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MONDRAGON UNIBERTSITATEA

Abstract
Reinforcement learning for collaborative robotic contact-rich disassembly tasks

by Antonio SERRANO MUÑOZ

With the exponential growth of the world’s population and the resulting increase
in consumption rates, the efficient treatment of end-of-life (EOL) products has be-
come critical to mitigating environmental impacts. Remanufacturing offers an envi-
ronmentally and economically beneficial approach to counteracting these impacts.
While automation has been successful in assembly and manufacturing, manual la-
bor is preferred in remanufacturing, especially disassembly, to cope with operational
uncertainties. Reinforcement learning (RL) is presented as an alternative for decision
making and control in changing systems, but the extent to which disassembly tasks
can be automatically learned and generalized is unknown.

This doctoral dissertation, in Applied Engineering, explores the application of
RL techniques for collaborative robot control to generalize disassembly tasks with
uncertainties due to the variability of the geometric and physical properties of the
manipulated objects. With this, a modular RL library that enables simultaneous
training of agents in massively parallel environments is presented to reduce training
time while consuming the same amount of resources and increasing the perceived
reward. In addition, a control framework for KUKA LBR iiwa cobots that outper-
forms existing solutions and allows the use of different types of force overlays to
reduce contact forces caused by friction and the probability of jamming states when
performing disassembly tasks is presented. Furthermore, a collection of ready-to-
use packages for rapid prototyping and reducing the development and deployment
time of collaborative robotic systems for assembly and disassembly is proposed.
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c) Huang et al. [75], d) Simonič et al. [76], and e) Kristensen et al. [76]. . 18

3.2 Observation space data in contact-rich manipulation tasks. For de-
formable objects, the label chain groups the positions or location of
point or grid markers on the manipulated object. Within the label
other are grouped data such as tactile sensors, gripper aperture, incli-
nation and object depth, among others. . . . . . . . . . . . . . . . . . . 22

3.3 Action space data in contact-rich manipulation tasks. Within the label
other grouped actions such as the adjustment of controller parameters,
among others. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Control methods used to apply the action space in contact-rich ma-
nipulation tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Target composed object to be disassembled synthesized using addi-
tive manufacturing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Graphical representation of the reward function when extraction fails. 30

3.7 Reinforcement learning schema. . . . . . . . . . . . . . . . . . . . . . . 31

3.8 The optimal policies learned were used to perform the extraction task
in both the real world and the simulation. The first and second rows
of the figure show the sequence for DDPG. The third and fourth rows
show the sequence for TD3. The frames for DDPG were taken every
3 timesteps, while the frames for TD3 were taken at each timestep. . . 32

3.9 Simulation training results: Mean reward and standard deviation dur-
ing training (upper). Mean estimated Q-value and standard deviation
returned by Q networks (bottom). For TD3, Q-value corresponds to
Qϕ1 (used to optimize the policy). . . . . . . . . . . . . . . . . . . . . . . 34

3.10 Mean and standard deviation of the length of the episodes (in timesteps)
during the training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vi



3.11 DDPG (left) and TD3 (right) mapping of the action a ∈ [−1, 1] per-
formed during training. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.12 Mean reward and standard deviation (on the left axis scale) and mean
episode length (on the right axis scale) obtained during the evaluation
of the learned policies in the simulated environment at different initial
rotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.13 Performance of the learned policies (DDPG at the top and TD3 at the
bottom), without exploration, in the simulated environment evalu-
ated at different starting positions. . . . . . . . . . . . . . . . . . . . . . 37

3.14 Mean reward and standard deviation (on the left axis scale) and mean
episode length (on the right axis scale) obtained during the evaluation
of the learned policies in the real world environment at different initial
rotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.15 Force measurements obtained during the real-world evaluation of the
DDPG and TD3 policies. The dashed line represents the critical force
threshold used as the episode termination condition. . . . . . . . . . . 38

4.1 Main RL libraries’ lifecycle. The lifecycle is computed using the repos-
itory’s creation date and the last commit message retrieved from GitHub. 41

4.2 Reinforcement learning schema. . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Supported environment interfaces and wrapping . . . . . . . . . . . . . 44

4.4 Generic definition of tensors in memory . . . . . . . . . . . . . . . . . . 45

4.5 Categorical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Deterministic model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Gaussian model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.8 Multivariate Gaussian model. . . . . . . . . . . . . . . . . . . . . . . . . 47

4.9 Training/evaluation pipeline. . . . . . . . . . . . . . . . . . . . . . . . . 51

4.10 Sequential (left) vs parallel (right) execution. . . . . . . . . . . . . . . . 52

4.11 Screenshot of the skrl documentation home page . . . . . . . . . . . . . 53

4.12 Mean reward and standard deviation of both standalone and simul-
taneous training (with shared memories) of the DDPG, TD3 and SAC
actor-critic algorithms in the Omniverse Isaac Gym Ant environment. . 55

4.13 Relative times for standalone and simultaneous training using differ-
ent trainers and sharing memory modes. . . . . . . . . . . . . . . . . . 56

4.14 Relative GPU consumption for standalone and simultaneous training
with different sharing memory modalities. . . . . . . . . . . . . . . . . 57

5.1 Framework architecture divided into nested blocks according to the
devices involved and the robot features and capabilities, as well as
the APIs and control workflows provided. . . . . . . . . . . . . . . . . . 60

