that even though the instances generated by
CFPROTO are not as realistic, in this case, their IM1 value is significantly
lower than that of RTGCEx. In [224], the authors also found that two coun-
terfactuals that were supposed to be similarly realistic exhibited a significant
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Fig. 5.10: IM1 distribution plots
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Fig. 5.12: Distribution plots for each method in terms of IM1 and IM2 (×10)
metrics. The dashed lines represent the mean.

difference in the IM1 metric, with one having a notably smaller value than
the other. This discrepancy highlights the limitations of using IM1 as the sole
metric to measure the interpretability of counterfactual instances.

5.3.2 Gearbox

In order to evaluate the performance of the AE and the function f(·), experi-
mental analysis was conducted. The results of these experiments are presented
in Table 5.4.

For the autoencoder, we employed the mean squared error (MSE) met-
ric to evaluate its performance. The low MSE values obtained suggest that
the autoencoder is able to accurately reconstruct the input samples. In ad-
dition, for the black-box model, we employed three commonly used metrics
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CFPROTO, y_cf = 9 
IM1 = 1.19, IM2 = 0.16

RTGCEx, y_cf = 9 
IM1 = 1.57, IM2 = 0.07

CFPROTO, y_cf = 5 
IM1 = 0.84, IM2 = 0.18

RTGCEx, y_cf = 5 
IM1 = 1.67, IM2 = 0.12Original, 6

Original, 4

Fig. 5.13: Examples of two counterfactual instances generated by CFPROTO
and RTGCEx, where IM2 is lower when using RTGCEx, and IM1 is higher.

in anomaly detection (precision, recall, and F1 score) to evaluate its perfor-
mance. Our results show that the black-box model was able to effectively
detect all anomalies while maintaining a high level of precision.

Table 5.4: Results obtained with the autoencoder and the black-box model
f(·).

Model AE Black-Box Model
MSE P R F1

Value 2.301× 10−4 0.973 1 0.986

In this use case, the generator can be utilized for two distinct purposes:
first, it can be employed for identifying and rectifying anomalies by providing
the user with an understanding of typical behavior and facilitating the correc-
tion of deviances. Secondly, it can be utilized for the generation of anomalous
data, by introducing unusual patterns to otherwise standard instances.

Figure 5.14 illustrates the utilization of RTGCEx for addressing anomalies.
The input to the model is a simulation that contains anomalies caused by
a crack in the inner race. These anomalies occur periodically as the bearing
passes through the crack, and they are correctly identified by f(·) with a label
of 1. In this scenario, RTGCEx can be employed to determine the minimal
modifications necessary to the anomalous simulation for it to be classified as
normal by f(·). In the figure, the red signal represents the anomalous journey
and the green signal represents the signal generated by RTGCEx. Upon closer
examination, it can be observed that RTGCEx focuses on altering the areas
where the anomalies appear, as indicated by the red shaded area.

As previously mentioned, in addition to its use for identifying and recti-
fying anomalies, RTGCEx can also be utilized as a generator of anomalous
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Fig. 5.14: An anomalous sample and the counterfactual explanation for show-
ing normal behavior.

data. Figure 5.15 provides an example of this application. The figure shows
an input representing a non-anomalous journey of the gearbox, represented in
red, and the changes that would need to be made, represented in green, to cre-
ate an anomalous journey. It can be observed that RTGCEx has introduced
several anomalies in the input data, highlighted by the red shaded areas, sim-
ulating the behavior that the accelerometer would have should cracks form in
the inner race. This capability allows for the creation of anomalous data for
understanding unusual behaviors or to create anomalous data in unbalanced
scenarios, for example.

To measure the validity of the generated counterfactuals and the influence
that each term of the loss function has on the final result, in Table 5.5, we
measured the interpretability based on the three terms of the loss function of
Equations (5.12), (5.14) and (5.15). In this table, each row corresponds to the
results obtained according to which terms were used in the loss function, i.e.,

RTGCEx wo LAE : L = α · LG(x,xcf ) + β · LD(ycf ,y′
cf )

RTGCEx wo LG : L = β · Lf(ycf ,y′
cf ) + γ · LAE(xcf ,x′

cf )
RTGCEx : L =α · LG(x,xcf ) + β · Lf(ycf ,y′

cf )+
γ · LAE(xcf ,x′

cf )

(5.18)

This table presents the results of an evaluation of each term’s impact on the
RTGCEx algorithm’s loss function on counterfactual generation. The results
demonstrate that the term which ensures data similarity (represented by LG)
is crucial for generating counterfactual explanations that are highly similar
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Fig. 5.15: A normal sample and the counterfactual explanation for introduc-
ing anomalies.

Table 5.5: Mean values obtained for each loss function in test data using the
three variations of the losses optimized in RTGCEx.

Method Closeness Loss Counterfactual Loss Data Manifold Loss Speed (s)
One Sample Test Data

RTGCEx wo LAE 3.23× 10−4 4.91× 10−7 1.60× 10−4

0.062± 0.091 5.46RTGCEx wo LG 0.056 4.18× 10−7 2.32× 10−4

RTGCEx 3.59× 10−4 5.83× 10−7 1.29× 10−4

to the input data and involve minimal changes. Removal of this term from
the loss function leads to counterfactuals that are dissimilar to the input
data and involve significant changes. The numerical analysis clearly shows
this, as the closeness loss increases from 3.59 × 10−4 to 0.056, and the data
manifold loss increases from 1.29 × 10−4 to 2.32 × 10−4 upon removal of
this term. Inclusion of this term in the loss function results in small values
in data closeness loss, specifically 3.23× 10−4 for RTGCEx without LAE and
3.59×10−4 for RTGCEx, indicating that the generated counterfactuals involve
minor modifications to the input data. Furthermore, the value of the data
manifold loss is low for RTGCEx and also when LAE is removed, indicating
that the changes made are logical in both cases. The counterfactual loss is not
significantly different across all methods, as the class of the counterfactual
instances matches the intended class in all cases.

The amortized inference requirement is particularly important in anomaly
detection [205], as a quick response is often required when an anomaly occurs.
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Therefore, the table also shows the average time it takes for the model to
generate explanations for a single instance and for the entire test dataset (2020
instances). All methods take the same amount of time, as the generator used
to generate the explanations has the same architecture in all three cases. For a
single explanation, the generator takes on average 0.062 s with a variation of
0.091 s, while generating explanations for the whole test set takes 5.46 s. This
demonstrates that the proposed method provides counterfactual explanations
in real time, satisfying the amortized inference property.

5.4 RTGCEx, effective and fast solution for user-driven
counterfactual explanations

With this research, we have written an article that has been accepted the
journal Applied Sciences of MDPI:

Article 2 (A2): Labaien Soto, J., Zugasti Uriguen, E., & De Carlos
Garcia, X. (2023). Real-Time, Model-Agnostic and User-Driven Coun-
terfactual Explanations Using Autoencoders. Applied Sciences, 13(5),
2912. Status: Accepted.

Building on the challenges discovered in the usage of CEM, specifically
its time-consuming nature, this study introduces RTGCEx, a real-
time, model-agnostic method for generating user-driven counterfac-
tual explanations. This proposed method takes advantage of autoencoders
trained with a multiobjective loss function to generate valid and data-close
counterfactuals that match the user’s desired outcome.

RTGCEx has shown its effectiveness across multiple domains and
data types, serving as a solution to the time issue associated with CEM. Our
experiments, particularly those conducted on the MNIST dataset, reveal that
RTGCEx surpasses traditional methods not only in speed but also
in effectiveness. It achieves lower IM2 values while preserving similar IM1
values in a fraction of the time. It is also worth noting that IM1 does not
always accurately represent the interpretability of the generated instances, as
instances with lower IM1 values were sometimes less realistic.

Our tests on the Gearbox dataset further demonstrate the ro-
bustness of RTGCEx in detecting and rectifying anomalies. It con-
sistently resulted in low values across all terms of the loss function, satisfying
the desired properties. This suggests that RTGCEx stands as a com-
pelling solution to the issues earlier identified in CEM, delivering
fast and efficient counterfactual explanations.



Part II

Contributions to anomaly diagnosis using
transformers
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In the area of machine learning and its varied applications, there exists a
need for models to understand their decisions, especially in critical domains
such as anomaly detection. The initial part of this thesis delved into meth-
ods offering explanations after the model’s decision-making process for real-
time interpretation of time-series data. However, using post-hoc methods
might not always capture the nuanced intricacies inherent in the
data and models, as these explanations are independent of model
internals, and essential information can be lost. This understanding un-
derscored the potential benefits of embedding interpretability directly
into anomaly detectors to offer enhanced explanations during the
diagnosis phase.

Building upon our earlier exploration in the first part of this thesis, where
we examined post-hoc XAI methods for real-time interpretation of time-series
data, we now shift our focus to the second part of our thesis. Here, we focus on
the creation of inherently explainable models, specifically tailored for anomaly
detection. We believe such a development aligns with our second hypothesis
(H2): The integration of interpretability within a black box model can improve
the explainability without compromising performance metrics. Guided by this
hypothesis, we work towards our second objective (O2): to research, design,
and validate the integration of intrinsic interpretability in black-box models
for time-series anomaly detection and diagnosis.

This part of the thesis has two main contributions, both related with the
concept of leveraging Transformer models for anomaly detection and their
ability to extract spatio-temporal dependencies in an interpretable manner.

Our first contribution addresses the challenge of anomaly diagnosis in
multi-sensor data. We propose a novel framework - the DFSTrans
- which uses a Transformer-like architecture to learn spatial and
temporal dependencies from sensor data in a supervised manner.
This study also identifies the limitations of traditional positional
encoding and proposes a new method, the faithful encoding, that is
more effective for anomaly detection tasks.

Given the valuable insights gained, we move towards the exploration of un-
supervised approaches, inspired by the need for such methods in anomaly de-
tection, where acquiring labeled anomalies is often a challenging task. Hence,
our second contribution presents an unsupervised version of our
proposed DFSTrans framework, termed uDFSTrans. This approach
combines a multi-masking strategy and a context-based attention
mechanism for the detection and diagnosis of anomalies in multi-
variate time series data. It offers an efficient unsupervised solution
for anomaly detection, allowing us to understand the outputs of
such models.

Collectively, these contributions significantly improve our understanding
of how to integrate interpretability directly within anomaly detection models.
They validate our initial hypothesis and fulfill our objective, illustrating the
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capabilities of Transformer models in enhancing the diagnosis of anomalies in
time-series data.



6

Diagnostic Spatio-temporal Transformer with
Faithfull Encoding

In this study, our focus is on examining the potential of Transformer models
in diagnosing anomalies. We tackle the problem from a supervised learning
perspective, which provides us with a structured framework to scrutinize the
capabilities of these models in detail.

One of the primary factors contributing to the difficulty of anomaly di-
agnosis in multi-sensor data is the absence of prior knowledge regarding the
spatial and temporal scales that are pertinent to the anomalies of interest.
Some failures may be characterized by high-frequency jitters, while others
may be due to relatively long-term shifts of certain signals. Also, some fail-
ures may be detected as an outlier of a single sensor, while other failures may
involve multiple sensors. The key technical challenge in anomaly diagnosis is
to automatically learn the higher-order interactions between the temporal and
spatial indices inherent in the multi-sensor data [225].

For flexibly capturing various temporal scales and dependencies, Trans-
former networks look like a promising approach. Recently, spatio-temporal
(ST) extensions of the Transformer model have attracted attention in a vari-
ety of tasks such as human motion tracking and traffic analysis. Unlike con-
ventional convolutional networks [226], Transformer networks have the poten-
tial to capture complex ST dependencies in a highly interpretable fashion,
making them an attractive choice for anomaly diagnosis. There have been
mainly two approaches in ST transformers in the literature: One is the twin
approach, which builds two transformer networks for the spatial and tem-
poral dimensions [227, 228, 229]. The other is the hybrid approach, which
typically combines a graph convolutional network (GCN) with a temporal
transformer [230, 231, 232].

Although those works report promising results in their targeted applica-
tions, there are three major limitations in our context:First, the hybrid
transformer approach requires prior knowledge of the spatial de-
pendency, typically in the form of physical distance, which is not available
in most industrial anomaly diagnosis settings; Second, the twin approach
uses essentially the same sinusoidal positional encoding as proposed
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in [28] without clear justification; and Third, their main focus is temporal
forecasting, and hence, they do not provide readily consumable infor-
mation for anomaly diagnosis.

In this thesis, we formalize first the anomaly diagnosis problem as su-
pervised dependency discovery, where ST dependencies are learned as a side
product of a multivariate time-series classification task (see Sec. 6.1 for the
detail). Our framework features a novel temporal encoding approach by com-
bining a new positional encoding algorithm with a 1D multi-head CNN. We
mathematically show that conventional sinusoidal encoding has a serious lim-
itation in capturing short-scale variability. As outlined in Fig. 6.2, an em-
bedded time-series episode enriched by the positional encoding is passed to
a ST dependency model. Thanks to a proposed ST factorization model, our
framework can provide local and global diagnostic scores, which can be readily
consumed in real-world anomaly diagnosis tasks. Unlike the existing hybrid
ST transformer approaches, it can also learn spatial dependency without prior
knowledge.

In summary, with the approach presented in this chapter, we contribute
with (1) a new positional encoding algorithm called the DFT (discrete Fourier
transform) encoding that has a faithfulness guarantee and (2) an ST diagnostic
approach based on the proposed ST dependency discovery model.

6.1 Problem setting

This section states the problem setting and explains the dependency discovery
problem.

A. Training data

We are given N sets of S-variate time-series and a binary label as Dtrain ≜
{(Xi, yi) | i = 1, . . . , N}. Each of the S time-series typically corresponds to
measurements of one physical sensor. The binary label yi is 1 if Xi is anomalous
and 0 otherwise. Although anomalous samples are generally hard to obtain
in many real-world anomaly detection settings, we assume that reasonably
many positive samples have been collected for the purpose of anomaly diag-
nosis. Each time-series episode is divided into Nw consecutive segments using
a sliding window of size wl as Xi = [X(1)

i , . . . ,X(Nw)
i ], where X(t)

i ∈ RS×wl is
the t-th time-segment. An example of a time-series episode is an ascend or de-
scend session of an elevator. Note that both temporal and spatial dependencies
matter within one episode, while different episodes are considered statistically
independent. Unlike human motion tracking and traffic monitoring [233, 230]
we do not assume prior knowledge of the similarity in the spatial dimension
(i.e., among sensors). See Figure 6.1 for a detailed overview of the notation
used.
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Fig. 6.1: Illustration of the notation used. One episode of S-variate time-series
is split into Nw consecutive segments of size wl. A binary label yi is associated
with the time-series episode Xi, where yi = 1 means that the episode Xi is
anomalous.

