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Tesia idazten hasi nintzenetik, askotan pentsatu dut esker oneko lerro hauek nola 

idatziko nituen. Azkenean iritsi da unea, eta, hiru urte igaro diren arren, oraindik ez daukat 

oso argi nola egingo dudan. Nolanahi ere, ahalik eta ondoen eta bihotz-bihotzez egiten 

saiatuko naiz. 

Lehenik eta behin, eskerrak eman nahi dizkiot Ikerlani tesi hau egiteko aukera 

emateagatik. Era berean, eskerrak eman nahi dizkiet Igor Villarreali, Jon Cregori eta Haizea 

Gaztañagari tesi hau egiteko emandako babesagatik, baita Unai Iraolari ere, nire tesi 

zuzendaria izateagatik eta behar izan dudan guztietan eta inolako trabarik jarri gabe 

laguntzeagatik. 

I would also like to take this opportunity to express my gratitude to all the members 

of the jury and external reviewers for accepting to be a part of this thesis and for all their 

valuable comments and suggestions. 

A special thank you goes out to my colleagues at IISB, particularly Radu and 

Steffen, for welcoming me with open arms and making me feel part of the team during 

my time there. Special thanks to you, Steffen, for helping me and teaching me as much as 

you could during my time in Erlangen. I hope fate brings our paths together again, giving 

us the chance to collaborate once more on future projects. 

Gandi, Egoitz eta Mattin, ez dakit nola eskertuko dizuedan inoiz –ez dakit gai 

izango naizen ere– urte hauetan erakutsi didazuen guztia. Irakatsi didazuen guztia idatziz 

jarri beharko banu, dokumentua tesia bera baino luzeagoa izango litzateke. Baina, urte 

hauetan, besteak beste eta, agian, oharkabean erakutsi didazue nolako pertsona eta 

profesionala izan nahi dudan. Beti irribarre batekin jaso nauzue eta ahal izan duzuen 

guztian laguntzeko prest egon zarete. Egunen batean espero dut lankide ona eta 

profesionala izatea, zuen pareko! Eskerrik asko bihotzez!!! 

Eskerrik asko, halaber, hiru urte hauetan nire bidelagun izan zareten gainontzeko 

doktoregaiei: Olatz, Xabi, Ane, Eneko, Josu eta Nerea. Kafeetan, kontrol-gelan... 

partekatutako une horiengatik guztiengatik. Eta eskerrik asko Ikerlaneko gainontzeko 

lankideei: Carpetas, Mikel, David… Etxean bezala sentiarazi nauzue eta aparteko giroa 

sortu duzue Galarretan. Eskerrik asko zuei ere, Andoni eta Jaleos, garagardo bat hartzen, 

sukaldaritza italiarra ikasten edo inoiz jasoko ez ditugun gauzak landatzen (=P) elkarrekin 

igaro ditugun arratsalde guztiengatik. 

Zutaz ere ez naiz ahaztu, Edu. Tesia gainbegiratzeko izan zenuen denbora laburra 

izan bazen ere, zure harri-koskorra nigan eta nire lanean uzten jakin izan duzu, nahiz eta, 

batzuetan, ez diedan kasu handirik egin emandako gomendioei. =) 

Mila esker zuri ere, Javi, zure laguntzarik eta animorik gabe ez bainuen inoiz hasiko 

orain nagoen lekura eraman nauen bide hau. Eskerrik asko emandako laguntza eta 
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elkarrizketa guztiengatik, eta, bereziki, nigan batzuetan merezi dudana baino gehiago 

sinesteagatik ; -).  

Y por supuesto cómo voy a escribir estas líneas y no dedicarte algunas a ti, Raquel. 

A pesar de que te opongas a aparecer en ellas, me niego a no dedicar unas líneas a la 

persona que me ha aguantado en el día a día todos estos años. Muchas gracias por todo 

el cariño, por hacer que todo sea más fácil y por darme ánimo los días que más lo 

necesitaba.  

Eta, nola ez, eskerrik asko, Ander eta Joseba, lan honen zati bat zuena ere bada 

eta. Zuek eraman nauzue, neurri handi batean, gaur naizen pertsona izatera, eta nire 

eredua izan zarete nahita edo nahi gabe. Niregatik egin duzuen guztia itzultzeko aukera 

izango ote dut inoiz! Bestetik, eskerrik asko nire koinata gogokoenak, Laia eta Lili, zuen 

anaia izango banintz bezala tratatzeagatik. Eskerrik asko, Lili, nire zuzentzailea izateagatik 

;-). 

Eta, bukatzeko, eskerrik asko, aita eta ama. Ezinbestekoak zarete. Eskerrik asko 

beti nigan konfiantza osoa izateagatik, ikastera animatzeagatik eta behar izan dudan 

guztietan inolako zalantzarik gabe laguntzeagatik. Eskerrik asko gugatik egiten duzuen 

guztiagatik.  
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Recognized as the bedrock of modern energy storage, lithium-ion batteries (Li-ion) 

have ascended to become an integral component in a large number of applications, which 

span from ubiquitous devices like smartphones and laptops to intricate systems like 

electric vehicles and large-scale energy storage infrastructures. The surge in demand can 

be directly attributed to the global paradigm shift towards renewable energy sources and 

the expanding sphere of electric mobility. These transitions impose an imperative to 

continuously innovate the underlying technology of Li-ion batteries, with objectives to 

augment their performance, reinforce safety, and optimize cost. 

One of the vibrant research domains in this context is the development of effective 

State of Charge (SoC) and State of Health (SoH) estimation algorithms. These metrics are 

crucial to ensure efficient usage, longevity, safety, and performance optimization of li-ion 

batteries in various applications. 

In addition, the need of flexible battery state estimation methods arises from the 

diverse characteristics of batteries, varying operating conditions, battery aging, mixed 

usage scenarios, emerging battery technologies, user behaviours, limited data availability, 

and the continuous evolution of battery research.  

In view of this, the present work aims to develop adaptable SoC and SoH 

estimators. Leveraging the power of NNs, these estimators, complemented by the 

technique of Transfer Learning (TL), will exploit knowledge gathered from previous tasks 

or applications to adapt to new battery types or scenarios. 

In pursuit of creating these estimators, an exhaustive review of related literature is 

conducted initially. The review concentrates on existing SoC and SoH estimation 

algorithms, with a special emphasis on those utilizing NNs. The review offers a 

comparative study discussing the merits and constraints of each methodology, 

introduces various types of NNs, such as Convolutional Neural Network (CNN) and 

Recurrent Neural Network (RNN), and explains the principle of TL, highlighting its potential 

benefits for SoC and SoH estimation. 

After the literature review, a comprehensive methodology is proposed, which 

forms the backbone of the entire research. This methodology describes a five-stage 

process: 

• Setup and Preparation (Stage 0): This initial phase involves necessary tasks before 

starting the training, such as data pre-processing, model selection, and 

determination of tuneable hyperparameters. 

• Model Creation (Stages 1, 2, and 3): These stages involve creating different SOC 

and SOH estimation models. 

o Stage 1: Baseline model: A baseline model is created and refined through 

rigorous training, testing, and hyperparameter tuning. 
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o Stage 2: Comparative model: A new model is built from scratch using the 

data of a new cell, serving as a benchmark to compare the performance of 

the TL model. 

o Stage 3: TL model: The baseline model is retrained with new data from a 

different cell, utilizing the concept of TL. 

• Evaluation (Stage 4): This final stage involves comparing the results from the 

models in stages 2 and 3. By comparing their performances, the effectiveness of 

the TL approach can be gauged.  

Following the outlined methodology, a variety of SoC estimators were developed 

leveraging Long Short-Term Memory (LSTM) networks. Synthetic data generated from a 

electrochemical model was employed to formulate a foundational model, onto which TL 

was subsequently applied to model a real cell. In parallel, to assess the viability and 

benefits of TL, models were independently constructed from scratch. 

The results are compelling: Provided there is an established baseline model for 

execution of TL, the TL model consistently outperforms its counterparts built from 

scratch. Specifically, the TL model achieves a Mean Absolute Error (MAE) of a mere 0.88%, 

in stark contrast to the 1.84% and 5.62% MAE exhibited by the models built from scratch 

under the same SOC testing profiles. The TL model not only delivers superior results and 

demonstrates greater robustness, but it also demands substantially less data from the 

new cell for training - as much as 80% less, to be precise. 

In a parallel exercise, similar to the approach employed for the SoC estimator, a 

series of SoH estimators were also developed. These used Fully Connected Network 

(FCN)-based NNs following the aforementioned methodology. The TL model once again 

outshines the models trained from scratch across all metrics, achieving an impressive 

MAE of 0.7% as opposed to the 1.2% and 1.6% MAE observed for the from-scratch models. 

Furthermore, echoing the earlier results, the TL model required half the data to train the 

new estimator compared to the other models. 

In conclusion, the study strongly advocates the amalgamation of NNs and TL for 

adaptable and robust SoC and SoH estimation. The proposed methodology demonstrated 

that the use of TL models consistently outperforms their counterparts built from scratch, 

achieving notably lower MAE and demonstrating enhanced robustness. This approach not 

only enhances accuracy, but it also significantly reduces data requirements, and expedites 

training. This is particularly valuable in scenarios where data generation is limited or costly, 

making this method an effective solution for achieving high-quality results under 

constraints.  
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Li-ioi bateriak (Li-ion) –energia-biltegiratze modernoaren giltzarriak dira– aplikazio 

ugariren osagai integral bihurtu dira. Aplikazio horien artean daude, besteak beste, 

nonahiko gailuak (hala nola telefono adimendunak eta ordenagailu eramangarriak) eta 

sistema konplexuak (hala nola ibilgailu elektrikoak eta energia eskala handian 

biltegiratzeko azpiegiturak). Eskariaren gorakada zuzenean egotz dakieke, batetik, 

energia-iturri berriztagarrietarako mundu-mailako paradigma-aldaketari eta, bestetik, 

mugikortasun elektrikoaren gero eta esparru handiagoari. Trantsizio horien ondorioz, 

ezinbestekoa da Li-ioi baterien azpiko teknologiaren etengabeko berrikuntza, horien 

errendimendua handitzeko, segurtasuna indartzeko eta kostua optimizatzeko. 

Testuinguru horretan, ikerketa-eremu aktiboenetako bat karga-egoera (SoC) eta 

osasun-egoera (SoH) zenbatesteko algoritmo eraginkorrak garatzea da. Metrika horiek 

funtsezkoak dira Li-ioi baterien erabilera eraginkorra, bizitza-luzera, segurtasuna eta 

errendimendu-optimizazioa bermatzeko hainbat aplikaziotan. 

Gainera, baterien ezaugarriak, funtzionamendu-baldintzak, baterien zahartzea, 

erabilera mistoko agertokiak, sortzen ari diren baterien teknologiak, erabiltzaileen 

portaerak, datuen eskuragarritasun mugatua eta bateriei buruzko ikerketaren etengabeko 

bilakaera direla eta, baterien egoera zenbatesteko metodo malguak behar dira. 

Hori ikusita, lan honen helburua da SoC-ren eta SoH-ren zenbatesle moldagarriak 

garatzea. Sare neuronalen potentzia aprobetxatuz, zenbatesle horiek, transferentzia 

bidezko ikaskuntzaren teknikarekin osatuta, aurreko zeregin edo aplikazioetan 

eskuratutako ezagutzak ustiatuko dituzte bateria edo agertoki mota berrietara egokitzeko. 

Zenbatesle horiek sortzeko, hasiera batean, hizpide dugun literaturaren 

berrikuspen sakona egin da. SoC-ren eta SoH-ren zenbatespen-algoritmoetan zentratu da 

berrikuspena, arreta berezia jarrita sare neuronalak erabiltzen dituztenetan. Berrikuspenak 

azterketa konparatibo bat eskaintzen du: metodologia bakoitzaren merezimenduak eta 

mugak jorratzen dira, hainbat sare neuronal mota aurkezten dira, hala nola sare neuronal 

konboluzionala (CNN) eta sare neuronal errekurrentea (RNN), eta transferentzia bidezko 

ikaskuntzaren printzipioa azaltzen da, bai eta SoC eta SoH kalkulatzeko izan ditzakeen 

onurak nabarmendu ere. 

Berrikuspen bibliografikoaren ondoren, metodologia zehatz bat proposatu da. 

Ikerketa osoaren bizkarrezurra da hori. Metodologia horrek bost etapako prozesua 

deskribatzen du: 

• Konfigurazioa eta prestaketa (0 etapa): Hasierako etapa honetan, entrenamendua 

hasi aurretik beharrezkoak diren zereginak egin dira, hala nola datuen 

aurreprozesamendua, ereduaren hautaketa eta hiperparametro sintonizagarriak 

zehaztea. 
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• Ereduak sortzea (1., 2. eta 3. etapak): Etapa horietan, CoS eta SoH zenbatesteko 

hainbat eredu sortu dira. 

o 1. etapa: Erreferentzia-eredua: Erreferentzia-eredu bat sortu da eta 

entrenamendu zorrotz baten, proben eta hiperparametroen doikuntzaren 

bidez hobetzen da. 

o 2. etapa: Eredu konparatiboa: Eredu berri bat eraiki da hutsetik, zelula berri 

baten datuak erabiliz, transferentzia bidezko ikaskuntzaren ereduaren 

errendimendua alderatzeko erreferentzia gisa balio duena. 

o 3. etapa: Transferentzia bidezko ikaskuntzaren eredua: Erreferentzia-

eredua beste zelula bateko datu berriekin entrenatu da berriro, 

transferentzia bidezko ikaskuntzaren kontzeptua erabiliz. 

• Ebaluazioa (4. etapa): Azken etapa honetan, 2. eta 3. etapetako ereduen emaitzak 

alderatu dira. Emaitzak alderatzean, transferentzia bidezko ikaskuntzaren 

ereduaren eraginkortasuna egiaztatu da. Emaitzak alderatuz gero, transferentzia 

bidezko ikaskuntzaren ikuspegiaren eraginkortasuna ebalua daiteke. 

Deskribatutako metodologiari jarraituz, SoC-ren zenbatesle batzuk garatu dira, epe 

motzeko memoria luzearen sareak (LSTM) aprobetxatuz. Eredu elektrokimiko batetik 

sortutako datu sintetikoak erabili dira fundazio-eredu bat formulatzeko, eta, ondoren, 

transferentzia bidezko ikaskuntza aplikatu zaio benetako zelula bat modelatzeko. Aldi 

berean, transferentzia bidezko ikaskuntzaren bideragarritasuna eta abantailak 

ebaluatzeko, eredu independenteak eraiki dira hutsetik abiatuta. 

Emaitzak sinesgarriak dira: transferentzia bidezko ikaskuntza gauzatzeko 

ezarritako erreferentzia-eredu bat baldin badago, transferentzia bidezko ikaskuntzaren 

ereduak hutsetik eraikitako homologoak gainditzen ditu sistematikoki. Zehazki, 

transferentzia bidezko ikaskuntzako ereduak % 0,88ko batez besteko errore absolutua 

lortu du, SoC proben profil berberekin hutsetik abiatuta sortutako ereduek erakusten 

dituzten % 1,84ko eta % 5,62ko batez besteko errore absolutuekin kontraste argian. 

Transferentzia bidezko ikaskuntzaren ereduak, emaitza hobeak emateaz gain, 

sendotasun handiagoa erakutsi du, eta, gainera, zelula berriaren askoz datu gutxiago 

behar ditu entrenatzeko, % 80 gutxiago arte, zehatz-mehatz. 

Ariketa paralelo batean, SoC-ren zenbateslearentzat erabilitako ikuspegiaren 

antzekoa, SoH-ren zenbatesle batzuk ere garatu dira. Horretarako, erabat konektatutako 

sareetan oinarritutako sare neuronalak erabili dira, lehen aipatutako metodologiari 

jarraikiz. Berriz ere, transferentzia bidezko ikaskuntzaren ereduak hutsetik entrenatutako 

ereduak gainditu ditu metrika guztietan, eta % 0,7ko batez besteko errore absolutu 

ikaragarria lortu du, hutsetik sortutako ereduen % 1,2ko eta % 1,6ko batez besteko errore 

absolutuen aldean. Gainera, aurreko emaitzak errepikatuz, transferentzia bidezko 

ikaskuntzaren ereduak beste ereduen datuen erdiak behar izan ditu zenbatesle berria 

entrenatzeko. 

Laburbilduz, ikerketak irmo egiten du sare neuronalen eta transferentzia bidezko 

ikaskuntzaren amalgamaren alde, SoC-ren eta SoH-ren estimazio moldagarri eta sendo 

baterako. Proposatutako metodologiak erakutsi zuen transferentzia bidezko 
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ikaskuntzaren ereduen erabilerak hutsetik abiatuta eraikitako homologoak sistematikoki 

gainditzen dituela, nabarmen txikiagoa den batez besteko errore absolutu bat lortuz eta 

sendotasun handiagoa erakutsiz. Ikuspegi horrek, zehaztasuna hobetzeaz gain, 

datu-eskakizunak nabarmen murrizten ditu eta entrenamendua arintzen du. Hori bereziki 

baliotsua da datuak sortzea mugatua edo garestia den egoeretan, eta, ondorioz, metodo 

hori irtenbide eraginkorra da kalitate handiko emaitzak lortzeko mugen barruan. 
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Reconocidas como la piedra angular del almacenamiento energético moderno, las 

baterías de iones de litio (Li-ion) se han convertido en un componente integral de 

numerosas aplicaciones, que abarcan desde dispositivos omnipresentes como teléfonos 

inteligentes y ordenadores portátiles hasta sistemas complejos como vehículos eléctricos 

e infraestructuras de almacenamiento energético a gran escala. El aumento de la 

demanda puede atribuirse directamente al cambio de paradigma mundial hacia las 

fuentes de energía renovables y a la creciente esfera de la movilidad eléctrica. Estas 

transiciones hacen que sea imprescindible la innovación continua de la tecnología 

subyacente de las baterías de iones de litio, con el objetivo de aumentar su rendimiento, 

reforzar la seguridad y optimizar el coste. 

Uno de los campos de investigación más activos en este contexto es el desarrollo 

de algoritmos eficaces de estimación del estado de carga (SoC) y del estado de salud 

(SoH). Dichas métricas son cruciales para garantizar el uso eficiente, la longevidad, la 

seguridad y la optimización del rendimiento de las baterías de iones de litio en diversas 

aplicaciones. 

Además, la necesidad de métodos flexibles de estimación del estado de las 

baterías surge de las diversas características de las baterías, las diferentes condiciones 

de funcionamiento, el envejecimiento de las baterías, los escenarios de uso mixto, las 

tecnologías de baterías emergentes, los comportamientos de los usuarios, la limitada 

disponibilidad de datos y la continua evolución de la investigación sobre baterías. 

En vista de ello, el presente trabajo pretende desarrollar estimadores adaptables 

del SoC y del SoH. Aprovechando la potencia de las redes neuronales, estos estimadores, 

complementados con la técnica del aprendizaje por transferencia (TL), explotarán los 

conocimientos adquiridos en tareas o aplicaciones anteriores para adaptarse a nuevos 

tipos de baterías o escenarios. 

En la búsqueda de la creación de estos estimadores, se realiza inicialmente una 

revisión exhaustiva de la literatura relacionada. La revisión se centra en los algoritmos de 

estimación del SoC y del SoH existentes, con especial énfasis en los que utilizan redes 

neuronales. La revisión ofrece un estudio comparativo en el que se tratan los méritos y 

las limitaciones de cada metodología, se presentan varios tipos de redes neuronales, 

como la Red Neuronal Convolucional (CNN) y la Red Neuronal Recurrente (RNN), entre 

otras, y se explica el principio del aprendizaje por transferencia, destacando sus beneficios 

potenciales para la estimación del SoC y del SoH. 

Tras la revisión bibliográfica, se propone una metodología exhaustiva, que 

constituye la columna vertebral de toda la investigación. Esta metodología describe un 

proceso de cinco etapas: 
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• Configuración y preparación (etapa 0): Esta etapa inicial implica las tareas 

necesarias antes de comenzar el entrenamiento, como el preprocesamiento de 

datos, la selección del modelo y la determinación de los hiperparámetros 

sintonizables. 

• Creación de modelos (etapas 1, 2 y 3): Estas etapas implican la creación de 

diferentes modelos de estimación del SoC y del SoH. 

o Etapa 1: Modelo de referencia: Se crea un modelo de referencia y se 

perfecciona mediante un riguroso entrenamiento, pruebas y ajuste de 

hiperparámetros. 

o Etapa 2: Modelo comparativo: Se construye un nuevo modelo desde cero 

utilizando los datos de una nueva célula, que sirve de referencia para 

comparar el rendimiento del modelo de aprendizaje por transferencia. 

o Etapa 3: Modelo de aprendizaje por transferencia: El modelo de referencia 

se vuelve a entrenar con nuevos datos de una celda diferente, utilizando el 

concepto de aprendizaje por transferencia. 

• Evaluación (etapa 4): En esta última etapa se comparan los resultados de los 

modelos de las etapas 2 y 3. Al comparar sus resultados, se comprueba la eficacia 

del modelo de aprendizaje por transferencia. La comparación de los resultados 

permite evaluar la eficacia del enfoque aprendizaje por transferencia. 

Siguiendo la metodología descrita, se desarrollaron varios estimadores de SoC 

aprovechando las redes de memoria larga a corto plazo (LSTM). Se emplearon datos 

sintéticos generados a partir de un modelo electroquímico para formular un modelo 

fundacional, sobre el que posteriormente se aplicó el aprendizaje por transferencia para 

modelar una célula real. Paralelamente, para evaluar la viabilidad y las ventajas del 

aprendizaje por transferencia, se construyeron modelos independientes a partir de cero. 

Los resultados son convincentes: Siempre que exista un modelo de referencia 

establecido para la ejecución del aprendizaje por transferencia, el modelo de aprendizaje 

por transferencia supera sistemáticamente a sus homólogos construidos desde cero. En 

concreto, el modelo de aprendizaje por transferencia alcanza un error medio absoluto de 

tan solo el 0,88%, en claro contraste con los errores medios absolutos del 1,84% y el 5,62% 

mostrados por los modelos creados desde cero con los mismos perfiles de pruebas SoC. 

El modelo de aprendizaje por transferencia no solo ofrece resultados superiores y 

demuestra una mayor robustez, sino que además requiere muchos menos datos de la 

nueva célula para entrenarse, hasta un 80% menos, para ser exactos. 

En un ejercicio paralelo, similar al empleado para el estimador del SoC, también se 

desarrollaron una serie de estimadores del SoH. Para ello se utilizaron redes neuronales 

basadas en redes totalmente conectadas siguiendo la metodología antes mencionada. 

Una vez más, el modelo de aprendizaje por transferencia supera a los modelos 

entrenados desde cero en todas las métricas, alcanzando un impresionante error medio 

absoluto del 0,7%, frente al 1,2% y el 1,6% de errores medios absolutos observados en los 

modelos creados desde cero. Además, repitiendo los resultados anteriores, el modelo de 

aprendizaje por transferencia necesitó la mitad de datos que los demás modelos para 

entrenar el nuevo estimador. 
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En conclusión, el estudio aboga firmemente por la amalgama de redes neuronales 

y aprendizaje por transferencia para una estimación adaptable y robusta del SoC y del 

SoH. La metodología propuesta demostró que el uso de modelos de aprendizaje por 

transferencia supera sistemáticamente a sus homólogos construidos desde cero, 

logrando un error medio absoluto notablemente inferior y demostrando una mayor 

robustez. Este enfoque no solo mejora la precisión, sino que también reduce 

significativamente los requisitos de datos y agiliza el entrenamiento. Esto es 

especialmente valioso en situaciones en las que la generación de datos es limitada o 

costosa, lo que convierte a este método en una solución eficaz para obtener resultados 

de alta calidad bajo restricciones. 
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Lithium-ion batteries, often abbreviated as Li-ion, have become the cornerstone of 

modern portable energy storage since their commercial introduction in the 1990s. They 

are the preferred choice for a wide range of applications, from powering small electronic 

devices like smartphones and laptops to electric vehicles and grid storage [1]. The demand 

for Li-ion batteries has been growing exponentially, driven by the global shift towards 

renewable energy and electric mobility. The International Energy Agency predicts that the 

global electric car stock will reach 240 million by 2030, which will significantly increase the 

demand for Li-ion batteries as depicted in Figure 1 [2]. 

 

 

Figure 1. Electric vehicle stock by mode in the Stated Policies Scenario, 2022-2030 [3]. 