5.2 KUKA LBR iiwa robot and representation of its joints. . . . . . . . . . . 61

vii



5.3 Communication protocol flow between the external workstation (from
which the request must be initiated) and the cabinet (which returns
the robot state as a response). . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Structure of the communication protocol request command. The re-
quest is composed of the command code to be executed and its re-
spective parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 MoveIt integration with a real KUKA LBR iiwa robot. . . . . . . . . . . 66

5.6 Screenshot of the libiiwa documentation home page . . . . . . . . . . . 67

5.7 Experimental setup: Fixed slotted base and object attached to the ma-
nipulator end-effector (left). Initial position (center) and final position
of the experiment (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.8 Mean and standard deviation of the end-effector’s Cartesian force
vector magnitude exceeding 30 Newtons for each force overlay type
under different parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.9 Number of end-effector’s Cartesian force vector magnitude exceeding
30 Newtons for each force overlay type under different parameters. . . 72

5.10 Task execution time for each force overlay type under different pa-
rameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Snapshot of the publications of a) Hjorth et al. [165], b) Serrano-Muñoz
et al. [64], c) Elguea-Aguinaco et al. [68], and d) Qu, Wang, and Pham [166]. 76

6.2 Experimental setup in the simulation and its reference system. Spher-
ical coordinate notation described by polar (θ) and azimuthal (ϕ) an-
gles is used to define the base orientation. . . . . . . . . . . . . . . . . . 79

6.3 Examples of the reward function formulated in Equation 6.3 for 50
spatial displacement samples for both random direction and sense
(red), and for the same direction with intermittent sense (green) and
with the same sense (orange). Random or intermittent decision mak-
ing produces a lower reward value than following the same direction
and sense. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4 Snapshot of a subset of the 1024 parallel environments in simulation. . 83

6.5 Simulation training results: Mean reward and standard deviation dur-
ing training for PPO, DDPG, TD3 and SAC agents. . . . . . . . . . . . . 85

6.6 Task completion ratio resulting from the discrimination of the exe-
cution state (completed or not) for the combination of friction coeffi-
cients and air gaps defined during training. The baseline was gen-
erated with actions that follow the fixed base orientation with the
maximum possible displacement. Negative values indicate that the
execution could not be completed within the specified timesteps. . . . 86

6.7 Mean duration (in timesteps) of the last 5 episodes for the PPO algo-
rithm for the pairs of coefficients of friction and air gap (0.0, 0.0 mm),
on the left, and (1.0, 1.0 mm), on the right, respectively. . . . . . . . . . 87

7.1 Using human hint for extraction sense disambiguation. . . . . . . . . . 89

viii



7.2 Spatial distribution of the ground truth values for the fixed polar an-
gles of 45 and 90 degrees and the azimuthal angles in the interval -180
to 180 degrees spaced every 30 degrees (in orange) and the acquired
samples of the human hints (in blue) for these ground truth values. . . 90

7.3 Angular difference between predefined ground truth vectors and hint
vectors resulting from the external force exerted by the human to
match reference data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4 Different real-world environments for the evaluation of the learned
policies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.5 Graphical representation of the hint-reward function. . . . . . . . . . . 94

7.6 Simulation training results: Mean reward and standard deviation dur-
ing training for PPO, DDPG, TD3 and SAC agents. . . . . . . . . . . . . 95

7.7 Task completion ratio resulting from discrimination of execution sta-
tus (completed or not) for an air gap of 0.0 mm. The baseline was
generated with actions that follow the generated hints with the maxi-
mum possible displacement. Negative values indicate that the execu-
tion could not be completed within the specified number of timesteps. 96

7.8 Task completion ratio resulting from discrimination of execution sta-
tus (completed or not) for an air gap of 0.1 mm. The baseline was
generated with actions that follow the generated hints with the maxi-
mum possible displacement. Negative values indicate that the execu-
tion could not be completed within the specified number of timesteps. 97

7.9 Task completion ratio resulting from discrimination of execution sta-
tus (completed or not) for an air gap of 0.25 mm. The baseline was
generated with actions that follow the generated hints with the maxi-
mum possible displacement. Negative values indicate that the execu-
tion could not be completed within the specified number of timesteps. 98

7.10 Task completion ratio resulting from discrimination of execution sta-
tus (completed or not) for an air gap of 0.5 mm. The baseline was
generated with actions that follow the generated hints with the maxi-
mum possible displacement. Negative values indicate that the execu-
tion could not be completed within the specified number of timesteps. 99

7.11 Task completion ratio resulting from discrimination of execution sta-
tus (completed or not) for an air gap of 1.0 mm. The baseline was
generated with actions that follow the generated hints with the maxi-
mum possible displacement. Negative values indicate that the execu-
tion could not be completed within the specified number of timesteps. 100

7.12 Action space distribution of the last 5 episodes, executed by the best
policy trained without (top chart) and with human hint (bottom chart)
with the PPO algorithm, for the pair of coefficients of friction and air
gap (1.0, 1.0 mm) and the polar and azimuthal angles -50 and 15 de-
grees respectively. For reference, the components of the exact vector
(ground truth: gt) of the extraction direction are plotted. The human
hint has 15 degrees of angular deviation. . . . . . . . . . . . . . . . . . . 102

7.13 Reliability of the learned extraction task, without (top chart) and with
human hint (bottom chart), in terms of extraction sense for both sim-
ulation and real-world evaluation. . . . . . . . . . . . . . . . . . . . . . 103

ix



7.14 Extraction sequence for environment A using the best trained policy
in simulation. Frames were taken each 42 timesteps. . . . . . . . . . . . 103

7.15 Extraction sequence for environment B using the best trained policy
in simulation. Frames were taken each 36 timesteps. . . . . . . . . . . . 104