B. Supervised dependency discovery problem

From a practical perspective, our goal is to obtain actionable insights into
anomalous samples by providing explanations of how they are anomalous.
Specifically, major questions we wish to answer include (1) at a moment that
an unusual situation is observed in one or a few variable(s), how the other
variables are related, and (2) in a sensor showing an unusual behavior, how
the unusual behavior might have been triggered by past events.

As a machine learning task, this can be done by solving the supervised
dependency discovery problem. Specifically, we train a binary classifier using
a prediction model that incorporates a learnable spatio-temporal (ST) depen-
dency model (explained in Sec. 6.3.3) as part of the data generative process.
If the classification accuracy is high enough, the learned dependency can be
used as a proxy of real dependency structure. Although our objective function
is simply the binary cross-entropy (BCE):

ℓ[M] = −
N∑

i=1
{yi ln p(yi = 1 | Xi) + (1− yi) ln[1− p(yi = 1 |i)}, (6.1)

where p(yi = 1 | Xi) is the probability of Xi being anomalous (i.e. the output
given by the sigmoid function) and M symbolically represents the ST de-
pendency model, our main motivation is to find M through maximizing the
classification performance.
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6.2 Background on Transformers

The Transformer algorithm consists of two steps: Positional encoding (PE)
and self-attention filtering. Typically, before implementing these steps, it is
common to define a function ψ(·) that maps the raw data space X to an
embedded data space F.

ψ : X = {x1, . . . ,xN} 7→ F = {f1, . . . ,fN} (6.2)

Positional encoding

The goal of PE is to reflect the information of the position of the items (i.e.,
words in machine translation) in the input sequence. In the original formula-
tion [28], this was done by simply adding an extra vector to the representation
vector of an input word:

ft ← ft + et, (6.3)

where ft is the representation vector of the t-th item in the sequence and et

is its corresponding positional encoding (no spatial index s was considered so
is omitted). They used the following form for et:

(sin(w0t), cos(w0t), sin(w2t), cos(w2t), · · · , sin(wd−2t), cos(wd−2t))⊤ (6.4)

with wk = ρ− k
d , ρ = 10 000, and d = 512.

Self-attention filtering

With Eq. (6.2), we now have an updated data matrix F = {f1, . . . ,fN}. The
self-attention filtering further updates F to get Z. There are three steps in the
algorithm. The first step is to create three different feature vectors from F:

Q ≜ WQF, K ≜ WKF, V ≜ WV F, (6.5)

which are called the query, key, and value respectively. WQ,WK ,WV matrxices
are d × D and have to be learned from data. Considering that Q,K,V, as
well as F are column-based data matrices, we denote the column vectors as
Q = [q(1), . . . , q(N)], K = [k(1), . . . ,k(N)], and V = [v(1), . . . ,v(N)].

The second step is to compute the self-attention matrix A. From the query
and key matrix, the self-attention matrix A ∈ RN×N is defined as

A ≜ softmax
(

1√
d

Q⊤K + M
)
, (6.6)

where the softmax function applies to each row and M is a masking typically
applied that varies, which varies depending on the context in which trans-
formers are utilized. For the sake of simplicity, we will omit the masking in
the following equations. To write down the (i, j) element explicitly, we have
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Ai,j = exp(Bi,j)∑N
m=1 exp(Bi,m)

, Bi,j ≜
1√
d

(q(i))⊤k(j). (6.7)

This definition implies that A is essentially a cosine-similarity matrix between
the items i and j.

Finally, the third step is to take in the influence of neighbors in each row:

zt =
N∑

k=1
At,kv(k) or Z = VA⊤ (6.8)

Obviously, through this step, the representation vectors are encouraged to
have similar values to their neighbors.

Typically, self-attention filtering is multiplexed by using multiple “heads.” 1

Let H be the number of heads. In this approach, H different sets of the
parameter matrices are used {W[h]

Q ,W[h]
K ,W[h]

V | h = 1, . . . ,H} with different
initializations. As a result, H different self-attention matrices {A[h]} and value
vectors {v[h]

t = W[h]
V ft} are obtained. For each, the representation vectors are

computed as

z
[1]
t =

N∑
k=1

A
[1]
t,kv

[1]
k , . . . , z

[H]
t =

N∑
k=1

A
[H]
t,k v

[H]
k ∈ Rd. (6.9)

The final representation is created simply by concatenating these H vectors
as

z1 = concat
(

z
[1]
1 , . . . ,z

[H]
1

)
, . . . ,zN = concat

(
z

[1]
N , . . . ,z

[H]
N

)
∈ RdH .

(6.10)

After this, to normalize the output, reduce the internal covariate shift,
and introduce non-linearities to capture complex patterns a normalization
layer followed by two feedforward layers is usually applied to the enriched
representation Z,

Z←LayerNorm
(

LayerNorm(Dropout(Z))+ (6.11)

Dropout(ReLU (ZW1 + b1) W2 + b2

)
(6.12)

where W1,W2 ∈ Rd×dff and b1, b2 ∈ Rdff are the weights and biases of the
first and second feedforward layers, respectively.



104 6 Diagnostic Spatio-temporal Transformer with Faithfull Encoding

1D Multi-Head CNN

. . .

DFT
Encoding

Spatial
Attention

Temporal
Attention

Add &
Norm

Add &
Norm

Add &
Norm

Feed
Forward

Spatio-temporal dependency model

Feed
Forward

Feed
Forward Sigmoid Output

Classification Head

: Dropout : Global Average Pooling

CNN
BLOCK

CNN
BLOCK

: Flatten
. .

 .

Sp
at

ia
l

di
m

 
Temporal 

dim

Fig. 6.2: Architecture of the proposed DFStrans.

6.3 Proposed spatio-temporal dependency discovery
framework

The proposed anomaly diagnosis framework consists of three major compo-
nents as shown in Fig. 6.2. This section first states the problem setting and
explains the major components in detail.

6.3.1 Overall model architecture

The goal of automatically capturing informative ST patterns requires the
capability of handling different temporal resolutions as well as learning ST
dependencies.

For the former, we employ a multi-head one-dimensional (1D) convolu-
tional neural network (CNN), similar to the one used by Canizo et al. [234] (see
Figure 6.3), which consists of multi-head 1D convolution, MaxPooling, ReLU
activation, and batch normalization, applied independently to each of the vari-
ables (see Appendix for the detail). This module defines a mapping from raw
time-series segment to a representation matrix: X(t)

i → F(t)
i ∈ RS×M , where

M is the dimensionality of the representation vector. To highlight spatial-
temporal aspects of the data, we mainly use {f (t,s)

i } instead of F(t)
i , where

f
(t,s)
i ∈ RM and t, s run over 1, . . . , Nw and 1, . . . , S, respectively. Unless

confusion is likely, we omit the sample index i from f
(t,s)
i hereafter.

As shown in Fig. 6.2, the output of the 1D CNN module is fed into the
transformer module. The feature tensor {f (t,s)} is transformed into an en-
riched version of the same size, as explained later.

Finally, in the classification head, the output of the transformer is first
flattened along the sensor dimension. A global average pooling [235] layer is
then applied along the temporal dimension. The resulting vector is processed
by a fully connected layer with ReLU activation and a dropout layer. The
final output probability p(yi = 1 | Xi) is determined by a fully connected
layer with a sigmoid activation function.

1 The term “head” seems to be originated from the Turing machine, where a head
means a tape head to read magnetic tapes.
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Fig. 6.3: Muti-head 1D CNN.

6.3.2 DFT Encoding

As discussed in Section 6.4 in detail, one issue with the original positional
encoding (6.4) is that it has a strong low-pass filtering property. As a result,
it puts too much emphasis on long-range correlation among items and tends
to suppress short- and mid-range location differences. To address the issue,
we propose to use what we call the faithful-Encoding:

e(t) =
√

2
d

(
1√
2
, cos(ω1t), sin(ω1t), . . . , cos(ωKt), sin(ωKt),

cosπt√
2

)⊤

,

(6.13)

where ωk ≜ 2πk
d and K ≜ d

2 − 1. The derivation is given in Section 6.4. Al-
though the faithful-Encoding seemingly looks similar to the original one (6.4),
there is a fundamental difference. One can show that the particular form (6.13)
has a mathematical guarantee that it maintains the whole information of the
location without introducing any bias.

6.3.3 Learning spatio-temporal dependencies

Now that temporal ordering has been reflected by the faithful-Encoding, we
next consider how to reflect ST dependencies in the representation vectors.
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Intuitively, this can be done by making highly dependent items have simi-
lar representation vectors. Mathematically, it is implemented by defining the
transition probability between items in an input sequence.

. . .

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

. . .

Fig. 6.4: Each rectangular cell within a row (spatial dimension) and a column
(temporal dimension) corresponds to an embedding. For a given sensor s and
time-segment t (black rectangle), the pink lines denote temporal dependencies,
while the blue lines represent spatial dependencies. Notably, the intensity of
the color in each cell reflects the strength of the corresponding dependency.

Our basic assumption is that there is a latent dependency structure behind
{f (t,s)}, which is described by the transition probability between two spatio-
temporal points (t, s) and (t′, s′) as p(t, s | t′, s′), as illustrated in Figure 6.4.
Here we employ a factorized transition model

p(t, s | t′, s′) ≈ p(t | t′, s)p(s | s′, t), (6.14)

where p(·) is used as a symbolic notation representing probability distribution
in general rather than a specific functional form. Each component is assumed
to be log-quadratic:

ln p(t | t′, s) = c.+ 1√
M

(f̂ (t,s))⊤Ĥ f̂ (t′,s), (6.15)

ln p(s | s′, t) = c.+ 1√
M

(f (t,s))⊤H f
(t,s′)

, (6.16)
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where c. symbolically denotes a constant to meet the normalization con-
dition of the probability distributions. Also, Ĥ,H ∈ RM×M are fully learnable
matrices that roughly correspond to the precision matrix of a Gaussian diffu-
sion process in the feature space, and f̂ (t,s),f

(t,s) are the temporal and spatial
branches of the embeddings f (t,s), respectively. The quadratic form can also
be viewed as a generalized similarity between the pair of feature vectors. In
fact, if Ĥ,H are identity matrices, the r.h.s. is reduced to the well-known co-
sine similarity. The logarithm function guarantees the positivity of p(·). For
more details on this, see Appendix.

So far, we have assumed that the representation vectors are given. Here,
let us consider the opposite: If the transition probability is given, how can we
find the representation vectors consistent with the transition probability? In
the same spirit of graph neural networks, we can do this by making two-step
Markovian transitions:

f̂ (t,s) ←
∑

t′

p(t | t′, s)ŴV f̂ (t′,s) for all (t, s), (6.17)

f
(t,s) ←

∑
s′

p(s | s′, t)WV f
(t,s′) for all (t, s), (6.18)

where ŴV ,WV ∈ RM×M is a fully learnable parameter matrix to absorb
indistinguishably due to scaling and rotation. As shown in Figure 6.2, both
f̂ (t,s) and f

(t,s) are added, obtaining an enriched representation f (t,s). By
this diffusion process, the higher the transition probability is between a pair
of the representation vectors, the more similar they are.

A. Relationship with Transformer

Our ST dependency model can be viewed as a variant of the Transformer [28].
To see this, consider the singular value decompositions (SVD) of the temporal
and spatial branches Ĥ = ŴQŴ⊤

K and H = WQW⊤
K , where ŴQ, ŴK , WQ and

WK are the left and right singular matrices with column vectors normalized
to the square root of the singular values. Since any well-defined matrices have
an SVD, without loss of generality, Eqs. (6.17)-(6.18) are reduced to the well-
known query-key-value mapping of the Transformer:

F̂(s) ← softmax
(

1√
M

Q̂K̂⊤
)

V̂ (6.19)

F(t) ← softmax
(

1√
M

QK⊤
)

V (6.20)

where F(s) ≜ [f (1,s), . . . ,f (Nw,s)], Q̂ ≜ ŴQF(s), K̂ ≜ ŴKF(s), V̂ ≜ ŴV F(s)

and F(t) ≜ [f (t,1), . . . ,f (t,S)], Q ≜ WQF(t), K ≜ WKF(t),V ≜ WV F(t). After
this, the enriched representations are added, normalized, and represented in
a single representation vector:
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F← LayerNorm(F + Dropout(F̂)) + LayerNorm(F + Dropout(F)) (6.21)

After the aggregation, the enriched representation F is normalized after being
passed to a 2-layer feedforward network with ReLU activation function and a
dropout layer:

F← LayerNorm(F + Dropout(ReLU ((FW1 + b1) W2 + b2))) (6.22)

where W1,W2 ∈ Rd×dff and b1, b2 ∈ Rdff are the weights and biases of
the first and second feedforward layers, respectively. The dimension of the
feedforward layer is set to dff = 2048. A single transformer layer is used in
the experiments.

6.3.4 Evaluation of attention.

As the model has been trained for anomaly detection, a high attention value
should indicate that the model has given more importance to a given embed-
ding in deciding whether it is anomalous. To evaluate if high attention means
high impact in the model decision, we propose the Attention Trustworthiness
Score (AT-Score). The AT-Score evaluates the effectiveness of the attention
mechanism in focusing correctly on when and where the anomalies have oc-
curred by measuring how much the model prediction changes when the top-k
percent of the spatial and temporal attention weights are set to zero, and it
is defined as

ATk = 1
Ntest

Ntest∑
i=1
{ŷ(Xi)− ŷk(Xi)} (6.23)

where ŷ(Xi) denotes the output of the model before sigmoid and ŷk(Xi) de-
notes the output of the model before sigmoid and setting the top-k percent
of attention weights to zero.

6.3.5 Diagnostic scores

The learned transition probabilities allow a variety of diagnosis tasks. Let A
and B be the temporal and spatial attention matrices. Based on these matrices
we define some scores for temporal and spatial diagnosis.