The technology behind Li-ion batteries is continually evolving, with researchers and 

manufacturers striving to improve their performance, safety, and cost-effectiveness. The 

basic principle involves the movement of lithium ions from the negative electrode to the 

positive electrode during discharge, and back when charging [4]. However, the choice of 

electrode materials, electrolytes, and manufacturing processes among others, can 

significantly influence the battery's characteristics like the energy density, power density, 

cycle life, and safety [5]. 
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Li-ion batteries are widely used due to several key advantages they offer over other 

types of energy storage systems:  

• High energy density, meaning they can store more energy for a given 

weight or volume than most other battery technologies. This makes them 

ideal for applications where space and weight are critical, such as in 

electric vehicles or portable electronics.  

• Low maintenance compared to some other types of batteries, such as 

flooded lead-acid batteries. They don't require periodic discharge and can 

be stored in a partially charged state without damaging the battery. 

• Li-ion batteries can be manufactured in various shapes and sizes, which 

makes them versatile and suitable for a wide range of devices. This 

flexibility in design allows manufacturers to integrate Li-ion batteries into 

different form factors. 

• Low self-discharge rate, which means they can retain their charge for a 

long time when not in use.  

• Do not suffer from the "memory effect" that can reduce the usable capacity 

of some rechargeable batteries over time [6].  

However, Li-ion batteries also have some limitations that need to be addressed. 

The lifespan of Li-ion batteries is an area of concern. While they can typically withstand 

hundreds to thousands of charge-discharge cycles, what makes them suitable for 

applications that require long-term use. Their properties gradually deteriorate with time 

and use, losing their storage capacity and increasing internal resistance. This aging 

process is influenced by various factors, including temperature, charge-discharge rate, 

and Depth of Discharge (DoD). Research is ongoing to understand and mitigate these 

aging mechanisms to extend the lifespan of Li-ion batteries [7]. 

From an environmental perspective, the production and disposal of Li-ion batteries 

present significant challenges. The extraction of lithium and other raw materials can have 

substantial environmental impacts, and the recycling of used batteries is complex, 

expensive and not yet widely implemented. However, efforts are being made to develop 

more sustainable practices, such as improving recycling processes and exploring 

alternative, more abundant, and less harmful materials [8]. 

Another challenge, linked to the lifespan, production and disposal of Li-ion 

batteries, is the relatively high cost of Li-ion batteries, mainly due to the expensive 

materials used in their construction, such as cobalt and lithium. 

Finally, another of the main challenges is safety. Under certain conditions, such as 

overcharging, short circuit, or physical damage, Li-ion batteries can undergo a thermal 

runaway reaction leading to fire or explosion. Therefore, sophisticated Battery 

Management Systems (BMS) are required to monitor and control the battery's operation.  

Despite these challenges, the future of Li-ion batteries looks promising. 

Continuous research and development are leading to new breakthroughs, such as solid-
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state batteries, which could offer higher energy densities, improved safety, and longer 

lifespans. Moreover, the growing demand for Li-ion batteries is driving economies of scale, 

which could help to reduce costs and make these batteries even more competitive [9]. 

As previously mentioned, Li-ion cells require a BMS for safe use. BMS are real-time 

control systems consisting of different functions that ensure safe and correct operation 

of the batteries. This is because batteries will fail if they over-discharge, over-charge, or 

operate outside their temperature range [10]. 

The BMS performs several critical functions to ensure the safe, efficient, and 

reliable operation of the battery pack.  

• Cell Voltage Monitoring: The BMS monitors the voltage of individual cells 

within a battery pack to ensure that they are all operating within safe limits.  

• Current Monitoring: The BMS measures the current flowing in and out of 

the battery. This helps in estimating the State of Charge (SoC), managing 

charging and discharging rates, and detecting any abnormal current 

behaviour that might indicate a fault or malfunction. 

• Temperature Monitoring: The BMS monitors the temperature of the battery 

cells and the overall pack. Temperature management is crucial to prevent 

overheating, which can degrade battery performance, shorten lifespan, and 

even lead to safety hazards. 

• Cell Balancing: The BMS controls cell balancing, which involves 

redistributing energy among individual cells to ensure they all have similar 

capacities. This prevents overcharging of certain cells and can extend the 

overall battery life. 

• Safety Features: In case of a fault, the BMS can trigger various safety 

mechanisms, such as disconnecting the battery from the load, stopping 

charging, or shutting down the battery pack entirely. This helps prevent 

catastrophic failures and safety hazards. 

• Communication: Many BMS units offer communication capabilities, 

allowing them to relay information about battery performance, health, and 

status to external devices or systems. This is crucial for monitoring and 

managing the battery remotely. 

• Data Logging and Reporting: The BMS often records important data over 

time, such as charge and discharge cycles, voltage and temperature 

profiles, and fault occurrences. This data can be used for diagnostics, 

troubleshooting, and optimizing battery usage. 

• SoC Estimation: The SoC indicates the remaining battery electric charge in 

a battery (𝐶(𝑡)) compared to a fully charged battery (𝐶𝑛, nominal capacity). 

In other words, it shows the remaining autonomy of the system until it is 

completely discharged [11], [12]. As can be seen in equation (1), the SoC 

shows the ratio between the remaining charge and the nominal capacity of 

the battery (Figure 2), both in Ah. 



Objective of the thesis 

5 
 

𝑆𝑜𝐶(𝑡) =
C(𝑡)

𝐶𝑛

∙ 100 (1) 

Different variables such as battery temperature, charge and discharge 

current and battery State of Health (SoH) influence battery capacity, so it is 

necessary to develop estimators that take all these factors into account. 

When creating a SoC estimator it is important to keep in mind that the 

actual measurement will have noise and error. The SoC algorithm must be 

able to take this error into account and be as robust as possible in order to 

obtain the most accurate estimation and be affected as little as possible 

by this error and noise [13].  

Creating such an algorithm involves testing at different temperatures, 

charging and discharging currents and SoH in order to properly estimate 

the SoC under different conditions. All these tests need to be repeated 

every time SoC wants to be estimated for a new cell of different chemistry, 

capacity or manufacturer [14]. 

• SoH Monitoring: The SoH shows the ratio of the capacity that a battery is 

able to discharge to the capacity it was able to discharge at the Beginning 

of Life (BoL) in nominal conditions as shown in Figure 2 [15], [16].  

 

Figure 2. SoC and SoH of a battery. 

The classic definition of SoH can be presented with the following formula, 

where 𝐶𝑛, is the actual nominal capacity of the battery and 𝐶𝑛_𝐵𝑜𝐿 is the 

battery capacity at the BoL: 

 2   remaining charge
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𝑆𝑜𝐻(𝑡) =
𝐶𝑛

𝐶𝑛_𝐵𝑜𝐿

∙ 100 (2) 

There are two main mechanisms that cause this degradation: calendar 

aging and cycling aging [17], [18]. The first refers to the degradation that 

the battery undergoes from the moment it is manufactured and is stressed 

by high temperatures and SoCs [19]. The second refers to the aging that 

occurs when the battery is charged and discharged. The cycling aging is 

generally imposed on calendar aging and depends on the temperature, the 

charge and discharge currents, the discharged capacity (DoD) and the 

average discharge SoC (Mid.SoC) [20]. 

The aging or degradation of the battery greatly influences its behaviour. 

The internal resistance of the battery will increase, and it will be able to 

deliver less power and less energy, also affecting its efficiency.  

As with SoC estimation, SoH estimation depends on variables such as 

temperature, charge/discharge current or battery SoC. Therefore, to obtain 

an accurate SoH estimator, it is necessary to test the battery under 

different conditions, so that the estimator is able to estimate under these 

conditions.   

Objective of the thesis 

In the comprehensive analysis of battery state estimation methodologies carried 

out in Section 2.1, several common constraints or considerations have been discerned. 

These factors are universally applicable across all estimation techniques. The research 

indicates that the development of robust and dependable estimators necessitates 

conducting a variety of tests on the batteries due to their inherent non-linear 

characteristics. This non-linearity implies that battery behaviour is prone to alterations 

under varying operational conditions. 

Furthermore, external factors such as temperature fluctuations, load variations, 

aging, and other environmental influences can significantly impact the SoC and SoH. 

These elements must meticulously be taken into account for the estimation 

methodologies, which can be challenging. The complexity of these factors underscores 

the need for a systematic and thorough approach to battery testing and analysis. 

This issue becomes particularly relevant when dealing with different types of 

batteries within a facility or organization. Each time a new battery type needs to be 

estimated, it necessitates the initiation of all these tests from scratch. This not only 

requires significant time and resources but also demands level of expertise to ensure 

accurate and reliable results. 



Thesis outline 

7 
 

All this leads to the objective of the thesis, which is defined in the following 

paragraph. 

To develop and validate SoC and SoH estimation algorithms that have the ability 

to adapt to new lithium-ion battery chemistries, thus minimising the cost and time required 

compared to developing analogous algorithms from scratch. 

To achieve this purpose, it will be utilized the knowledge and data generated from 

different batteries and applications in order to enhance the state estimators, thereby 

achieving more robust estimators. 

Thesis outline 

The dissertation document has been organised in six main chapters including the 

Introduction (Chapter 1). 

In Chapter 2 a comprehensive literature review is conducted focusing on existing 

SoC and SoH estimation algorithms, particularly those utilizing Neural Networks (NNs). 

The advantages and limitations of each method are discussed, along with an introduction 

to various types of NN, such as Convolutional Neural Network (CNN) and Recurrent Neural 

Network (RNN), among others. Additionally, the concept of Transfer Learning (TL) is 

explained including its potential benefits for SoC and SoH estimation. 

Chapter 3 presents the methodology throughout the research. This includes the 

design of experiments, data collection and processing development techniques. The 

chapter provides a detailed account of the approach followed to ensure the reliability 

reproducibility of the work. 

Chapter 4 focuses on SoC estimation. It provides a description of the steps done 

to train, validate, and test the SoC estimation algorithm. The chapter also explains the 

topology of the SoC estimation algorithm, the chosen type, architecture, and training 

process. The results are presented and discussed, including a comparison between the 

TL model and a model trained from scratch. 

Chapter 5 follows a similar structure to Chapter 4 but focused on SoH estimation. 

It describes the data used for training, validating, and testing the SoH estimation 

algorithm. The chapter provides a detailed explanation of the SoH estimation algorithm 

topology, including the NN type, architecture, and how it has been trained. Finally, the 

results are presented and discussed. 

Finally, Chapter 6 concludes the dissertation and outlines possible future works. It 

summarizes the main findings and contributions of the thesis, discussing their 

implications for the field of battery management. The chapter suggests potential 

improvements and new research directions. 
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To identify the algorithm that optimally aligns with the objectives of the thesis, the 

preliminary and pivotal stride entails undertaking a meticulous examination of diverse 

state estimation methodologies. 

2.1 State estimation methods 

In this section, the different methods used to estimate battery states will be 

discussed in more detail. These methods can be broadly classified into four main groups. 

2.1.1 Direct measurement 

Direct measurement methods for state estimation in lithium-ion batteries involve 

using observable physical quantities such as voltage, current, and temperature to 

estimate the internal states of the battery. These methods are generally simpler and less 

computationally intensive than model-based or data-driven methods, but they may not be 

as accurate or robust under varying operating conditions. Here are some of the most 

common direct measurement methods: 

Terminal Voltage Method 

This method estimates the SoC based on the battery's terminal voltage, which is 

the voltage measured across the battery terminals when it is delivering or receiving 

current. The terminal voltage is influenced by the SoC as well as the current and the 

internal resistance of the battery. Therefore, this method requires knowledge or estimation 

of the battery's internal resistance, which can vary with the SoC, temperature, and aging 

[21]. 

Open-Circuit Voltage (OCV) Method 

This estimation method is a simplification of the Terminal Voltage Method, and it 

uses the OCV to estimate the battery SoC. OCV consist in measuring battery voltage when 

the cell is relaxed. Relaxation corresponds to the phase after a discharge or charge period, 

during which there is no current and the battery voltage tends to a steady state. The 

voltage measured at the end of relaxation can be considered as the OCV value at this SoC 

[22]. 

To perform OCV estimation method, the OCV value at each SoC is obtained in 

laboratory tests. The OCV-SoC relationship is unique for each battery (even if the battery 

is made by the same materials and structures) and generally has a non-linear function 

[23], [24].  

That non-linear function varies depending on the battery nominal capacity, SoH, or 

ambient temperature. To get an accurate estimation, it is necessary to get the OCV-SoC 

ratios under different conditions [25], [26]. 
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Although it is an accurate method for estimating the SoC of the cell in certain li-ion 

chemistries, this method requires cutting off the power and letting the battery relax for an 

extended period of time, therefore, another estimation technique is needed when battery 

is charging or discharging. Typically, this technique is commonly used in combination with 

other techniques using OCV to recalibrate the SoC during long relaxation periods [26], [27]. 

Internal Resistance 

In a similar way as presented in the previous two methods, it measures the internal 

resistance of the battery with the objective of finding a relationship between the internal 

resistance value of the battery and the SoC. To do this, the voltage is measured for a short 

period of time while being subjected to a variation of the current. The ratio between the 

voltage and current variation results in the DC resistance value. It is necessary for the time 

interval to be small, not only to capture the ohmic effect, but also to reduce the effect of 

the transfer reaction and acid diffusion [27], [28]. 

The internal resistance method is simple, as it mainly uses current, temperature, 

voltage and the internal resistance of the battery. But the relationship between the SoC 

and the battery parameters are complex [29], [30]. Also, ambient temperature has a huge 

effect on the battery internal resistance value [31].  

Electrical Impedance Spectroscopy (EIS) 

This method is used as a measurement technique to investigate electrochemical 

processes. It is also used to estimate both SoC and SoH of batteries. The EIS measures 

battery impedances over a wide range of AC frequencies. Figure 3 shows a Nyquist plot 

of the EIS spectrum of a lithium-ion battery. The low frequencies region shows the 

diffusion process within the active material of the battery, the middle frequencies the 

double-layer capacitance effect, and the high-frequency region is the indicator of Ohmic 

resistance of the battery [27], [32], [33]. 

 

Figure 3. EIS spectrum of lithium-ion battery. Adapted from [34]. 
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Similar to the internal resistance method, the relationship between impedance and 

SoC is not as stable as the SoC-OCV relationship may be. The major problems are: i) the 

impedance change is not as sensitive to the SoC change in some regions of the SoC. ii) 

The impedance change is more sensitive to the temperature change than to the SoC 

change, and therefore a compensation must be addressed. iii) The impedance changes a 

lot depending on the SoH of the battery and therefore a compensation must be 

considered. iv) The impedance may change depending on the current and historical 

working conditions. v) Specific equipment is needed. [33], [35]. 

2.1.2 Book-keeping  

Book-Keeping methods use the battery current as input. This type of method 

allows to take into account some internal effects of the batteries, such as self-discharge, 

loss of capacity or efficiency [27], [36]. 

Coulomb counting (CC) or Ampere-hour counting: is one of the most commonly 

used SoC estimation techniques [36], [37]. It integrates the charge or discharge current of 

the battery to estimate the SoC of the battery. It can be calculated as:  

𝑆𝑜𝐶(𝑡) = 𝑆𝑜𝐶(𝑡0) −
𝜂

𝐶𝑛(𝑆𝑜𝐻)
∫ 𝐼(𝜏)𝑑𝜏

𝑡

𝑡0

 (3) 

Where 𝐶𝑛 is the actual capacity of the battery considering the SoH, 𝜂 is the 

coulombic efficiency and 𝐼 stands for the current through the battery, positive for 

discharge and negative for charge. 

This method is not capable of estimating the initial SoC state, so it is often used in 

conjunction with other estimation methods such as OCV [28]. In addition, this method is 

very sensitive to the quality of the current measurement. The errors caused in the current 

measurement are of extreme importance since their integral causes an error in the 

estimation that it will accumulate over time. Therefore, this type of method also needs an 

additional recalibration method. This type of SoC estimation will have similar accuracy 

regardless of the cell chemistry being used. But if recalibration methods such as OCV are 

used, the accuracy may vary depending on the chemistry used by the OCV curve of that 

cell [38], [39].  

Coulomb counting or Ampere-hour counting method can be used also for SoH 

estimation [40]–[42]. It consists of measuring the Ah transferred from or to the battery to 

calculate the remaining capacity. This method uses as input variables the nominal 

capacity and the maximum available capacity [43], [44]. 

𝑆𝑜𝐻 (𝑡) =
𝐶𝑛

𝐶𝑛_𝐵𝑜𝐿

∙ 100 (4) 
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2.1.3 Model-based 

Model-based methods for state estimation in lithium-ion batteries involve using 

mathematical models that describe the physical and chemical processes inside the 

battery. These models can be used to predict the battery's behaviour under different 

operating conditions and to estimate its internal states based on measurements of 

observable quantities such as voltage, current, and temperature. Here are some of the 

most common model-based methods for battery state estimation: 

Equivalent Circuit Models (ECMs) 

These are simplified electrical models that represent the battery as a combination 

of voltage sources, resistors, and capacitors (Figure 4). ECMs can capture the main 

electrical characteristics of the battery, such as its terminal voltage and impedance, and 

they can be used to estimate the SoC and SoH. However, they do not provide detailed 

information about the internal electrochemical processes in the battery [45], [46]. 

 

Figure 4. First order ECM scheme. Adapted from [47]. 

Kalman Filter (KF) 

The KF is an observer which allows the estimation of a non-measurable state of a 

system (e.g., SoC) from measurable inputs and outputs. In other words, the KF has a self-

correcting nature when the system is running, which helps to improve the predictions 

made. The KF requires a model of the system to be analysed which is state space 

representation of the system (usually an electrical model, Figure 4) [27], [48].  

The KF, by means of a set of mathematical equations, predicts and corrects a new 

state repeatedly as the system operates. This system compares the measured input data 

and the output data to calculate the minimum mean squared deviation of the true state. 

The states are calculated using the values in previous states by recursive equations [24], 

[27], [49]. 
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Extended Kalman Filter (EKF)  

The EKF is used in nonlinear systems. This method uses a linearization process 

based on first order Taylor series expansion and partial derivatives [50]. The state-space 

model is linearized at each time step [51]. Then, the predicted value is compared with the 

measured value to correct the parameter estimation [25], [52]. 

A variant of this method called Adaptive Extended Kalman Filter (AEKF) is used to 

obtain a correct and robust SoC of lithium-ion batteries using an improved Thevenin 

battery electric model in [53].  

Sigma Point Kalman Filter (SPKF) 

Sigma Point Kalman Filter is an alternate approach to state estimation for non-

linear systems. A few function evaluations are performed whose results are used to 

compute an estimated covariance matrix. SPFK estimates the mean and covariance of 

the output of a nonlinear function with several function evaluations [54].  

This kind of algorithm has some advantages in comparison with an EKF: i) no need 

to compute derivatives; ii) no need of differentiable original functions; iii) better covariance 

and iv) comparable computational complexity to EKF [55]. 

Unscented Kalman Filter (UKF) 

UKF is a type of SPKF. UKF is derived from the point of view of estimating 

covariances with data rather than Taylor series. This method uses discrete-time filtering 

algorithm and unscented transform to solve filtering problems. The states distribution in 

a UKF is represented using a minimal set of points called Sigma points [22], [54], [56]. 

The advantage of this algorithm is that it does not use Jacobian matrices and the 

noise does not have to be Gaussian [57]. In addition, this type of algorithm obtains more 

accurate results than the EKF, since it predicts system states up to the third order of any 

non-linear system [58]. Nevertheless, this algorithm has poor robustness [59], [60]. 

Particle Filter (PF) 

The Particle Filter has been used for signal processing for more than two decades. 

It uses sequential Monte Carlo methods for state estimation. The central idea is to 

represent its distribution by drawing random state particles from the posterior probability. 

It approximates the target distribution with the use of a large number of samples or 

particles, extracted from a proposed distribution that recursively updates it [28], [56].  

In simple terms, the particle filter method refers to the process of finding the 

minimum variance distribution of the state by finding a set of probability density functions 

of a set of random samples propagating in the state space [61]. Later, approximate and 

use the sample mean in place of the integral operation. The sample in this case is the 

particle, and when the number of samples is nearly infinite, it can approximate any form 
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of probability density distribution. High probabilities are represented by many particles in 

a given area, and low probabilities by a low number or no particles in an area [62], [63]. 

2.1.4 Computer intelligence 

The last category often referred to as artificial intelligence (AI) or machine learning 

(ML) methods, have been increasingly used for state estimation in lithium-ion batteries. 

These methods can learn complex patterns from historical battery data and provide 

accurate state estimates even under varying operating conditions. Here are some of the 

most common computer intelligence methods used: 

Fuzzy Logic (FL) 

This type of algorithm is used to model non-linear or complex systems. It has the 

ability to simplify by using objective rules, noisy and imprecise input data, being able to 

find the real input value. This technique follows four stages. The first is fuzzification, where 

the measured values are converted into linguistic fuzzy sets [64]. The second is the so-

called fuzzy rule base, where a fuzzy rule base is created based on professional experience 

and the system's method of operation. The third is the inference engine. In this stage the 

fuzzy rules are converted into fuzzy linguistic outputs. The fourth and final stage is the 

defuzzification, which transforms the linguistic fuzzy rules into analogue output values 

[11], [65].  

Although there can be found in the literature different references that used FL to 

estimate the SoC of a battery [66], a more advanced and efficient variant of this algorithm 

called adaptive neuro-fuzzy inference system (ANFIS) is used to predict the SoC of 

batteries [67]. This method combines the advantages of a FL with the advantages of 

adaptive networks. The flexibility and subjectivity of the FL in combination with the 

learning capability of adaptive networks, makes ANFIS a very powerful modelling tool [49], 

[68]. 

Support Vector Machines (SVMs) 

SVMs are a type of supervised learning algorithm that can be used for regression 

or classification tasks. They work by finding the hyperplane in a high-dimensional space 

that best separates the data into different classes or predicts a continuous output, as 

depicted in Figure 5 [69]. 
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Figure 5. Principal components of SVM. Adapted from [70]. 

The maximum margin hyperplane is the central element of SVMs. It is the 

hyperplane that best separates the two classes of data while maximizing the distance 

(margin) between the hyperplane and the nearest data points of each class. The Positive 

Hyperplane is the decision boundary that separates the positive class from the negative 

class. It lies on one side of the maximum margin hyperplane and is defined by the equation 

of the hyperplane. The negative hyperplane is the decision boundary that separates the 

negative class from the positive class. It lies on the other side of the maximum margin 

hyperplane and is also defined by the equation of the hyperplane. 

The Support vectors are the data points that are closest to the maximum margin 

hyperplane. These are the critical data points that essentially "support" the definition of 

the hyperplane. Support vectors have a significant role in determining the location and 

orientation of the hyperplane. They are the points where the margin is the narrowest, and 

they are the only points that directly influence the position of the hyperplane. 

Decision Trees and Random Forests 

Decision trees split the data into branches based on certain conditions, leading to 

a set of decisions or predictions. Random forests combine multiple decision trees to 

improve the accuracy and robustness of the predictions. These methods have been used 

for SoC and SoH estimation, as well as for predicting battery failures [71], [72].  

Neural Networkss (NNs) 

This type of algorithm is a common tool for modelling complex systems because 

of its simplicity in handling data by mapping the relationship between input and output 

data. It is usually composed of three types of layers (as can be seen in Figure 6): The input 
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layer, where the inputs of the system are introduced; the hidden layer, which can be formed 

by more than one layer of neurons; and the output layer, where the output of the model is 

given [73], [74].  

 

Figure 6. NN architecture. Adapted from [74]. 

The NNs are composed of neurons that are connected together to process the 

information from the previous layers. These neurons are connected by lines that 

represents weights, which are the main function of the layers. Before the NN can be used, 

it needs to be trained. For this, a large amount of data is needed [75].  

NNs have been used for SoC estimation because of their non-linear mapping and 

self-learning capabilities [76], [77]. In addition, one of its main advantages is that it is not 

necessary to have information about the internal structure of the battery. When used for 

SoC estimation, voltage, current and temperature are used as input data and the SoC as 

output [78].  

2.1.5 Summary 

Table 1 summarises the different estimation methods discussed so far. The first 

column of this table depicts the method to be analysed, the second and third columns 

show the advantages and disadvantages of these methods respectively. The last column 

indicates the computational complexity required by the method on a scale of three levels 

(low, medium and high). 

It is important to note that each method has its strengths and limitations, and that 

the choice of estimation method depends on factors such as the application, available 

resources and desired accuracy. Battery experts often consider a combination of these 

methods or adapt them to specific battery systems to achieve the most accurate and 

reliable state estimation [39], [79], [80]. 
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Table 1. Li-ion estimation methods comparison. 

Method Advantages Disadvantages 
Computational 

complexity 

OCV 
• Easy to implement. 

• High precision if equilibrium is reached. 

• Takes long rest time to reach equilibrium. 

• Applicable only when the vehicles are parked. 

• Suitable to train and calibrate other methods. 

• Not accurate in mid-SoC region curve (i.e., LFP 

chemistry) for SoC estimation. 

Low 

EMF 
• Simple method. 

• Low cost. 