7.16 Extraction sequence for environment C using the best trained policy
in simulation. Frames were taken each 42 timesteps. . . . . . . . . . . . 104

7.17 Extraction sequence for environment D using the best trained policy
in simulation. Frames were taken each 14 timesteps. . . . . . . . . . . . 104

7.18 Extraction sequence for environment E using the best trained policy
in simulation. Frames were taken each 16 timesteps. . . . . . . . . . . . 105

8.1 Skros’s task architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2 Graphical representation of the nodes and topics involved in the ROS
skros_device_actuator_gripper package. . . . . . . . . . . . . . . . . . . . . 114

8.3 A pneumatic gripper with generative designed fingers printed using
additive manufacturing for disassembly and its control system. . . . . 115

8.4 Graphical representation of the nodes and topics involved in the ROS
skros_device_camera_usbCamera package. . . . . . . . . . . . . . . . . . . 116

8.5 Graphical representation of the nodes and topics involved in the ROS
skros_device_camera_realSense package. . . . . . . . . . . . . . . . . . . . 116

8.6 RealSense capture (from left to right and from top to bottom): RGB,
infrared, depth (colored) and point cloud. . . . . . . . . . . . . . . . . . 117

8.7 Graphical representation of the nodes and topics involved in the ROS
skros_device_interface_tedCube package. . . . . . . . . . . . . . . . . . . . 118

8.8 A TedCube device (on the left) and an example of a voice interface
configuration (on the right). . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.9 Graphical representation of the nodes and topics involved in the ROS
skros_device_robot_libiiwa package. . . . . . . . . . . . . . . . . . . . . . . 119

8.10 Graphical representation of the nodes and topics involved in the ROS
skros_device_signaling_lightTower package. . . . . . . . . . . . . . . . . . 120

8.11 Graphical representation of the nodes and topics involved in the ROS
skros_device_signaling_lightProjector package. . . . . . . . . . . . . . . . 121

8.12 Example of illumination of the work area using a conventional light
projector to indicate different conditions. . . . . . . . . . . . . . . . . . 121

8.13 Graphical representation of the nodes and topics involved in the ROS
skros_service_measuring_tfDistance package. . . . . . . . . . . . . . . . . 122

8.14 Graphical representation of the nodes and topics involved in the ROS
skros_service_tracking_skeletonTracking package. . . . . . . . . . . . . . . 123

8.15 Estimation of human skeleton positions using the MediaPipe (left)
and YOLOv7 (middle and right) backends. . . . . . . . . . . . . . . . . 124

8.16 Demos presented during the chARmER project: laboratory prototype
(left), factory prototype (center and right). . . . . . . . . . . . . . . . . . 125

x



8.17 Real (top) and simulated (bottom) case study evaluation scenario in
VALU3S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

xi



List of Tables

1.1 Primary submitted/published articles . . . . . . . . . . . . . . . . . . . 8

1.2 Secondary submitted/published articles. . . . . . . . . . . . . . . . . . 9

3.1 A summary of the articles reviewed for solving disassembly tasks up
to the time of the study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Hyperparameter configured and allowed by RLlib library. . . . . . . . . 33

4.1 Hyperparameter configured and allowed by skrl library. . . . . . . . . . 55

5.1 Comparison of libiiwa with other related frameworks/libraries. Shaded
cells do not apply to the marked fields. . . . . . . . . . . . . . . . . . . . 68

6.1 A summary of recent articles addressing disassembly tasks up to the
time of this writing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Hyperparameter configured and allowed by skrl library. . . . . . . . . . 84

7.1 Real-world environment specifications. . . . . . . . . . . . . . . . . . . 92

7.2 Real-world evaluations statistics of the baselines and trained policy.
The mean number of timesteps was computed for successful episodes
only. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.1 Directory and file structure of ROS packages. . . . . . . . . . . . . . . . 111

8.2 Directory and file structure of non-ROS packages. . . . . . . . . . . . . 111

8.3 Colors for indicator lights and their meanings with respect to the con-
dition of the machine. Content adapted from the IEC 60204-1 standard. 120

xii



List of Abbreviations

EOL End-Of-Life

HRI Human-Robot Interaction

AI Artificial intelligence

ML Machine Learning

RL Reinforcement Learning

ROS Robot Operating System

ROS2 Robot Operating System - version 2

API Application Programming Interface

DOF Degree of Freedom

MDP Markov Decision Process

GUI Graphical User Interface

TCP Tool Center Point

ReLU Rectified Linear Unit

ELU Exponential Linear Unit

GPU Graphics Processing Unit

xiii



Chapter 1

Introduction

1.1 Introduction and motivation

During the last two centuries, a short time compared with the history of humanity,
human and society have experimented significant socio-economic, political, and cul-
tural transformations [1][2] characterized by unprecedented advances in technology.
These transformations have been historically labeled by periods called “Industrial
Revolutions”.

The First Industrial Revolution, between 1760 and 1840, began with the intro-
duction of steam power into manufacturing processes and led to increased mecha-
nization and enabled industrial-scale mass production. It also induced changes in
existing social structures, such as labor laws, educational systems, transportation
networks, and communication technologies, which had far-reaching effects on soci-
ety at large. Productivity, trade, and demographics increased.

The second Industrial Revolution took place at the end of the 19th century, when
electricity use became widespread throughout Europe. It led to new developments,
such as the introduction of assembly lines in factories, which made it possible to
increase efficiency and reduce the costs associated with manual labor, as well as
consumer prices. In addition, new forms of energy were developed, leading to an
improvement in transportation infrastructure, such as the railroad, which enabled
long-distance transport and the geographic expansion of commerce. New products
appeared and demographics grew again.