For temporal diagnosis, we define four scores:

A(s)
t′,t ≜ p(t | t′, s), a

(s)
t ≜

Nw∑
t′=1

A(s)
t′,t, (6.24)

AG
t′,t ≜

1
S

S∑
s=1

A(s)
t′,t, aG

t ≜
1
S

S∑
s=1

a
(s)
t , (6.25)
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where a(s)
t is the influence of a time point t measured locally at the s-th sensor,

AG
t′,t is the global influence of t′ on t, and aG

t is the global influence of t across
all the variables.

For spatial (i.e., variable-variable) diagnosis, we define:

B(t)
s′,s ≜ p(s | s′, t), b(t)

s ≜
S∑

s′=1
B(t)

s′,s, (6.26)

BG
s′,s ≜

1
Nw

Nw∑
t=1

B(t)
s′,sa

G
t , bG

s ≜
S∑

s′=1
BG

s′,s, (6.27)

where b
(t)
s is the influence of the variable s at a time t, BG

s′,s is the global
influence of the variable s′ on s, and bG

s is the global influence of the variable s.

6.4 Fourier Analysis of Positional Encoding

In this section, we discuss how Fourier analysis is used to evaluate the goodness
of positional encoding (PE) and derive the faithful-Encoding (6.13).

6.4.1 Original PE has a strong low-pass property

Positional encoding in the present setting is the task of finding a d-dimensional
representation vector of an item in the input sequence of length Nw. In the vec-
tor view, the position of the s-th item in the input sequence is most straightfor-
wardly represented by an Nw-dimensional “one-hot” vector, whose s-th entry
is 1 and otherwise 0. Unfortunately, this is not an appropriate representation
because the dimensionality is fixed to be Nw, and it does not have continuity
over the elements at all, which makes numerical optimization challenging in
stochastic gradient descent.

The original PE in Eq. (6.4) is designed to eliminate these limitations.
Then, the question is how we can tell the goodness of its specific functional
form. One approach suggested by the sinusoidal form is to use DFT. Consider
DFT on the 1-dimensional (1D) lattice with d lattice points (d > Nw). Any
function defined on this lattice is represented as a linear combination of the
sinusoidal function with the frequencies {ωk}. It is interesting to see how the
frequencies {wk} in Eq. (6.4) are distributed in the Fourier space.

The black line in Fig. 6.5 shows the distribution of the frequencies of
Eq. (6.4). The distribution is estimated with the kernel density estimation
with the Gaussian kernel [236]. Specifically, at each ωk, the weight is given by

gk =
∑

l∈{0,2,...,d−2}

1
R

exp
(
− 1

2σ2 (ωk − wl)2
)
, (6.28)
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Fig. 6.5: The distribution of the frequency wk = ρ− k
d in Eq. (6.4) over the

Fourier bases (black line), where ρ = 10 000, d = 256. Notice the contrast to
that of the faithful-Encoding, which gives a uniform distribution (red line; See
Section 6.4.3).

where R is a normalization constant to satisfy
∑

k gk = 1. We chose the
bandwidth σ = 4 × 2π

d with d = 256. Due to the power function ρ− k
d , the

distribution is extremely skewed towards zero.
This fact can be easily understood also by running a simple analysis as

follows. The first and second smallest frequencies are 0, 2π
d , respectively. We

can count the number of wks that fall into between them. Solving the equation

2π
d

= ρ− l
d (6.29)

and assuming ρ = 10 000, we have l = d
4 log10

d
2π ≈ 103 for d = 256 and

l ≈ 245 for d = 512. Hence, almost a half of the entries go to this lowest bin.
This simple analysis, along with Fig. 6.5, demonstrates that the original PE

has a strong bias to suppress mid and high frequencies. As a result, it tends to
ignore mid- and short-range differences in location. This can be problematic
in applications where short-range dependencies matter, such as time-series
classification for physical sensor data.

6.4.2 Original PE lacks faithfulness

Another interesting question is what kind of function the skewed distribution
gk represents. To answer this question, we perform an experiment described
in Algorithm 1, which is designed to understand what kind of distortion it
may introduce to an assumed reference function. In our PE context, the ref-
erence function should be the position function (a.k.a. one-hot vector) since
the original PE (6.4) was proposed to be a representation of the item at the
location s.

Figure 6.6 shows the result of reconstruction. We normalized the modified
DFT coefficients so the original ℓ2 norm is kept unchanged. All the parameters
used are the same as those in Fig. 6.5, i.e., d = 256, Nw = 80, h = 10000, σ =
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Algorithm 1 Reference function reconstruction
Require: Reference function f(t), DFT component weights {gk}.
1: Find DFT coefficients of f as {(ak, bk) | k = 0, . . . ,K}.
2: a0 ← a0g0 and b0 ← b0gK+1
3: for all k = 1, . . . ,K do
4: ak ← akgk and bk ← bkgk

5: end for
6: Inverse-DFT from the modified coefficients.

4 × 2π
d . As expected from the low-pass property, the reconstruction by the

original PE failed to reproduce the delta functions. The broad distributions
imply that the original PE is not sensitive to the difference in the location up
to about 30. As the total sequence length is Nw = 80, we conclude that the
original PE tends to put an extremely strong emphasis on global long-range
dependencies within the sequence.

original

0 50 100 150 200 250
location

faithful s=5
s=40
s=75

Fig. 6.6: Reconstruction by Algorithm 1 for the location function f(t) =
δt,5, δt,40, δt,75. Perfect reconstruction corresponds to single-peaked spikes
at t = 5, 40, 75, respectively. The broad distributions in the top panel demon-
strate a significant loss of information in the original PE. See Section 6.4.3 for
the faithful-Encoding (bottom).

If the PE is supposed to get a representation of the position function, PE
should faithfully reproduce the original position function. Here, we formally
define the notion of the faithfulness of PE:

Definition 27 (Faithfulness of PE). A positional encoding is said faithful
if it is injective (i.e., one-to-one) to the position function.

For PE, the requirement of faithfulness seems natural. Very interestingly,
as long as the sinusoidal bases are assumed, this requirement almost auto-
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matically leads to a specific PE algorithm that we call the faithful-Encoding,
which is the topic of the next subsection.

6.4.3 DFT-based derivation of positional encoding

For the requirement of faithfulness, one straightforward approach is to lever-
age DFT for positional encoding. The idea is to use the DFT representation
as a smooth surrogate for the one-hot function fs(t) ≜ δs,t, where δs,t is
Kronecker’s delta giving 1 only if s = t and 0 otherwise. Let

a
(s)
0 , a

(s)
1 , . . . , b

(s)
1 , . . . , b

(s)
K , b

(s)
0

be the DFT coefficients of fs(t). It is straightforward to compute the coeffi-
cients against the real Fourier bases {φk(t)}:

a
(s)
0 =

d−1∑
t=0

δs,tφ0(t) =
d−1∑
t=0

δs,t
1√
d

= 1√
d
, (6.30)

a
(s)
1 =

d−1∑
t=0

δs,tφ1(t) =
d−1∑
t=0

δs,t

√
2
d

cos(ω1t) =
√

2
d

cos(ω1s), (6.31)

...

b
(s)
K =

d−1∑
t=0

δs,tφK(t) =
d−1∑
t=0

δs,t

√
2
d

sin(ωKt) =
√

2
d

sin(ωKs), (6.32)

b
(s)
0 =

d−1∑
t=0

δs,tφd−1(t) =
d−1∑
t=0

δs,t

√
1
d

cos(πt) =
√

1
d

cos(πs), (6.33)

where φk(t)s are defined by the second equality. Simply using the DFT coef-
ficients, we define the vector representation of the one-hot function as

e(s) ≜ (a(s)
0 , a

(s)
1 , . . . , b

(s)
1 , . . . , b

(s)
K , b

(s)
0 )⊤, (6.34)

which is exactly the same as the faithful-Encoding (6.13).
Because of the general properties of DFT, the following claim is almost

evident:

Theorem 1. The DFT-based encoding (6.34) is faithful.

Proof. This follows from the existence of inverse transformation in DFT. We
can also prove it directly. With Eq. (6.34), the r.h.s. of the DFT expansion

fs(t) = 1√
d

[a0 + b0 cos(πt)] +
√

2
d

K∑
k=1

(ak cos(ωkt) + bk sin(ωkt)) , (6.35)
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is given by

r.h.s. = 1
d

[1 + (−1)s−t] + 2
d

K∑
k=1

cos(ωk(s− t))

It is obvious that the r.h.s. is 1 if s = t. Now, assume s ̸= t. Using cosx =
1
2 (eix + e−ix), where i is the imaginary unit, and the sum rule of geometric
series, we have

r.h.s. = 1
d

[1 + (−1)s−t] + 1
d

cs,t − cK+1
s,t − 1 + c−K

s,t

1− cs,t
,

where we have defined cs,t ≜ exp
(

i 2π(s−t)
d

)
. By noting c−2K−1

s,t = cs,t and
cK+1

s,t = (−1)s−t, it is straightforward to show the r.h.s. is 0. Putting all
together, the inverse DFT of the faithful-Encoding gives δs,t, which is the
location function. ⊓⊔

In Fig. 6.5, we have shown the distribution of the faithful-Encoding in the
Fourier domain. From Eqs. (6.30)-(6.33), we see the distribution is given by

gDFT
k = 1

d
(δk,0 + δk,d−1) + 2

d

K∑
l=1

δk,l, (6.36)

where δk,0 etc. are Kronecker’s delta function. This distribution is flat except
for the terminal points at k = 0, d − 1. Hence, unlike the original PE, the
proposed faithful PE does not have any bias on the choice of the Fourier
components.

With this flat distribution, we also did the reconstruction experiment.
The result is shown in the bottom panel in Fig. 6.6. We see that the location
functions are perfectly reconstructed with the faithful PE.

6.5 Experiments

In this section, we want to demonstrate the ability of DFStrans to detect and
diagnose anomalies. To do so, we compare the method with four other baseline
algorithms on four datasets.

6.5.1 Datasets and baselines

A. Industrial Case Study

The industrial dataset used in this study was obtained from a physical model
that simulates the behavior of an elevator during up and down journeys. The
physical model was designed by a domain expert from a collaborating company



114 6 Diagnostic Spatio-temporal Transformer with Faithfull Encoding

that specializes in the manufacturing of elevators. This model was designed to
produce fault conditions during these journeys, such as reduced lubrication,
misalignment, or localized peaks in the guidance system, or demagnetization
or loss of inductance in the electric machine. In this study, three effects related
to misalignment, reduced lubrication, and localized peaks in the guidance
system were introduced into the model. The first two effects increase the
friction between the cabin or counterweight and the rails, and are referred to
as friction journeys (FJs). Localized bumps cause local impacts on the cabin,
resulting in spike-like deformations, which are referred to as point anomalous
journeys (PAJs). Table 6.1 summarizes the sensors installed in the elevator.

Table 6.1: Summary of the sensors installed in the elevator.

Sensor name Description
Alpha Angular acceleration of the pulley
Ax, Ay, Az Lateral acceleration of cabin on X, Y, and Z axis
Fc, Fcw Tension on the cabin’s and counterweight cable
FrictionCabin,

FrictionCw Cabin and counterweight friction

Fsupport Force on the support of the machine-pulley
Id, Iq Direct and quadrature power
Omega Angular speed of the pulley
Phi Angular position of the pulley
PulleyAz Vertical acceleration of the pulley
Vc, Vcw Cabin and Counterweight speed
Vd, Vq Direct and quadrature voltage
Zc, Zcw Cabin and counterweight position

B. Baseline algorithms

The goal of this work is mainly based on proposing a solution for anomaly di-
agnosis, but without losing classification performance. Therefore, we compare
with some of these state-of-the-art time series classification models. However,
these algorithms are not meant for anomaly diagnosis. We compare our clas-
sification performance against: (1) MH1DCNN-LSTM [234], (2) TapNet
[237], (3) InceptionTime [238] and (4) MLSTM-FCN [239]. See Appendix
for details on the model’s hyperparameters.

C. Benchmark datasets

We evaluated the methods in three other datasets apart from the elevator
use-case: both (1) Soil Moisture Active Passive satellite (SMAP) [240]
and (2) Mars Science Laboratory rover (MSL) [240] are public datasets
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Table 6.2: Results obtained with the models for the different datasets in terms
of Precision (P), Recall (R) and F1-Score (F1). Best scores are highlighted
in bold.

Datasets
Methods

MH1DCNN-LSTM InceptionTime TapNet MLSTM-FCN DFStrans
P R F1 P R F1 P R F1 P R F1 P R F1

Elevator 0.993 0.914 0.951 1 0.892 0.944 0.398 0.711 0.510 0.913 0.724 0.808 0.989 0.917 0.952
SMD 0.913 0.744 0.807 0.856 0.925 0.882 0.842 0.606 0.706 0.951 0.853 0.895 0.973 0.946 0.959
MSL 0.821 0.821 0.821 0.965 0.948 0.956 0.875 0.867 0.857 0.952 0.925 0.938 0.867 0.882 0.874

SMAP 0.923 0.805 0.859 0.853 0.687 0.761 0.66 0.908 0.765 0.963 0.833 0.894 0.883 0.826 0.853

mean 0.912 0.821 0.859 0.918 0.863 0.888 0.694 0.773 0.709 0.945 0.834 0.884 0.931 0.893 0.911

provided by NASA that consist of telemetry data from spacecraft monitoring
systems, and (3) Server Machine Dataset (SMD) [185] is a dataset col-
lected from a large Internet company. These three datasets are unsupervised,
so the labeled testing data have been used to validate the models.

D. Data preprocessing and evaluation

Regarding data preprocessing, all data have been scaled (independently for
each sensor) between 0 and 1, using MinMaxScaler module of Sklearn [241].
For benchmark datasets, we have divided the data into sub-series Xi of T =
500 points and labeled them as 1 if an anomaly has occurred during that
period and 0 otherwise. For algorithms using multi-head CNNs, these time-
series have been divided into non-overlapping windows of length wl, i.e. Xi =
{X(1)

i , ...,X(Nw)
i }. We have used a 5-fold cross-validation strategy for training

and evaluation, using 70% for training, 15% for validation, and 15% for testing.