• Significant time is required for current interruption 

to model OCV relaxation process. 
Low 

IR • Simple and easy. 

• Low accuracy for SoC estimation because large 

variations on SoC have low impact on resistance. 

• End of life resistance value needed for SoH 

estimation. 

Low 

EIS 

• Low cost. 

• Achieve good accuracy if impedance value is 

normalized. 

• Aging and temperature impact on the results. Low 

CC 
• Easy to implement. 

• Low computational cost. 

• Has inaccurate results due to uncertain 

disturbances on measured current. 

• Cumulative effect of error. 

• Needs initial SoC value for SoC estimation. 

• Battery aging, discharge rate or sensor precision 

affects its accuracy. 

Low 

KF 
• Accurately estimates states affected by external 

disturbances. 

• KF cannot be used on a nonlinear system. 

• Requires highly complex mathematical calculations. 

• Depends strongly on the correctness of the model 

and measuring device precision. 

Medium 
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Method Advantages Disadvantages 
Computational 

complexity 

EKF 

• Predicts a non-linear dynamic state with good 

precision. 

• Can predict under noisy and inaccurate initial 

conditions. 

• Limited robustness. 

• Linearization error can occur if the system is highly 

non-linear. 

Medium 

UKF 

• Jacobian matrix and Gaussian noise are not required 

to calculate. 

• Accurately predicts system states on non-linear 

system up to 3rd order. 

• Suffers from poor robustness due to uncertainty in 

modelling and disturbances in the system. 
Medium 

SPKF 
• Not need to consider Jacobian matrix 

• Improves accuracy and robustness. 

• Complicated. 

• Heavy calculations. 
Medium 

PF 

• Less computation time. 

• High accuracy. 

• Good convergence rate. 

• Complex mathematical tool required to solve the 

problem. 
High 

FL 
• Performs well in non-linear dynamic system. 

• Good accuracy in different operation conditions. 

• Requires large memory unit. 

• Has a complex computation. 

• Needs costly processing unit. 

High 

SVM • Performs well in non-linear and high dimension 

models. 

• Intensive computation needed. 

• Trial and error process is needed to adjust the hyper 

parameters of the model which is time-consuming. 

High 

NN 

• Capable of modelling non-linearities 

• Adaptability 

• Can predict under unknown initial conditions 

• Need large memory to store the training data. 

• Intensive computing when training. 
High 
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2.1.6 Proposed estimation algorithm 

After reviewing several estimation techniques (Section 2.1), NNs look like the best 

suited to achieve the objectives proposed in this thesis. That is precisely because the use 

of NNs, especially in combination with TL techniques, can yield significant benefits in the 

development and validation of SoC and SoH estimation algorithms for different lithium-

ion batteries. 

Firstly, NNs are renowned for their efficiency in identifying patterns and 

relationships within data. This is particularly beneficial when dealing with the complexities 

of battery chemistries. The ability of NNs to process vast amounts of data swiftly and 

efficiently makes them an ideal choice for the development of robust estimation 

algorithms. This efficiency can lead to significant time and cost savings in the algorithm 

development process. 

Secondly, the adaptability offered by TL is a major advantage. TL allows a model 

that has been pre-trained on one type of battery chemistry to be adapted for use with a 

new chemistry. This eliminates the need to develop a new model from scratch, saving 

considerable time and resources. This adaptability is crucial in the rapidly evolving field of 

battery technology, where new chemistries are continually being developed. 

Thirdly, the accuracy of NNs, particularly deep learning models, is well-

documented [77], [81], [82]. This high level of accuracy can lead to more precise SoC and 

SoH estimations, which in turn can enhance battery management and extend battery 

lifespan. This accuracy is crucial for ensuring the reliability and performance of the 

batteries. 

Lastly, the scalability of NNs and TL is a significant advantage. As new data 

becomes available, the models can be easily updated and improved. This allows them to 

adapt to new battery chemistries and technologies as they are developed, ensuring that 

the algorithms remain relevant and effective. 

In conclusion, the use of NNs and TL can greatly enhance the development and 

validation of SoC and SoH estimation algorithms. This approach aligns with the industry's 

commitment of continuous improvement, innovation, and sustainability. 

2.2 Introduction to Machine Learning 

In Section 1.1.1, it was concluded that machine learning methods would be 

employed to estimate SoC and SoH battery states. To achieve this, the theoretical 

foundations of machine learning along with an explanation of different types of NNs and 

a critical review of the literature, and TL are discussed in this section. 

Machine learning (hereafter ML) is a subfield of computer science that focuses on 

the development of algorithms capable of learning from data. For these algorithms to be 
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effective, they rely on a collection of examples representing a specific phenomenon. These 

examples can originate from natural sources, be produced by humans, or generated by 

other algorithms [83]. 

Machine learning can also be defined as a process of addressing practical 

problems by gathering a dataset and algorithmically constructing a statistical model 

based on that dataset. This statistical model is then utilized to solve the practical problem 

in question [84]. 

In simpler terms, ML enables a system to analyse data and derive knowledge. It 

goes beyond merely learning or extracting knowledge; it leverages the experience gained 

over time to enhance the algorithm's knowledge. The primary objective of ML is to identify 

and exploit hidden patterns within observed data. These learned patterns are then applied 

to analyse unknown data. This approach represents a paradigm shift from traditional 

programming, as it allows for the automation of tasks. ML methods generate a program 

that adapts to the data, i.e., the model [83]. Recent advancements in ML have rendered 

these techniques increasingly versatile for use in various real-world applications. 

2.2.1 Machine Learning. An overview 

Depending on the data available and the purpose, one algorithm or another and a 

specific learning model will be used [85]. 

In a supervised learning model, the algorithm learns from a set of labelled data 

(type of data that associates an input vector with the output data), gives an answer from 

training data and is able to announce an answer for previously unobserved input vectors. 

In an unsupervised model, on the other hand, unlabelled data (input data is not related to 

output data) is used to try to extract algorithms features and patterns from the data itself. 

The semi-supervised learning model is halfway there. It uses a small number of 

labelled data that reinforce a larger set of unlabelled data. Finally, reinforcement learning 

trains an algorithm with a reward system and provides feedback when an agent performs 

the best action in a given situation. 

2.2.1.1 Supervised learning model 

Supervised learning is a popular machine learning technique in which an algorithm 

is trained on a labelled dataset. A labelled dataset in this context consists of input-output 

pairs in which the input data points are paired with corresponding output labels or output 

values. The basic goal of supervised learning is to create a model that can predict the 

output label for new, previously unseen input data points [86]–[88]. 

Training and testing are the two primary steps in the supervised learning process. 

During the training phase, the algorithm analyses the labelled dataset to understand the 

link between input features and output labels. The algorithm modifies its parameters to 

reduce the gap between its predictions and the actual output labels. To measure the 
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model's performance during training, many performance metrics like the accuracy or 

precision score can be used [89]. 

Once the model has been trained, it is tested on a separate dataset that was not 

used during training. This testing dataset also contains input-output pairs, but the model 

has not seen these data points before. The purpose of the testing phase is to evaluate the 

model's ability to generalize its learning to new, unseen data. If the model performs well 

on the testing dataset, it is considered to have learned the underlying patterns in the data 

effectively [90] . 

Supervised learning uses classification algorithms and regression techniques to 

develop predictive models (see Figure 7). Algorithms include [87], [90]: 

Linear Regression: A simple algorithm used for predicting continuous output 

values based on input features. It assumes a linear relationship between input features 

and output values. 

Logistic Regression: A variation of linear regression used for binary 

classification problems. It estimates the probability of an input data point belonging to a 

specific class. 

SVMs: A powerful classification algorithm that aims to find the optimal 

decision boundary (or hyperplane) that separates different classes in the input space. 

Decision Trees: A hierarchical model that recursively splits the input space 

based on feature values, resulting in a tree-like structure. Decision trees can be used for 

both classification and regression tasks. 

Random Forest: An ensemble learning method that combines multiple 

decision trees to improve prediction accuracy and reduce overfitting. 

NNs: A type of model inspired by the human brain that is made up of 

interconnected nodes or neurons. Image identification, natural language processing, and 

game play are just a few of the applications for NNs. 
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Figure 7. Supervised learning model: (a) classification; (b) regression. 

To get the best possible performance in supervised learning, it is critical to select 

the suitable algorithm and fine-tune its parameters. Cross-validation and regularization 

methods can also be used to reduce overfitting and improve the model's generalization 

capabilities. 

An example of supervised learning use for in batteries is SoC estimation. The 

developed models can predict battery SoC based on inputs such as battery voltage, 

current and temperature.  During the training labelled data containing the actual SOC 

values can be used.  

2.2.1.2 Unsupervised learning model 

As opposed to supervised learning, unsupervised learning occurs when algorithms 

learn from unlabelled data, which has no corresponding output labels. A primary goal of 

unsupervised learning is the discovery of hidden patterns, structures, or correlations in 

data. Among the most common unsupervised learning approaches are clustering (Figure 

8), dimensionality reduction, and anomaly detection [91], [92]. 

 

Figure 8. Clustering in unsupervised learning. 

Clustering methods, such as K-means and hierarchical clustering, group together 

comparable data points based on their characteristics. Dimensionality reduction 
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approaches like Principal Component Analysis (PCA) and Stochastic Neighbour 

Embedding (SNE) reduce the number of features in a dataset without sacrificing its 

structure [93], [94]. 

This type of learning can be employed to detect anomalies or outliers in battery 

operation. By analysing the normal behaviour patterns and characteristics of batteries, the 

algorithm can identify instances that deviate significantly from the norm, which may 

indicate potential faults, malfunctions, or abnormal conditions [95]. 

2.2.1.3 Semi-supervised Learning 

Semi-supervised learning is a hybrid form of learning that combines aspects of 

supervised and unsupervised learning. This method trains algorithms on a partially 

labelled data set, which has many unlabelled data points and few labelled data points. The 

main goal of semi-supervised learning is to improve model performance by using 

information from both labelled and unlabelled data [96]. 

Semi-supervised learning techniques often combine supervised learning methods, 

such as classification or regression, with unsupervised learning methods, such as 

clustering or dimensionality reduction. Self-training, co-training and multi-view learning are 

some of the most popular semi-supervised learning algorithms [97]. 

Semi-supervised learning could be used to create a capacity estimation method 

taking advantage of the extra unlabelled sample, which can improve the generalization of 

the model and the accuracy of capacity estimation even in the presence of limited labelled 

data [98]. 

2.2.1.4 Reinforcement learning 

Reinforcement learning (RL) is a different type of machine learning that focuses 

on training algorithms to make decisions based on interactions with an environment. In 

RL, an agent learns to perform actions that maximise a cumulative reward signal over 

time. The learning process involves trial and error, where the agent explores the 

environment, receives feedback in the form of rewards or penalties, and adjusts its actions 

accordingly. An overview of the process of reinforcement learning can be seen in the 

Figure 9. 
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Figure 9. Reinforcement learning. 

Reinforcement learning is particularly suited to problems where the optimal 

solution is not known in advance and must be discovered through interaction with the 

environment, such as robotics, games, recommender systems and autonomous vehicles. 

Reinforcement learning could be used to create an energy management strategy 

in battery systems to reduce the energy loss and to increase the electrical and thermal 

safety in the whole battery system [99]. 

2.3 Neural Networks 

Having explained the basis on which NNs are based, the following sections will 

explain NNs, the different types that exist and how they have been used to estimate the 

SoC and SoH of batteries.  

The basic component of a NN is the neuron or node. The NN is built with node 

connections; that are connected by using the value of weight. Figure 10 shows the 

mechanism of a three-input node. 

 

Figure 10. Node receiving three inputs. 

The circle and arrows in Figure 10 indicate the node signal and the flow. They are 

the input signals 𝑥1, 𝑥2 and 𝑥3; and 𝜃1, 𝜃2 and 𝜃3 are the weights of the signals. Finally, 𝑏 

is a bias, a factor related to the information storage, i.e., the information of the NN is stored 

in the form of weight and bias. 
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The signal coming in from the input variables is multiplied by the weight before it 

reaches the node. When the weighted signals are collected at the node, these values are 

added to make the sum weighted and then the activation function 𝑔 is applied. The 

weighted sum in this example is calculated as follows: 

ℎ𝜃(𝑥) =  𝑦 = 𝑔(𝑥1 ∙ 𝜃1 + 𝑥2 ∙ 𝜃2 + 𝑥3 ∙ 𝜃3 + 𝑏) (5) 

This equation indicates that the signal with more weight has more impact. For 

example, if the weight 𝜃1 is 1 and 𝜃2 is 5, the signal 𝑥2 is five times greater than 𝑥1. When 

𝜃1 is zero, 𝑥1 is not transmitted to the node in any case. This means that 𝑥1 is disconnected 

from node. 

The NN is a network of nodes. A different NN can be created depending as how 

the nodes are connected. One most commonly used type of NN, as can be seen in Figure 

11 uses a layered node structure. 

 

Figure 11. Layered structure of nodes in a shallow NN. 

The set of square nodes shown in Figure 11 is called the input layer. The nodes of 

the input layer only act as a passage that transmits the input signals to the next nodes. 

Therefore, they do not calculate the weighted sum and the activation function. Therefore, 

they are expressed by squares and differ from other circular nodes. The rightmost group 

of nodes is called the output layer. The output of these nodes is the final result of the NN. 

The layers between the input and output layers are hidden layers (named because they 

cannot be acquired from outside the NN). 

Initially, the precursors of the NN had a very simple architecture in terms of input 

and output layers, which are called single layer NNs. When hidden layers are added to a 

single layer NN, it creates a multilayer NN. The multilayer NN therefore consists of an input 

layer, one or more hidden layers and an output layer. The single hidden layer NN is called 

a shallow NN or vanilla NN. The multi-layer NN (two or more hidden layers) is called a deep 

NN. Most of the current NNs used in practical applications are deep NNs [85]. 
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Figure 12. Single-layer NN vs. deep NN. 

In a layered NN, the signal enters the input layer, passes through hidden layers and 

exits through the output layer. In this process, the signal advances layer by layer. In other 

words, nodes in one layer receive the signal at the same time and send the processed 

signal to the next layer at the same time. The more layers a NN has, the more capacity it 

has to fit increasingly complex functions. 

2.3.1 Feedforward neural network 

Feedforward Neural Networks (FNN) or multilayer perceptron networks are the 

main models of deep learning. The goal of a feedforward network is the approximation of 

the 𝑓 function [85], [100], [101]. 

These models are called feedforward because the information goes from the input 

𝑥 through the intermediate computations used to define 𝑓 and finally to the output 𝑦. There 

are no feedback connections where the outputs of the model are fed back. 

2.3.1.1 Backpropagation 

Backpropagation (BP) is an optimisation technique used to minimise de cost 

function which helps to tune the weights of the NN. When a feedforward NN is used to 

accept an input 𝑥 and create an output 𝑦, information is advanced through the network. 

The inputs 𝑥 provide initial information that then spreads to the hidden units in each layer 

and eventually generates 𝑦. This is called forward propagation. During training, forward 

propagation can continue forward until a cost is generated at 𝐽(𝜃) scale. The backward 

propagation algorithm allows the cost information to go backward through the network 

to compute the gradient [85]. 

That is, for each training instance, the algorithm feeds the network and calculates 

the output of each neuron at each successive layer (i.e., the direct step, as when making 

predictions). It then measures the output error of the network (i.e., the difference between 

the desired output and the actual output of the network) and calculates how much each 

neuron contributed to the output error of each neuron in the last hidden layer. It then 

measures the amount of those error contributions from each neuron in the previous 
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hidden layer, and so on, until the algorithm reaches the input layer. This inverse step 

effectively measures the error gradient at all connection weights in the network by 

spreading the error gradient backwards in the network (hence the name of the algorithm). 

NNs have been used for SoC estimation because of their non-linear mapping and 

self-learning capabilities [76], [77], [102]–[104]. In addition, one of its main advantages is 

that it is not necessary to have information about the internal structure of the battery. 

When used for SoC estimation, voltage, current and temperature are used as input data 

and the SoC as output [78], [82], [105].  

In [106], Charkhgard et al. used an NN in combination with an EKF to predict the 

battery SoC. The study proposes a SoC estimator using NN and an EKF with an adaptive 

covariance matrix for system noise. The NN is trained offline to find the appropriate model 

needed in the EKF, which then estimates the battery's SoC. 

The experimental results demonstrate that the proposed estimator provides 

accurate results and quickly converges to the actual state variables, regardless of the 

charging conditions or the initialization of the EKF. However, the parameters of this 

method need to be identified for each predefined temperature, which necessitates more 

memory for data storage and processing. 

One potential issue is that the trained NN may not produce satisfactory results as 

the battery ages. However, this problem can be mitigated by using data collected 

throughout the battery's lifespan, allowing the system to adapt to changes in the battery's 

condition over time. This approach ensures the continued accuracy and reliability of the 

SoC as estimator the battery ages.  

In [107], the authors propose a novel approach for estimating the SoC of Li-ion 

batteries using deep NNs (DNN) without the need for Kalman filters or other inference 

methods. The DNN is trained using battery signals of current, temperature and voltage. 

Through self-learning of network weights, the DNN achieves high accuracy in estimating 

SoC. The study demonstrates the computational efficiency of the DNN SoC estimator, 

showcasing its ability to estimate SoC across different ambient temperatures.  

To enhance SoC estimation accuracy and robustness, the authors have introduced 

noise to the training data. Additionally, the paper offers valuable insights impact of various 

structural aspects of the DNN on SoC estimation accuracy. Overall, this research presents 

a promising approach for SoC estimation in Li-ion batteries, leveraging the power of deep 

NNs. 

In [108], The paper presents a novel approach to battery SoH estimation using 

measurable battery signals such as voltage, current, and temperature, obtained from the 

BMS. These input signals are pre-processed, normalized, and used to train models to 

understand the relationship and distribution of the input signals relative to the target 

output values. The paper's contributions include proposing the use of deep learning 
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networks for capacity estimation to monitor the health of Lithium-ion batteries in electric 

vehicles. It introduces models from three different network architectures: feed-forward NN 

(FNN), CNN, and Long Short-Term Memory (LSTM) for battery capacity estimation.  

The models are evaluated using measurements from two rechargeable Li-ion 

batteries. The paper also discusses the experimental battery testing setup, data 

acquisition process, and the proposed methodology for estimating battery capacity. It 

concludes that data-driven modelling using measurable battery signals offers a robust 

method for battery capacity estimation without requiring an in-depth understanding of the 

electrochemical phenomena inside the battery. 

2.3.2 Convolutional Neural Network 

A CNN is a type of FNN that efficiently reduces the number of parameters of a 

deep network that is specialised for processing data that has a known, grid-like topology. 

Examples of such topologies are time-series data, which are 1D grids, and images, which 

are 2D grids of pixels. The name of this type of NN is given because it performs an 

operation called convolution [109], [110]. 

A convolution is a linear operation involving the multiplication of a set of weights 

with the input, as in a FNN. Since the technique was designed for two-dimensional input, 

the multiplication is performed between an input data matrix and a two-dimensional 

matrix of weights, called a filter or kernel. 

The filter is smaller than the input data and the type of multiplication that is applied 

between an input filter size patch and the filter is a dot product. By creating a smaller filter, 

the same filter can be multiplied multiple times at different points in the input. Thanks to 

this, the filter will have the opportunity to discover the common feature throughout the 

image [111]. 

The result of this operation is called a feature map. This feature map contains a 

two-dimensional array with filtered values of the input data. After convolution operations 

pooling is performed to reduce the dimensionality. Thanks to dimensional reduction, the 

number of parameters can be reduced, thus reducing training time. Finally, a fully 

connected layer (layer that connects every neuron from one layer to every neuron in other 

layer) is usually used for classification or regression.  

 

Figure 13. CNN architecture [112]. 
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The main advantage of CNN is their capacity to automatically detect the important 

features. For example, given many pictures of apples and bananas, a CNN will learn 

distinctive features for each class by itself.  

The literature review has shown that CNNs are not usually used on their own, but 

are often used in combination with other types of networks, usually RNNs. Furthermore, 

in some of the articles it is not clear that including CNNs brings advantages over an RNN 

alone [113]–[115]. Instead, there is a variation of CNNs called temporal convolutional 

networks (TCNs), which are designed for use with timeseries data, which makes them 

suitable for use in estimating SoC and SoH as described below. 

Yang et al., proposed in [116], a method to estimate battery SoC using real-world 

operating data of EVs and a TCN combined with dual attention mechanisms. The 

proposed method uses real-world operating data of EVs to estimate battery SoC, which 

makes it reliable and accurate in real driving scenarios. Attention mechanisms are added 

to the time steps and input feature dimensions of the data to further improve the model 

estimation accuracy. 

The paper also proposes a new method to correct the SoC value provided by the 

cloud platform, which makes the SoC estimation more accurate. The corrected SoC is 

used as the label for NN training, which improves the model's performance. The proposed 

model predicts more stable and accurate results compared to other NN models 

commonly used to predict battery SoC, models such as GRU or BP. 

However, it is worth noting that the proposed method requires a large amount of 

data for training and may not be suitable for applications with limited data availability. 

Moreover, the proposed method may require significant computational resources for 

training and estimating, which may limit its practical implementation in resource-

constrained environments. 

The authors in [117], present a data-driven SoH estimation algorithm for lithium-

ion batteries using different segments of partial discharge profiles. The proposed 

algorithm uses raw sensor data directly as input to a temporal CNN(TCN) without the need 

for complex pre-processing. The TCN is able to process raw sensor data and estimate the 

SoH of battery cells for different aging and degradation scenarios. 

The authors evaluated the accuracy of the data-driven SoH estimation models by 

studying partial discharge profiles forming different SoC ranges. For this purpose, four 

different use cases are defined, where every use case contains partial discharge cycles 

from disparate SoC areas. The TCN models were trained using partial discharge cycles 

from four different SoC ranges, resulting in four use cases. The data split was computed 

using the stratified K-fold cross-validation with shuffling. The paper presents a promising 

approach for accurately estimating the SoH which is suitable for on-board estimations 

where only limited memory and computing power are available. 
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2.3.3 Recurrent Neural Networks 

RNNs are special networks designed to work with sequential data as time-series. 

What differentiates this type of NN is that it uses information from previous sequences to 

produce an output [100], [118]. 

 

Figure 14. RNN unit architecture [119]. 

Figure 14 shows the architecture of an RNN node. Here can be seen how it 

combines the new input data with the output of the previous step called hidden state. This 

combination is then passed through an activation function that outputs the new hidden 

state. 

The main problem for RNNs is that they have a short-term memory problem. This 

problem is caused by the vanishing gradient. In the RNN to train the network, 

backpropagation is done in time, calculating the gradient at each step. This gradient is 

then used to update the weights in the network. If the impact of the previous layer on the 

current layer is small, the value of the gradient will be small and vice versa. If the gradient 

of the previous layer is smaller, the gradient of the current layer will be even smaller. This 

causes the gradients to shrink exponentially as it is backpropagated. A smaller gradient 

implies that it will not affect the weight update [120]. 

To address vanishing gradient or this short-term memory problem two specialised 

versions of RNN are used, LSTM and GRU. Those networks will be explained below. 

2.3.3.1 Gated Recurrent Unit (GRU) 

The GRU follows a similar workflow to the RNN, but in this case the operations 

within it are different. As can be seen in the Figure 15, GRUs have two new gates called 

reset gate and update gate. These gates are simply NNs that have their own weights and 

biases.  
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Figure 15. GRU unit architecture [119]. 

First, the update gate decides whether the cell state should be updated with the 

candidate state (the candidate cell is the same as the hidden state of the RNN) or not. The 

reset gate is used to decide whether the previous state of the cell is important or not. 

The final state of the cell depends on the update gate. It may or may not be updated 

with the candidate state. This final state passes directly as activation to the next cell. 

2.3.3.2 Long Short-Term Memory 

LSTMs are similar to GRUs but use three gates to avoid the vanishing gradient 

problem, an input gate, a forget gate and an output gate, as can be seen in Figure 16.  

The input gate decide decides what information will be passed to the cell state. 

The forget gate controls which information should be saved, and which should be 

forgotten from the previous cell state. The output gate, on the other hand, decides what 

the next hidden state should be [85], [100]. 

 

Figure 16. LSTM unit architecture [119]. 
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To sum up, it will be explained step by step what happens inside an LSTM network. 

First the previous hidden state and the new input data are concatenated or combined 

(called from now on combination). That combination flows to the forgetting layer, where 

non-relevant data is removed. Next, a candidate layer is created using the combination. 

The combination in turn enters the input layer where it is decided which candidate data 

should be added to the new cell state. Thus, after computing the forgetting, candidate and 

input layers, the new cell state is computed with those vectors and the previous cell state. 

Then, the output is computed. Finally, the new hidden state is computed by pointwise 

multiplying the output and the new cell state [121]. 