The Third Industrial Revolution (also known as “The Digital Revolution”) be-
gan in the middle of the last century. It saw a gigantic advance in communication
technologies, the development and use of the Internet, and new sources of energy
production such as natural gas, nuclear, solar and wind power.

Today, there is a trend towards automation [3] and data exchange [4][5] in manu-
facturing technologies, including advances in Artificial intelligence (AI), Internet of
Things and cloud computing. Such a trend is presented as the Fourth Industrial Rev-
olution (or Industry 4.0) and aims to increase efficiency, reduce costs and improve
the overall quality of products and services [6][7].

Industrial revolutions have changed how people work, communicate and live [8],
but they have also caused serious environment problems. The population explo-
sion has led to overpopulation and, with it, a negative impact on nature [9]. As the
world’s population grows exponentially, consumption rates and demand for new
products also increase dramatically, and with it the waste generation [10]. Envi-
ronmental consequences include pollution, desertification and drought, depletion
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of natural, energy and biological resources, climate change, among others.

In this global scenario, the circular economy is presented as a new and neces-
sary transition or political action to counteract the environmental problems caused
by the linear economy system [10][11]. This model proposes to close the produc-
tion cycle by reusing waste, reducing the use of essential resources, and changing
energy sources [12]. In this context, the responsible treatment of End-Of-Life (EOL)
products is a key element in achieving the goals of this economic model.

Responsible EOL treatment, which may include reusing, recycling, or remanu-
facturing [13] products or parts can be beneficial both environmentally [14] and eco-
nomically [15][16]. Waste is minimized, while valuable components and materials
are recovered [17].

1.1.1 Remanufacturing

Remanufacturing plays a fundamental role in the circular economy model, which
aims to reduce waste, increase production efficiency and prolong the product’s use-
ful life [18]. The essence of remanufacturing is to recover a used or discarded prod-
uct and return it to a near-original state so it can be used again.

The main steps in the remanufacturing cycle are EOL product (core) acquisition,
disassembly, condition assessment, cleaning, repair, assembly, service life and core
return [19][20], as shown in Figure 1.1. Of these, disassembly allows the other steps
to be carried out.

FIGURE 1.1: Remanufacturing cycle.

1.1.1.1 Disassembly

In general, disassembly for remanufacturing involves breaking down a used product
into its individual components in order to repair or recondition those components
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for reuse in a new product [21]. It also makes it possible to identify the components
of a product that can be recycled and those to be disposed of [22].

The disassembly processes are divided into three main stages: disassembly line
balancing [23][24][25], disassembly sequence planning [26][27], and disassembly
task execution [28].

• Disassembly line balancing refers to the process of determining the optimal
allocation of disassembly tasks across multiple workstations on a disassembly
line. The goal of disassembly line balancing is to maximize the efficiency of the
disassembly process by minimizing the total time required to process incoming
EOL products.

• Disassembly sequence planning refers to the process of determining the order
in which the various disassembly tasks should be performed. The order in
which the tasks are performed can significantly affect the successful comple-
tion and efficiency of the disassembly process.

• The disassembly task refers to a specific operation that needs to be performed
during the disassembly process. Examples of disassembly tasks might include
removing fasteners, separating components, or performing inspections.

Industrial disassembly plants are supplied with a wide range of products from
multiple manufacturers, each with its own characteristics, components and mount-
ing/dismounting processes. These products have a high variability in their con-
dition, whether due to storage and/or maintenance, operating conditions, service
life, damage and repairs, among others. Such variability in both product range and
product condition makes the disassembly process uncertain and complex requiring
a high level of adaptability to change, identification and flexibility [28].

Automation has been successfully implemented for assembly and manufactur-
ing [29][30]. However, for remanufacturing, and in particular for disassembly, man-
ual labor is preferred [31]. Humans can adapt to changes in the disassembly process
easily [32]. But recent technological advances have introduced collaborative robots
that could work alongside humans in disassembly tasks, combining the adaptability
of humans with the precision and efficiency of automation [33].

The nature of the disassembly process requires that the autonomous systems in-
volved (robots and their controllers, sensor systems, etc.) be designed to be flexible
and robust enough to cope with the operational variability.

1.1.2 Robotic control of uncertain disassembly processes

Robotic control of uncertain disassembly processes is a challenging problem that
requires the ability to adapt and learn from the changing environment.

Reinforcement Learning (RL), a sub-field of Machine Learning (ML), is presented
as a possible solution for controlling uncertain processes. In RL, an agent learns to
make decisions by interacting with its environment [34]. The agent’s actions are in-
fluenced by rewards or punishments that are used to guide the learning process [35].
The agent’s goal is to learn a policy, which is a mapping from states to actions, that
maximizes the expected cumulative reward.
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In recent years, RL has been successfully applied to a wide range of problems,
such as game playing [36][37], recommendation systems [38], and autonomous ve-
hicles [39]. This success is supported by the use of deep artificial neural networks
as function approximators (Deep RL). Deep neural networks have led to break-
throughs in areas such as image [40] and text [41][42] generation.

In the field of robot control, RL is becoming an increasingly important technique,
notably for robotic manipulation tasks [43][44]. RL has been applied to tasks such as
grasping [45], manipulation [46], and object recognition [47], among others. Using
RL algorithms, robots can learn to perform these tasks more efficiently and accu-
rately, and adapt to new situations more easily through trial and error in real and
dynamic environments.