6.5.2 Anomaly detection

Our model was evaluated on four datasets using four baseline algorithms. As
shown in Table 6.2, for the elevator use case, DFStrans was the best per-
former in terms of Recall and F1. Additionally, DFStrans was the top per-
former on the SMD dataset in all terms. On the MSL dataset, InceptionTime
achieved the best results, outperforming the other models. Finally, on the
SMAP dataset, MLSTM-FCN performed the best in terms of F1, followed
by DFSTrans and MH1DCNN-LSTM. Overall, our algorithm achieved the
best average results in terms of Recall and F1, indicating that DFStrans is a
competitive algorithm for anomaly detection. It is worth noting that our algo-
rithm also focuses on diagnosing anomalies rather than providing competitive
results for anomaly detection.

A. Ablation on positional encoding

Here we compare the results obtained using Vaswani’s positional encoder and
using the faithful-Encoding. As shown in Table 6.3, the faithful-Encoding
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achieves better results than Vaswani’s positional encoding in three of the four
datasets, demonstrating the importance of faithful-Encoding.

Table 6.3: Results obtained with the models for the different datasets in terms
of Precision (P), Recall (R), and F1-Score (F1) under different encoding
strategies. Best scores are highlighted in bold.

Datasets
Encoding strategies

w Vaswani’s encoding w faithful-Encoding
P R F1 P R F1

Elevator 0.952 0.914 0.931 0.989 0.917 0.952
SMD 0.986 0.942 0.963 0.985 0.948 0.965
MSL 0.862 0.838 0.849 0.867 0.882 0.874

SMAP 0.887 0.823 0.854 0.883 0.826 0.853
mean 0.922 0.879 0.899 0.931 0.893 0.911

6.5.3 Anomaly diagnosis

Next, we evaluate the capability in anomaly diagnosis using the elevator’s use
case, in which expert feedback is available. Here, we show a few examples of
how the temporal and spatial attention matrices, A and B respectively (defined
in Section A.), are used to obtain intrinsic interpretability for diagnosing the
detected anomalies.

In Figure 6.7, we present the spatial attention matrix and spatial relevance
vector for a PAJ containing two point anomalies, as identified by a domain
expert, at time segments t = 34 and t = 58, reflected in the accelerations
Ax and Ay. Only a subset of sensors is shown for space limitation. The local
spatial interpretations allow us to investigate the sensor that the model is
attending to at each time segment. We selected the time segments where the
anomalies occur, t = 34 and t = 58, and plotted the spatial attention matrix
B(t) with the relevance scores b(t)

s of each sensor s to examine whether the
model is focusing on the accelerations. We also randomly selected another
time segment, t = 75, where there is no anomaly, to examine the behavior
of the spatial attention at that point. In time segments t = 34 and t = 58
(Figures 6.7c and 6.7d), we observe that the relevance of the accelerations Ax
and Ay is high while the relevance of the other sensors is low, as expected.
In contrast, for time segment t = 75, all sensors have similar relevance, and
the model does not focus on any particular sensor. We also observe that the
global spatial relevances are high for both accelerations.

Unlike in PAJs, in FJs, friction is usually present during the whole jour-
ney. Therefore, the attention should be somewhat distributed among all-time
segments, with potentially stronger attention during the acceleration and de-
celeration phases according to the expert’s observations. This is demonstrated
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Fig. 6.7: The first plot (a) shows a PAJ containing two point anomalies, at
t = 34 and t = 58, which can be seen as ripples in the accelerations. Then,
the plot (b) shows the global spatial relevances. Plots (c), (d) and (e) show
the spatial attention matrix and the spatial relevance vectors for time steps
t = 34, t = 58 and t = 75, respectively.

in Figure 6.8, where the global temporal attention matrix and global tempo-
ral attention relevances show that attention is present throughout the entire
journey, with slight peaks at the beginning (acceleration) and end (deceler-
ation) of the journey, rather than any individual time segment standing out
significantly as in PAJs. Additionally, FJs tend to increase the required motor
torque and electrical consumption, as reflected in the sensors measuring elec-
trical current (i.e., Iq and Id) and the electric machine voltages (i.e., V q and
V d). The global spatial attention matrix and global spatial relevance scores in
Figure 6.8 show that these sensors had the greatest influence on the model’s
classification of the journey as anomalous.

Figure 6.9 presents the temporal attention matrix and spatial relevance
vectors. The first two plots depict the local temporal relevances for five differ-
ent PAJs. Accelerations are plotted because, according to the domain expert,



118 6 Diagnostic Spatio-temporal Transformer with Faithfull Encoding

0.35

0.4

0.45

0.55

0.6

0.65

0

0.5

1

0.2

0.4

0.6

0.4

0.45

0.5

0.6

0.8

1

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0.1
0.2
0.3
0.4
0.5

0.6

0.8

0

0.5

1

0 1000 2000 3000 4000 5000 6000 7000

0

0.5

1

A
x

A
y

A
z

I
d

I
q

O
m

P
h
i

V
c

V
c
w

V
d

V
q

Z
c

Z
c
w

(a)

0 10 20 30 40 50 60 70

Global temporal attention matrix, AG
t′, t

0

10

20

30

40

50

60

70

0.010

0.015

0.020

0.025

0.030

0.035

(b)

0 10 20 30 40 50 60 70 80

Global temporal relevance scores, aG
t

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

(c)

Ax Ay Az Id Iq Om Ph
i

Vc Vc
w Vd Vq Zc Zc
w

Global spatial attention matrix, BG
s′, s 

Ax
Ay
Az
Id
Iq

Om
Phi
Vc

Vcw
Vd
Vq
Zc

Zcw

0.06

0.08

0.10

0.12

0.14

(d)

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Global spatial relevance scores, bG
s

Ay
Om
Vcw
Zcw

Vc
Zc
Az
Phi
Vd
Vq
Iq
Id

Ax

(e)

Fig. 6.8: (a) shows a FJ. Then, (b) shows the global temporal attention
matrix, (c) the global temporal attention relevances, (d) the global spatial
attention matrix and (e) the global spatial attention relevances.

anomalies in PAJs are typically reflected in these sensors. Figure 6.9c shows
the temporal attention of the Iq sensor on six different journeys, three of
which are normal (shown in green) and three of which are FJs with the Iq
sensor in the top positions (shown in red). In these cases, the distinction be-
tween anomalous and non-anomalous journeys is most apparent during the
acceleration and deceleration phases, where the attention is stronger in the
FJs. Additionally, the temporal relevance is evenly distributed throughout the
entire journey.

A. Evaluating Attention

To quantify the trustworthiness of the attention mechanisms, we have used
the AT-Score metric under different percentages of top-k attention weights
set to zero. Since the PAJs exhibit anomalous behavior at specific time steps
during the journey and the FJs exhibit anomalous behavior throughout the
entire time series, we have distinguished both to conduct this experiment.

Figure 6.10a shows that as the weights with the highest attention values in
the PAJs are set to zero, the value of the model output decreases. This trend
can be seen in the medians and means of these values, represented as red
and green lines. This means that the PAJs are classified as normal journeys if
the attention mechanism does not focus on the most relevant time segments,
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Fig. 6.9: Local temporal attention plots. Figures (a) and (b) are plots of five
PAJs, in which the observations of the Ax and Ay sensors are shown together
with their temporal relevance scores a(s). Figure (c) is a comparison of the
temporal relevance scores for sensor Iq between three FJs (red lines) and three
normal journeys (green lines).
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Fig. 6.10: Boxplots of the AT-Scores obtained under different percentages of
top-k attention weights set to zero. Plot (a) corresponds to PAJs and plot
(b) to corresponds FJs. Median and mean values are represented with red
and green lines, respectively.
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which means that it was previously focusing on where the anomalous behavior
occurred during the journey. However, as shown in Figure 6.10b, this effect
is less accentuated and more variable in FJs, because this type of anomalous
behavior can be noticed throughout the whole journey.

6.6 DFTrans, a reliable supervised solution for anomaly
detection and diagnosis

With this research, we have written an article that has been accepted in the
journal Knowledge-Based Systems:

Article 3 (A3): Labaien, J., Ide T., Chen, P.Y, Zugasti, E., & De Car-
los, X. (2023). Diagnostic Spatio Temporal Transfomer with Faithfull
Encoding. Knowledge-Based Systems. Status: Accepted.

This research presents a new framework that leverages a spatio-temporal
dependency model for diagnosing anomalies in noisy multivariate sensor data.
The framework combines multi-head 1D CNNs and a Transformer-like spatio-
temporal architecture. The multi-head 1D CNNs are used to obtain rich em-
beddings from raw sensor data while preserving the temporal nature of the
data. Then, the Transformer-like architecture allows learning the spatial and
temporal dependencies between these embeddings. Additionally, the study
mathematically demonstrates the limitations of the positional encoding used
in vanilla Transformers, which disproportionately emphasizes long-range cor-
relations and suppresses short- and medium-term location differences, which
can be detrimental in anomaly detection scenarios where small changes over
time are important. To address this issue, we propose a DFT-based positional
encoding, called faithful encoding, that does not introduce any bias in the
information about the location of the items and has a theoretical guarantee
of faithfulness.

The effectiveness of the proposed framework was demonstrated through
evaluations on four different datasets and an ablation study comparing the
results using vanilla and faithful positional encodings. The results showed that
the faithful encoding improved upon the vanilla encoding in most
benchmark datasets, and a sensitivity analysis demonstrated the
reliability of attention in diagnosing anomalies. Overall, the proposed
DFSTrans framework offers reliable solutions for detecting and di-
agnosing anomalies in multi-sensor industrial scenarios.

In this research, we have made substantial strides toward our objective
of creating intrinsically interpretable models tailored for anomaly detection.
Our contributions span multiple areas, including the introduction of faith-
ful encoding, the development of a robust model architecture that
effectively integrates CNNs and Transformers, and the introduc-
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tion of new metrics based on attention mechanisms for diagnosing
anomalies.

However, these contributions have been examined within a supervised
learning framework. While this approach provides a structured and controlled
setting to test the capabilities of our model, it inherently suffers from a
significant limitation. The acquisition of labeled anomalies, which
is a prerequisite for supervised learning, often poses a real-world
challenge, due to the rarity of anomalous events.

Recognizing this challenge, we seek to extend our research into the do-
main of unsupervised learning, where we are not confined by the need for
labeled data. In our second contribution, we aim to adapt the developed
DFSTrans framework for an unsupervised setting, thereby making
it more practical and applicable for a wider array of real-world
anomaly detection tasks.





7

Unsupervised Anomaly Diagnosis with Masked
Spatio-Temporal Transformers

In this section, we describe our second contribution related to the use of
transformer models for anomaly detection. Considering the positive
results obtained in the supervised setting, we introduce an unsupervised ver-
sion of DFSTrans, named Unsupervised Diagnostic Spatio Temporal
Transformer (uDFSTrans).

Although our supervised version, DFSTrans, reported promising results in
diagnosing anomalies, it is not always possible to use supervised approaches
for anomaly detection due to the difficulty of having labeled anomalies. There-
fore, it is necessary to have an unsupervised approach that effectively handles
these spatio-temporal dependencies inherent in the data. Several recent stud-
ies have proposed different strategies to tackle anomaly detection tasks using
transformers in an unsupervised way [242, 243, 212]. These methodologies ad-
dress the anomaly detection problem as one of prediction. Given a sequence of
values, these approaches predict future values. Anomalies are then identified
using an anomaly score, which is typically based on the error in reconstruction,
and compared against a predefined threshold.

In prediction tasks utilizing transformers, masking is typically applied to
the values being predicted. This masking usually takes place before apply-
ing the softmax function over the dot-product between query and key values.
However, we argue that this type of masking may not be entirely appropri-
ate, as the values to be predicted are implicitly exposed to the model when
applying this dot product. We propose that a different masking strategy may
be needed to fully obscure the future values to be predicted. Moreover, as
demonstrated in previous work, current transformers employ sinusoidal po-
sitional encoding, which struggles to capture high frequencies. This suggests
that existing transformers might not be fully optimized to effectively tackle
anomaly detection tasks.

With uDFSTrans, we approach the anomaly detection task from a different
perspective. On the one hand, we argue that in order to consider a series of
values within a sequence as anomalous, the context in which these values exist
must be taken into account. To this end, we propose a context-based embed-
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ding generator, which effectively masks the values to be predicted by creating
context embeddings, thereby capturing the information of the surrounding
context. We suggest the implementation of a Global Alignment Transformer
(GAT) as a part of the proposed architecture, which is detailed in Section
7.3.1.

On the other hand, we employ a multi-masking strategy, using varied
masking lengths to forecast upcoming values. We believe that anomalies pose
a greater challenge for accurate reconstruction compared to regular values.
As the masking length increases, the challenge of precise prediction intensi-
fies. Consequently, we theorize that there will be notable disparities in the
reconstruction errors when comparing values predicted with different mask
lengths.

Finally, we believe that the attention mechanisms of the transformer
should behave differently when there is an anomaly, and that variations be-
tween these connections will be greater when anomalies occur. To model this,
we propose an anomaly score that takes into account the reconstruction er-
rors, the differences between errors for different maskings, and the variations
among the attention mechanisms.

7.1 Problem setting

In this section, we define the problem addressed in this work by uDFSTrans,
and explain the main idea behind it.

Unlike the previous supervised approach where we were provided with N
sets of S-variate time-series with binary labels, in this case, we are dealing
with a single S-variate time-series X = {x1. . . . ,xT } defined as a sequence
of ordered, real-valued observations of length T , where at each timestamp t,
xt ∈ RS represents a set of points collected from S different sensors. Similarly,
we can define a corresponding label sequence Y = {y1, . . . ,yT } for the time-
series X .

In this instance, we aim to predict these labels in an unsupervised man-
ner, utilizing a common practice often employed in anomaly detection and
diagnosis. Firstly, we divide the time-series into smaller windows of length K,
i.e.,

wt = {xt−K+1, . . . ,xt}

This is done to enable a more comprehensive consideration of the contextual
information associated with each data point xt ∈ X . In this context, the
anomaly detection modelM is trained using the windows instead of X . How-
ever, when attempting to predict the label of a given point xt, we consider the
model M not only to take into account the immediate window wt as input
but also a set of N windows, defined as

Wt = {wt−N+1, . . . ,wt}
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that enable the identification of long-term dependencies. Specifically, our ap-
proach involves leveraging multiple windows of past observations in order to
provide a more comprehensive understanding of the context surrounding the
target datapoint xt.