RNNs and their derivatives, such as LSMTs, are often favoured for assessing 

battery SoC and SoH because of their proficiency in managing timeseries data [113], 

[122]–[124]. In the subsequent discussion, it will be delved into how these networks have 

been employed to estimate those battery states. 

In [125], it is introduced an innovative approach for determining the SoC of lithium-

ion batteries in electric vehicles, a critical factor for the safe and dependable functioning 

of battery management systems. This method employs a RNNfeaturing gated recurrent 

units to calculate the battery SoC using data from current, voltage, and temperature 

readings. This approach surpasses the accuracy of conventional feed-forward NNs by 

leveraging data from prior SoCs and measurements. 

This method was evaluated using data gathered from two lithium-ion batteries 

under fluctuating load conditions. The findings revealed that the method delivers 

commendable estimation results and operates effectively at untrained temperatures. This 

method is entirely data-driven and model-free, enhancing its adaptability. However, the 

method does have a drawback in that it necessitates a substantial volume of data for 

training, which can be both time-consuming and expensive. Furthermore, the proposed 

model is not accurate in the initial value of the SoC, which can exhibit errors of more than 

20%. 

Yang et al. proposed in [122], a method for estimating the SoC. The proposed 

method uses a LSTM RNN to model the battery behaviour under varying temperatures 

and estimate the SoC from voltage, current, and temperature variables. An Unscented 

Kalman Filter (UKF) is incorporated to filter out the noises and further reduce the 

estimation errors. The proposed method is evaluated using data collected from EV 

profiles. Experimental results show that the proposed method can well learn the influence 

of ambient temperature and estimate battery SoC under varying temperatures. 

The paper presents some limitations that need to be considered. The proposed 

method is evaluated using data collected from a limited number of tests, and it is unclear 

how well it will perform with data from other tests or under different conditions. 

Additionally, the proposed method requires a large amount of data for training the LSTM 

model, which may not be available in some cases.  
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In summary, the paper proposes a method for estimating the SoC of lithium-ion 

batteries using an LSTM RNN and a UKF. The proposed method shows promising results 

in estimating the SOC under varying temperatures, but it has some limitations that need 

to be considered.  

The paper in [126], proposes a method for estimating the SoH of lithium-ion 

batteries based on temperature prediction and GRU NN. The method involves developing 

a temperature prediction model to compensate for incomplete information and using 

extreme learning machine to predict the missing temperature curve. Six health features 

are extracted from the built delta temperature curves, and the SoH is estimated based on 

gated recurrent unit NN. The proposed method is validated with accuracy for SoH 

estimation. 

By contrast, the proposed method is verified on one type of battery, and the 

feasibility on other types of li-ion batteries needs to be validated. The algorithm is validated 

at high temperature (40 ºC), and its efficiency at other temperatures needs to be further 

examined. When considering different temperature conditions, the aging data at different 

temperatures need to be collected as the training datasets, and then the proposed method 

can be implemented to acquire temperature data. 

Ma et al. proposed in [127], a novel method for estimating the SoH of lithium-ion 

batteries used in EVs. The proposed method is based on a LSTM and health indicators 

(HIs) extraction from charging-discharging process. The method overcomes the limitation 

of the measurement of battery capacity in real application by selecting some external 

characteristic parameters related to voltage, current, and temperature as HIs to describe 

the aging mechanism of the batteries. The Pearson correlation coefficient is employed to 

select the HIs, which have high correlations with battery capacity. Neighbourhood 

component analysis (NCA) is used to eliminate redundant information of HIs with high 

correlation to reduce computational burden. 

The paper proposes a differential evolution grey wolf optimizer (DEGWO) for 

hyperparameters optimization in LSTM models. DEGWO updates the population through 

mutation, crossover, and screening operations to obtain the global optimal solution and 

improve the global search ability. The proposed method is verified based on the dataset 

of the battery from NASA and MIT. The simulations indicate that the proposed method 

has higher accuracy for different kinds of batteries.  

The paper does not address the real-time implementation of the proposed method, 

which is a limitation of the work. The proposed method requires a large amount of data 

for training the LSTM model, which may not be feasible in some practical applications. 

The method also assumes that the HIs extracted from the charging-discharging process 

are sufficient to describe the aging mechanism of the batteries, which may not be true for 

all battery types. 
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2.4 Transfer Learning 

In the process of analysing various methods for estimating the SoC and SoH of 

batteries so far, it has been observed that existing methods for estimating battery status 

are often specific to a battery type. This is a challenge, as each new battery or reference 

type requires a fresh start in testing and training the NN, with the time and money that this 

entails. In addition, this review has also shown the importance of having reliable and large 

datasets for training NNs. Since it is crucial that these datasets come from batteries 

tested in a variety of conditions to ensure accurate SoC or SoH estimates under all types 

of conditions. 

To address this problem and to achieve the objective stated in this thesis, it has 

been identified that TL could be a valuable tool to achieve the objectives. Therefore, the 

fundamentals of TL and how it has already been applied in the literature to estimate the 

SoC or SoH will be explained below.  

In recent years, therefore, TL has been conceived as a new learning framework to 

address the above-mentioned problems, including different names: learning to learn, 

knowledge transfer, cumulative learning, induction transfer and multi-task transfer, among 

others [128]. 

There is a technique closely linked to transfer of learning, the multitask learning 

domain, which attempts to learn several tasks at the same time even if they are different 

[129]. 

In contrast, the definition of TL would be: to know the knowledge and skills 

acquired in previous tasks and to have the ability to apply them to new tasks. In 

contradiction to multi-task learning, instead of learning all backgrounds and target tasks 

simultaneously, TL is primarily concerned with the target task. 

Therefore, the differences between traditional techniques and transfer techniques 

are remarkable as can be seen in the Figure 17. Traditional machine learning techniques 

try to learn from scratch (a), TL techniques (b), try to transfer knowledge from some 

previous tasks to a target task with less training data. 

 

Figure 17. Learning processes: (a) Traditional learning; (b) TL [130]. 
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2.4.1 Categorisation of TL 

In the process of TL, three important questions have to be answered: what, how 

and when to transfer knowledge. 

The "what to transfer" part determines which part of the knowledge can be 

transferred via domains or functions. Some knowledge is specific to individual domains 

and tasks, but there is knowledge common to several domains that helps to improve the 

performance of target fields (input variables) or target tasks. After knowing what 

knowledge can be transferred, in order to transfer the knowledge, learning algorithms have 

to be developed, which corresponds to the "how to transfer" section. 

Finally, it has to be determined when the knowledge can be "transferred". It is also 

important to know in which situations knowledge should not be transferred. There are 

situations in which, when the source and the target domain are not related to each other, 

brute force transfer will not be easy to carry out. In the worst case, it can also harm the 

learning performance in the target area, which is called negative transfer. 

Most of the current work on TL is based on the sections "what to transfer" and 

"how to transfer", assuming that the source and target domains are interrelated. However, 

avoiding negative transfer is an important open problem that is attracting increasing 

attention. 

TL can be classified into three subfields: inductive TL, transductive TL and 

unsupervised TL. 

Inductive TL 

The source and target tasks are different but have a related label. In this case, 

labelled data in the target domain is needed to develop a target predictive model to be 

used in the target domain. Also, depending on different states of labelled and unlabelled 

data in the source domain, we can further categorise the inductive TL setup in two cases. 

- Multi-task learning: When there is a lot of labelled data in the source domain.  

- Self-taught learning: The source domain has no labelled data.  

Transductive TL 

The source and target tasks are the same, but the source and target domains are 

different. This time, no labelled data is available in the target domain, but labelled data is 

available in the source domain. Also, due to the different source and target domain 

situations, transductive TL can be categorised into two cases. 

- Domain adaptation: The characteristics of the source and target domains are 

different. 
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- Sample selection: The characteristics between source and target domains are 

the same, while the marginal probability distributions of the input data are 

different. 

Unsupervised TL 

This is similar to inductive TL; the target task is different but related to the source 

task. However, unsupervised transfer is based on solving unsupervised learning tasks in 

the target domain, such as clustering, dimension reduction and density estimation. In this 

case, there is no labelled training data in the source and target domain. 

After this analysis, the classification according to the available labelled data is 

depicted in Figure 18. 

 

Figure 18. Types of TL. Adapted from [130]. 

In the development of SoC or SoH estimators, both input and output data are 

typically accessible. This situation necessitates the application of inductive TL. There are 

two for strategies main implementing TL, both generally involving the modification of the 

base model's weights [131], [132]. 

The first strategy involves selectively freezing certain layers (usually the initial 

ones) and retraining the final layers that form the NN, as depicted in Figure 19. This 

method allows for the preservation of learned features in the frozen layers while adapting 

the model to new data through the retrained layers. 
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Figure 19. TL freezing some of the layers. 

The second strategy, known as fine-tuning, involves retraining all the weights that 

constitute the NN. This comprehensive approach allows for a more extensive adjustment 

of the model to the new data, potentially leading to more accurate estimations. 

Each approach has its own advantages and can be chosen depending on the 

specific needs of the battery system and the available data. In the following sections, the 

application TL documented in the literature for estimating SoC and SoH will be discussed 

in more detail. 

In [133], Liu et al. introduced a method for estimating the SoC of lithium-ion 

batteries using a TCN. This method can directly correlate the measured values of voltage, 

current, and temperature during battery usage to accurately determine the SoC. The 

network is designed to self-learn and update its parameters by processing datasets 

collected under various working conditions. This allows it to develop a model capable of 

accurately estimating SoC under different conditions. 

One of the key advantages of this method is its adaptability. Through TL, it can be 

applied to different types of lithium-ion batteries using only a small amount of battery-

specific data. This makes it an effective tool for estimating the SoC of various lithium-ion 

batteries, providing a versatile solution for battery management systems. 

However, it is important to note that the proposed method was tested on a specific 

type of lithium-ion battery and additional testing was done on EV profiles and in absence 

of different temperature in the training set. Therefore, the effectiveness of the method on 

other types of lithium-ion batteries and under different working conditions may need to be 

further investigated. Additionally, the paper does not discuss the computational resources 
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required for implementing the proposed method, which may be a limitation for practical 

applications. 

In the article [134], Li et al. used a CNN together with the pruning technique to 

estimate the SoH. The pruning technique consists of removing redundant neural 

connections in order to make a more compact and faster model without compromising 

performance. To train the NN they used the voltage, current and the loaded capacity of 

the cell, obtaining as the output the capacity that the cell can discharge. The study also 

uses TL to adapt the model to new cells of the same chemistry, which is LFP. 

In the article, the authors use degradation data from 16 LFP cells to train a DNN to 

which they then apply TL to estimate the SoH of other LFP cells but of different capacity. 

They show the difference between using a conventional CNN or a pruned CNN (PCNN) to 

estimate the SoH of the battery, and the difference between applying TL or not to those 

NNs.  

The results show that applying TL improves the results obtained for all cells, 

although it does not show an obvious improvement in using a PCNN over a CNN. To 

perform the TL, in addition to using the source dataset (the data from the 16 cells), data 

from three other cells from the target dataset are used, so that only one cell remains to 

test the NN. Moreover, the three cells used have degradation parameters very similar to 

those of the test, so it is impossible to know how the model would behave in other 

conditions. 

In [135], Shen et al. estimate the SoH of the battery using deep convolutional 

networks (DCNN) with ensemble learning. To do so, they create different DCNNs and join 

the results proposed by each of these DCNNs using the ensemble learning technique to 

obtain the most robust and accurate answer possible. In addition, the study uses the TL 

technique to adapt the SoH estimator created to other cells of the same chemistry. In 

order to train the estimators, partial charge curves were used, using as input variables 

charged capacity, voltage and current and getting battery capacity as output. 

The results obtained show that DCNN perform better than random forest (RF) or 

Gaussian process (GP) regression, and the difference is accentuated when TL is applied 

to these networks. Here the advantages of applying TL can also be seen, as more accurate 

results are achieved, and the network is trained faster. On the other hand, as mentioned 

earlier, the article proposes the use of ensemble learning. Using this technique, the RMS 

error is improved by 25%, although the training time is 10 times longer. 

2.5 Conclusions and main gaps found in the literature 

In the course of conducting a comprehensive literature review, it has become 

evident that there are certain critical factors and limitations that warrant attention. 
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A primary limitation identified is the absence of a distinct separation among 

training, validation, and test data during the process of training and testing NNs. This lack 

of clear demarcation can lead to overfitting or underfitting, which can significantly impact 

the performance of the AI model. 

Secondly, a common oversight in many of the reviewed articles is the disregard for 

certain conditions when training the NNs. For instance, factors such as low amount of 

considered C-rates or temperatures are often overlooked. This oversight can result in 

significant issues when the estimators are deployed in unfamiliar conditions, thereby 

affecting the reliability and accuracy of the AI model. 

Another crucial factor to consider is the complexity of the algorithm. While 

complex algorithms can potentially offer more nuanced and accurate results, they also 

demand longer training times and more robust hardware capabilities. This trade-off 

between complexity and computational resources needs to be carefully managed to 

ensure efficient and effective AI model training. 

Lastly, while it's true that algorithms typically require a substantial volume of data 

for training, the application of TL techniques can mitigate this requirement. TL allows the 

model to leverage pre-existing knowledge from related tasks, thereby reducing the amount 

of new data needed for training. This approach can significantly enhance the efficiency of 

the training process and the overall performance of the AI model. Furthermore, the review 

has noted that nearly all methods exclusively operate on characterized cells, failing to 

develop models that can be adapted to different cell references or types. 

In conclusion, these considerations underscore the importance of a meticulous 

and thoughtful approach to AI model development, taking into account not only the 

technical aspects but also the practical implications and constraints. 
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A well-defined methodology is the basis for developing SoC and SoH estimators 

for Li-ion batteries, as its implementation can serve as a model for consistency and 

reproducibility. It ensures that the experiments and processes to be followed to create and 

validate such estimators are done in a uniform way, which allows the results to be 

reproducible, a fundamental aspect of scientific research.  

Methodologies also improve efficiency, as having a clear roadmap for tasks 

streamlines processes and reduces the likelihood of errors, resulting in more efficient 

operations. In a multidisciplinary field such as estimating states for Li-ion batteries, 

methodologies provide a common language that simplifies the communication of 

complex processes and tasks. 

Due to the multitude of factors at play, this chapter undertakes a comprehensive 

analysis of the methodologies and processes employed in the creation and validation of 

both the SoC estimation algorithm and the SoH estimation algorithm. Illustrated in Figure 

20, the methodology unfolds in a structured tripartite arrangement. 

The first group, denoted as “Stage 0: Setup and Preparation”, encompasses all 

indispensable tasks preceding NN training. This phase orchestrates essential data 

handling procedures, encompassing data pre-processing and preparation. Concurrently, 

the selection of pertinent metrics, the identification of the best fitting model, and the 

determination of tuneable parameters constitute pivotal tasks in this preliminary stage. 

The subsequent group encapsulates Stages 1, 2, and 3, where distinct models are 

meticulously forged. Commencing with “ tage 1: Baseline model”, the baseline model 

takes form, painstakingly constructed through rigorous training and testing. This phase 

also mandates meticulous hyperparameter tuning, fine-tuning the model's intricacies. 

Transitioning to “ tage 2: Comparative model” marks the inception of a model created 

from scratch using the data of the new cell, serving as a benchmark for the TL model's 

performance, fostering a comprehensive comparison. "Stage 3: TL model”, the TL 

paradigm comes into play. Here, the baseline model is retrained and evaluated with fresh 

data from a different cell reference, harnessing the power of TL.  

The third group, culminating in “Stage 4: Evaluation”, compares the results derived 

from models in stages 2 and 3. A meticulous and insightful comparison of their 

performances provides a vantage point for gauging the effectiveness of the TL approach. 

In summation, this chapter delves into a detailed exposition of the methodology 

and procedures steering the inception and validation of the SoC and SoH estimation 

algorithms. The outlined methodology, as exemplified in Figure 20, demonstrates a three-

fold division, strategically manoeuvring through stages tailored to ensure comprehensive 

model development, rigorous evaluation, and incisive comparison. 
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Figure 20. Summary of the proposed methodology 

3.1 Stage 0: Setup and Preparation 

3.1.1 Data 

The quality and quantity of the collected data directly influence the performance 

of the NN model, which also influences the accuracy of the estimation. For this reason, 

data creation, collection and pre-processing should be given the attention it requires. 

Data creation and collection 

To create robust and reliable estimation algorithms, it is necessary to collect data 

under various operating conditions, such as different charging/discharging rates, 

temperatures and aging states. This ensures that the model is robust and can generalise 

well to different scenarios. It is necessary that the data collected from the batteries are 

the variables that help estimate the SoC and SoH. This typically includes voltage, current, 

temperature and time. 
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High quality estimation requires that the data collected is also of high quality, 

meaning accurate, reliable and with as little noise as possible. This may involve the use of 

high precision measurement equipment and following rigorous data collection protocols. 

In addition, since SoC and SoH are time-dependent variables, it is also crucial to collect 

longitudinal data, that is, data collected over time [136]–[138]. This allows the model to 

capture temporal patterns and dependencies, which are crucial for an accurate estimation 

of SoC and SoH [13]. 

In the current study, the data needed to train the NNs have been generated in two 

different ways: 

i) Synthetic data: the use of electrochemical models to generate synthetic battery 

data. These models simulate the behaviour of the battery under various conditions, such 

as different charging/discharging rates, temperatures and aging effects. The synthetic 

data include parameters such as voltage, current, temperature and time, together with the 

corresponding SoC and SoH values. The main advantage of using synthetic data for initial 

training is the possibility to create a large amount of data under controlled conditions. A 

wide range of scenarios can be simulated that might not be feasible or cost-effective to 

reproduce in a laboratory environment. This helps the model learn a wide spectrum of 

battery behaviours, improving its robustness and versatility [139], [140]. 

ii) Laboratory data: the laboratory data is obtained from real batteries subjected to 

charging/discharging and aging cycles in a controlled environment. This data is more 

complex and includes real-world variations and anomalies that synthetic data may not 

capture. 

Data pre-processing 

Once the data has been created and collected, it must be pre-processed before it 

can be used to train the NN. The different steps carried out during data pre-processing are 

outlined below. 

The first point is data cleaning, which consists of removing or correcting erroneous 

data points. For example, it may be necessary to correct obvious measurement errors or 

to remove outliers due to sensor malfunctions, as depicted in Figure 21(a). Next, it will be 

necessary to do a missing value management as shown in Figure 21(b). This is to say how 

the missing data points will be dealt with. Common strategies include omitting these data 

points, filling in missing values with a statistic such as mean or median, or using a method 

such as interpolation or regression to estimate missing values [141].  
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Figure 21. Outlier (a) and missing (b) data point. 

One of the most important points when training NNs is the normalisation of the 

data. NNs tend to work best when all input variables are on a similar scale. Therefore, it is 

common to normalise the data, i.e. to rescale all variables to a standard range, such as 0 

to 1 or -1 to 1. This can help the network converge faster and can prevent certain features 

from dominating others [142]. 

Another common practice when training NNs is feature engineering, or in other 

words, to create new features from existing ones, as this practice can help the NN make 

better predictions. For example, a feature can be created that represents the average 

temperature of the cell over a defined period of time. 

Finally, in the context of machine learning and data handling it is of vital importance 

to perform a correct partitioning of the data. For this purpose, the pre-processed data 

must be divided into a training set, a validation set and a test set. The training set is used 

to train the model and adjust the weights, the validation set is used to adjust the 

hyperparameters and avoid overfitting, and the test set is used to evaluate the 

performance of the final model. It is critical that these sets do not overlap to ensure an 

unbiased estimate of model performance [143]. 

3.1.2 Model Selection 

Model selection is a fundamental step in the machine learning process. It involves 

choosing the best model that fits the data and makes the most accurate predictions. To 

do this, several factors need to be considered.  

To choose a particular model, it is necessary to consider both the data available 

and the problem to be solved. It is needed to have a thorough understanding of the data 

available, such as the type of data involved (numerical, categorical, etc.), as well as the 

distribution and relationship between the different data available. Similarly, it is necessary 

to know what type of problem the solution is being sought for. For example, in the case of 
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both SoC and SoH, since a continuous variable is being estimated, it will be necessary to 

use a regression model [144]. 

The next factors to consider are the type of model and the complexity of the model 

to be used. Simpler models are easier to interpret and have a lower likelihood of overfitting, 

but they may not capture complex patterns in the data. More complex models can capture 

these patterns, but they are more prone to overfitting and are harder to interpret. The key 

is to find a balance between bias (simpler models) and variance (complex models) [145].  

In section 2, different types of NNs have been shown, along with their advantages 

and disadvantages. Consequently, the best type of NN will be necessary to find for SoC 

and SoH estimation. Each of the estimation algorithms will need a different NN type due 

to the nature of the battery state that is trying to be estimated.   

3.1.3 Metrics 

Once the type of network has been defined, the next aspect to consider is the type 

of metric to be used to evaluate the performance of the models. For regression problems 

there are different types of metrics depending on the problem you are looking for a 

solution to, below is a summary of the most used ones [146]: 

• Mean Absolute Error (MAE): The MAE calculates the mean absolute difference 

between predicted and actual values. It provides a measure of the average 

magnitude of errors regardless of their sign. MAE is less sensitive to outliers than 

other error metrics. The formula for MAE is: 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝑦𝑖 − 𝑦�̂�|

𝑁

𝑖=1

 
(6) 

• Mean Square Error (MSE): The MSE calculates the root mean square difference 

between predicted and actual values. It penalises larger errors more than MAE and 

is often used in optimisation algorithms. The MSE is calculated following: 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑁

𝑖=1

 
(7) 

• Root Mean Square Error (RMSE): RMSE is the square root of MSE and provides a 

measure of the average magnitude of errors in the same unit as the target variable. 

RMSE is more interpretable than MSE, as it is on the same scale as the target 

variable. 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 
(8) 



Stage 0: Setup and Preparation 

47 
 

• Mean Absolute Percentage Error (MAPE): MAPE calculates the average percentage 

difference between predicted and actual values. It provides a relative measure of 

errors and is useful when the scale of the target variable varies significantly. The 

MAPE formula is: 

𝑀𝐴𝑃𝐸 =  
100%

𝑁
∑ |

𝑦𝑖 − 𝑦�̂�

𝑦𝑖

|

𝑁

𝑖=1

 
(9) 

The last factor to consider is the computational complexity of the chosen model, 

as some models require more computing resources than others. When working with a 

large dataset or with limited computing resources, a more efficient model may have to be 

chosen. For example, an RNN will have a higher complexity, as each node or neuron is 

composed of more mathematical operations than a Multilayer Perceptron. 

3.1.4 Hyperparameters 

The adjustment of hyperparameters is a crucial step in the training process of a 

NN. It consists of tuning the model parameters that are not learned from the data, but are 

fixed before the training process. These parameters, known as hyperparameters, 

significantly influence the learning process and the performance of the model [147]. 

The most important hyperparameters to be taken into account during the training 

of the NN are shown below: 

Learning Rate (LR) 

The LR determines the size of the steps that the gradient descent algorithm takes 

in the cost function. If the LR is too high, the algorithm may exceed the global minimum 

and diverge. If it is too small, the algorithm will converge too slowly, which means it will 

take a long time to reach the global minimum. 

As can be seen in Figure 22, the LR has a significant impact on model performance. 

An optimal LR can help a model converge efficiently to a global minimum and result in a 

very accurate model. Conversely, a poorly chosen LR can cause a model to converge to a 

sub-optimal solution or even not to converge at all. 
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Figure 22. LR value effect during training. 

Fixed LR do not always lead to optimal results because the same step size may 

not be adequate throughout the training process. To solve this problem, adaptive LRs are 

often used. These adjust the LR during training. Well-known methods include AdaGrad, 

RMSProp and Adam [148]. 

Another approach to optimise the LR during training is the use of LR schedules or 

LR decay. This is done by starting with a relatively high LR to progress quickly, and then 

reducing the rate over time to allow for more accurate weight updates as training 

progresses. This can be done in various ways, such as step decay or exponential decay, 

among others. 

Batch Size 

The batch size refers to the number of training examples used in one iteration of 

model training. For example, if a dataset of 1,000 examples is given and a batch size of 

100 is set, it will take 10 iterations for the model to run through the entire dataset. The 

choice of batch size can significantly affect the performance of the model and the speed 

of the training process [149]. 

On one hand, larger batch sizes can take better advantage of the parallel 

processing power of modern GPUs, which speeds up training times. However, this comes 

with increased memory requirements. On the other hand, smaller batch sizes tend to 

converge faster because they cause the model to update more frequently. However, 

updates are based on fewer examples, which can lead to noisy gradient estimates and the 

model getting stuck on sub-optimal solutions. In contrast, larger batches provide a more 

accurate estimation of the gradient, but the model may converge more slowly to a more 

optimal solution. 