One of the main advantages of RL is that robots can learn tasks that are difficult
to model analytically or physically using traditional programming techniques [48].
In addition, it can be used to learn policies that allow multiple robots to coordi-
nate and perform cooperative tasks that would be difficult or impossible to perform
alone [49].

Although RL is an exciting and rapidly evolving area of ML, with many prac-
tical applications and ongoing research [50][51], it is still in its infancy in industrial
robotics. The field remains in the laboratory and is not yet widely used in indus-
try, where robotic applications may involve uncertain, complex, and safety-critical
systems where errors or mistakes can have serious consequences [52][53].

In addition, training can be time consuming and computationally expensive, re-
quiring many iterations to learn an optimal policy. The deployment and integration
process can be complex, requiring a high degree of configuration and customization.
However, to facilitate the adoption of RL in robotics, several dedicated libraries and
frameworks have been created that offer a set of tools and algorithms specifically
designed to implement, train, and deploy RL agents in robotic applications.

1.1.3 Frameworks and libraries for reinforcement learning and robotic
applications

Robot control frameworks provide a set of tools and methodologies for implement-
ing robot control applications. By providing easy-to-use, well-documented libraries
for common robotics-related tasks, these frameworks should reduce the time and ef-
fort required to develop control and automation implementations, enabling signifi-
cant advances and accelerating the development and deployment of robotic systems
for various applications [54][55]. This can be especially useful for researchers and
developers who are not robotics experts and need to perform complex tasks quickly
and accurately.

The importance of control frameworks in robotics lies in their ability to provide
a standardized and versatile approach to building robot control systems. By using
a common set of tools and libraries, developers can build more reliable and robust
systems that perform tasks more efficiently [55]. Examples of this are applications
developed on top of Robot Operating System (ROS) [56], a popular robot control
framework that offers a comprehensive set of libraries, tools, and communication
infrastructure to facilitate the development of complex robotic systems.

In the case of RL, libraries are essential tools for implementing and evaluating
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such algorithms. They provide researchers with a high-level framework for de-
signing, training, and evaluating RL models in a standardized and reproducible
way [57].

By abstracting away from complex implementation details, the libraries should
allow researchers to focus on developing new algorithms and testing their effective-
ness in a range of applications. They will also be able to compare their algorithms
with existing methods and benchmark their results against state-of-the-art technol-
ogy. Overall, the implementation of RL libraries in academic and research environ-
ments can lead to significant advances in RL algorithms and their application in
various fields such as robotics, education, entertainment, and others.

Due to different frameworks and libraries using different Application Program-
ming Interface (API) and syntaxes, it can be difficult for the scientific community,
researchers, and engineers to integrate different systems and components [58]. For
example, despite the wide adoption of ROS, the lack of a unified framework and
standardized development practices in the packages developed makes it difficult to
scale and maintain robotics applications [59][60].

This can lead to interoperability issues and make it difficult to grow and evolve
the code over time [61]. In addition, the lack of standardization and unification can
cause code portability and compatibility issues [62][63], which can limit the adoption
of new technologies, slow the development of new applications and use cases, and
make it difficult for new researchers to enter the field.

1.1.4 Reinforcement learning for disassembly tasks

At the time of initiating this investigation, search results on specialized online aca-
demic sites for the terms robot AND disassembly, since 2015, yield the results shown
in Figure 1.2.

FIGURE 1.2: Robotics-related disassembly publications since 2015
grouped according to their contribution to the disassembly field.

Although RL is presented as an alternative for decision making and control of
changing systems with complex and nonlinear dynamics, there is a few works, as
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shown in Figure 1.2, on the research and application of RL solutions to execute dis-
assembly tasks.

1.2 Problem

The high degree of variability in the range and condition of EOL products makes
disassembly tasks complex, diverse and uncertain (in terms of lack of knowledge
about the state of the products prior to performing the task) in nature, requiring
generalist systems for automation.

Although RL is presented as a method for decision making and control of chang-
ing systems with complex nonlinear dynamics, it is not known to what extent disas-
sembly tasks can be learned automatically and generalizable.

Moreover, since RL systems train an agent by trial and error, the training process
is time-consuming and often requires a large number of iterations to achieve opti-
mal performance, as well as extensive computational resources to handle complex
environments and high-dimensional state and action spaces.

1.3 Research questions

Research question 1: To what extent can RL algorithms generalize the execution
of disassembly tasks using collaborative robots?

Research question 2: How can the RL algorithms’ learning process and the capa-
bilities of a collaborative robot for disassembly tasks be leveraged for?

a) reducing training time and resource consumption; and

b) reducing contact forces and jamming states, respectively.

1.4 Document structure

The dissertation structure, outlined in Figure 1.3, is organized as follows: this seg-
ment provided an introduction, motivation, and research questions. Chapter 2 pro-
vides an overview of the basic RL concepts and techniques. Chapter 3 contains a
state-of-the-art review of related work in the field of RL and disassembly, as well as
an introductory study on the execution of disassembly tasks using RL. Chapter 4
describes the research carried out to reduce the time and the consumption of com-
putational resources for the training of off-policy algorithms. This research leads
to the implementation of a modular and flexible RL library. Chapter 5 presents the
research conducted to reduce contact forces and the possibility of jamming states
during the execution of the disassembly task, culminating in the development of a
unified and scalable control framework for KUKA LBR IIWA collaborative robots.
Chapter 6 describes the investigation to execute disassembly tasks with a high de-
gree of variability in terms of geometry and physical properties of the manipulated
objects using RL. Chapter 7 extends the previous study to include the human op-
erator’s experience to reduce the action space and as a source of disambiguation
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during task execution. As an extra (technical) contribution, and for the deployment
and integration of robotics applications, Chapter 8 describes the implementation of
a collection of ready-to-use packages that unify several components for the creation
and execution of collaborative robotic disassembly tasks. Finally, Conclusions and
Future Work are drawn.