To predict the labels yt, the initial step is to calculate an anomaly score st.
Once the anomaly score has been computed, the predicted labels are obtained
by binarizing the scores using a threshold value t, i.e.,

yt = 1 (st ≥ t) .

A. How to obtain the scores.

Without delving into the specifics of how to obtain anomaly scores (a detailed
description can be found in Section 7.3.2), we introduce the main idea. An
anomaly can be a sudden variation in one or several sensors, it may propa-
gate over time, or it may involve certain patterns in one or multiple variables
that, depending on the context in which they occur, can be considered anoma-
lous. In this work, we aim to address the problem of anomaly detection using
transformers. The objective is for the model to accurately predict the values
of the window wt when it is normal and to perform poorly when it contains
anomalies. To achieve this goal, different-sized maskings are utilized, and the
anomaly score takes into account factors such as the overall reconstruction
error, differences in reconstruction between different maskings, and variations
in attention mechanisms.

7.2 Analyzing masking strategy of Transformers

In this section, we analyze the masking strategy typically employed in trans-
formers.

In general, using transformers for prediction requires the use of masking
to prevent cheating in the decoder. Typically, this masking is accomplished by
adding to the product of query and key values a diagonal matrix N×N matrix
M with -∞ values on the diagonal. Adding M, when applying the softmax
function the resulting attention matrix has zero values on the diagonal, which
prevents the model from attending to these positions during training.

A ≜ softmax
(

1√
d

Q⊤K + M
)
, where M =


−∞ 0 0 . . . 0

0 −∞ 0 . . . 0
0 0 −∞ . . . 0
...

...
... . . . ...

0 0 0 . . . −∞

 .

(7.1)
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We will now examine how this masking strategy affects the prediction
of the last value in a sequence of N values, w.l.o.g we will use the notation
{x1,x2, . . . ,xN−1,xN} for this sequence. Following the background theory
given in Section 6.2, each of the items has different projections (query, key,
and values), i.e.,

Q = [q(1), . . . , q(N)], K = [k(1), . . . ,k(N)], V = [v(1), . . . ,v(N)].

Using only one head for simplicity, the final representation for the N -th item
we are interested to predict is obtained with:

zN = A1,N · v(1) +A2,N · v(2) + . . .+AN−1,N · v(N−1) + 0 · v(N). (7.2)

Despite the fact that the element AN,N equals zero and the value vN is
not explicitly included in the final representation zN , the definition of self-
attention indirectly incorporates the contribution of the N -th element xN in
the representation. This is due to computing the attention values At,N as the
cosine-similarity of the items x1, . . . ,xN−1 with respect to xN , as defined in
Eq (6.7).

In this work, we aim to propose a strategy for computing attention values
by utilizing the context of each item xt rather than solely relying on their
projected query and key values.

7.3 Unsupervised Diagnostic Spatio Temporal
Transformer

In this section, we present the algorithm proposed in this study, which is re-
ferred to as the Unsupervised Diagnostic Spatio-Temporal Transformer. Ad-
ditionally, we provide a detailed explanation of the proposed multi-masking
strategy and anomaly score.

7.3.1 Overall architecture

The global architecture of uDFSTrans comprises three blocks, as illustrated in
Figure 7.1. The first block employs multi-head 1DCNNs to extract embeddings
from the input data, while preserving its temporal and spatial characteristics.
The second block consists of two transformers, where the first transformer
updates the embeddings based on the context to which each embedding be-
longs by applying different length maskings, and the second transformer learns
the spatiotemporal relationships among these embeddings. Finally, the out-
put layer is responsible for obtaining the reconstructions of the input data.
Next, we provide a detailed explanation of the functioning of each block in
uDFSTrans.
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Fig. 7.1: Overall architecture of the proposed Unsupervised Diagnostic Spatio
Temporal Transformer (uDFSTrans).

Multi-Head 1DCNN

The goal of automatically capturing informative ST patterns requires the
capability of handling different temporal resolutions as well as learning ST
dependencies.

As in our previous work, we employ a multi-head one-dimensional (1D)
convolutional neural network (CNN), as the one used in [234], as illustrated
in Fig. 6.3. In this case the input is a sequence of N ordered windows
{w1, . . . ,wN} that are mapped into a sequence of N ordered feature vectors
{f1, . . . ,fN}.

After obtaining these features from the first block of uDFSTrans, it is
necessary to introduce information about the order of these features before
applying the transformers. To accomplish this, uDFSTrans employs the faith-
full encoding described in Section 6.3.2

DFT encoding

As in the previous work, uDFSTrans also uses the faithful-Encoding to
introduce the information about the positions of the features extracted. This
information about the location is directly added to the features extracted by
the Multi-Head 1D CNNs (see Section 6.3.2 and 6.4 for more details), i.e.,

ft ← ft + et (7.3)

where et is

et =
√

2
d

(
1√
2
, cos(ω1t), sin(ω1t), . . . , cos(ωKt), sin(ωKt),

cosπt√
2

)⊤

(7.4)

Gobal alignment transformer

After introducing positional information to the feature vectors F = {f1, . . . ,fN},
as in the original formulation of Vaswani et al. [28] the feature vectors
are projected into value vectors using H different sets of parameter matri-
ces {W[h]

V | h = 1, . . . ,H}. For simplicity, we will consider one head, i.e.,
V ≜ WV F.
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Fig. 7.2: Global Alignment Transformer.

Now, the goal is to alleviate the problem discussed in Sec. 7.2 about the
original masking strategy when using transformers in forecasting. To update
each value item v(t) without implicitly using the query q(t) and key k(t) val-
ues corresponding to the same position, we propose the use of what we call
a Global Alignment Transformer (GAT) (see Figure 7.2 for a detailed
diagram). To achieve this, we propose obtaining representations of the query
and key values based on the context to which an item in the sequence belongs.
First, having a sequence of N items represented by features F = {f1, . . . ,fN},
we define a fully learnable N×N attention matrix, called Global Alignment
Attention, that will find typical connections between the features of the items
in the sequence depending on the context. This learnable attention matrix is
also composed of H different heads that allow learning more complex con-
nections (we consider the case H = 1 for simplicity). The global alignment
attention is defined as

AGA = softmax
(
WGA + Mk

)
(7.5)

where WGA ∈ RN×N is a learnable matrix and

Mk
i,j =

{
−∞, if i = j or |i− j| < k

0, otherwise

is a mask that for a given t position in a sequence will mask the features
ft and k neighbors around this position. Then, we generate contextualized
vectors C = {c1, . . . , cN} through a matrix multiplication operation between
the feature vectors F and AGA, i.e.,

C = FA⊤
GA (7.6)

Thus, for a specific index t and considering the case where k = 0 as an
illustrative example, the expression for the vector ct is defined as follows:

ct =A(1,t)
GA · f1 + . . .+A

(t−1,t)
GA · ft−1 + 0 · ft+ (7.7)

A
(t+1,t)
GA · ft+1 + . . .+A

(N,t)
GA · fN . (7.8)

While vector ct holds relevant information about the sequence features, vector
ft is entirely masked. The query and key values are then calculated based on
the contextual information provided by the ct vectors as:
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Q ≜ WQC, K ≜ WKC (7.9)

Our underlying assumption is that the cosine similarity between the
context-based query and key values can be employed to calculate the attention
for the values V. In particular, when two distinct positions, denoted as t1 and
t2, exhibit similar contextual representations (ct1 and ct2, respectively), the
associated value vector vt2 can be utilized to accurately predict the output
corresponding to the value vector vt1, and vice versa. Therefore, the values
are updated as:

Z = VA⊤
C , where AC ≜ softmax

(
1√
d

Q⊤K + Mk

)
. (7.10)

In this way, the attention values are computed by taking into account the
context of each individual item while simultaneously masking each of them.

After this, we apply layer normalization followed by two feedforward layers
to the enriched representation Z:

Z←LayerNorm
(

LayerNorm(Dropout(Z))+ (7.11)

Dropout(ReLU (ZW1 + b1) W2 + b2

)
(7.12)

where W1,W2 ∈ Rd×dff and b1, b2 ∈ Rdff are the weights and biases of the
first and second feedforward layers, respectively.

Spatio-temporal transformer

As multivariate time-series are considered in this study, these operations are
employed for each sensor individually to obtain enriched sensor-wise context
vectors. As a result, for each sensor indexed as s ∈ {1, . . . , S}, a represen-
tation Z(s) =

{
Z(1,s), . . . ,Z(N,s)} is obtained from the corresponding context

vectors C(s) =
{

C(1,s), . . . ,C(N,s)}. Now, to model the spatio-temporal depen-
dencies that may arise between these representations, we propose the use of
a spatio-temporal transformer, as the spatio-temporal (ST) dependency dis-
covery framework proposed in our previous work [244]. This spatio-temporal
transformer is illustrated in Fig. 7.3.

To reflect ST dependencies in the representation vectors Z, we define the
transition probability between the items assuming that there is a latent de-
pendency structure behind {Z(t,s)} described by the transition probability
between two spatio-temporal points (t, s) and (t′, s′) as p(t, s | t′, s′). Here we
employ a factorized transition model

p(t, s | t′, s′) ≈ p(t | t′, s)p(s | s′, t), (7.13)

where p(·) is used as a symbolic notation representing probability distribution
in general rather than a specific functional form.
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Fig. 7.3: Spatio-temporal dependency discovery framework.

Naming Z, Ẑ the spatial and temporal branches of Z, these transition
probabilities are learned as

Ẑ(s) ← softmax
(

1√
d

Ẑ(s)Ẑ(s)⊤
)

︸ ︷︷ ︸
Temporal attention: A(s)

Ẑ(s) (7.14)

Z(t) ← softmax
(

1√
d

Z(t)Z(t)⊤
)

︸ ︷︷ ︸
Spatial attention: B(t)

Z(t) (7.15)

where Ẑ(s) ≜ [Z(1,s), . . . ,Z(N,s)] and Z(t)
≜ [Z(t,1), . . . ,Z(t,S)]. After this, the

enriched representations are added, normalized, and represented in a single
representation vector as

Z← LayerNorm(Z + Dropout(Ẑ)) + LayerNorm(Z + Dropout(Z)). (7.16)

Note that, for simplicity, although one head is used in Eq. (7.16), this
operation is performed using H heads. After the aggregation, the enriched
representation Z is normalized after being passed to a 2-layer feedforward
network with ReLU activation function and a dropout layer:

Z← LayerNorm(Z + Dropout(ReLU ((ZW1 + b1) W2 + b2))) (7.17)

where W1,W2 ∈ Rd×dff and b1, b2 ∈ Rdff are the weights and biases of the
first and second feedforward layers, respectively.
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Classification Head

Finally, the output layer utilizes a separate feedforward network for each sen-
sor, with a sigmoid activation function, to derive the model’s output, i.e.,

O(N,s) ← sigmoid(W(s)
O Z(N,s) + b

(s)
O ) (7.18)

where W(s) ∈ Rd×K and b
(s)
O ∈ RK are the learnable weights and the biases

of the feedforward network.

Multi-masking Strategy

As depicted in the overall architecture of Fig. 7.1, three distinct branches can
be observed in the second block of uDFSTrans. These branches apply different
maskings to the features f1, ...,fN . Our hypothesis here is that if there is an
anomaly at a certain window Wt, predicting the values of this window will
become more challenging with an increased level of applied masking.

To measure this, we apply different maskings and then observe the differ-
ences between the predictions generated by each branch. In the two previous
sections, we have elaborated on the workings of the Global Alignment Trans-
former, the ST transformer, and the output layer, which are abbreviated as
GAT, STrans, and OutLayer, respectively. As depicted in Eq. (7.5), in GAT we
add a mask Mk when calculating the attention, where k denotes the number
of windows masked around a given temporal position t. In our experiments,
we employ three branches with masking values of k = 0, 1, and 2 respectively.
Each branch applies distinct masking lengths resulting in three distinct out-
puts, one from each masking approach:

Z(k) ← GAT(k)(F) (7.19)
Z(k) ← STrans(k)(Z(k)) (7.20)
O(k) ← OutLayer(k)(Z(k)) (7.21)

In this way, we obtain three outputs
{

O(0),O(1),O(2)} which will be the
predictions for a given input window Wt masking {Wt}, {Wt−1,Wt} and
{Wt−2,Wt−1,Wt}, respectively.

Our supposition is that the dissimilarities observed among the three out-
puts can offer critical insights into identifying anomalies. Therefore, we pro-
pose an anomaly score that incorporates these differences, in addition to other
pertinent factors.

7.3.2 Anomaly score

Below we define the terms that we take into account to establish the anomaly
score.
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• Reconstruction error:

REt,s =
∑K

k=0∥Wt,s − O(k)
t,s ∥

∥Wt,s∥+ ϵ

where K denotes the number of branches and O(k)
t,s is the output for branch

k and ϵ = 10e−4.
If a window is anomalous, its reconstruction becomes more challenging.
This is attributed to the model’s training exclusively on ’normal’ data,
which does not encompass these outlier characteristics. Therefore, the re-
construction error will be higher in anomalous windows.

• Inverse entropy of reconstruction errors: Let et,s = {∥Wt,s −
O(k)

t,s ∥ | k = 0, 1, 2}. Then, for time-step t and sensor s, the inverse
entropy of reconstruction errors is defined as:

IHRt,s = H(γ(et,s))−1

where H(X) := −
∑

x∈X p(x) log p(x) = E[− log p(X)] denotes the entropy
function and γ(et,s) = et,s∑K

k=0
et

.
Increasing the number of masked windows complicates obtaining accurate
reconstructions. Particularly, in anomalous segments the discrepancy in
reconstructions is bigger with more extensive masking. Consequently, en-
tropy in reconstruction errors inversely correlates with the noticeability
of these differences, leading the inverse entropy function to yield elevated
values when such differences are pronounced.

• Attention variance between maskings: Let A(l) = {A(k,l) | k =
0, 1, 2} and B(k) = {B(k,l) | k = 0, 1, 2} where K denotes the number of
maskings used.