Recent research suggests that smaller batches may result in models that 

generalise better. This is because noise in the gradient estimation can act as a form of 

implicit regularisation [150]. 
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Finally, batch size is often limited by the memory capacity of the hardware. Larger 

batch sizes require more memory to store the necessary variables and intermediate 

calculations for each example in the batch. 

Number of Epochs 

Epochs refer to the number of times the entire data set is passed back and forth 

through the NN during the training process [151].  

If the number of epochs is too small, the model may not have enough time to learn 

from the data, resulting in insufficient fit. Misfit occurs when the model fails to capture the 

underlying patterns in the data, resulting in poor performance. On the other hand, if the 

number of epochs is too large, the model may start to overfit the data. Overfitting occurs 

when the model learns the training data too well, including noise and outliers, which can 

lead to poor generalisation of the unknown data. 

One way to adjust the number of epochs is through early stopping. As depicted in 

Figure 23, this technique stops training as soon as the error in the validation set increases, 

indicating that the model has started to overfit the training data [152]. 

 

Figure 23. Early stopping during NN training. 

Early stopping consists of monitoring the performance of the model on an 

independent validation dataset and stopping the training procedure when the 

performance on the validation dataset has not improved after a fixed number of epochs. 

Number of Hidden Layers and Units 

The number of layers and units per layer of a NN significantly influences its training 

and behaviour. This is a fundamental aspect of the design of a NN architecture, and it is 

crucial to understand how these parameters affect the network's ability to learn and 

generalise [153].  
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In a NN, each layer is responsible for extracting features from the input data. Initial 

layers typically extract low-level features, while deeper layers combine these low-level 

features to form higher-level representations. This hierarchical feature learning is what 

allows deep NNs to model complex patterns and behaviours [154]. 

However, as the depth of the network increases, so does the complexity of the 

model. This can lead to overfitting, especially when the amount of training data is limited. 

Deep networks are also more prone to the evanescent gradient problem, where the 

gradients of the loss function become very small as they back-propagate through the 

layers. This can slow down the learning process or cause it to stall at suboptimal solutions.  

The number of units in a layer determines the dimensionality of the output space 

of that layer. A larger number of units allows the layer to learn more complex 

representations, but also increases the computational cost and the number of model 

parameters, which can lead to overfitting. The optimal number of units per layer usually 

depends on the complexity of the data and the problem at hand. For example, a task that 

involves distinguishing between many different classes may require layers with more units 

to capture the necessary level of detail [155]. 

In practice, the optimal number of layers and units per layer depends on the 

specific task and the amount and complexity of data available. It is often determined by 

experimentation and validation on an independent dataset. Too few layers or units may 

result in an insufficient fit, where the model fails to capture the underlying patterns in the 

data. Inversely, too many layers or units can lead to over-fitting. 

Activation Function 

Activation functions play a crucial role in NNs. They introduce non-linearity into the 

output of a neuron, which allows the network to learn and represent more complex 

functions. Without activation functions, no matter how many layers a network has, it 

would behave just like a single-layer perceptron because summing these layers would give 

another linear function [156]. 

In the Figure 24, some of the most popular activation functions are shown [157].  

Sigmoid: The sigmoid function maps the input values to a range between 0 and 1. 

It suffers from two main drawbacks: the vanishing gradient problem, where the gradients 

become very small if the input is far from 0, slowing down learning; and the fact that its 

output is not zero-centred, which can make the optimization process harder. 

Tanh: The tanh function is similar to the sigmoid function but maps the input to a 

range between -1 and 1, making it zero-centred. This can make learning easier for the next 

layer. However, it still suffers from the vanishing gradient problem. 

Rectified Linear Unit (ReLU): The ReLU function outputs the input directly if it's 

positive; otherwise, it outputs zero. It has become the default choice for many types of 
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NNs because it helps mitigate the vanishing gradient problem and is computationally 

efficient. However, it can suffer from the "dying ReLU" problem, where neurons can 

become stuck in the zero state and stop learning. 

Leaky ReLU: This is a variant of ReLU that introduces a small slope to keep the 

updates alive when the input is less than zero. This helps to mitigate the "dying ReLU" 

problem. 

 

Figure 24. Activation functions. 

Choosing the right activation function depends on the specific requirements of the 

model and the type of problem being solved. It's also worth noting that different activation 

functions can be used in different layers of the same network. 

Dropout  

Dropout is a regularisation technique used in NNs to avoid overfitting. Dropout 

works by randomly "dropping out" or turning off a proportion of neurons in a layer during 

each training iteration as depicted in Figure 25. This means that during each training step, 

each neuron has the possibility of being temporarily removed from the network, along with 

all of its incoming and outgoing connections [158]. 

The effect of dropping is to force the network to learn more robust features. Since 

a neuron cannot rely on the presence of other neurons, it must extract useful features 

from the input data independently, making the model less complex and more generalised. 

The result is a network capable of performing better on unknown data. 
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Figure 25. Standard NN vs. NN with Dropout. 

However, dropout also has its disadvantages. It can increase the time needed for 

the network to converge, as a different network is trained at each step. In addition, it is not 

always beneficial for all types of networks. For example, in small or data-poor networks, 

dropout can lead to underfitting, i.e., the model does not capture the underlying patterns 

in the data. 

Optimiser 

An optimiser is an algorithm or method used to adjust the parameters (weights 

and biases) of the model in order to minimise the loss function. The main goal of an 

optimiser is to find the optimal set of parameters that produce the best possible 

predictions for a given data set. Optimisers play a crucial role in the training process of 

NNs, as they directly influence the convergence of the model and its ability to generalise 

to unknown data [159]. In addition, optimisers have adaptive learning rates, which can 

speed convergence. 

On the other hand, some optimisers are more stable than others and can help to 

avoid problems such as vanishing or exploding gradients. This can improve the 

performance and accuracy of models. 

Some of the most used optimisers in NNs are [160]: 

Gradient descent: Gradient descent is a first-order optimisation algorithm that 
iteratively adjusts the model parameters in the direction of the negative gradient of the 
loss function. It is the simplest and most basic optimisation algorithm. 

Stochastic Gradient Descent (SGD): SGD is a variation of Gradient descent that 
calculates the gradient and updates the parameters using a random subset of the training 
data instead of the full data set. This makes it more computationally efficient and allows 
for faster convergence. 
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Momentum: Momentum is a technique that helps speed up SGD convergence by 
adding a fraction of the previous update to the current update. This helps the optimiser to 
traverse local minima and inflection points more efficiently. 

Adaptive Gradient (AdaGrad): AdaGrad is an adaptive learning rate method that 
adjusts the learning rate for each parameter individually. It can be especially useful for 
sparse data and when learning rates need to be fine-tuned. 

Root Mean Squared Propagation (RMSProp): RMSProp is another adaptive 
learning rate method that uses a moving average of squared gradients to control the 
learning rate. It has been shown to work well on a wide range of problems. 

Adaptive Moment Estimation (Adam): Adam is a popular optimisation algorithm 
that combines the advantages of AdaGrad and RMSProp. It maintains separate adaptive 
learning rates for each parameter and calculates the first and second moments of the 
gradients. 

Those are just a few examples of the many optimisers available for NN training. 

The choice of optimiser influences the performance of a NN, so it is essential to 

experiment with different optimisation algorithms. 

3.2 Stage 1: Baseline Model 

After identifying the critical hyperparameters for network training and conducting 

data partitioning in the initial section of this chapter, the subsequent phase involves 

constructing the baseline model. This entails training a model and performing 

hyperparameter tuning to determine the optimal settings. Subsequently, the model 

delivering the most favourable outcomes on both training and validation datasets will 

undergo testing using the test dataset.  

3.2.1 Model train 

This training step involves training the NN model on a subset of the battery data 

(the training dataset) and validating it on a separate subset (the validation dataset) looking 

for the weights that best fit the function that is being estimated. 

During the training process, the model will learn to estimate the SoC or SoH by 

adjusting its weights to minimize the difference between the estimated values and the real 

values [161].  

The validation process involves testing the model on the validation set to evaluate 

its performance. This set is separate from the training set and is used to prevent 

overfitting, which occurs when, as explained before, the model learns the training data too 

well and performs poorly on new data [162]. 



Proposed Methodology 

54 
 

3.2.2 Hyperparameter tunning 

Once the model has been trained and validated, it is necessary to start again the 

process of training and validation changing the hyperparameter values. The idea behind 

this, as presented in section 3.1.4, is to find the most optimal hyperparameter values. 

Among several methods for tuning the hyperparameters, the most used ones are grid 

search, random search and more advanced methods such as Bayesian optimisation.  

Grid search consists of specifying a subset of the hyperparameter space and 

systematically testing all combinations, while random search consists of randomly 

sampling from a distribution of possible hyperparameter values. Bayesian optimisation 

builds a probabilistic model of the objective function and uses it to select the most 

promising hyperparameters to evaluate in the actual objective function. Thanks to this 

type of optimisation, the optimal hyperparameters can be found more quickly than with 

grid search or random search [163]. Therefore, Bayesian optimisation will be used to 

search for the optimal hyperparameter values.  

3.2.3 Model test 

Once the model has been trained and the best hyperparameters found, it will be 

tested using the testing dataset. Model testing involves evaluating the performance of the 

trained NN model on a separate dataset that it has not seen during the training or 

validation phases. This dataset is known as the test dataset [164]. 

The purpose of this step is to assess how well the model generalizes to new, 

unseen data, which is a true measure of its predictive power. If a model performs well on 

the training set but poorly on the test set, it may be overfitting, meaning it has learned the 

training data too well, including its noise and outliers, and fails to generalize to new data 

[165]. 

In the context of SoC and SoH estimation, the test set should include data from 

batteries under different operating conditions that were not included in the training or 

validation sets. The model's estimations of SoC and SoH are compared to the actual 

values to determine its accuracy. To do so, one or some of the performance metrics 

presented in section 3.1.2 will be used. 

The results from the testing phase should be carefully analysed and interpreted to 

understand the model's strengths and weaknesses, and to identify areas for improvement. 

This could involve tweaking the model architecture, adjusting the learning rate, or 

gathering more training data. 

The process until this point is summarized in Figure 26. 
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Figure 26. Baseline model training. 

3.3 Stage 2: Comparative Model 

Once the baseline model has been trained, a model will be trained from scratch 

with a new cell reference. This model serves as a control for later comparative analysis 

with the TL model. By juxtaposing the results obtained from the baseline model and the 

TL model, one can ascertain the tangible benefits offered by the TL approach as opposed 

to a model trained from scratch. 

The training process for this baseline model adheres to the steps delineated in 

section 3.2, but in this case the same optimal hyperparameter values get from the baseline 

model will be employed for enhanced comparability and for reasons of efficiency, 

effectively reducing both time and cost. This systematic approach ensures that the model 

is developed in a structured and consistent manner, allowing for a fair and accurate 

comparison with the TL model. 

It's important to note that this comparative analysis is crucial in the field of AI. It 

allows for the evaluation of the effectiveness of different methodologies and techniques, 

such as TL, in improving the performance and efficiency of AI models. 

3.4 Stage 3: TL Model 

The next step in the creation of the SoC and SoH estimators is to apply TL, which, 

as explained before, consists of using a baseline model as a starting point for a related 

task. In this case the baseline model will be the one trained in step 3.2. By using this 

technique, it is expected that the knowledge gained during training with the baseline data 

can be used and then adapted to the data of a new battery tested in the laboratory [130]. 
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Essentially, TL consists of refitting the weights of the pre-trained model with the 

data from the new tested battery. Unlike a model trained from scratch, the initial weights 

are not random, but are the weights learned from the original task. This can lead to faster 

convergence and better performance, especially when the data set of the new battery is 

relatively small [166]. 

Depending on the similarity between the original task and the target task, some 

layers (usually the first ones) can be frozen and adjust only the weights of the later layers. 

This is because the first layers of a NN usually learn general features, while the later layers 

learn more task-specific features [129], [167]. 

As was done for the base model, the same steps will be followed for the TL training 

(Sections 3.1.4 and 3.2.3). Three sets will be defined, training, validation and test. The use 

of these sets will be used in the same way as in the previous case. 

3.5 Stage 4: Evaluation 

In this last step of the methodology, the results obtained by the two models will be 

analysed and it will be seen if the TL makes sense, and if so, the benefits obtained by the 

TL will be quantified and highlighted.  

In order to be able to make a fair comparison, it will be necessary that the training, 

validation and test sets are the same for both models, in this way it will be possible to 

analyse the benefits of carrying out the TL under equal conditions. 

Figure 27 represents the TL process that will be followed from the base model 

(trained with synthetic data) to the final model trained with laboratory data. 

 

Figure 27. TL: from baseline model to final model. 
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This chapter delineates the application of the proposed methodology for the 

establishment of a SoC estimator. In total, two distinct use cases will be analysed. Both 

application scenarios use a base algorithm built on synthetic data from the 

electrochemical model of the Doyle cell and which serves as the base model for the two 

scenarios.  

• Case 1: The first use scenario uses synthetic data from an LCO/NCA-based 

cell, applying TL from synthetic data to synthetic data.  

• Case 2: Following a similar approach, the second case will use 

experimental data of an NMC-based battery. 

Figure 28 provides a summary of the Case 1, TL application for the LCO/NCA-

based battery. On the one hand, the TL model is applied using the baseline model derived 

from the Doyle cell. On the other hand, two different models will be created, both trained 

from scratch. One of these models will be trained with a limited amount of data (termed 

'reduced LCO/NCA model'), using the same data that was employed to retrain the baseline 

model via TL. The other model, trained from scratch using a larger quantity of data, is 

referred to as the 'complete LCO/NCA model'.  

The purpose of creating these two models from scratch is to evaluate the potential 

advantages of TL compared to models trained independently. By assessing the 

performance of the models trained from scratch against the one refined using TL, insights 

into the effectiveness of TL in this context can be obtained. This evaluation could provide 

valuable insights into whether TL offers any benefits in terms of improved performance, 

reduced training times and data, or enhanced generalizability for SoC estimation. 

 

Figure 28. Methodology followed in the Case 1 to examine the SoC estimator from synthetic data to 

synthetic data using TL. 
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In the Case 2, TL is applied from the baseline model to the laboratory data of the 

NMC cell to form the second application scenario. Figure 29 illustrates this process, 

showcasing the development of the NMC TL model, in addition to a reduced NMC model, 

trained from scratch. Due to the limited dataset available for the NMC cell it was no 

possible to build any complete model from scratch. More comprehensive details about 

this scenario and the underlying reasons are discussed in Section 0. 

This approach serves to underscore the effectiveness of TL, especially under 

conditions where data availability may be a constraint. By comparing the reduced NMC 

model with the NMC TL model, valuable insights into TL's capacity to utilize information 

from relevant tasks to enhance model performance can be gathered. 

Furthermore, this model also serves to evaluate the feasibility of applying TL from 

synthetic data to real-world data, addressing a critical question in the practical application 

of these models. The success of this application could herald a new approach to dealing 

with data scarcity in real-world scenarios. 

 

Figure 29. Methodology followed to create SoC estimation algorithm from synthetic data to 

laboratory data in the Case 2. 

Once explained the different approaches that will be followed in each use case, the 

available data will be analysed, followed by the decision on its pre-processing method and 

segmentation into training, validation, and testing subsets. 
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4.1 Stage 0 

4.1.1 Dataset Overview 

Having outlined the distinct methodologies to be pursued, the focus now shifts to 

the available data. A detailed examination of the data will follow, along with decisions 

concerning its pre-processing method. The data will then be segmented into training, 

validation, and testing subsets. These steps are crucial in ensuring the correct 

implementation of the models and guaranteeing that they are well-trained, validated, and 

tested with appropriate datasets. A well-designed data preparation and segmentation 

strategy is instrumental to the success of the network in accurately estimating the SoC of 

the batteries. 

The data necessary for the Case 2 research was derived from the LIBERTY Project. 

This project is committed to the production of a LIghtweight Battery System for Extended 

Range at Improved SafeTY. LIBERTY has received funding from the European Union’s 

Horizon 2020 research and innovation programme under grant agreement No. 963522. 

4.1.1.1 Cell references 

Electrochemical models provide a means to expedite the analysis of cell behaviour 

and the inner workings of batteries, thereby accelerating the development of data-driven 

models. As stated previously, two of the datasets utilised to train, validate, and test the NN 

were procured via a physics-based model (Doyle cell and LCO/NCA-based battery). The 

third dataset is based on laboratory test of an NMC-based lithium battery. 

Doyle cell 

The first set of data, which will be used in both use cases to train the baseline 

model, was generated using a pseudo-two dimensional model (P2D), fashioned with 

respect to the cell as described by Doyle et al. in reference [168]. The cell is composed by 

a graphite (C) negative electrode and a positive electrode of lithium manganese oxide 

(LiMnO4). This model was chosen as a balance between precision and computational 

efficiency, enabling the rapid generation of inputs necessary for the data-driven model. 

Although the P2D model can simulate any insertion cell given physical properties 

and system parameters, it is essential to acknowledge that no model can flawlessly 

replicate the complex multiphysical behaviour of batteries. Consequently, a precise 

definition of the continuum model approach and model assumptions is imperative to 

delineate the model's boundaries. Further elaboration on the P2D model can be found in 

[168]. This model is composed of a one-dimensional macroscopic model paired with a 

pseudo-dimension. 
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LCO/NCA-based cell 

The Case 1 dataset, again reliant on an electrochemical model (Oca et al. 

implemented this cell in [169]), was obtained from a 1.25 Ah high power battery from the 

manufacturer Kokam. The cell is composed of a blend positive electrode, which includes 

lithium cobalt oxide (LCO) and nickel cobalt aluminium oxide (NCA), and a graphite (C) 

negative electrode. The cell's electrical characteristics have been documented in Table 2 

for reference.  

Table 2. Characteristics of the LCO/NCA cell 

Item Parameter 

Nominal capacity 1.25 Ah 

Internal resistance  0 mΩ 

Voltage 2.7 V – 4.2 V 

Cycle life > 1000 

Dimensions 43 mm * 5.3 mm * 75 mm 

Weight 33 g 

NMC-based cell 

The Case 2 dataset is sourced from a cell tested within a laboratory setting. The 

employed laboratory apparatus comprises battery testers and climatic chambers 

specifically designed for high capacity lithium-ion batteries. These tools ensure a 

consistent or controlled ambient temperature, which is crucial for obtaining reliable data. 

The specific cells used for these tests are 58 Ah energy cells produced by the 

manufacturer CALB, cell with a nickel manganese cobalt oxide (NMC) positive electrode 

and a graphite (C) negative electrode. Detailed characteristics of these cells have been 

documented in Table 3 for further reference. The inclusion of this empirically derived 

dataset adds a practical perspective to the study, complementing the model-based data 

from the other two sources.  

Table 3. NMC cell characteristics 

Item Parameter 

Nominal capacity 58 Ah 

Internal resistance 0.6 - 0   mΩ 

Voltage 2.75 V – 4.35 V 

Cycle life > 2000 

Dimensions 148 mm * 27 mm * 106 mm 

Weight 926 g 
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4.1.1.2 Performed tests 

Three types of profiles, or testing paradigms, have been applied to amass 

sufficient data to train, validate, and test the network. These include a bespoke profile 

specifically designed for this study, a Hybrid Pulse Power Characterization (HPPC) test, 

and various driving cycles such as the New European Driving Cycle (NEDC) and Worldwide 

Harmonized Light Vehicles Test Cycle (WLTC). 

Training test 

The initial profile, specifically designed within the context of this thesis, serves as 

a dedicated tool for training the NN. This profile, illustrated in Figure 30, is subdivided into 

four distinct segments. It was conceptualized to facilitate the understanding of how 

various conditions or situations influence the battery and subsequently the SoC 

estimation. This profile was repeated with varying C-rates during charging and discharging 

and different temperatures. 

The first segment encompasses charge and discharge cycles from 𝑉𝑚𝑎𝑥 to 𝑉𝑚𝑖𝑛. 

Some of the charge cycles are performed using a constant current-constant voltage (CC-

CV) method, and others use a constant current (CC) until 𝑉𝑚𝑎𝑥 is reached. Discharge 

always occurs in a CC mode until 𝑉𝑚𝑖𝑛 is reached. Through this segment, the algorithm 

can discern the relationship between voltage and SoC during charging and discharging, 

and the effects of conducting a CV phase during charge.  

The second segment repeats the charge and discharge cycles from the first, but 

with pause times integrated between the cycles. This method allows the algorithm to learn 

how these pauses can impact battery estimation and voltage, as the battery 'relaxes' and 

the voltage fluctuates, despite no changes in the SoC due to the absence of current flow. 

The third segment involves charging and discharging the battery to various 

voltages or SoC levels. The motive behind this segment is for the algorithm to learn from 

not only full cycles but also partial cycles. Pause times have been executed in this case as 

well, facilitating the algorithm's understanding of how pauses affect partial cycles. 

The fourth and final segment is closely akin to the third but without any pause 

times. This uninterrupted charging and discharging allow the algorithm to learn the 

dynamics of the battery under continuous operation without pauses. 
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Figure 30. Designed training profile for Doyle cell at 25 ºC at 1C CHA/DCH. 

HPPC 

The second profile used is a HPPC test procedure. While this type of test is not 

indispensable for training the NNs, it was executed due to its significant value in the 

validation phase. This test provides an intriguing observation point to determine whether 

the algorithm has learned to account for the effect of the battery's internal resistance 

when it is subjected to current peaks during both charging and discharging stages. 

The HPPC test is executed by sequentially applying charge and discharge current 

pulses of 17 seconds at 1C and 2C across the entire voltage spectrum of the cell. The 

process begins from a fully charged state and proceeds to a completely discharged state 

in increments of 5% SoC steps. The procedure is then mirrored, starting from a fully 

discharged battery until it reaches a fully charged state. This test was conducted under 

four distinct ambient temperature conditions from 0ºC to 45ºC. The variations in 

temperature provide insight into how the battery's performance and SoC estimation vary 

under different thermal conditions. 
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Figure 31. HPPC profile of the Doyle cell at 25 ºC. 

Driving cycles 

Lastly, the battery was subjected to standardized driving cycles. The battery was 

initially charged up to 100% SoC, following which standard driving profiles were simulated. 

After each simulation, the battery was charged at a constant current up to 100% SoC and 

then discharged at a constant current, lowering the SoC by 5% each time. The same driving 

profile was simulated again after each successive charging and discharging cycle. This 

process was iterated, with the SoC incrementally decreased by 5% after each charge until 

the battery's lower voltage limit was attained. 

This same sequence was repeated for each of the six simulated driving cycles, 

namely, the NEDC, WLTC, US06, Highway Fuel Economy Test (HWFET), New York City 

Cycle (NYCC), and Urban Dynamometer Driving Schedule (UDDS). The tests were 

conducted under different temperature conditions. This approach provided 

comprehensive data on how driving patterns and temperatures impact the SoC 

estimation. Figure 32 visually represents the cycle corresponding to the WLTC driving 

cycle at an ambient temperature of 25°C. 
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Figure 32. WLTC of the Doyle cell at 25ºC, from 100% SoC to 0% SoC. 

4.1.1.3 Dataset available 

Having identified the cells in use and the preferred tests, an explanation of the 

available tests for each cell and the purpose of each profile type will be provided. The 

largest datasets have been sourced from the electrochemical models, thus they will 

consist of synthetic data.  

Doyle dataset 

The specifics for the Doyle dataset are encapsulated in Table 4. This dataset 

serves as the foundation for training the algorithm or the base model upon which TL will 

be subsequently applied. As detailed in Table 4, all three types of profiles are present and 

were performed under four distinct temperature conditions: 0°C, 10°C, 25°C, and 45°C. 

For the designed profile, which will be the mainstay for training the network, four 

distinct charging rates are available, spanning from 0.05C to 1C. Similarly, six different 

discharge rates are on hand, ranging from 0.05C to 4C. In aggregate, this translates to 24 

unique conditions under which the network will be trained.  

The HPPC tests were conducted at the same four temperature levels as those 

used for the designed profile. Thus, a total of four distinct HPPC tests are available for the 

validation of the algorithm. 
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For the final stage of testing the network, it will be employed the various driving 

cycles. Each one of the six driving cycles was conducted at four different temperatures, 

yielding a total of 24 different test conditions for the algorithm testing phase under driving 

profiles. 

Table 4. Doyle cell available dataset and data split. 

Profile type Used for Temperatures C-rate CHA C-rate DCH 

Designed 

profile 
Training 

0ºC, 10ºC, 25ºC 

and 45ºC 

0.05C, 0.2C, 

0.5C and 1C 

0.05C, 0.2C, 0.5C, 

1C, 2C and 4C 

HPPC Validation 
0ºC, 10ºC, 25ºC 

and 45ºC 

Pulses of 1C 

and 2C 

Pulses of 1C and 

2C 

Driving 

cycles 
Test 

0ºC, 10ºC, 25ºC 

and 45ºC 

Driving profiles (NEDC, WLTC, US06, 

HWFET, NYCC and UDDS) 

LCO/NCA dataset 

The second available dataset has been generated using electrochemical models, 

but in this case, based on the LCO/NCA cell. This cell's data will be employed to perform 

TL, with TL being applied from synthetic data to synthetic data. As depicted in Table 5, the 

available dataset closely mirrors the one detailed in section 0. 