FIGURE 1.3: Outline of the thesis.

1.5 Publications

The Table 1.1 lists, in chronological order, the primary articles submitted/published
during the Ph.D. project. It also shows their respective contribution to each chapter
of the thesis.
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Chapter 2

Background

This chapter provides an overview of the basic concepts and techniques used in RL.
If you are already familiar with RL, you can skip this chapter and proceed to the
other chapters in this document.

2.1 Reinforcement learning

RL is a sub-field of ML, along with supervised and unsupervised learning. It de-
scribes a specific type of problem in which autonomous agents interact with the
environment, make sequential decisions, and receive a reward as a measure of how
good a decision was made. RL algorithms attempt to learn a decision-making policy
that maximizes the reward received over time.

Figure 2.1 shows basic schema of a RL problem. There are two main components:
the agent and the environment.

FIGURE 2.1: Reinforcement learning schema (adapted from Wikime-
dia Commons).

Deep reinforcement learning

Deep RL combines concepts from RL (goal optimization) with artificial neu-
ral networks (function approximation) to create much more versatile autonomous
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agents. This combination allows learning to solve problems in complex environ-
ments where the state has large dimensions and information may be incomplete.

2.1.1 Components and terminology

2.1.1.1 Basic terminology

The basic terminology and components related to RL are defined below.

State and observation

The state s ∈ S is a complete description of the state of the environment S. There
is no information about the environment which is hidden from the state. The state
must have the Markov property (knowing the state implies that everything that
could determine the response of the environment to a particular action of the agent
is known).

On the other hand, an observation o is a partial description of a state, which may
omit information.

According to the above definition, an environment in which the agent can ob-
serve the complete state is called fully observed, while an environment in which the
agent can only see a partial observation is called partially observed.

Action

The action a ∈ A is what the agent can do in the environment. The set of all valid
actions in a given environment is called the action space A.

Depending on the nature of the action space, the latter can be classified into dis-
crete action space or continuous action space. In discrete action spaces, the agent can
decide on a finite set of actions. In the continuous action space, the actions are real-
valued vectors.

Policy

A policy is a rule used by an agent to decide what actions to take based on a
given observation or state. The policy can be deterministic or stochastic.

A deterministic policy, denoted as at = µ(st), is a function from the set of states
S of the environment to the set of actions A.

A stochastic policy, denoted as at ≈ π(·|st), is a family of conditional probability
distributions from the set of states S of the environment to the set of actions A. A
probability distribution is a function that assigns a probability to each action given a
state, where the sum of all probabilities is 1. In that sense, a deterministic policy can
be interpreted as a stochastic policy that gives a probability of 1 to one and only one
of the available actions for a given state.

Additionally, a policy (deterministic or stochastic) can be parameterized. The
output of a parameterized policy is a computable function that depend on a set of

11



Chapter 2. Background

parameters that can be adjusted to change its behavior. Those parameters are de-
noted as θ or ϕ. For example, a parameterized deterministic policy at = µθ(st) and a
parameterized stochastic policy at ≈ πθ(·|st).

Reward

The reward r (or instantaneous reward) is a scalar signal or feedback provided
by the environment through a deterministic or stochastic reward function R() as a
measure of how good the agent’s action is in a given state. It depends on the current
state of the environment, the taken action, and the next state of the environment:
r = R(st, at, st+1). However, it can be simplified to just a dependence on the current
state R(st) or the state-action pair R(st, at).

The reward function can be dense or sparse. A dense reward function gives value
to most transitions, so the agent gets feedback at almost or all times. On the other
hand, a sparse reward function is zero over most of its domain, and only gives values
to very few transitions. Such a definition implies that the agent will get no feedback
on whether the instantaneous actions it performs are good or bad, which makes
learning more challenging.

2.1.1.2 Complementary terminology

A complementary terminology related to RL is defined below.

Trajectory

A trajectory τ is a sequence of states and actions τ = (s0, a0, s1, a1, . . .).

Return

The return R(τ) is a function of reward sequence over a trajectory.

Most popular return functions are the finite-horizon undiscounted return (sum of
the rewards obtained in a fixed window: R(τ) = ∑T

t=0 rt) and the infinite-horizon
discounted return (sum of all rewards discounted by how far off in the future they are
obtained: R(τ) = ∑∞

t=0 γtrt where γ is a discount factor γ ∈ (0, 1]).

Transition function

The transition function (also called state transition function) is a probability dis-
tribution function P(st+1|st, at) that gives the probability that, in state st, action a will
lead to the next state st+1.

Value functions

The value function measures the goodness of a state or a state-action pair by
predicting the expected return.

12



2.1. Reinforcement learning

• Value function (state-value function): Give the expected return if the agent
starts in a state s and always acts according to the policy π

Vπ(s) = E
π∼τ

[R(τ)|s0 = s]

• Action-value function (Q-value function): Give the expected return if the agent
starts in a state s, take an arbitrary action a (that may not come from the policy)
and always acts according to the policy π

Qπ(s, a) = E
π∼τ

[R(τ)|s0 = s, a0 = a]

Optimal value functions

The optimal value function measures the goodness of a state or a state-action
pair by predicting the expected return when the policy is optimal. The optimal value
functions produce the maximum return.