AV(k)
t,s =

N∑
i=1

(
L∑

l=1
Var(A(l))

)
i,t

+
N∑

i=1

(
L∑

l=1
Var(A(l))

)
t,i

+
N∑

j=1

(
L∑

l=1
Var(B(l))

)
j,s

+
N∑

j=1

(
L∑

l=1
Var(B(l))

)
s,j

.

Assuming that anomalous regions are more challenging to predict, the
variance between the attention matrices produced by different masks could
be larger in these areas. This is because there may be regions that are
visible with one mask but not another, and these regions can be pertinent
for prediction.

• Attention variance between layers: Let A(k) = {A(k,l) | l = 1, ..., L}
and B(k) = {B(k) | l = 1, ..., L}, where A(k,l) and B(k,l) denotes the tem-
poral and spatial attention matrices for branch with masking k for layer
l, respectively, and L denotes the number of transformer layers.
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AV(l)
t,s =

N∑
i=1

(
K∑

k=0
Var(A(k))

)
i,t

+
N∑

i=1

(
K∑

k=0
Var(A(k)

)
t,i

+
S∑

j=1

(
K∑

k=0
Var(B(k))

)
j,s

+
S∑

j=1

(
K∑

k=0
Var(B(k)

)
s,j

.

Under the same assumption, the connections within each masking branch
will vary when regions display anomalous patterns. Therefore, the variance
between the attention matrices across different layers will be higher when
the regions are anomalous.
Considering these terms, the score for a given time-step t and a given

sensor s is computed as:

St,s = REt,s · IHRt,s ·AV(l)
t,s ·AV(k)

t,s (7.22)

7.4 Experimental framework

In this section, we provide a description of the algorithms used for evaluation,
as well as the datasets employed. We also outline the metrics used and the
adopted evaluation strategy.

7.4.1 Datasets and baselines

A. Baseline algorithms

In our experiments, we compare uDFSTrans with nine state-of-the-art mod-
els for multivariate time-series anomaly detection, including GDN [139],
DAGMM [143]. USAD [145], TranAD [212], CAE-M [159], MSCRED [144].
MTAD-GAT [245], OmniAnomaly [185] and MAD-GAN [246]. For a general
understanding of how these algorithms work refer to Section 2.1 We use hy-
perparameters of the baseline models as presented in their respective papers.

B. Datasets

For the evaluation, the following datasets have been utilized:
• Numenta Anomaly Benchmark (NAB) [247]: This dataset comprises a vari-

ety of real-world data traces, including temperature sensor readings, cloud
machine CPU utilization, service request latencies, and taxi demands in
New York City. However, certain datasets such as Rogue and Rogue Up-
down have been excluded due to inconsistencies in their labels. Type of
data: Univariate.

• HexagonML (UCR) [248]: This is a comprehensive collection of time series
data, sourced from diverse domains, curated to facilitate and benchmark
research in time-series anomaly detection. Type of data: Univariate.
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• Synthetic [144]: Synthetic data is constructed as a series of time points,
mathematically formulated as follows:

S(t) =


sin︸︷︷︸
C1

[(t− t0) /ω]︸ ︷︷ ︸
C2

+ λ · ϵ︸︷︷︸
C3

, srand = 0

cos︸︷︷︸
C1

[(t− t0) /ω]︸ ︷︷ ︸
C2

+ λ · ϵ︸︷︷︸
C3

, srand = 1
(7.23)

In the formula, srand is a binary random seed. It encapsulates three as-
pects of multivariate time series: (a) temporal patterns simulated by a
trigonometric function (C1); (b) various periodic cycles represented by a
time delay t0 ∈ [50, 100] and a frequency ω ∈ [40, 50] (C2); and (c) data
noise, simulated by random Gaussian noise ϵ ∼ N (0, 1) scaled by a factor
of λ = 0.3 (C3). Type of data: Multivariate.

• Server Machine Dataset [185]: This is a five-week long dataset consisting
of stacked traces of resource utilizations from 28 machines in a compute
cluster, capturing both normal and anomalous patterns to aid in anomaly
detection research. Type of data: Multivariate.

• Secure Water Treatment (SWaT) [249]: This dataset contains observations
from a water treatment plant, encompassing seven days of regular oper-
ations and four days of abnormal or irregular operations. Type of data:
Univariate.

• MIT-BIH Supraventricular Arrhythmia Database (MBA) [250]: This dataset
comprises electrocardiogram recordings from four patients, featuring mul-
tiple occurrences of two distinct types of anomalies: supraventricular con-
tractions and premature heartbeats Type of data: Multivariate.

7.4.2 Evaluation criteria

In this section, we will discuss the metrics used to evaluate our models for
anomaly detection and diagnosis.

Anomaly detection

As the scores defined in the previous section can have different ranges of values
for each of the sensors, we first normalize each dimension to be between 0 and
1. For anomaly detection, the scores for each time-step t are the sum of the
scores obtained for each of the dimensions.

St =
S∑

s=1
MinMaxScaler(St,s) (7.24)

The evaluation criterion used in recent years often relies on a protocol
known as point adjustment. This protocol adjusts predictions in the following
manner:
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A dataset may contain multiple anomaly segments lasting over a few
time steps. We denote A as a set of M anomaly segments; that is, A =
{A1, . . . , AM}, where Am = {tms , . . . , tme } ; tms and tme denote the start and
end times of Am, respectively. Using the PA protocolm the predictions ŷt are
adjusted to 1 for all t ∈ Am if the anomaly score is higher than a predefined
threshold δ at least once in Am, i.e.,

ŷt =


1, if St > δ

or t ∈ Am and ∃
t′∈Am

St′ > δ

0, otherwise.
(7.25)

However, a recent study by Kim et al. [251] demonstrates that this eval-
uation method may not be reliable. It has been experimentally shown that
even a random anomaly score can yield better results than state-of-the-art
algorithms. Consequently, we have adopted their evaluation criteria, named
PA%K protocol. The PA%K protocol mitigates the overestimation effect of
the PA protocol by applying the PA protocol to the segments Am only if the
ratio of correctly detected anomalies in Am to its length exceeds the PA%K
threshold K, i.e.

ŷt =


1, if St > δ

or t ∈ Am and ∃
t′∈Am

|{t′|t′∈Am,St′ >δ}|
|Am| > K

0, otherwise.

(7.26)

Anomaly diagnosis

In terms of anomaly diagnosis, we have evaluated it on datasets where label
information is also provided in the spatial dimension, specifically on the Syn-
thetic and SMD datasets. In these datasets, for time step t the label yt is
given as yt = {y1

t , ...,y
S
t }, where yj

t ∈ {0, 1} for s ∈ {1, ..., S}. Particularly,

ys
t =

{
1 if xs

t is anomalous,
0 otherwise.

.

We employ standard metrics to assess the diagnostic efficiency of all mod-
els. HitRate@P% indicates the proportion of true anomaly dimensions the
model successfully identified within its top predictions. The percentage P%
corresponds to the proportion of anomalous dimensions in the ground truth
at each timestamp, which we use to determine the top predicted candidates.
For a detected anomaly xt, taking the anomaly score for each dimension
and recording all of them into a list, ASt, ordered by their contributions, let
GTt = {s | s ∈ {1, ..., S} ∧ ys

t = 1} be the ground truth array containing
the dimensions contributing to the anomaly. Then, HitRate@P% is defined
as:
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HitRate@P% = Hit@ ⌊P%× |GTt|⌋
|GTt|

(7.27)

where |GTt| is the length of GTt. For example, at timestamp t, if 2 dimensions
are flagged as anomalous in the ground truth, HitRate@100% would consider
the top 2 dimensions, while HitRate@150% would account for 3 dimensions.

In addition, we calculate the Normalized Discounted Cumulative Gain
(NDCG), where NDCG@P% considers an equivalent number of top predicted
candidates as HitRate@P%.

7.5 Results and discussion

In this section, we aim to demonstrate the ability of uDFSTrans to detect
and diagnose anomalies. To show this, we compare its performance across six
datasets, utilizing nine different baseline methods for reference.

7.5.1 Anomaly detection

First, we start by checking how well the model can spot anomalies. For the
evaluation, we use the PA%K evaluation protocol to measure the F1 and AUC
scores for different k values.

The results we obtained from each dataset are visualized in Figure 7.4,
where we have plotted the model’s performance trend as the percentage of k
increases. The F1 score is depicted with dots, while the AUC is represented
with crosses. We have used a different color for the lines connecting the dots
and crosses for each model. According to the PA%K evaluation protocol, the
less the performance drops as k increases, the more reliable the anomaly scores
provided by the model are.

Analyzing the results from Figure 7.4, we find that, on the whole, uDF-
STrans is the model whose performance decreases the least as k increases.
When evaluated in terms of AUC, we observe that uDFSTrans generally out-
performs the other algorithms, delivering the best results in the Synthetic,
NAB, UCR, and MBA datasets. It holds its own in the SMD dataset and
faces more challenges in the SWaT dataset. However, when looking at the
results for all values of k, it is evident that in the SWaT dataset, uDFSTrans
is the model whose performance decreases least with larger k values, which
makes the scores to be reliable. Looking at the F1 score, uDFSTrans also
delivers very competitive results, ranking as the best in MBA, UCR, NAB,
and Synthetic datasets and holding a competitive position in both SWaT and
SMD datasets.

We have presented these results numerically in Table ??, taking the
average of the results obtained for the different k values. As seen in the
bold-highlighted results, uDFSTrans achieves the best performance in most
datasets in terms of F1 and AUC scores.
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Fig. 7.4: Results obtained for each model in six different univariate and multi-
variate anomaly detection datasets using PA%k evaluation protocol for AUC
and F1 scores.

In Figure 7.5, we have plotted some results obtained from the UCR dataset.
In this figure, the true data is represented in black, the given prediction is in
red (note that we have only plotted output O1 to keep the image clear and
avoid confusion), the ground truth label is in purple, the obtained anomaly
scores are in green, and we have used yellow for the threshold and predictions.
As seen in the image, the scores obtained are higher in anomalous areas, while
in non-anomalous areas, we generally get lower scores. In all three cases, we
see that the model has been successful in detecting the anomalies.

7.5.2 Anomaly diagnosis

For anomaly diagnosis, the evaluation has been done based on two metrics:
Hit@k% and NDCG@k%, for k values of 100 and 150. The anomaly diagnosis
has been evaluated in two datasets, which provide labels for each sensor as
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Table 7.1: Anomaly detection results based on PA%K evaluation protocol.
The results are the mean values of F1 and AUC scores obtained for different
k percentages. The best results are highlighted in bold.

Model Synthetic NAB UCR SWaT MBA SMD Average
F1k AUCk F1k AUCk F1k AUCk F1k AUCk F1k AUCk F1k AUCk F1k AUCk

GDN 0.985 0.998 0.262 0.721 0.181 0.756 0.765 0.869 0.720 0.763 0.490 0.783 0.567 0.815
USAD 0.995 0.999 0.373 0.745 0.212 0.760 0.798 0.900 0.813 0.878 0.616 0.859 0.634 0.840
TranAD 0.992 0.998 0.388 0.783 0.167 0.729 0.782 0.834 0.739 0.812 0.667 0.902 0.622 0.843
CAE-M 0.995 0.999 0.436 0.787 0.190 0.717 0.808 0.864 0.684 0.769 0.580 0.872 0.616 0.821
MSCRED 0.996 0.999 0.301 0.695 0.174 0.746 0.788 0.877 0.720 0.799 0.582 0.867 0.593 0.830
MTAD-GAT 0.938 0.996 0.332 0.803 0.161 0.717 0.807 0.884 0.723 0.814 0.590 0.874 0.592 0.848
MAD-GAN 0.980 0.999 0.356 0.628 0.202 0.773 0.768 0.861 0.802 0.876 0.468 0.778 0.596 0.819
DAGMM 0.993 0.999 0.364 0.740 0.243 0.789 0.804 0.889 0.791 0.872 0.645 0.903 0.625 0.842
OmniAnomaly 0.984 1 0.393 0.803 0.169 0.745 0.806 0.884 0.707 0.770 0.528 0.828 0.598 0.821
uDFSTrans (Ours) 0.980 1 0.460 0.932 0.338 0.845 0.803 0.837 0.940 0.980 0.556 0.884 0.680 0.896
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Fig. 7.5: Examples of uDFSTrans results in three UCR datasets.
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well as temporal labels, namely the SMD and Synthetic datasets. The results
can be viewed in Table 7.2.

Table 7.2: Anomaly diagnosis results for SMD and synthetic dataset based on
Hit@k% and NDCG@k% values. The best results are highlighted in bold.

Model Hit@100% Hit@150% NDCG@100% NDCG@150%
SMD Synthetic SMD Synthetic SMD Synthetic SMD Synthetic

GDN 0.308 0.808 0.439 0.853 0.315 0.831 0.393 0.856
USAD 0.452 0.987 0.561 0.989 0.467 0.987 0.533 0.988
TranAD 0.458 0.986 0.558 0.990 0.483 0.987 0.543 0.989
CAE-M 0.414 0.946 0.527 0.972 0.435 0.959 0.502 0.974
MSCRED 0.434 0.830 0.555 0.894 0.454 0.869 0.527 0.906
MTAD-GAT 0.354 0.826 0.474 0.918 0.377 0.851 0.449 0.904
MAD-GAN 0.402 0.963 0.533 0.986 0.392 0.971 0.470 0.985
DAGMM 0.512 0.987 0.626 0.989 0.526 0.987 0.595 0.988
OmniAnomaly 0.433 0.985 0.534 0.995 0.447 0.989 0.507 0.995
uDFSTrans (ours) 0.506 0.999 0.650 1.000 0.526 0.999 0.612 1.000

Analyzing these results, we can say that uDFSTrans outperforms most of
the other algorithms for anomaly diagnosis in both datasets. Based on the
Hit@100% metric, only the DAGMM algorithm achieves better results than
uDFSTrans in the SMD dataset, but in all other cases, uDFSTrans performs
better in all terms. For the SMD dataset, it is worth mentioning that these
two algorithms outperform all the other baseline methods.