In this case, and as will later be better explained, the dataset split is divided into 

two scenarios, the first one with the complete dataset will be used to create a model from 

scratch and the second one with specific data is on one hand to train another model from 

scratch and on the other hand, for the one in which TL will be applied, using the Doyle cell 

base model as a starting point.  

Table 5. Available LCO/NCA cell dataset and data split. 

Profile 

type 
Temperatures 

C-rate 

CHA 

C-rate 

DCH 

Usage in HP 

complete 

Usage in HP 

reduced and TL 

Designed 

profile 

0°C, 10°C, 25°C 

and 45°C 

0.05C, 

0.2C, 

0.5C and 

1C 

0.05C, 

0.2C, 

0.5C, 1C, 

2C and 

4C 

All the 

conditions 

to train 

- 

HPPC 
0°C, 10°C, 25°C 

and 45°C 

Pulses 

of 1C 

and 2C 

Pulses of 

1C and 

2C 

All the 

conditions 

to validate 

- 

Driving 

cycles 

0°C, 10°C, 25°C 

and 45°C 

Driving profiles 

(NEDC, WLTC, US06, 

HWFET, NYCC and 

UDDS) 

All the 

conditions 

to test 

NEDC 25°C and 

45°C to train, 

NEDC 0°C and 

10°C to validate, 

rest of the 

profiles to test 
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From an analysis of Table 5, it is apparent that the available data matrix for the 

LCO/NCA dataset is identical to that of the Doyle cell, comprising 24 distinct conditions 

for the designed profile, four for the HPPC test, and 24 for the driving cycles.  

NMC cell dataset 

The final dataset to be used for the SoC estimation originates from the NMC cell, 

which underwent testing in a laboratory environment. Notably, despite the controlled 

testing conditions, the data obtained from this cell contains noise and is impacted by other 

phenomena inherent to real-world environments. 

Compared to the other two cases, the available dataset for this cell is considerably 

smaller. The cells were tested at three distinct temperatures—10°C, 25°C, and 45°C—and 

three different driving cycles were utilized, namely NEDC, WLTP, and US06, as outlined in 

Table 6. 

Table 6. Available NMC cell dataset and data split. 

Profile 

type 
Temperatures 

Driving 

cycle 

Used for 

Training 

Used for 

Validation 
Used for Test 

Driving 

cycles 

10°C, 25°C and 

45°C 

NEDC 

WLTP 

US06 

US06 at 

25°C and 

45°C 

US06 at 

10°C 

NEDC and 

WLTP at 10°C, 

25°C and 45°C 

The execution of the driving cycles for this dataset was carried out in a manner 

different from the earlier instances. As illustrated in Figure 33, the same cycle was 

performed at various SoC values, as the ones described in section 0. However, the key 

difference lies in the fact that a charge was not performed after the execution of the profile 

at different SoC levels. 
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Figure 33. WLTC performed on NMC cell with no charge until Vmin at 25 ºC. 

4.1.2 Model selection 

This section outlines the use of LSTM networks as a suitable approach for 

modelling the nonlinear dynamics of lithium-ion batteries and computing the SoC. The 

LSTM network utilizes observed variables such as temperature, current, and voltage for 

its computations. 

The selection of LSTM networks stems from their exceptional proficiency in 

handling time-series data. LSTM units are furnished with hidden cell memories, enabling 

them to retain information from prior inputs. This is a vital characteristic as it allows the 

network to discern temporal dependencies and patterns that span various time steps, an 

aspect that is inherent to the functioning of batteries. 

Moreover, LSTM networks can effectively capture the long-term dependencies in 

a time series, which is beneficial for SoC estimation. For instance, the impact of previous 

charge and discharge cycles on the current SoC is an important factor that can be 

efficiently captured by an LSTM network. 
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The ability of LSTM networks to mitigate the vanishing gradient problem, 

commonly encountered in traditional RNNs, further validates their suitability for this task. 

This attribute allows LSTM networks to learn and remember over long sequences, 

enhancing the accuracy of the SoC estimation. 

Furthermore, LSTM networks are robust to noise in the input data, an essential 

quality given the inherent noise and variability in real-world battery usage data. They also 

have the capability to model complex non-linear relationships, which is crucial in 

accurately capturing the intricate behaviour of lithium-ion batteries. 

These reasons underscore the suitability of LSTM networks for SoC estimation, 

particularly due to their proficiency in handling time-series data and their ability to capture 

long-term dependencies and complex non-linear relationships. The intricate workings of 

the LSTM network are delved into in the subsequent sections. 

4.1.2.1 LSTM network architecture 

The architecture of the proposed SoC estimator is delineated in Figure 34. This 

structure comprises an input layer, multiple LSTM layers, a fully connected layer, and an 

output layer. 

Four variables are employed as the input for the network to conduct the SoC 

estimation. These include the voltage (𝑉𝑘), the current (𝐼𝑘), the ambient temperature (𝑇𝑘), 

and the timestep (∆𝑡𝑘). The inclusion of the timestep as an input variable is deemed highly 

advantageous due to its variable nature depending on the application and its respective 

hardware. 
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Figure 34. Proposed architecture for SoC estimation using LSTM units. 

For instance, an application characterized by rapid dynamics, wherein the current 

undergoes swift changes, will necessitate a faster sampling time to accurately estimate 

the SoC. Conversely, in an application with slower dynamics, such a high-frequency 

sampling time would be unnecessary. Thus, the inclusion of timestep as an input variable 

accommodates these varying application-specific requirements. 

Data progression in the LSTM network begins at the input layer and proceeds to 

the LSTM layer, wherein the most significant temporal correlations among the input 

variables are identified. Subsequently, the data is directed to a fully connected layer where 

the resultant output value is computed. This computed value, delivered at the output layer, 

represents the estimated SoC. 

4.2 Stage 1 

This section outlines the training process for the LSTM network and the method 

for selecting the hyperparameters that compose it. This training and hyperparameter 

tuning are integral in the creation of the baseline model, which is based on Doyle cell data. 
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The baseline model will later serve as a foundation for applying TL to other cell data sets. 

The chosen method for tuning the model's hyperparameters will significantly affect the 

model's ability to effectively learn from the training data and generalize to new, unseen 

data. Therefore, careful selection of these hyperparameters is crucial. 

In section 3.1.4 it has been seen how important are the hyperparameters that 

compose the NN and how they affect to the NN. To create the most accurate and robust 

SoC estimator, it is imperative to try different hyperparameter values until the 

configuration that best suits the problem is achieved.  

For this purpose, in this study, different tests were performed by changing some 

parameters such as the windowing of the data, different dropout values or the number of 

neurons composing the LSTM layer. The MAE will be employed to determine the optimal 

value of the different hyperparameters in the tests that are going to be performed. 

4.2.1 Hyperparameter tunning 

Hyperparameter optimization is conducted using Bayesian optimization, an 

approach that leverages Bayesian principles to expedite the discovery of optimal 

hyperparameters, thereby enhancing the test set generalization performance. This 

optimization technique considers the hyperparameter combinations previously evaluated 

when determining the subsequent set of hyperparameters to assess. This strategic 

exploration of the hyperparameter space prioritizes regions with the potential for high-

performance outcomes and avoids areas known to be suboptimal. 

At the heart of Bayesian optimization is the use of Gaussian processes for 

modelling the objective function, which encapsulates the relationship between 

hyperparameters and model performance. By keeping a probabilistic model of this 

function, Bayesian optimization can estimate both the average and uncertainty of the 

performance corresponding to any particular hyperparameter combination. The next set 

of hyperparameters to evaluate is then selected based on an acquisition function. This 

systematic approach allows Bayesian optimization to efficiently navigate the 

hyperparameter space, often leading to rapid convergence and superior test set 

generalization performance compared to conventional tuning methods. 

Figure 35 presents the outcomes obtained following the application of Bayesian 

optimization. During the optimization process, the hyperparameters outlined in Section 

3.1.4 were evaluated. The optimal configuration was selected based on its balance 

between the MAE and maximum error. Table 7 outlines the configuration of 

hyperparameters that constitute the network. 
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Figure 35. Hyperparameter tunning using Bayesian optimisation for the SoC estimation algorithm. 

Table 7. Network hyperparameters for the SoC estimation algorithm. 

Neurons per layer No. of LSTM Layers Batch size Dropout Data Windowing 

50 3 512 0 15 

4.2.2 Baseline SoC estimation model 

Following the hyperparameter tuning, a network was trained using the 

hyperparameters outlined in Table 7 alongside the training and validation data from the 

Doyle dataset detailed in Table 4. Subsequently, the obtained results from the various 

datasets of the Doyle dataset are presented in this section.  

Initially, the results corresponding to the training dataset - based on the designed 

profile - are shown. As stated in section 4.1.3.1, for the Doyle dataset, there are 24 distinct 

profiles or conditions available for training, all of which were employed in training the 

network.  

As depicted in Figure 36, the algorithm demonstrates commendable performance 

on the training data with a charging rate of 0.5C and a discharging rate of 0.5C at four 

different temperatures. 
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Figure 36. SoC estimation and error for the training dataset at different temperatures and 0.5C CHA 

and 0.5C DCH C-rate of the baseline model. 

The algorithm's ability to accurately estimate the SoC in relation to the actual SoC 

of the cell becomes evident from these results. The entire training dataset yields a MAE of 

1.48% and a maximum error of 10.85%, as illustrated in Table 8. 

For instance, as presented in Figure 37, when focusing on the initial cycles of the 

25°C estimation, it is observed that there are occasional error spikes during transitions 

between charging and discharging states, or between discharging and charging states. 

This can be attributed to the significant weight that the NN assigns to the voltage input. 

During transitions from charge to discharge, a voltage drop occurs due to the cell's internal 

resistance. Despite these transient peaks, the algorithm quickly adjusts the SoC 

estimation, resulting in a relatively low MAE of 1.48% for the training dataset. This 

 ctual  oC Estimated oC Error
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suggests that the algorithm is effective in learning and adjusting based on the battery 

dynamics. 

 

Figure 37. Zoomed in estimation for the training dataset at 25ºC and 0.5C CHA and DCH of the 

baseline model. 

Figure 38 presents the performance of the algorithm on the validation dataset, 

which is based on HPPC tests conducted at four different temperatures. 

Analogous to the training dataset, occasional error spikes are observed, 

particularly during the 17s pulses at 1C and 2C in the HPPC test. Again, these spikes can 

be primarily attributed to the significant weight assigned by the NN to the voltage input. 

During these pulses, due to the sudden increase in current, the voltage experiences rapid 

changes. 

Despite these transient spikes, the algorithm maintains MAE below 0.96% for the 

validation dataset, as reported in Table 8. Furthermore, the maximum error for the 

validation dataset is capped at 8.03%. These figures reinforce the model's capacity to 

effectively generalize and perform well on unseen data, adjusting its SoC estimation based 

on the changing battery dynamics even in more strenuous testing scenarios like the HPPC 

test. 
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Figure 38. SoC estimation of the baseline model and error for the validation dataset at different 

temperatures. 

Figure 39 illustrates the algorithm's performance on the test dataset, which 

includes the most dynamic profiles based on EV drive cycles. Successful performance on 

this dataset would demonstrate the algorithm's competence in estimating battery SoC 

based on the four given inputs under varying and dynamic conditions. 

The behaviour depicted in Figure 39 for the WLTC cycles is characteristic of the 

algorithm's performance on other EV profiles as well. The algorithm manages to trace the 

SoC estimation trend accurately, exhibiting the same error peaks during periods of highest 

current draw. 

 ctual  oC Estimated oC Error



SoC Estimation Algorithm 

76 
 

The level of error observed is consistent with those obtained on the training and 

validation datasets, with a MAE of 1.64% and a maximum error of 11.50%. This 

performance signifies the model's ability to effectively generalize across diverse datasets, 

maintain accuracy in SoC estimation under dynamic conditions, and rapidly correct 

estimation errors, thereby enhancing its applicability in real-world EV scenarios.   

 

Figure 39. SoC estimation of the baseline model and error for the WLTC cycles at different 

temperatures. 

The consistent performance across various datasets suggests that the algorithm 

has effectively learned to estimate SoC with the provided inputs. Furthermore, the similar 

error rates across different datasets indicate that overfitting has been successfully 

avoided.  

 ctual  oC Estimated oC Error
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Overfitting typically results in high performance on training data but poor 

performance on unseen data. Here, the consistent performance across training, 

validation, and testing datasets suggests that the model has effectively generalized the 

learned features. Therefore, it can handle unseen data, proving its robustness and 

practical applicability for SoC estimation in diverse real-world scenarios.  

Table 8. Errors obtained in the estimation of SoC for the different datasets of the Doyle cell. 

 
Baseline model 

MAE Max Error 

Train 1.48 % 10.85 % 

Validation 0.96 % 8.03 % 

Test 1.64 % 11.50 % 

4.3 Case 1: LCO/NCA SoC estimation model 

In this section, an investigation is launched into the practical efficacy of TL, 

particularly in scenarios involving synthetic datasets. The investigation revolves around 

the creation, and subsequent performance comparison, of three distinct models, each 

underpinned by different training methodologies. 

Firstly, the "Complete LCO/NCA model" is introduced. This model is trained entirely 

from scratch, utilizing available LCO/NCA cell data. The data split ratio used here mirrors 

that employed during the construction of the baseline model. The aim of this model is to 

serve as a standard performance benchmark, exhibiting the results one might anticipate 

from a model trained in a conventional manner on the LCO/NCA dataset, without 

leveraging any pre-existing knowledge or insights from prior models. 

Secondly, the "Reduced LCO/NCA model" is presented. Again, this model is trained 

from scratch, but unlike the previous model, it makes use of a substantially smaller 

LCO/NCA cell dataset. The purpose of this model is to illustrate the potential impact on 

model performance when it cannot benefit from any pre-existing knowledge and the size 

of the available dataset is significantly reduced. 

Finally, the "LCO/NCA TL model" is brought into the picture. This model leverages 

the principles of TL by using the knowledge encapsulated within the baseline model as a 

foundation for its training. Similar to the Reduced LCO/NCA Model, the training for this 

model is based on the same, smaller dataset of LCO/NCA cell data. 

By comparing the performances of these three models, this section aims to extract 

insightful information regarding the potential benefits offered by TL, especially in 

situations where data availability might be restricted. Detailed comparisons and 

discussions about the implications of these models will be presented in the upcoming 

sections. 
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4.3.1 Stage 2 

4.3.1.1 Complete LCO/NCA model 

The first SoC estimation algorithm was established using identical network 

structure and hyperparameters as outlined in the baseline model (Table 7). Given the 

parallelism in the quantity of data utilized in training this model, the results were expected 

to share a degree of similarity with those of the baseline model. Results for the training 

dataset at a 0.5C charge-discharge rate under four different temperature conditions are 

demonstrated in Figure 40. 

 

Figure 40. SoC estimation and error for the training dataset at different temperatures and 0.5C CHA 

and 0.5C DCH C-rate of the complete LCO/NCA model. 
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An analysis of the training and validating dataset reveals a phenomenon 

analogous to that observed in the baseline model. During the change in the current's 

direction - that is, transitioning from charging to discharging or vice versa - there is a 

notable error spike, as depicted in Figure 40. This spike can be attributed to the abrupt 

increase or decrease in voltage, as the NN places significant weight on the voltage 

measurement. Nevertheless, the algorithm quickly rectifies this error, showcasing its 

resilience and efficacy in estimating the SoC. 

An analogous pattern is observed within the testing dataset based on EV profiles. 

Although the SoC estimation algorithm accurately tracks the estimation with a MAE of 

0.68% and a maximum error of 12.74%, these maximum error instances coincide with the 

changes in current. For the remainder of the profile, the estimation is almost identical to 

the battery's actual SoC. This further attests to the robustness of the algorithm and its 

ability to effectively estimate the SoC despite abrupt current changes.  

 

Figure 41. SoC estimation and error for the WLTC cycles at different temperatures of complete 

LCO/NCA model. 

The consistency of the MAE and maximum errors across all datasets, as outlined 

in Table 9 and visualized in Figure 40 and Figure 41, validates that the model has 
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successfully avoided both underfitting and overfitting. This indicates that the model has 

generalized well to unseen data and provides reliable performance across different 

scenarios, which is a strong indicator of its utility and robustness. 

Table 9. Errors obtained in the estimation of SoC by the LCO/NCA complete model. 

 
Complete LCO/NCA 

MAE Max Error 

Train 0.55% 10.15% 

Validation 0.54% 12.47% 

Test 0.68% 12.74% 

4.3.1.2 Reduced LCO/NCA model 

The second SoC estimation algorithm is built along similar lines as the first, using 

the same hyperparameters but with a critical difference in the volume of training data. In 

this iteration, training data was significantly limited, utilizing only two NEDC cycles at two 

different temperatures and another two cycles for validation. The remaining profiles were 

employed for testing the model. 

As visualized in Figure 42 and detailed in Table 10, the network struggled to 

effectively learn the degradation trends from the training and validation data. Although the 

algorithm demonstrated some ability to correlate the inputs to the output, the margin of 

error significantly exceeds that of the complete model. The MAE exceeded 6%, and the 

maximum error registered a deviation of up to 23%. This outcome underscores the 

importance of sufficient data volume in the training phase to ensure reliable SoC 

estimation. 

 

Figure 42. SoC estimation and error for the NEDC training cycles at different temperatures of 

reduced LCO/NCA model. 
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As depicted in Figure 43, the algorithm's performance on the test dataset echoes 

the behaviour observed on the training dataset, with a MAE error for the test dataset of 

6.63% and a maximum error of 26.19%.  

The SoC estimator provides more accurate estimations during constant charging, 

but under constant discharging conditions, and preceding the WLTC cycle, the error 

significantly increases with a deviation exceeding 10%. Additionally, there is a noticeable 

level of noise in the SoC estimation during the various cycles. This implies that the 

algorithm struggles to provide stable and consistent SoC estimates under dynamic 

conditions, further emphasizing the impact of limited training data on the robustness of 

the model. 

 

Figure 43. SoC estimation and error for the WLTC cycles at different temperatures of reduced 

LCO/NCA model. 
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Indeed, the results obtained from this model imply that the data provided for 

training was not adequate for the network to learn effectively. The model demonstrated 

significantly higher error rates and inconsistencies in its predictions. This suggests that a 

larger and more diverse dataset is crucial for training a robust SoC estimation model that 

can accurately capture the dynamics of the battery behaviour under various conditions.  

Table 10. Errors obtained in the estimation of SoC by the reduced LCO/NCA model. 

 
Reduced LCO/NCA 

MAE Max Error 

Train 6.20% 22.18% 

Validation 6.36% 23.15% 

Test 6.63% 26.19% 

4.3.2 Stage 3 

4.3.2.1 LCO/NCA TL model 

The last model, developed using the LCO/NCA dataset, employed the principle of 

TL. Instead of starting from scratch, this model used the baseline model as its foundation. 

Despite retraining the model with the same quantity of data as used for the reduced 

LCO/NCA model, it is noticeable from Figure 44 that the algorithm performs significantly 

better on the training dataset than the reduced LCO/NCA model.  

The MAE for both the training and validation datasets has been reduced from 6% 

in the reduced LCO/NCA model to less than 0.4% in the LCO/NCA TL model. In addition, 

the maximum error has dropped to below 8%. This improvement underscores the 

potential effectiveness of TL when training data is limited. 
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Figure 44. SoC estimation and error for the NEDC training cycles at different temperatures of 

LCO/NCA TL model. 

A similar pattern is observed in the test dataset depicted in Figure 45, where the 

algorithm accurately tracks the SoC trend, offering an estimation close to the actual SoC. 

In this case, the MAE is 0.37% and the maximum error is less than 7%, as can be seen in 

Table 12. 

Contrarily to the baseline model, this algorithm exhibits higher error peaks at 

elevated temperatures, particularly during the WLTC cycles around 50% SoC. This could 

likely be attributed to the fact that the algorithm may not have sufficiently learned the 

dynamics of the battery at these specific temperatures and SoC levels. Despite this, the 

overall performance of the TL model demonstrates its efficiency in extrapolating and 

applying learned features, even when trained with limited data. 

 ctual  oC Estimated  oC Error



SoC Estimation Algorithm 

84 
 

 

Figure 45. SoC estimation and error for the WLTC cycles at different temperatures of LCO/NCA TL 

model. 

The results attained indicate that even when only a small amount of data is 

available for retraining the network via TL, the algorithm can effectively leverage the 

information from the baseline model to accurately predict the SoC of the new cell. This 

efficiency is maintained even if the algorithm has not previously encountered certain 

conditions with the new cell, but has with the old cell. Thus, TL demonstrates a strong 

capacity to apply learned characteristics and behaviours across different datasets, 

significantly improving the efficiency of SoC prediction in batteries. 

 ctual  oC Estimated  oC Error
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Table 11. Errors obtained in the estimation of SoC by the LCO/NCA TL model. 

 
TL LCO/NCA 

MAE Max Error 

Train 0.36% 7.47% 

Validation 0.35% 7.24% 

Test 0.37% 6.78% 

4.3.3 Stage 4 

4.3.3.1 Comparison of the results 

Table 12 clearly demonstrates the effectiveness of the different models in terms 

of their respective prediction errors. The model with the lowest error is the one that utilises 

TL, for both MAE and maximum error in all the different datasets. 

Table 12. Errors obtained in the estimation of SoC by the different LCO/NCA models. 

 
Complete LCO/NCA Reduced LCO/NCA TL LCO/NCA 

MAE 
Max 

Error 
MAE 

Max 

Error 
MAE 

Max 

Error 

Train 0.55% 10.15% 6.20% 22.18% 0.36% 7.47% 

Validation 0.54% 12.47% 6.36% 23.15% 0.35% 8.24% 

Test 0.68% 12.74% 6.63% 26.19% 0.37% 8.68% 

The reduced LCO/NCA model struggles to extract sufficient information to 

accurately estimate the SoC due to the limited amount of data available. Conversely, while 

the complete LCO/NCA model effectively follows the SoC trend, it relies on a much larger 

dataset compared to the reduced LCO/NCA model. 

The LCO/NCA TL model emerges as the most optimal solution for the task. It 

estimates the SoC more accurately than the other two models, despite being trained on 

the same small dataset as the reduced LCO/NCA model. 

When compared to the complete LCO/NCA model, the TL model requires 

approximately 85% less data for training and validation when a baseline model is available 

to perform the TL. Furthermore, the time required to train the network is substantially 

reduced due to the smaller dataset size. This serves to highlight the efficiency and 

effectiveness of TL, particularly when dealing with limited datasets.  

4.4 Case 2: NMC SoC estimation model 

This section focuses on the development of a SoC estimation algorithm for a NMC 

cell using real-world data collected in a laboratory setting. This section aims to test the 

efficacy of TL when transitioning from synthetic data to actual experimental data. 

Two separate models will be generated, both trained on the same limited dataset, 

as outlined in Table 6. The first model, called reduced NMC model, will be trained from 
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scratch, similar to the model discussed in section 4.3.1.2. Conversely, the second model, 

called NMC TL model, will be developed through the application of TL, using the baseline 

Doyel cell model as a foundation and adjusting it to fit the new dataset. 

The intention behind this exploration is to gauge the utility of TL when moving from 

synthetic data to real-world scenarios. This becomes particularly important when the 

available data is limited, or potentially influenced by real-world noise or distinct 

phenomena. The study will provide insights into the robustness of TL in dealing with 

complex, real-world data. 

4.4.1 Stage 2 

4.4.1.1 Reduced NMC model 

The first model in this instance was also built from scratch, utilising the same 

hyperparameters as described in Table 7 and the same network architecture as the 

baseline model. 

The algorithm's performance with the training dataset is depicted in Figure 46. As 

shown in Table YY, the MAE for the training dataset stands at 1.64%, which is closely 

comparable to the validation dataset with a MAE of 1.99%. On the other hand, the 

maximum error for the algorithm is recorded at 12.23% for the training set and 10.43% for 

the validation set. 

Although the results display a level of accuracy, the algorithm exhibits a noisy error 

during the US06 cycles, with increased error margins at high and low SoCs. This could 

indicate that the algorithm has not fully mastered the estimation of SoC at these specific 

points. Furthermore, it suggests that the algorithm is quite responsive to voltage or current 

measurements, further emphasizing the need for more robust learning to capture these 

dynamics effectively. 
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Figure 46. SoC estimation and error for the US06 training cycles at different temperatures of 

reduced NMC model. 