• Optimal value function: Give the expected return if the agent starts in a state s
and always acts according to the optimal policy π

V∗π(s) = max
π

E
π∼τ

[R(τ)|s0 = s]

• Optimal action-value function (optimal Q-value function): Give the expected
return if the agent starts in a state s, take an arbitrary action a (that may not
come from the policy) and always acts according to the optimal policy π

Q∗(s, a) = max
π

E
π∼τ

[R(τ)|s0 = s, a0 = a]

The optimal policy achieves optimal value functions:

π∗ = arg V∗(s) = arg max
a

Q∗(s, a)

then:

V∗(s) = max
a

Q∗(s, a)

Advantage function

The advantage function (A-value) is the difference between the action-value and
state-value

Aπ(s, a) = Qπ(s, a)− Vπ(s)
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2.1.2 Taxonomy of reinforcement learning algorithms

Elaborating a taxonomy of RL algorithms is a challenging task due to the wide mod-
ularity of the algorithms. One of the most widely used taxonomies is the one pro-
posed by OpenAI1. It classifies algorithms into model-based or model-free depending
on the agent’s accessibility to learn or use a model of the environment.

Figure 2.2 shows an adapted version of the indicated taxonomy according to the
access to the model of the environment.

FIGURE 2.2: A non-exhaustive reinforcement learning taxonomy
(adapted from the OpenAI Spinning Up taxonomy).

2.1.2.1 Model-based algorithms

Model-based algorithms are algorithms that use the transition function (and the re-
ward function) to estimate an optimal policy by thinking ahead. There are two main
approaches: learning the model or learning given the model.

• Learn the model: Supervised learning is used to minimize the error between
the model and the trajectory data observed by a random or educated base pol-
icy.

• Learn given the model: It is planned, through the given model, to choose the
actions

Model-based RL is highly efficient because it requires a reduced number of inter-
actions between the robot and the environment (real-world samples are expensive)

1OpenAI Spinning Up: https://spinningup.openai.com
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and allows faster convergence to the optimal solution. However, model-based RL
has the following disadvantages [72]:

• Additional calculations are required for model training as well as for the plan-
ning operation.

• Sincerity and model approximation errors have a great impact on learning
tasks.

• They usually have many hyperparameters for estimating uncertainty, balanc-
ing planning and real data collection among others.

2.1.2.2 Model-free algorithms

Meanwhile, model-free algorithms can be classified by what they learn and how
they learn.

What to learn

• Value-based: Value-based algorithms compute the optimal state-value func-
tion of each state or state-action pair of the optimal policy by iteratively im-
proving the Q-value and/or the value function values until they converge.
Then, the optimal policy is found by acting greedily over the optimal com-
puted function.

• Policy-based: Policy-based algorithms are model-free algorithms that improve
the policy parameters directly without considering the Q-value or the value
function. These algorithms will map from each state to the best corresponding
action at that state.

• Actor-critic: Actor-critic algorithms combine the best from both policy-based
algorithms and value-based algorithms. They use the learned value function
as a baseline to update the actor’s policy.

How to learn

• On-policy: On-policy reinforcement learning algorithms update the policy by
interacting with the environment using the exact same policy. This implies
that the agent collects data for learning as it explores and takes actions based
on its current policy. The main characteristic of on-policy methods is that they
directly optimize the policy that generates the data.

In general, on-policy algorithms are known to be more stable during the learn-
ing process because they learn from the policy that generates the data. They
also have a greater likelihood of converging to a locally optimal policy because
they directly optimize the policy itself.

However, these algorithms face challenges in balancing exploration and ex-
ploitation, as they struggle to effectively use past experience or external data
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generated by different policies. In addition, they require a significant amount
of interaction with the environment to gather sufficient data for learning, which
can be both computationally expensive and time consuming.

• Off-policy: Off-policy learning algorithms decouple the learning policy from
the data collection policy. These algorithms learn a policy using data generated
by the current policy, other policies, or external sources. This characteristic
allows them to leverage existing data and experience, potentially improving
sampling efficiency and exploration.

In addition to being able to reuse data collected from different sources, on-
policy algorithms can better balance the exploration/exploitation tradeoff be-
cause they can explore using one policy while learning and exploiting another.

However, their susceptibility to instability during the learning process is greater,
compared to on-policy methods, due to the mismatch between the policy that
generates the data and the policy being learned. In addition, the use of data
generated by significantly different policies in the learning phase may lead to
bias-related challenges.

2.2 Chapter conclusions

This chapter has presented an overview of RL, providing a foundation for under-
standing the basic concepts and techniques used in the field. With this overview,
the reader is prepared to enter the following chapters, where the terms and concepts
described earlier are common.
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Chapter 3

Reinforcement Learning for
Disassembly Tasks: An
Introductory Study

The content of this chapter addresses, in part, research question 1: To what extent can RL
algorithms generalize the execution of disassembly tasks using collaborative robots?

The work presented in this chapter is partially published in the papers: Íñigo Elguea-
Aguinaco, Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Ibai Inziarte-Hidalgo, Simon
Bøgh, and Nestor Arana-Arexolaleiba. “A review on reinforcement learning for contact-
rich robotic manipulation tasks”. In: Robotics and Computer-Integrated Manufacturing
81 (2023), p. 102517. URL: https: // www. sciencedirect. com/ science/ article/
pii/ S0736584522001995 ; and Antonio Serrano-Muñoz, Nestor Arana-Arexolaleiba, Dim-
itrios Chrysostomou, Simon Bøgh. “Learning and generalising object extraction skill for
contact-rich disassembly tasks: an introductory study”. In: The International Journal of Ad-
vanced Manufacturing Technology (2021), pp. 1–13. URL: https: // link. springer.
com/ article/ 10. 1007/ s00170-021-08086-z .