We also find it interesting to visualize how the terms of the scores are
affected when there is an anomaly in the model’s input. To this end, in Figure
7.6, we perform a visual diagnosis of an anomaly by plotting an input with an
anomaly at the end of the sequence and simultaneously plotting the variance
matrix of the attention mechanisms to observe their behavior in the anomalous
windows. In plot (c) of this figure, we can see that these variances are higher
in the region where the anomaly occurs. This is reflected in the plots of figure
(d), specifically where it is visualized that the attention variance between
different layers and the attention variance between different maskings is higher
in anomalous regions. On one hand, this phenomenon can be attributed to the
maskings, as there are regions that are visible with one masking but not with
another, and these regions can be valid for prediction. On the other hand, it’s
due to the fact that the connections of the attention mechanism change when
a region exhibits abnormal behavior.

Moreover, we have plotted also the inverse entropy of reconstruction errors.
As observed in the reconstructions, as the masking increases, the reconstruc-
tion worsens, leading to an increase in reconstruction error. This phenomenon
is more noticeable in anomalous regions as they are harder to reconstruct,
given that only instances with normal behavior were used in training. There-
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Fig. 7.6: Visual diagnostics of an anomalous subsequence. (a) shows a time-
series with the reconstructions obtained using different masks, (b) shows a
zoomed area of the time-series to be analyzed, (c) shows the variance matrix of
all the attention matrices, and (d) shows, on top, the score obtained from the
attention variances between different transformer layers (denoted as AV(l)), in
the middle, the score obtained from the attention variances between different
masking branches (denoted as AV(k)), and at the bottom, the inverse entropy
of the reconstruction errors.

fore, in the last plot of Figure 7.6, we note a variation in reconstruction errors,
measured by the inverse entropy. As the disparity in these errors grows in the
anomalous regions, the entropy reduces, leading to higher IHR values in such
areas.

7.6 uDFSTrans, a reliable solution for unsupervised
anomaly detection and diagnosis

With this research, we have written an article that has been submitted to the
journal IEEE Transactions on Pattern Analysis and Machine Intelligence
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Article 4 (A4): Labaien, J., Ide T., Chen, P.Y, Zugasti, E., & De
Carlos, X. (2023). Transformers are Efficient Unsupervised Anomaly
Detectors. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence. Status: Under review

In this study, we proposed a spatio-temporal transformer-based algorithm
that utilizes a multi-masking strategy and context-based attention mecha-
nism, which allows for the efficient detection and diagnosis of anomalies in
multivariate time series in an unsupervised fashion. With this, we have demon-
strated that transformers are effective tools for anomaly detection, and that
the spatio-temporal relationships they learn contribute to enhancing the di-
agnosis of anomalies.

Our evaluation shows that the suggested model, uDFSTrans, performs
consistently well in detecting anomalies. This consistency is confirmed by the
stable results in F1 and AUC scores across different k values in the PA%K
assessment protocol. This is indicative of its ability to provide reliable anomaly
scores. The proposed anomaly score effectively brings together key factors
to distinguish anomalies. On one hand, the use of a multi-masking strategy
enables us to observe greater differences in reconstruction errors, which in turn
facilitates anomaly differentiation using inverse entropy. On the other hand,
we have demonstrated that variance within attention mechanisms tends to
be greater in anomalous regions, which is a crucial factor in detecting these
regions.

In terms of anomaly diagnosis, the results obtained affirm the efficacy of
uDFSTrans in diagnosing anomalies. The proposed algorithm outperforms the
baseline algorithms in the metrics HIT@k% and NDCG@k% scores. Therefore,
we conclude that, in addition to being effective in detecting anomalies in the
temporal space, the spatial connections also help in detecting anomalies in
the spatial dimension, which is crucial for anomaly diagnosis.
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General Conclusions and Future Work

Finally, in this section, we summarize the general conclusions derived from
this thesis and highlight potential future work.

8.1 General conclusions

Throughout this research, we have made significant strides towards our over-
arching objective (GO) of researching, designing, and validating ex-
plainable solutions for anomaly diagnosis in time-series data. Our
research has primarily focused on two areas: post-hoc real-time explainabil-
ity for time-series anomaly detection and integrating intrinsic interpretability
in black-box models. In addressing these objectives, we have made four key
contributions.

To fulfill this goal, our initial steps were directed towards embracing post-
hoc techniques to provide real-time interpretability for such data. It was within
this realm that we identified counterfactual explanations as an area deserv-
ing of our keen attention. Our exploration is carefully structured to address
our first hypothesis (H1): post-hoc XAI methods enable real-time in-
terpretation of time series data, providing anomaly diagnosis.. In
alignment with this hypothesis, our first major goal, O1, propels the first
study of the thesis: to research, design and validate post-hoc real-time
explainability for time-series anomaly detection.

In the realm of anomaly detection, swift and effective responses are imper-
ative. Counterfactual explanations emerge as a powerful tool in this scenario.
They not only pinpoint the root of detected anomalies but also pro-
vide crucial guidance on subsequent rectification steps, enhancing the
efficiency of both diagnosis and remediation. Thus, our first contribution
involved the validation of the use of the Counterfactual Explana-
tions Method (CEM) in time-series classification tasks, establishing
the applicability of CEM in this context and exploring its poten-
tial as a tool for generating meaningful explanations. Despite the fact
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that CEM was capable of producing counterfactuals in time-series data, we
noted the computational demands of CEM as a significant draw-
back, which motivated us to address this in our subsequent exploration: con-
ceiving a method optimized for real-time counterfactual explanations. This
contribution led us to author the following article:

Article 1 (A1): Labaien, J., Zugasti, E., & De Carlos, X. (2020,
September). Contrastive explanations for a deep learning model on
time-series data. In Big Data Analytics and Knowledge Discovery:
22nd International Conference, DaWaK 2020, Bratislava, Slovakia,
September 14–17, 2020, Proceedings (pp. 235-244). Cham: Springer
International Publishing. Status: Accepted.

For our subsequent contribution, drawing inspiration from our initial find-
ings and addressing the time constraints of CEM, we introduced the Real-
Time Guided Counterfactual Explanations (RTGCEx) method. This
approach uses autoencoders, trained with a multi-objective loss
function, to craft real-time counterfactual explanations. Beyond merely
being fast, RTGCEx is designed to be model-agnostic and emphasizes deliv-
ering user-focused explanations.

The true value of RTGCEx is seen in its ability to produce fast counter-
factuals across various domains and types of data. Our results on the MNIST
dataset show that it not only outperforms traditional techniques in speed but
also excels in producing quality insights. Further tests on the Gearbox dataset
spotlight also RTGCEx’s proficiency in effectively detecting and addressing
anomalies. With these experiments, we have written another article:

Article 2 (A2): Labaien Soto, J., Zugasti Uriguen, E., & De Carlos
Garcia, X. (2023). Real-Time, Model-Agnostic and User-Driven Coun-
terfactual Explanations Using Autoencoders. Applied Sciences, 13(5),
2912. Status: Accepted.

After our initial exploration of post-hoc techniques, we turned our at-
tention to intrinsically interpretable models. Guided by our second hypothe-
sis (H2): we believed that the integration of interpretability within a
black box model can improve the explainability without compro-
mising performance metrics. To achieve this, our second objective (O2)
was to research, design, and validate the integration of intrinsic in-
terpretability in black-box models for time-series anomaly detection
and diagnosis.

In the previous works, our emphasis was on methods that elucidate the rea-
soning behind a model’s conclusions, particularly concerning real-time inter-
pretation of time-series data. However, it becomes apparent that such expla-
nations may not always encapsulate the nuanced details embedded
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within the data and the models. These elucidations, being detached
from the intrinsic workings of the models, might omit essential infor-
mation. This motivated us to directly integrate interpretability within
anomaly detectors, facilitating a more comprehensive and immedi-
ate understanding during the diagnostic process. In this context, we
believe that Transformer models are suitable for providing these explanations
due to their ability to capture spatio-temporal relationships within the data.

The third contribution presents a new framework for diagnosing
anomalies in multivariate sensor data, called Diagnostic Fourier-
based Spatio-temporal Transformer (DFSTrans). At its core, this
framework blends the strengths of multi-head 1D CNNs, which capture de-
tailed insights from raw data, with the benefits of a Transformer-like setup
that understands how these insights connect over time.

In this research, we found a challenge with the usual way Trans-
formers understand the position of data. This standard method some-
times misses short-term changes, which are often vital for spotting anomalies.
To solve this, we introduced a new approach, called faithful encod-
ing. This method ensures that every piece of data is given equal
importance, without any biases.

We put our new DFSTrans framework to the test using four different sets
of data. We also compared our new faithful encoding with the usual method.
The results were promising: our method often performed better, and
our attention-focused tools proved reliable in diagnosing anomalies.
In simple terms, the DFSTrans framework is a reliable tool for spotting and
understanding unusual patterns in complex data from sensors. With these
experiments, we authored another article:

Article 3 (A3): Labaien, J., Ide T., Chen, P.Y, Zugasti, E., & De Car-
los, X. (2023). Diagnostic Spatio Temporal Transfomer with Faithfull
Encoding. Knowledge-Based Systems. Status: Accepted.

Thus far, our research has predominantly resided in the supervised learning
domain, which relies on the presence of labeled data. However, obtaining
such labels, particularly for anomalous data, can be challenging.
Given this obstacle, we have transitioned to refining our DFSTrans framework
for unsupervised scenarios, enhancing its adaptability for diverse real-world
applications.

As stated, our fourth contribution involves adapting our framework to an
unsupervised setting. We introduced the unsupervised version of the DFS-
Trans framework (uDFSTrans), which uses a multi-masking strategy
and a context-based attention mechanism. This adaptation proves good
performance and consistency in anomaly detection and diagnosis in an unsu-
pervised manner, thus enhancing its applicability in real-world scenarios where
labeled anomalies may not be available.
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In our tests, the uDFSTrans model consistently showed its strength in de-
tecting anomalies. We obtained competitive results in both F1 and AUC scores
when looking at various test values under the PA%K evaluation protocol. This
ensures the model’s ability to produce trustworthy scores for anomalies. This
ability to detect anomalies hinges on a couple of key features. Firstly, using
a multi-masking technique helps us notice significant differences when data
is reconstructed, aiding us in differentiating between normal and anomalous
patterns. Secondly, we found that attention tools show more variation when
they are in the vicinity of anomalies, which is a factor that helps highlighting
these unusual areas.

When it comes to diagnosing the nature and cause of these anomalies,
uDFSTrans proves its worth again. In terms of HIT@k% and NDCG@k%
scores, uDFSTrans delivered better results than other standard methods. This
leads us to believe that uDFSTrans is not just adept at spotting time-based
irregularities, but it’s also skilled in understanding spatial anomalies, a key
aspect of comprehensive anomaly detection.

With this research, we have authored the last article of the thesis, which
has been submitted to the journal IEEE Transactions on Pattern Analysis
and Machine Intelligence:

Article 4 (A4): Labaien, J., Ide T., Chen, P.Y, Zugasti, E., & De
Carlos, X. (2023). Transformers are Efficient Unsupervised Anomaly
Detectors. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence. Status: Under review

Overall, our research has successfully validated our general hypothesis: Ex-
plainable Artificial Intelligence methods can provide valuable insights into the
decision-making process of black box models, leading to accurate anomaly di-
agnosis. Moreover, we have been successful in fulfilling our general objective of
researching, designing, and validating explainable solutions for anomaly diag-
nosis in time-series data. Furthermore, our efforts align well with our specific
objectives of providing real-time interpretation of time-series data and inte-
grating interpretability within black box models without compromising their
performance. The tools and frameworks we have developed not only improve
anomaly detection and diagnosis but also enhance the understandability of
these processes, leading to better, more informed decisions in various appli-
cation domains.

Following the conclusions, it is worth noting that the final two publications
emerged from my stay at the IBM Research Center in Yorktown Heights, New
York, carried out from September 2022 to December 2022. Throughout this
period, I had the privilege of working under the expert guidance of Pin-Yu
Chen and Tsuyoshi Ide. Their insights and mentorship were instrumental in
shaping these significant contributions.
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8.2 Future work

In light of the findings and experiences from this research, several future di-
rections arise. These potential lines of inquiry can further enhance our under-
standing of time-series anomaly detection and continue to push the boundaries
of our knowledge.

• Analysis of counterfactual explanations in multivariate time-
series data: This research opens up opportunities for expanding the
understanding of counterfactual explanations in multivariate time-series
data. Our study has demonstrated the utility of such explanations in uni-
variate time-series data. Still, the complexity and dependencies within mul-
tivariate time-series data present new challenges and opportunities that
can be explored.

• Strategies for context connections in spatio-temporal settings:
Our work has utilized global alignment attention, which considers the
temporal context sensor-wise separately. Future work could explore other
strategies for forming context connections that take into account both
spatial and temporal information in a more integrated manner.

• Hyperparameter exploration in spatio-temporal transformers:
The effects of different hyperparameters on the performance of spatio-
temporal transformers remain largely unexplored. Future studies could
delve into this area, determining the optimal hyperparameters and how
they impact anomaly detection and diagnosis.

• Automatic threshold selection algorithms in anomaly score-based
detectors: The selection of a suitable threshold in anomaly score-based
detectors is crucial, and this study has applied predefined thresholds. Fu-
ture research could aim at developing and testing automatic threshold
selection algorithms to improve the adaptability and performance of these
detectors.

• Normalization strategies for online settings: As our work has pri-
marily focused on batch processing, a promising future direction could be
the exploration of normalization strategies suitable for online settings. This
would allow our models to better adapt to streaming data and real-time
applications.

• Metrics for attention-based anomaly diagnosis: Our research has
utilized conventional metrics for evaluation. However, given the unique
characteristics of attention-based anomaly diagnosis, the exploration and
development of dedicated metrics could provide a more nuanced under-
standing of these models’ performance.

• Exploration of concept drift scenarios: One of the common challenges
in time-series data analysis is the phenomenon of concept drift, where the
statistical properties of the target variable, which the model is trying to
predict, change over time. This makes the patterns that the model learned
at some point become obsolete or less effective over time. Future research
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could focus on developing strategies for handling concept drift in anomaly
detection in time-series data, ensuring the models remain effective as new
data is collected over time.