An analogous pattern can be discerned in Figure 47, where the results for the test 

dataset is shown. The algorithm adeptly follows the SoC trajectory, exhibiting a MAE under 

2% and a maximum error below 12%. As observed earlier, the error tends to intensify at 

higher and lower SoCs. Such discrepancy could be mitigated with the use of a more 

extensive dataset during the training phase of the algorithm. 

 ctual  oC Estimated  oC Error
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Figure 47. SoC estimation and error for the WLTC cycles at different temperatures of reduced NMC 

model. 

Nevertheless, the results (shown in Table 13) suggest that the algorithm has 

undergone an effective training process, with no discernible signs of overfitting or 

underfitting. The algorithm demonstrates consistent behaviour across all presented 

datasets. This consistency further underscores its well-calibrated nature, lending 

credibility to its estimations and demonstrating its robustness in accurately estimating 

the SoC across diverse conditions. 

 ctual  oC Estimated  oC Error
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Table 13. Errors obtained in the estimation of SoC by the reduced NMC model. 

 
NMC Reduced 

MAE Max Error 

Train 1.64% 12.23% 

Validation 1.99% 10.43% 

Test 1.84% 11.73% 

4.4.2 Stage 3 

4.4.2.1 NMC TL model 

The subsequent step involves employing TL to adapt the baseline algorithm to the 

NMC cell. Notably, identical data sets will be used for training, validation, and testing as 

were used in the reduced NMC model. 

Although the data set remains unchanged, the application of TL anticipates that 

the algorithm would leverage the knowledge derived from the baseline model and 

consequently yield improved results across all data sets. As demonstrated in Figure 48 

and summarized in Table 14, the algorithm appears to have proficiently learned and 

assimilated the new battery features, effectively retraining the network. The MAE for the 

training and validation sets are 0.74% and 0.71% respectively, while the maximum errors 

are 6.86% and 4.43% respectively.  
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Figure 48. SoC estimation and error for the US06 training cycles at different temperatures of NMC 

TL model 

On examining the test data set, as depicted in Figure 49, the algorithm 

demonstrates similar proficiency. It seamlessly tracks the SoC trend, recording a MAE of 

less than 1%, and a maximum error rate below 6%. 

The visual data representation reveals that the algorithm registers the highest 

errors in the SoC range of 20% to 50%. However, interestingly, this error seems to diminish 

at higher temperatures. This behaviour can be attributed to the algorithm's training 

conditions. The network was trained on US06 profiles at 25°C and 45°C, which implies 

that the algorithm has more comprehensive knowledge of battery dynamics under these 

conditions. Thus, the algorithm performs better when the temperature is in alignment with 

its training parameters. 

 ctual  oC Estimated  oC Error
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Figure 49. SoC estimation and error for the WLTC cycles at different temperatures of NMC TL 

model. 

Even though the TL in this scenario was executed between synthetic data and real-

world data, it was observed that the algorithm successfully applied the knowledge 

acquired from the training of the baseline model. The insights garnered from the synthetic 

environment proved to be effective when utilized in a real-world context, thereby 

underscoring the potency and flexibility of the TL approach. This serves as evidence of the 

algorithm's capacity to effectively adapt and leverage pre-existing knowledge when 

confronted with new, less familiar data sets.  

 ctual  oC Estimated  oC Error
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Table 14. Errors obtained in the estimation of SoC by the TL NMC model. 

 
NMC TL  

MAE Max Error 

Train 0.74% 6.86% 

Validation 0.71% 4.43% 

Test 0.88% 5.62% 

4.4.3 Stage 4 

4.4.3.1 NMC models results comparison 

Upon comparison of the two models (refer to Table 15), the model that 

incorporated TL yielded superior results, almost halving both the MAE and the maximum 

error. These results indicate that the algorithm, by leveraging knowledge from the baseline 

model, was able to enhance its predictions for the new cell. Remarkably, despite being 

exposed to the same limited dataset as the algorithm without TL, the TL-based algorithm 

showed significant improvement in prediction accuracy. This underlines the effective 

applicability of TL in scenarios where the available data for training might be scarce or 

limited. 

Table 15. Errors obtained in the estimation of SoC by the different NMC algorithms. 

 NMC Reduced NMC TL  

MAE 
Max 

Error 
MAE 

Max 

Error 

Train 1.64% 12.23% 0.74% 6.86% 

Validation 1.99% 10.43% 0.71% 4.43% 

Test 1.84% 11.73% 0.88% 5.62% 

4.5 Conclusions  

This chapter provides a compelling demonstration of how TL techniques can 

effectively modify li-ion battery SoC estimation algorithms for new chemical 

compositions, significantly improving the accuracy and robustness of these algorithms, 

particularly when the available data for training is limited. 

Two distinct case studies have been conducted in this chapter, both starting from 

a common baseline model. One involves data derived from electrochemical models, while 

the other uses data from a real cell tested in a laboratory environment. It is noteworthy 

that the algorithm trained with data from electrochemical models outperformed the 

algorithms trained with laboratory data. This is largely because laboratory data can be 

influenced by voltage and current sensor errors and noise, leading to potential 

discrepancies in SoC estimation accuracy. 

The crucial role of using the appropriate data sources and leveraging pre-existing 

knowledge to enhance the performance of battery algorithms is underscored in this 
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chapter. By adopting a base algorithm trained with data from electrochemical models and 

subsequently retraining the network with laboratory data using TL, superior performance 

of the algorithm can be achieved compared to training one from scratch. 

The analysis shows that the TL algorithm achieves a MAE of 0.88% on the test 

data, compared to a MAE of 1.84% for the algorithm trained from scratch. There is also a 

considerable reduction in the maximum error, which goes from 11.73% for the algorithm 

trained from scratch down to 5.62% for the TL algorithm. 

Another important aspect emphasized by this study is the challenge of acquiring 

extensive, high-quality data for training battery algorithms, especially during the early 

deployment stages. For instance, the complete algorithm developed for the LCO/NCA 

cells required 20 profiles at varying currents and temperatures for training, and an 

additional 4 distinct profiles for validation. In contrast, the model for TL only needed two 

profiles for training and two more for validation, meaning only 16.6% of the data used by 

the complete algorithm was required (when a baseline model is available to perform TL). 

Despite the use of less data, the TL model still outperformed the complete model. This 

underlines the substantial potential of utilizing TL techniques and proper data sources to 

boost the performance of battery algorithms when data availability is restricted. 

Despite achieving commendable results, a noticeable discrepancy has been 

identified during the transition phase of a cell from charging to discharging, and vice versa. 

This switch-over phase tends to amplify the error in the SoC estimation, posing a concern. 

One potential remedy could be to specifically tailor the network training process 

with data sets that encapsulate these exact transition scenarios. By doing so, the 

network's ability to comprehend the impact of the current shift on the SoC estimation can 

be significantly enhanced, thereby minimizing the error margin. 

An alternate and simple solution might involve employing coulomb counting at the 

instant where the current alteration happens. By implementing this technique during the 

initial seconds of the transition, the SoC estimation's accuracy can be considerably 

boosted. Given the brevity of this intervention, the potential deviation incurred in the 

estimation due to the coulomb counting process will be kept to a bare minimum, ensuring 

a more precise SoC estimation. 

In conclusion, the merits of integrating NN with TL are accentuated. Distinctively 

divergent from other methodologies like Coulomb Counting or the KF, this approach 

circumvents the need for explicit tests for training purposes. This unique characteristic 

renders this genre of algorithm exceptionally suitable for applications where it's infeasible 

to conduct the prerequisite tests for model tuning. Furthermore, gives the algorithm a 

highly adaptive nature, allowing it to accurately estimate the SoC of the battery over its 

operational lifetime.
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The subsequent chapter shifts its focus from SoC estimation to SoH estimation 

and aims to apply the methodology outlined in Chapter 3. The overall process will mirror 

the approach followed in Chapter 4, however, the SoH estimation algorithm will be 

examined under a single scenario based on two different types of cells. 

The first algorithm will be based on synthetic data obtained from the LCO/NCA 

cell, which will be used to develop a baseline model (Stage 1). This baseline model will set 

the baseline for SoH estimation using synthetic data. 

Once the baseline model has been created, two SoH estimation algorithms will be 

constructed from scratch using only data from the NMC cell, one of them with a reduced 

amount of data and the other with a bigger amount of data (Stage 2). This will provide a 

direct comparison of performance between algorithms that are built from scratch using 

real-world data and a model that is trained on a different battery synthetic data and further 

refined using TL techniques. 

The fourth and last algorithm will be created using TL methods (Stage 3), where 

the model will be trained on synthetic data (baseline model based on LCO/NCA cell) and 

then further refined using real-world NMC cell laboratory data. This approach will 

demonstrate how the knowledge gained from the synthetic data can be transferred and 

applied to real-world data of a different cell to enhance the SoH estimation even using 

cells of different format, chemistry, capacity and manufacturer. 

The entire process to compare the SoH estimators is illustrated in Figure 50. The 

visualization depicts the origin of each algorithm and highlights the role of synthetic data, 

real-world data, and TL in the construction of these SoH estimation algorithms. 
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Figure 50. Methodology followed to create the SoH estimation algorithms. 

The subsequent sections of this chapter present a comprehensive examination of 

the various stages involved in the creation of the SoH estimation algorithms. Initially, an 

overview and analysis of the available datasets and their respective splits are provided. 

This is followed by a discussion on the employed NN topology, along with the 

hyperparameter tuning process and network parameters (stage 1 of the methodology 

presented in Chapter 3). 

Following these technical descriptions, there is a detailed exploration of the 

baseline model, which is based on LCO/NCA cells. The discussion then progresses to a 

thorough explanation of the two distinct algorithms that have been developed for the NMC 

cell (stage 2 and 3). The chapter concludes with a summary of the key findings and 

insights derived from the study (stage 4). 

5.1 Stage 0 

5.1.1 Dataset overview 

As previously stated, two distinct datasets are utilized in this research - one derived 

from the LCO/NCA cell, and the other from the NMC cell. Detailed information on both 

these cells was provided in section 4.1.1. 

The datasets used in this chapter for the SoH estimation are distinct from those 

used in Chapter 4 for SoC estimation, as they encompass different testing scenarios. The 

unique attributes and testing conditions of these datasets are analysed in the forthcoming 

sections. 
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5.1.1.1 LCO/NCA cell dataset 

The primary dataset comprises synthetic data that has been generated through 

the application of electrochemical models. This dataset has been created by virtually 

cycling the electrochemical model associated with the LCO/NCA cell [169]. 

In order to produce this dataset, the virtual LCO/NCA cell underwent cycling and 

aging under a variety of conditions, the specifics of which are detailed in Table 16. This 

was done to achieve a range of degradation conditions and trends, with the cell being 

virtually cycled under five unique conditions. These conditions included varying charge 

and discharge rates, temperatures, depths of discharge (DoD), and Mid. SoC. This diverse 

set of conditions facilitated the production of a comprehensive dataset, which serves as 

an effective tool for training the baseline model. 

Table 16. LCO/NCA cell degradation matrix. 

Cell CHA C-rate DCH C-rate DOD Mid. SoC Temperature Used for 

K01 2 C/3 80 % 50 % 25 °C Train/Validation 

K02 C/3 C/3 70 % 45 % 25 °C Train/Validation 

K03 1C 1C 100 % 50 % 25 °C Train/Validation 

K04 C/3 1C 80 % 50 % 25 °C Test 

K05 C/3 1C 80 % 50 % 45 °C Train/Validation 

The SoH was calculated based on the discharged capacity during the last 

discharge cycle in each set of check-up (CU) tests. These CU tests were conducted every 

100 cycles and included three cycles of charging and discharging the cell completely at a 

rate of 0.5C and a temperature of 25 °C. 

Following each CU test, the same process was repeated at different C-rates, 

varying from 0.2C to 2C. This approach ensures that the algorithm is trained to estimate 

SoH under various current conditions, hence enhancing its robustness and applicability 

under different operating scenarios. The hole procedure is depicted in Figure 51, where 

the cell voltage, current and temperature during the CU are shown.  
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Figure 51. Performed CU test on the LCO/NCA cell. 

The key benefit of using this dataset is the ability to simulate various aging 

conditions and degradation trends, providing valuable insights into the SoH estimation 

under diverse operating conditions and enhancing the model's prediction capabilities. 

Figure 52 illustrates the degradation of all five cells. Observing the degradation trends, it 

becomes clear that the cell labelled K05 exhibits the most rapid rate of degradation, a 

phenomenon that can be attributed to its operating temperature of 45°C. 
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Figure 52. LCO/NCA cells SoH degradation curve. 

5.1.1.2 NMC cell dataset 

The second dataset used in this study is derived from the laboratory testing of a 

NMC 58 Ah high energy lithium-ion cell. This dataset encompasses data gathered from 

testing 12 different cells, each one under a distinct condition, as detailed in Table 17. 

Notably, even though this real-world dataset includes more varied conditions compared 

to the synthetic one, fewer cycles have been performed on the tests, which influences the 

quantity and variety of data collected.  

Table 17. NMC cell degradation matrix. 

Cell 

CHA 

C-

rate 

DCH 

C-rate 
DOD 

Mid. 

SoC 
Temp. 

Used for in 

complete model 

Used for in TL 

and reduced 

model 

C01 1C C/3 70 % 45 % 25 °C Test Test 

C02 2C C/3 70 % 45 % 25 °C Train/Validation Train/Validation 

C03 C/3 1C 
100 

% 
50 % 25 °C Train/Validation Train/Validation 

C04 C/3 1C 20 % 20 % 25 °C Train/Validation Test 

C05 C/3 1C 20 % 50 % 25 °C Test Test 

C06 C/3 1C 20 % 80 % 25 °C Train/Validation Test 

C07 C/3 1C 50 % 50 % 25 °C Test Test 

C08 C/3 1C 70 % 45 % 25 °C Train/Validation Test 

C09 C/3 1C 80 % 50 % 25 °C Train/Validation Test 

C10 C/3 1C 80 % 50 % 45 °C Test Test 

C11 C/3 C/3 70 % 45 % 25 °C Train/Validation Train/Validation 

C12 C/3 C/3 80 % 50 % 45 °C Train/Validation Train/Validation 

 0 
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 0 
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Despite the larger number of testing conditions available for each cell, it should be 

noted that the capacity CU was carried out by executing only three charge and discharge 

cycles at a 0.5C rate and at 25 ºC. Consequently, data from other C-rates nor temperatures 

are not available for estimating the SoH of the battery. 

Figure 53 illustrates the degradation of different cells. It is observed that the cell 

exhibiting the highest level of degradation is cell C02, which is cycled at a charging rate of 

2C. This implies that the C-rate is a significant factor contributing to the degradation in 

this type of cell. The two other cells displaying more rapid degradation are C10 and C12, 

both undergoing degradation at a temperature of 45 ºC, indicating that temperature also 

seems to be a vital factor influencing degradation.  

 

Figure 53.NMC cells SoH degradation curve. 

Interestingly, several cells, such as C04, C05, and C06, have been subjected to 

milder degradation conditions and thus display either negligible degradation or no 

degradation at all, even after enduring more than 1000 cycles. This observation underlines 

the fact that specific operating conditions can significantly affect the lifespan and health 

of a battery. 

5.1.1.3 Data pre-processing 

Identifying and preparing suitable data for training a NN is paramount, as detailed 

in sections 2 and 3. This section will discuss the selection and processing of input data 

for the network. 

In real-world settings, determining the SoH of a battery poses challenges due to 

the limited ability to perform a complete charge or discharge profile even more at a 

constant current and with a CC-CV charge. Typically, most applications function within a 

specific SoC range, which means only partial load profiles are available for state 
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parameter estimations. This makes it crucial for an onboard SoH estimation approach to 

consider the constraints of partial load profiles. 

Given the dynamic nature of battery discharging, the charging process is often 

leveraged for SoH estimation due to its more predictable characteristics. For example, in 

applications like consumer electronics or electric vehicles, charging usually begins at a 

variable SoC and ends at a comparatively high SoC. This results in the upper portion of a 

charging profile being reliably available throughout a battery's lifespan. 

In this work, the upper part of the charging profile is utilized to estimate the SoH 

under various aging scenarios and conditions. This methodology provides a more in-depth 

insight into battery health and performance within real-world applications. 

Initially, an analysis was conducted to select different voltage windows with 

various starting voltages as the data foundation for estimating the SoH. Figure 54 

provides an example of this process, displaying how the charged capacity evolves at 

different starting voltages and within different voltage windows for the LCO/NCA K04 cell. 

The SoH for each voltage window was calculated using the following formula: 

𝑆𝑜𝐻𝑉𝑤𝑖𝑛𝑑𝑜𝑤
=  

𝐴ℎ𝐶ℎ𝑎  𝑎𝑡 𝑐𝑦𝑐𝑙𝑒 𝑛

𝐴ℎ𝐶ℎ𝑎  𝑎𝑡 𝑐𝑦𝑐𝑙𝑒 0
 (10) 

The real SoH capacity was computed based on complete discharges starting from 

100% SoC, as follows: 

𝑆𝑜𝐻𝑅𝑒𝑎𝑙 =  
𝐴ℎ𝐷𝑐ℎ  𝑎𝑡 𝑐𝑦𝑐𝑙𝑒 𝑛

𝐴ℎ𝐷𝑐ℎ 𝑎𝑡 𝑐𝑦𝑐𝑙𝑒 0
 (11) 

Figure 54 shows that the voltage windows which most accurately mimic the real 

SoH are those that begin at 3.8V. 
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Figure 54. Real SoH vs SoH at different voltage windows at different start voltages for the 

LCO/NCA based cell. 

Figure 55 presents the same analysis for the NMC C09 cell, which operates under 

conditions similar to those of the LCO/NCA K04 cell (Figure 54). However, the degradation 

trends of the different voltage windows display a significant difference. The SoH shifts for 

the voltage windows of the NMC C09 cell are much more subtle when compared to those 

of the LCO/NCA cell. This suggests that the degradation mechanisms of the LCO/NCA 

and NMC cells operate differently under identical conditions, reinforcing the necessity of 

tailoring SoH estimation algorithms to specific cell types. 
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Figure 55. Real SoH vs SoH at different voltage windows at different start voltages for the NMC 

based cell 

Selecting the appropriate voltage window size is a critical aspect of SoH 

estimation. An excessively large window may not align with conditions encountered in 

real-world applications, while a very small window could inadvertently introduce sensor 

noise or errors into the SoH estimation. Therefore, based on these considerations, a 0.08V 

window with a starting voltage of 3.8V is considered the optimal selection for the SoH 

estimator data. This choice is further justified as it closely replicates the actual 

degradation pattern in both LCO/NCA and NMC cells, enhancing the accuracy and 

reliability of the SoH estimation process. 

The selection of the voltage window and its starting point is only the first step. The 

next consideration is understanding how the charging current impacts the SoH. Illustrated 

in Figure 56, the SoH's evolution over various cycles for different charging currents can be 

observed. 
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Figure 56. SoH evolution for the selected voltage window (3.8 V and 0.08V) at different currents for 

LCO/NCA based cell. 

Figure 56 illustrates the immense influence the charging current during the 

Capacity CU exercises on the degradation trend of the voltage window-based SoH. As the 

current increases, the SoH trend deviates more significantly from the real SoH. It is 

particularly noteworthy that when the cell has completed more than 1000 cycles, the 

charged capacity at 2C in the mentioned voltage range, is almost zero. 

These observations underscore the critical role that the charging current rate and 

voltage window plays in SoH estimation. Ignoring this aspect could lead to significant 

errors in predicting battery health and lifespan. Therefore, it is essential to incorporate 

charging current rates into the SoH estimation algorithm to enhance its accuracy and 

reliability when it is possible or when different charging rates will be used. 

5.1.2 Model selection 

The network architecture employed for the development of the SoH estimation 

algorithm relies on Fully Connected Layers (FCLs), primarily for their adeptness at learning 

complex relationships between input features and output labels. The task of SoH 

estimation demands the scrutiny of numerous parameters, such as voltage, current, 

temperature, and cycle life. These factors can be highly nonlinear and interconnected. 

FCLs facilitate the formation of a dense network of neurons that can decipher these 

intricate relationships and patterns within the data. 

Moreover, FCLs offer substantial flexibility and can effortlessly adapt to varying 

input sizes and shapes. This flexibility proves to be of paramount importance in battery 

systems, as the quantity and category of sensors deployed for data acquisition can differ 

based on the application and battery chemistry. FCLs can readily accommodate these 

variations by adjusting the number of neurons and layers as per the requirement. 
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As depicted in Figure 57, the input features for the NN include Full Equivalent 

Cycles (FEC), average cell temperature during cycling, charge current, Ah charged within 

the specific voltage window, window voltage and window start voltage. Conversely, the 

output of the algorithm is the estimated SoH. This design is purposed to provide the most 

accurate estimation of SoH, reflecting the health and lifespan of the battery system. 

 

Figure 57. SoH algorithm architecture 

5.2 Stage 1 

5.2.1 Baseline Model 

The foundational step in the development of the base model involves training the 

model. This is accomplished using the architecture described in the methodology section 

(Section 3.1). As stated earlier, the input features for the network are FEC, temperature, 

charge current, Ah charged, window voltage, and window start voltage. The algorithm, 

equipped with this data, will then return the SoH of the cell as output data. 

The primary goal of developing this base model is its subsequent use for TL. 

Therefore, it's beneficial to utilise as much data and as many conditions as possible during 

training. During training, the data is divided into training data, which is utilised to adjust the 

weights of the network, and validation data, which is used for early stopping as well as to 

prevent the network from overfitting. This enables the creation of a model that performs 

effectively under diverse degradation conditions. Consequently, as described in Table 16, 

data from cells K01, K02, K03, and K05 have been used to train and validate the algorithm. 

This division has been conducted randomly, with 80% of the data allocated for training 

and 20% for validation. Finally, data from the K04 cell has been utilised to test the network, 

thus providing insights into the network's behaviour under previously unseen conditions. 
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5.2.1.1 Hyperparameter tunning 

To craft the most robust and precise algorithm possible, hyperparameter tuning 

has been executed, where different NN configurations have been trained. As seen in Figure 

58, various activation functions, optimizers, loss functions, numbers of layers in the 

network, different quantities of dense neurons in each layer, and different batch sizes have 

been examined. Among all these training iterations, the model displaying the optimal 

balance between MAE and maximum error has been selected. 

Bayesian optimization has also been employed, given its proficiency in 

accelerating the discovery of the optimal configuration. As has been seen before, this 

strategy allows for a more efficient search for the best hyperparameters, reducing the time 

and computational resources required in comparison to other methods like grid search or 

random search. 

 

Figure 58. Hyperparameter tunning of the SoH algorithm for LCO/NCA based cell. 

Figure 58 represents each individual training conducted utilizing Bayesian 

Optimization. A noticeable density of lines is evident in the low values of batch sizes and 

dense neuron values, illustrating the intensive search for the optimal parameters within 

that range. Table 3 presents the chosen hyperparameters that have been used to structure 

the NN. These parameters were selected due to their superior performance and minimal 

error, achieving MAE below 1% and a maximum error less than 2%. This optimal 

configuration promises a robust and precise model for SoH estimation. 

Table 18. Baseline model hyperparameter configuration of the SoH estimator. 

Activation Optimiser Batch size Loss Neurons per layer Number or layers 

ReLu Adam 4 MAE 32 10 
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5.2.1.2 Baseline SoH estimator  

A new NN will be constructed following the selected configuration as indicated in 

Table 18. This NN will consist of 10 layers, each layer featuring 32 neurons. ReLu will serve 

as the activation functions for these layers. An Adam optimizer and MAE will be utilized 

as the optimizer and loss function, respectively. Finally, the batch size will be set to 4. 

Figure 59 showcases the algorithm's performance in the context of the training 

cell K05. This figure visualizes the SoH estimations produced by the algorithm for different 

charging current rates. Remarkably, the algorithm successfully traces the degradation 

pattern of the battery across all current rates. As detailed in Table 19, based on the 

outcomes achieved for all datasets, it can be affirmed that the NN has been accurately 

trained and validated. Across the board, the maximum error remains below 2%, while MAE 

stays under 1% for all datasets. These figures indicate a robust and reliable model 

performance. 

Table 19 the algorithm achieves a maximum error of 1.2% and a MAE of 0.8% 

within the training of LCO/NCA based cells, thus validating the chosen configuration's 

effectiveness. 

 

Figure 59. Baseline model SoH estimations and errors for the training cell K05. 

It is noteworthy that the highest estimation error occurs at the very beginning, 

specifically when the battery is at its BoL. Following this initial deviation, the error 

decreases and consistently remains under 1%. This trend is observable in the testing 

dataset as well, as highlighted in Figure 60. Baseline model SoH estimations and errors 

for the testing cell K04. with the SoH estimation for the testing cell K04. Here, the algorithm 
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demonstrates its competence in accurately tracing the degradation trend and correctly 

estimating the SoH. However, the greatest discrepancy emerges again in the initial 

estimation phase, mirroring the pattern identified in the training dataset. 