Part IV

Appendix
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DFSTrans

9.1 Elevator use-case

The industrial use case of this work deals with an elevator monitored by 20
sensors. The data used in this work is obtained from a physical model de-
signed by a domain expert that mimics the real behavior of the elevator. This
simulator is highly configurable, having different parameters to determine the
power of the electric machine, the load of the cabin, the alignment of the guid-
ance system, or the tension of the cables, among others. The physical model
simulates up and down journeys under all possible conditions by modifying
these input parameters. Specific values of these parameters allow generating
fault conditions during the journey, such as reduced lubrication, misalignment
or peaks in the guiding system, or de-magnetization or loss of inductance in
the electric machine. This paper studies the most common issue in this case
study: the failures produced in the guiding system. In order to generate these
anomalies, as pointed out before, three effects have been introduced to the
model related to misalignment, lubrication reduction, and localized bumps in
the guiding system. The first two effects increase friction between the cabin,
the counterweight, and the rails. The localized bumps result in local impacts
on the cabin, leading to spike-like malformations. These effects cover the main
fault conditions of the guiding systems. All failures can be observed in several
of the described sensors, but they may not be reflected in all of them.
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9.2 1D Multi-Head CNN

9.2.1 Architecture and hyperparameters
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Fig. 9.1: 1D Multi-Head CNN used for
feature extraction.

Table 9.1: Hyperparameters for Multi-
Head 1D CNN.

Parameter Datasets
Elevator SMD MSL SMAP

Number of sensors (S) 20 38 55 25
Window length (wl) 100 50 50 50
Time-segments (Nw) 80 10 10 10
Number of convolutional blocks 4 4 4 4
Kernel size 5 5 5 5
Embedding dim (d) 240 120 120 120
Pooling size 2 2 2 2
Pooling stride 2 2 2 2

Figure 9.1 shows the architecture of the 1D Multi-Head CNN used in
DFStrans and Strans. The only difference concerning the blocks proposed by
Cañizo et al.[234] is the introduction of Max Pooling layers. As shown in
Figure 9.1, each convolution applies a Max Pooling layer, followed by a ReLU
activation function and a Batch Normalization (BN) [252] layer. The Max
Pooling layer helps to significantly reduce the dimensionality of the extracted
features by statistically summarizing the output of the convolutional layers at
a given time point based on their neighbors [127].

Table 9.1 shows the details of the data used, such as the number of sensors,
the length of the windows or the number of time segments and also shows the
hyperparameters used in each dataset for the 1D Multi-Head CNN. These are
chosen based on the exhaustive analysis made by [234] in their paper.

9.2.2 Comparison with linear projection

Next, we want to measure the effect that the Multi-Head 1D CNN has on
the performance of DFStrans in comparison to whether the embeddings that
are fed to the spatio-temporal dependency discovery network are achieved by
linear projections, as done in [233], and non-linear projection, as done in [228].

As stated, the MH 1D CNN maps each raw time-series t-segment to a
representation matrix: U (t)

i ∈ RS×wL → X(t)
i ∈ RS×M , where wl denotes

the window length and M is the dimensionality of the embedding. These
embeddings are obtained by means of different convolutional blocks in our
case. But in [233] for example, these embeddings are linear projections of the
raw data, i.e.
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X(t)
i ≜ U

(t)
i W(t), (9.1)

or non-linear projections, as in [228], i.e.

X(t)
i ≜ tanh(U (t)

i W(t)), (9.2)

where W(t) ∈ Rwl×M is a fully learneable matrix.

Table 9.2: Comparison between DFStrans using Multi-Head 1DCNN and DF-
Strans with linearly and non-linearly projected embeddings.

Feature extraction Precision Recall F1
Multi-Head 1D CNN 0.989 ± 0.016 0.917 ± 0.022 0.952 ± 0.005

Linear projection 0.986 ± 0.002 0.668 ± 0.045 0.778 ± 0.041
Non-linear projection 0.980 ± 0.002 0.85 ± 0.043 0.912 ± 0.030

Table 9.2 shows the results using different feature extraction strategies
to embed the raw time-series. This experiment has been performed for the
elevator use case. Looking at the results, we see that embedding extraction
plays an essential role in detecting anomalies. Using Multi-Head 1D CNN
as a feature extractor, we outperform the other strategies in terms of Recall
and F1. Although the Precision is still high with the other methods, it loses
detection capability, and the variability is higher too. Among the other two
strategies, non-linear projections performed better than linear projections.

9.3 Visualization of positional encodings

In Figure 9.2 we have visualized, on the one hand, the vanilla positional en-
coding, and on the other hand, the faithful-Encoding that we propose. In this
example, we have used Nw = 80 time segments and d = 240 features.

9.4 Details of spatio-temporal dependency structure and
classification head

Table 9.3 shows the hyperparameters used in the proposed network. Although
the experiments can be generalized to more heads and more layers in the
spatio-temporal dependency structure, we focus on a single layer and a sin-
gle attention head to facilitate the interpretation of the network for anomaly
diagnosis. The number of units for the spatial and temporal attention feed-
forward layer is 2048. The activations we use in the network are generally
ReLUs, except for the last classification layer, which is a sigmoid. Moreover,
the dropout rate is 0.1 in the whole network.
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Fig. 9.2: The figure on top shows a visualization of vanilla positional encoding
and the figure of the bottom shows a visualization of faithful-Encoding.
Both for Nw = 80 and d = 240.

Table 9.3: The hyperparameters selected for the spatio-temporal dependency
structure. Same selection for every dataset.

Hyperparameters Value

ST dependency structure

Dim feedforward 2048
Dropout rate 0.1
Number of attention heads 10
Number of layers 1
Activations ReLU

Classification head

Dim feedforward 1 512
Activation in feedforward 1 ReLU
Dropout rate 0.1
Dim feedforward 2 1
Activation in feedforward 2 Sigmoid

A. Justification of the transition probability equations

These are the equations that we are going to justify:

p(t, s | t′, s′) ≈ p(t | t′, s)p(s | s′, t), (9.3)

and

ln p(t | t′, s) = const.+ 1√
M

(x̂(t,s))⊤Ĥx̂(t′,s), (9.4)

ln p(s | s′, t) = const.+ 1√
M

(x(t,s))⊤Hx(t,s′), (9.5)



9.5 Details of benchmark algorithms 157

The key motivation of Eq. 9.3 is how to take account of the dependency
between spatial and temporal coordinates. The most naive approach is to
treat them as independent like

p (t, s | t′, s′) ≈ p (t | t′, s′) p (s | t′, s′) (naive) (9.6)

However, this is not the best model because we know that different sensors
(s, s′) have different time correlations, and spatial dependency can vary at
different times (t, t′). Thus, Eq.9.3 moves one step ahead of this naive model
and can be viewed as a tractable but still tractable approximation of the full
model. Instead of naively assuming independence, we used

p (t, s | t′, s′) ≈ p (t | t′, s) p (s | t, s′) (ours) (9.7)

so that the dependency between s and t is captured to some extent. Moreover,
the Eqs. 9.4 and 9.5 have two relatively clear justifications.
1. It leads to the well-known query-key formalism of the transformer.
2. Eqs.9.4 and 9.5 amount to approximating the distribution up to the second

order moments. This is indeed a widely used technique. For instance, you
can think of it as a Laplace approximation (see [253]) Section 8.4.1), where
the idea is essentially ”use the 2nd order Taylor expansion of ln p”.

9.5 Details of benchmark algorithms

A. Used code.

Here are the links to the codes for the benchmark datasets:
• InceptionTime: https://github.com/TheMrGhostman/InceptionTime-Pytorch
• TapNet: https://github.com/xuczhang/tapnet
• MLSTM-FCN: https://github.com/metra4ok/MLSTM-FCN-Pytorch
• Multi-Head 1D CNN - LSTM: No open source code has been found

for this algorithm.

B. Hyperparameters

Table 9.4 shows the hyperparameters selected in each benchmark algorithm
for each dataset. In most cases the hyperparameters selected are the default
parameters that the algorithms provide, but there have been some that we
have considered changing. For example, in the case of TapNet, the dilatation
and rp params parameters depend on the input dimension and the length of
the series, so it varies for each case. The rp param consists of two parameters:
the first one corresponds to the number of permutations, and the second one to
the sub-dimension of each permutation. Following the official implementation,
the number of permutations is set to three and the sub-dimension is computed
as

https://github.com/TheMrGhostman/InceptionTime-Pytorch
https://github.com/xuczhang/tapnet
https://github.com/metra4ok/MLSTM-FCN-Pytorch
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⌊S/1.5⌋,

where S denotes the number of sensors. Moreover, the dilatation parameter
is the dilatation used in the first dilated convolution, and is computed as

⌊T/64⌋,

where T denotes the length of the time series. On the other hand, another
parameter that we have had to tune has been the kernel sizes in Inception-
Time. Here we have differentiated the elevator use case and the benchmark
datasets because the difference in the length of the series is considerable. On
the one hand, in the elevator use case, the length of the series is 8000 points,
so we have considered large kernels of size 49, 99, and 199 in this case. On the
other hand, in the benchmark datasets, as the series is of 500 points, we have
considered kernels of size 9, 19, and 39.
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Table 9.4: Hyperparameters selected for benchmark algorithms.

Algorithm Hyperparameter Dataset
Elevator SMD MSL SMAP

MLSTM-FCN

Conv 1 (filters, kernel size, stride)
Conv 2 (filters, kernel size, stride)
Conv 3 (filters, kernel size, stride)
Conv dropout rate
Lstm layers
Lstm units
Lstm dropout rate
Dim feedforward

(128,8,1)
(256,5,1)
(128,3,1)

0.3
1

128
0.8
128

(128,8,1)
(256,5,1)
(128,3,1)

0.3
1

128
0.8
128

(128,8,1)
(256,5,1)
(128,3,1)

0.3
1

128
0.8
128

(128,8,1)
(256,5,1)
(128,3,1)

0.3
1

128
0.8
128

TapNet

Conv 1 (filters, kernel size, stride)
Conv 2 (filters, kernel size, stride)
Conv 3 (filters, kernel size, stride)
Lstm units
Dilatation
Rp params

(256,8,1)
(256,5,1)
(128,3,1)

128
125

(3,13)

(256,8,1)
(256,5,1)
(128,3,1)

128
7

(3,25)

(256,8,1)
(256,5,1)
(128,3,1)

128
7

(3,36)

(256,8,1)
(256,5,1)
(128,3,1)

128
7

(3,16)

InceptionTime

Inception blocks
Block 1 (in channels, filters, kernel sizes,
bottleneck channels, use residual, activation)
Block 2 (in channels, filters, kernel sizes,
bottleneck channels, use residual, activation)
Block 3 (in channels, filters, kernel sizes,
bottleneck channels, use residual, activation)
Maxpool (kernel size, stride)

3
(20,32,[49,99,199],32,True,ReLU)

(128,32,[49,99,199],32,True,ReLU)

(128,32,[49,99,199],32,True,ReLU)

(3,1)

3
(38,32,[9,19,39],32,True,ReLU)

(128,32,[9,19,39],32,True,ReLU)

(128,32,[9,19,199],32,True.ReLU)

(3,1)

3
(55,32,[9,19,39],32,True,ReLU)

(128,32,[9,19,39],32,True,ReLU)

(128,32,[9,19,39],32,True,ReLU)

(3,1)

3
(25,32,[9,19,39],32,True,ReLU)

(128,32,[9,19,39],32,True,ReLU)

(128,32,[9,19,39],32,True,ReLU)

(3,1)

MH 1DCNN

Convolutional blocks
Conv (filters, kernel size, stride)
Maxpool (kernel size, stride)
Dropout rate
Lstm units

3
(20,5,1)

(2,2)
0.1
128

3
(20,5,1)

(2,2)
0.1
128

3
(20,5,1)

(2.2)
0.1

128º

3
(20,5,1)

(2,2)
0.1
128
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9.6 Discussion on number of parameters and training
time

9.6.1 Number of parameters and training time in the conducted
experiments

Table 9.5 shows each algorithm’s learnable parameters and the time it takes
to train for each epoch. As we can see, in the elevator use-case, MH1DCNN-
LSTM is the model that has the most parameters, followed by DFStrans,
which is the model with the most parameters in the other use cases. Gen-
erally, training DFSTrans takes longer than the other algorithms except in
the elevator use-case, where MLSTM-FCN is the slowest algorithm.t. The
algorithm that has fewer parameters to train is MLSTM-FCN. The fastest
algorithms are TapNet and InceptionTime.

Table 9.5: Training time and number of parameters.

Algorithm Dataset Number of parameters Training time (s/epochs)

DFStrans

Elevator
SMD
SMAP
MSL

3878033
5840153
2225553
4197153

102.14
3.36
19.24
8.11

InceptionTime

Elevator
SMD
SMAP
MSL

3303681
726657
724161
729921

131.29
2.10
10.48
2.54

TapNet

Elevator
SMD
SMAP
MSL

5155962
1389690
1334394
1457274

96.83
2.62
8.23
2.32

MLSTM-FCN

Elevator
SMD
SMAP
MSL

371457
399105
379137
425217

203.21
2.49
9.81
2.66

MH1DCNN-LSTM

Elevator
SMD
SMAP
MSL

20764385
2696145
1841785
2768905

73.48
3.51
25.32
7.24

9.6.2 Effect of data size on the number of parameters

In this section, we study how the model parameters grow as the spatio-
temporal dimensions of the multi-sensor systems grow. As the learnable pa-
rameters of the model do not depend on the number of time segments, we
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have studied how the model’s number of parameters changes with a different
number of sensors. Table 9.6 shows the number of DFStrans parameters for
different numbers sensors (being Nw = 20). These results have been plotted in
Figure 9.3, where it can be seen that the number of model parameters grows
linearly with the number of sensors.

Number of sensors, Nw = 20 10 20 30 40 50 60 70 80
Number of parameters 2606433 3878033 5149633 6421233 7692833 8964433 10236033 11507633

Table 9.6: Number of model parameters for different number of sensors.
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Fig. 9.3: This figure shows the linear relationship between model parameters
and S.
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193. A. Barbado, Ó. Corcho, and R. Benjamins, “Rule extraction in unsupervised
anomaly detection for model explainability: Application to oneclass svm,” Ex-
pert Systems with Applications, vol. 189, p. 116100, 2022.

194. D. Martens, J. Huysmans, R. Setiono, J. Vanthienen, and B. Baesens, “Rule
extraction from support vector machines: an overview of issues and application
in credit scoring,” in Rule extraction from support vector machines, pp. 33–63,
Springer, 2008.
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