 

Figure 60. Baseline model SoH estimations and errors for the testing cell K04. 

Based on the outcomes achieved for all datasets, it can be affirmed that the NN 

has been accurately trained and validated. Across the board, the maximum error remains 

below 2%, while MAE stays under 1% for all datasets. These figures indicate a robust and 

reliable model performance. 

Table 19. Errors obtained in the SoH estimation by the base model for training, validation and test 

data. 

 MAE Max. Error 

Train/Validation 0.8 % 1.2 % 

Test 0.6 % 1.3 % 

5.3 Stage 2 

The complete NMC model will be trained from the ground up using a considerable 

volume of data. Eight cells will be used for training and validating the network, with an 

additional four cells assigned for testing. Subsequently, the reduced model will be trained 

from the beginning using only three cells for training, one for validation, and the remaining 

cells will be allocated for testing. Ultimately, the TL model will be adapted, leveraging the 

baseline algorithm as its foundation. This algorithm will undergo training and testing using 

the same data sets as the streamlined SoH algorithm. 
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5.3.1 Complete NMC model 

The first NMC based cell SOH algorithm to be developed will use the most 

extensive data set. The training/validation dataset presented in Table 17 will be randomly 

divided, with 80% allocated for training and 20% for validation. 

The architecture of the network and hyperparameters will mirror those in the 

baseline model as specified in Table 19. As an illustrative example, Figure 61 presents the 

results from two of the eight training/validation cells, Cell C03, and Cell C11. 

As observed in the Figure 61, for Cell C03, the algorithm accurately traces the 

degradation trend until the concluding cycles, at which point the error margin widens 

slightly. On the contrary, the algorithm estimates a steeper degradation for Cell C11 than 

what is actually occurring. The MAE error and the maximum error for the train/validation 

dataset is of 1.3% and 3.2% respectively. 

 

Figure 61. SoH estimations and errors of the complete NMC model for the train/validation cells C11 

and C03. 

In Figure 62, the outcomes for the available test cells are displayed. Specifically, 

the estimations for four cells - C01, C05, C07, and C10 - are shown. The algorithm 

successfully traces the degradation trend in the first three cells. However, in the case of 

cell C10, the estimated degradation is significantly lower than the actual one. This could 

suggest that the algorithm might not have learned effectively how to estimate battery SoH 

 ctual  oH Estimated oH Error
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under higher temperatures, as is the case here, where the battery experienced degradation 

at 45 ºC. 

 

Figure 62. SoH estimations and errors of the complete NMC model for the test cells C05, C07, C01 

and C10. 

The MAE and maximum errors derived from the test dataset are 1.2% and 4.1%, 

respectively. While the MAE is quite small, the algorithm seems to struggle in certain 

scenarios, like estimating the SoH at 45ºC. This limitation could possibly stem from a lack 

of diverse conditions at higher temperatures during the training phase of the algorithm. 

This indicates that while the model performs well on average, there may be specific 

situations where its performance is less reliable. Further training data from these higher 

temperature conditions could potentially help improve the model's accuracy in these 

scenarios. 
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Table 20. Errors obtained in the SoH estimation for the different dataset used in complete NMC 

model. 

 Complete algorithm 

 MAE Max. Error 

Train/Validation 1.3 % 3.2 % 

Test 1.2 % 4.1 % 

5.3.2 Reduced NMC model 

The second algorithm was trained with a reduced dataset from only four different 

cells, making it a more constrained model. The performance, as seen in Table 21, reflects 

this reduction in data, with a MAE of 1.8% and a maximum error of 5.5% for the 

training/validation dataset. 

The pattern observed with the reduced model also mirrors that of the complete 

model, particularly noticeable in cells C11 and C03. For cell C11, the model again 

overestimates the level of degradation, predicting a more rapid decline in the SoH than is 

actually observed. Conversely, for cell C03, the model initially overestimates the 

degradation during the first few cycles, predicting a more rapid decline than is seen in the 

data. However, as the number of cycles increase, the model's estimate of degradation falls 

below the actual observed degradation rate. 

 

Figure 63. SoH estimations and errors of the reduced NMC model for the train/validation cells C11 

and C03. 
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Figure 64 clearly illustrates the performance challenges faced by the algorithm 

when the dataset is reduced. Even though the algorithm exhibits similar behaviour and 

trends as the complete model, the error rate is considerably higher. The MAE has 

increased by 0.8% compared to the complete algorithm, demonstrating the impact of a 

reduced training dataset on the prediction accuracy. The maximum error, however, 

remains almost unchanged. 

This underlines the importance of having sufficient training data when designing 

and implementing algorithms. The more diverse and extensive the training data is, the 

better the algorithm can learn and accurately predict under various conditions. 

 

Figure 64. SoH estimations and errors of the reduced NMC model for the test cells C05, C07, C01 

and C10. 
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Once again, it's notable that the most significant discrepancies occur for cell C10, 

which is operating at 45°C. This suggests that the algorithm struggles more with 

accurately predicting SoH under higher operating temperatures, an area that would likely 

benefit from further optimization and the inclusion of more high-temperature data in the 

training set. This points to a crucial aspect of machine learning: ensuring your training 

data encompasses all the situations and conditions your model might encounter during 

actual use. 

The results in Table 21 highlight that while the model captures the overall trend in 

battery degradation, the precise degradation curve can vary significantly between cells, 

and this level of detail can be challenging for the model to capture perfectly, especially 

with a reduced dataset. It reinforces the importance of having a diverse dataset with a 

wide range of conditions for training to enhance the model's predictive performance 

across different scenarios. 

Table 21. Errors got in the SoH estimations for the different datasets used in reduced NMC model. 

 Reduced algorithm 

 
MAE Max. Error 

Train/Validation 1.8 % 5.5 % 

Test 2 % 4.6 % 

5.4 Stage 3 

5.4.1 NMC TL model 

The final algorithm developed adopts the baseline model as its foundation. This 

pre-existing model is then skilfully retrained, utilizing data from the same 4 cells that were 

used to the formation of the reduced model (5.3.2).  

Figure 65 demonstrates the power of TL in fine-tuning the SoH estimator for the 

NMC cells. By leveraging the existing knowledge from the baseline algorithm and refining 

it with a smaller dataset of NMC cells, the TL-based algorithm outperforms the other two 

models in accuracy. 

In the cases of cells C03 and C11, the SoH estimates from the TL algorithm are 

closer to the actual values, showcasing its improved performance. However, there are still 

discrepancies observed, such as the slight overestimation of degradation for cell C11.  

Nonetheless, the MAE and the maximum error for the TL-based algorithm, at 0.6% 

and 1.2% respectively, are considerably smaller than those for the complete and reduced 

models. This signifies a more precise and reliable performance from the TL-based 

algorithm, validating the effectiveness of TL in this context.  
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Figure 65. SoH estimations and errors of the NMC TL model for the train/validation cells C11 and 

C03. 

The performance of the algorithm on the test dataset mirrors the observations 

made on the training dataset. This TL-based model adeptly captures the degradation 

patterns of the battery, enabling a more precise estimation of the battery's SoH, giving a 

MAE of 0.7% and a maximum error of 2.1%. 

When examining the results for the C01, C05, and C07 cells, the estimated SoH is 

virtually identical to the actual SoH of the battery, with an error margin approaching zero. 

This demonstrates the efficacy of the algorithm in accurately tracking battery degradation 

under these conditions. 

However, despite the overall improvement over models trained from scratch, this 

TL-based model struggles at higher temperatures. Specifically, when operating at 45ºC as 

in cell C10, where the algorithm fails to accurately track the real degradation, particularly 

during the cell's final cycles. It underestimates the actual level of degradation, indicating 

that temperature may present a challenge for this model. 
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Figure 66. SoH estimations and errors of the NMC TL model for the test cells C05, C07, C01 and 

C10. 

In summary, the TL-based algorithm has effectively leveraged the new data 

provided and has successfully adapted to the new cell reference. It demonstrates robust 

ability to track the actual SoH of the battery with accuracy and precision. This emphasizes 

the value of employing TL methodologies when training NNs for battery SoH estimation. 

This approach allows for a robust base model to be tailored to a new set of circumstances 

with greater efficiency and precision. 
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Table 22. Errors got in the SoH estimations for the different datasets used in TL NMC model. 

 TL algorithm 

 
MAE Max. Error 

Train/Validation 0.6 % 1.2 % 

Test 0.7 % 2.1 % 

5.5 Stage 4 

5.5.1 Results comparison 

Figure 67 and Table 23 clearly illustrates the differential performance of the 

various algorithms in terms of their predicted SoH and associated errors. Without a doubt, 

the algorithm utilizing TL yields the lowest error rates, in terms of both MAE and maximum 

error across all datasets for NMC based cells. 
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Figure 67. Comparison of the different estimation made by the reduced, complete and TL models 

for the testing cells C05, C07, C01 and C10. 

The reduced NMC model appears to struggle with data scarcity, making it difficult 

to extract sufficient information for an accurate SoH estimation. The complete NMC 

model, on the other hand, displays an improved ability to follow the SoH trend, benefitting 

from a much larger dataset in comparison to the reduced NMC model. 

The standout performer, however, is the NMC TL model. This model estimates the 

SoH much more accurately than the other two, despite being trained on the same limited 

dataset as the reduced NMC model. This model got a MAE of 0.7% in the test dataset, 

compared to the 1.6% and 1.2% of the reduced and complete model respectively. The 
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maximum error also has been reduced to a 2.1%, compared to the 4.6% and 4.1% of the 

reduced and complete model.  

What is particularly noteworthy is that, compared to the complete NMC model, the 

TL-based model requires approximately 50% less data for training and validation. This 

underscores the efficiency and effectiveness of TL methodologies, especially in scenarios 

where the available datasets are limited. 

Table 23. Errors got in the SoH estimations for the different datasets used in the different NMC 

models. 

 Reduced algorithm Complete algorithm TL algorithm 

 
MAE Max. Error MAE Max. Error MAE Max. Error 

Train/Validation 1.5 % 5.5 % 1.3 % 3.2 % 0.6 % 1.2 % 

Test 1.6 % 4.6 % 1.2 % 4.1 % 0.7 % 2.1 % 

5.6 Conclusions 

In this chapter SoH estimation algorithms based on fully connected NNs have 

been meticulously crafted, leveraging features grounded in voltage windows as input 

parameters. The methodology prominently benefits from the power of TL to bolster the 

adaptability, performance and efficiency of the SoH estimation process. 

The exploration employed two different databases, one constituted by synthetic 

data fabricated from electrochemical models, and another made up of real cell data 

collated in a laboratory environment. As the initial step, a baseline model was proficiently 

trained on the synthetic data, followed by an extensive hyperparameter optimization to 

guarantee the attainment of the most optimal algorithm. 

Subsequently, the technique of TL was harnessed to craft a second SoH estimator 

utilizing a limited amount of laboratory test data. This was achieved by fine-tuning the 

baseline model to adapt to the laboratory cell data, leading to the generation of a more 

accurate SoH estimation model. To gauge the efficacy of the TL approach, two additional 

models were meticulously trained from scratch: a reduced algorithm leveraging the same 

quantum of data as the TL model, and a second comprehensive algorithm trained on a 

substantially larger dataset. 

The results unequivocally reveal that the TL model significantly outperforms both 

the reduced and large dataset models. Impressively, the TL algorithm demands 50% less 

data for training compared to a complete algorithm trained from scratch, all the while 

delivering superior results and exhibiting enhanced robustness. 

The chapter conclusively demonstrates that the utilization of NNs coupled with TL 

techniques constitutes a highly efficacious strategy for SoH estimation. This approach 

requires less data, yields improved results, and necessitates a shorter training time for the 
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NN. Importantly, TL facilitates a significant reduction in the number of required laboratory 

tests, underlining its practical advantages in real-world applications. 

Despite the availability of a considerable volume of degraded cell data under 

varying conditions, it is evident that certain scenarios remain untested for the algorithm. 

Consider the case of NMC cells, where the observed degradation isn’t substantial. 

Exploring how the algorithmic models respond when faced with highly degraded cells 

could yield intriguing results. 

Moreover, the data utilized for TL has consistently been comprised of CU data, 

meaning the temperature and current remain fixed. This raises the question of how the 

model might perform when presented with data at diverse temperatures and currents. It 

would be beneficial to examine this to gauge the model’s competency in estimating the 

SoH under these varied conditions. 

Additionally, cell degradation has been studied under static conditions. That is to 

say, the cycling process has perpetually been conducted at a consistent temperature, and 

charge and discharge C-rates. It prompts the thought that an exploration of cells degraded 

under dynamic profiles could be enlightening. Specifically, studying cells that have 

deteriorated at different temperatures and under EV profiles could provide a more 

comprehensive understanding of how these variables might impact estimation accuracy. 
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6.1 Summary and General Conclusions 

This document has effectively elucidated a comprehensive review of the state of 

the art, proposed a robust methodology, and presented two different state estimators, the 

SoC estimator and the SoH estimator. The insights and conclusions drawn from this 

research provide a firm foundation for further exploration and advancement in the field. 

From the literature review, it was evident that there are certain crucial factors and 

constraints that need careful consideration. A primary limitation identified was the lack of 

distinct separation between training, validation, and testing data during NNs training and 

testing phases. This ambiguity could contribute to overfitting or underfitting, impairing the 

AI model's performance substantially. 

Furthermore, a prevalent issue in the literature reviewed was the disregard for 

certain conditions during NNs' training phase. Frequently, factors such as a low number 

of considered C-rates or temperatures were neglected. This oversight can lead to 

significant issues when the estimators are applied in different settings, thereby hampering 

the reliability and precision of the AI model. 

The complexity of the algorithm is another essential factor to consider. Complex 

algorithms could potentially offer more detailed and accurate results, but they also 

demand extended training durations and higher computational resources. Thus, striking a 

balance between algorithmic complexity and computational resource allocation is vital to 

ensure efficient and effective AI model training. 

Additionally, although training algorithms typically demand a considerable amount 

of data, TL techniques can alleviate this requirement. TL allows models to utilize pre-

existing knowledge from related tasks, hence reducing the new data needed for training. 

This approach can significantly improve the training process's efficiency and the overall 

performance of the AI model. Additionally, through the utilization of TL, these diverse 

models can be adapted to novel battery chemistries, rendering these state-of-the-art 

algorithms capable of adjusting to new cell references.  

The subsequent part of this document presented the devised methodology. This 

segment underlined the importance of having a clear methodology for achieving robust 

estimators and maintaining comparability between results. This methodology's critical 

aspects were the clear separation of different datasets—train, validation, and test 

datasets, and the importance of tuning hyperparameters to optimize the NN's 

performance. 

This methodology was then applied to develop a SoC estimation algorithm, from 

creating a baseline model to adapting a TL model for a real-world battery dataset. This 

process underscored the importance of a thorough approach to AI model development, 
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taking into account not only the technical aspects but also practical considerations and 

limitations. 

The application of TL techniques considerably improved the adaptability, accuracy 

and robustness of the battery SoC estimation algorithms, especially with limited training 

data or new chemical compositions. The SoC estimation chapter demonstrated two 

different case studies—one using data from electrochemical models, and the other from 

real cells tested in a lab environment. Interestingly, the algorithm trained with 

electrochemical model data outperformed those trained with laboratory data due to the 

latter's susceptibility to sensor errors and noise. 

The importance of using appropriate data sources and leveraging pre-existing 

knowledge for better battery algorithm performance was underscored. Superior algorithm 

performance was achieved by initially adopting an algorithm trained with electrochemical 

model data, then retraining the network with laboratory data using TL, compared to 

training an algorithm from scratch. 

The TL algorithm demonstrated a MAE of 0.88% on the test data, compared to a 

MAE of 1.84% for the algorithm trained from scratch. Also, a significant reduction in the 

maximum error was observed, with a decrease from 11.73% in the scratch-trained 

algorithm to 5.62% in the TL algorithm. 

A crucial challenge underscored by this study is the difficulty in acquiring extensive, 

high-quality data for training battery algorithms, particularly during early deployment 

stages. Despite using fewer data profiles for training and validation, the TL model still 

outperformed the complete model, demonstrating the substantial potential of employing 

TL techniques and proper data sources to enhance battery algorithms' performance when 

data availability is limited. 

The second phase of the study pivoted towards the development of a SoH 

estimation algorithm. The focus was on constructing SoH estimation algorithms based 

on fully connected NNs using voltage windows and constant current charge profiles as 

input parameters. The chapter delved into two distinct databases—one constituted of 

synthetic data derived from electrochemical models and the other comprised real cell data 

gathered in a lab environment. 

The process initiated with the training of a baseline model on the synthetic data, 

followed by thorough hyperparameter optimization. This step was critical to ensuring the 

development of the most efficacious algorithm. Subsequently, TL techniques were utilized 

to refine the baseline model further and adjust it to the lab cell data, yielding a more precise 

SoH estimation model. 

Analytical findings revealed that the TL algorithm yielded a MAE of 0.7% on the test 

data, in comparison to a MAE of 1.2% for the completely trained-from-scratch algorithm. 
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Furthermore, a noteworthy reduction in the maximum error was observed, decreasing 

from 4.1% for the scratch-trained algorithm to 2.1% for the TL algorithm. 

These results explicitly indicated that the TL model considerably outperformed 

both the reduced and large dataset models, despite requiring 50% less data for training 

relative to a complete algorithm trained from scratch. Crucially, the TL model necessitated 

a shorter training period, still yielding superior results. 

In conclusion, the study confirms that the amalgamation of NNs with TL 

techniques is a highly promising strategy for SoC and SoH estimation. This methodology 

requires fewer data, yields superior results, and reduces the time required for NN training. 

Notably, TL enables a significant reduction in the number of necessary lab tests, 

emphasizing its practical benefits in real-world applications, particularly in scenarios 

where data is scarce or costly to generate. 

6.2 Main Contributions 

This research has yielded several key contributions to the fields of SoC and SoH 

estimation using AI methodologies: 

1. Comprehensive Literature Review: The study conducted an exhaustive 

review of existing literature and identified key limitations in current methodologies, 

such as lack of clear separation among training, validation, and test data, oversights 

during training phases, and algorithmic complexity. Furthermore, the review 

discerned that the vast majority of the techniques were effective solely for the 

characterised cell, failing to generate models that are versatile and adaptable to 

alternate references. 

2. Methodology Development: The research proposed a clear, structured 

methodology for SoC and SoH estimation, emphasizing the importance of data 

splitting and hyperparameter tuning, which can greatly improve the efficiency and 

accuracy of the AI model training. Additionally, the methodology engenders a 

transparent comparison of the various models developed and an objective 

evaluation of the applicability and merits of implementing TL. 

3. Application of TL: One of the significant contributions is the successful 

application of TL techniques to improve the training process's efficiency and the 

overall performance of the AI model. It demonstrated that TL could be used to 

leverage pre-existing knowledge, thereby reducing the amount of new data needed 

for training.  

TL's transformative impact is exemplified by its ability to enable the training of 

benchmark models using primarily synthetic data, resulting in substantial 

reductions in both time and cost. This innovative approach necessitates only a 

minimal amount of laboratory data to craft estimators tailored to the target cell, 

signifying a significant leap forward in efficiency and resource optimization. 
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4. SoC and SoH Estimation: The research provided a deep-dive into 

developing SoC and SoH estimation algorithms, utilizing a blend of fully connected 

NNs and voltage windows as input parameters. Case studies involving synthetic 

data from electrochemical models and real lab data were used, highlighting the 

practicality of the approach. 

5. Adaptability and Improved Performance with Less Data: The research 

demonstrated that the use of TL techniques and appropriate data sources could 

improve the accuracy and robustness of the battery algorithms even when data of 

a new cell is limited. The TL model required fewer data and shorter training time but 

outperformed the complete model trained from scratch. 

6. Practical Implications: The study underscored the significant potential of 

TL techniques for real-world applications, particularly when data is scarce or costly 

to generate. The approach could significantly reduce the number of required lab 

tests, leading to considerable resource savings. 

These contributions pave the way for future research and development in the field, 

with potential applications in battery technology, electric vehicles, and energy storage 

systems, among others. 

6.3 Limitations of the work 

Despite the significant contributions of this study, it is important to acknowledge 

its limitations, which can provide guidance for future work. Here are some of the key 

limitations: 

1. Limited Battery Types and Operating Conditions: The current study's 

methodology and findings are based on specific battery chemistries and limited 

operating conditions. The performance of the developed state estimators may differ 

when applied to other types of batteries or when batteries operate under different 

environmental or load conditions. Thus, the generalizability of the results may be 

limited. 

2. Dependence on Quality of Source Task Data: The TL approach employed 

in this study relies heavily on the quality of the data from the source tasks. If the 

source data is not representative or contains significant noise or errors, the 

performance of the TL model could be significantly impacted. 

3. Absence of Real-Time Validation: While the models have been validated 

using laboratory test data, real-time validation in practical applications was not 

conducted. Therefore, the robustness of the models under real-world operating 

conditions and in the presence of unforeseen events or anomalies remains 

unverified. 

4. Lack of Model Interpretability: As with most AI-based models, the 

interpretability of the developed NNs is limited. This lack of transparency makes it 



Conclusions And Future Work 

126 
 

challenging to understand how the model arrives at its estimations and could 

potentially hinder troubleshooting or refinement of the model. 

5. Absence of Uncertainty Quantification: The AI models developed in this 

study provide point estimates for SoC and SoH, but they do not quantify the 

uncertainty or confidence associated with these estimates. This could be a 

significant limitation, particularly in safety-critical applications where understanding 

the uncertainty of the state estimation is crucial. 

In light of these limitations, caution should be exercised when interpreting the 

results of this study. Each of these limitations presents opportunities for further research 

and refinement of the developed methodologies and models. 

6.4 Closure and Future lines 

As we look towards the future, this research opens up several exciting avenues for 

further exploration. Here are some possible directions for future work: 

1. Extensive Validation with Real-World Data: While this study incorporated a 

combination of synthetic and real-world laboratory data, prospective research 

endeavours could encompass more comprehensive validation. This might involve 

an extended validation process using data acquired from cycling tests conducted 

with different profiles or real-world battery datasets collected across a spectrum of 

operating conditions. Such data could be acquired from batteries operating in 

different domains like electric vehicles, grid storage, and consumer electronics, 

among others. Conducting extensive validation with real-world data would not only 

enhance the reliability and accuracy of the models but also contribute to their 

readiness for real-world deployment. 

2. Application to Other Battery Chemistries: This study has developed a novel 

methodology for SoC and SoH estimation using AI models and has proven its 

effectiveness for specific battery chemistries. However, different battery 

chemistries exhibit different characteristics and degradation behaviours, which 

warrant investigation. A crucial future endeavour would be to extend the application 

of the proposed methodology to other types of battery chemistries such Lithium 

iron phosphate (LiFePO4) or solid-state batteries. Comparing the performance of the 

SoC and SoH estimators across different battery chemistries would provide 

valuable insights and further enhance the generalizability and robustness of the 

models. 

3. Improvement of TL Techniques: Although TL has shown promising results 

in this study, there is still potential for enhancement. The effectiveness of TL relies 

heavily on the similarity between the source and target tasks. Future work can delve 

into exploring methods to quantify this similarity and use it to guide the TL process. 

Additionally, methods to adaptively adjust the amount of knowledge transferred 

according to the specific characteristics of the target task could also be 

investigated. 
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4. Real-Time Model Performance Assessment: Most AI-based state 

estimators, including the ones developed in this study, are typically trained and 

validated offline. However, the true test of their reliability and robustness comes 

when they are implemented in real-time applications. A valuable direction for future 

work could be the development and implementation of an evaluation framework to 

assess the performance of the state estimators in real-time, possibly alongside 

existing estimation methods. Such an evaluation could shed light on how well the 

estimators handle unforeseen events and anomalies that may not be captured in 

the training data. 

5. Development of Hybrid Models: While this study has shown that NNs can 

be effectively used for state estimation, future work could consider the development 

of hybrid models that combine NNs with other machine learning or statistical 

methods. These hybrid models could potentially leverage the strengths of each 

method, thereby improving the overall accuracy and robustness of the state 

estimators. 

6. Uncertainty Quantification in AI Models: One of the significant challenges 

in AI-based state estimation is the uncertainty associated with the predictions. 

Future research can work on developing methods for quantifying this uncertainty. 

This can provide a measure of confidence in the predictions, which can be 

particularly important for safety-critical applications of batteries, such as in electric 

vehicles or aerospace applications. 

In conclusion, the rich and fertile field of battery state estimation offers numerous 

opportunities for future work. By expanding and refining the methodologies and 

techniques used in this study, we can continue to drive forward the state of the art in this 

crucial area of research. 
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