This chapter reviews the state-of-the-art of related work in the domain of RL
and disassembly (and assembly). In addition, an introductory study is conducted to
explore the use of RL in the execution of disassembly tasks.

3.1 A review on the execution of disassembly tasks

Disassembly tasks can vary depending on the specific object or system being disas-
sembled. Some common types of disassembly tasks are listed below:

• Unscrewing: Removing screws or bolts using a screwdriver, wrench, or other
tool designed for this purpose.

• Press/fit removal: Using tools or methods to press or push out tightly fitted
components, such as press-fit connectors or bearings.

• Contact-rich extraction: Removing components or parts that have numerous
contact points or connections.

• Adhesive dissolution: Using solvents or solutions to dissolve adhesives or
glues that hold components together.
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• Cutting: Employing cutting tools, such as a knife, scissors, or wire cutters, to
sever or trim materials like plastic, fabric, or wires.

• Unsoldering: Removing solder from electrical or electronic components.

The following section provides an overview of the state-of-the-art of research
and application in disassembly tasks up to the time of the study.

3.1.1 Disassembly tasks

Relatively few works have explored the execution of disassembly tasks. A snapshot
of these works is shown in Figure 3.1.

FIGURE 3.1: Snapshot of the publications of a) Zhang et al. [73], b)
Herold et al. [74], c) Huang et al. [75], d) Simonič et al. [76], and

e) Kristensen et al. [76].

Zhang et al. [73] explore generic pin-hole disassembly processes with a compliant
robotic manipulator to identify the effects of parameters such as the manipulator
stiffness configuration, compliance center location, and pin initial position errors. As
a result of this exploration, they propose a theoretical model, based on a quasi-static
analysis, for the prediction of the range and position of the two-point contact region
for the task. However, because the model is designed with specific assumptions and
simplifications, it is not flexible enough to adapt to highly variable environments
where objects, their physical properties, and geometries (and thus the number of
contact points) can differ greatly.

Herold et al. [74] conduct a study that experimentally evaluates four strategies
for separating a bolt along a door chain. The first three strategies adjust the position
and rotation around the motion axes in response to the force measured at the end
effector during task execution. In the fourth, they evaluate the strategy of applying
a periodic oscillating motion at the manipulator’s last joint (a feature of the KUKA
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LBR iiwa cobots) for separation. The results show that the latter strategy reduces
the task execution time and resistance forces, making the disassembly process more
effective. However, they do not report data on the role of oscillatory motion un-
der different parameters in improving the performance of the disassembly task. In
addition, the execution of the task is manually programmed to go from one point
to another of the slotted base and always with the same setup and under the same
initial conditions.

Huang et al. [75] presented a case study of disassembling press-fitted compo-
nents based on active compliance in the context of collaborative Human-Robot In-
teraction (HRI). In their work, a compliant robotic manipulator is used to hold the
part to be extracted. While the operator applies a force to the component using a
press, the robot grips the component and follows its movement during the extrac-
tion process. Robot control is performed via a sequential state machine with fixed
operations. Although the results demonstrate the feasibility of the proposed cell for
disassembling a water pump, the system can only handle tasks that require the same
basic operations, and it is the operator who carries out the disassembly work.

Although it is not specifically research focused on disassembly, Simonič et al. [77]
used the information obtained during disassembly tasks to perform assembly tasks.
They implemented a hierarchical RL algorithm and a graph representation under
the criterion that an assembly task is nothing more than a reverse execution of the
corresponding multi-stage disassembly task. Disassembly is complete when the mo-
tion is unconstrained in the desired degrees of freedom, and the constructed graph is
used to perform the corresponding assembly task. Such an implementation is used
to remove a car bulb from its socket. However, the implementation of the network
is based on the discretization of the disassembly action space into multiple prede-
fined moves. Moreover, for the correct execution of the tasks, the search is explicitly
limited to the Z-axis, both in rotation and translation.

Kristensen et al. [76] developed a framework for training and testing RL al-
gorithms to specifically support unscrewing operations, involving one rotational
Degree of Freedom (DOF), in the robotic disassembly of electronic waste in simu-
lation environments. The framework was implemented on top of Gazebo and uses
ROS as middleware. Although the implementation provides a framework for train-
ing and evaluating RL algorithms, it is not possible to evaluate different unscrew-
ing tasks or to use observation information beyond that provided. Furthermore, to
demonstrate the functionality of the framework, only results with Q-learning, an
algorithm restricted to discrete observation and action spaces, are presented.

3.1.1.1 Analysis

An overview of the disassembly tasks presented in the papers of the literature review
is shown in Table 3.1. The table summarizes the use or not of RL and the different
disassembly tasks.

Research that does not use RL for the execution of disassembly tasks emphasizes
the use of compliant robotic manipulators. Their use is justified by the variability
of product geometries and conditions, as well as the presence of unstructured and
uncertain environments typical of disassembly processes. The compliant robotic ma-
nipulators can provide an additional level of safety by minimizing the risk of dam-
age to the product, the environment, the robot itself, and the operators involved in
the process.
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Ref. RL Disassembly task
Zhang et al. [73] No Contact-rich extraction
Herold et al. [74] No Contact-rich extraction
Huang et al. [75] No Press/fit
Simonič et al. [77] Yes Unscrewing
Kristensen et al. [76] Yes Unscrewing

TABLE 3.1: A summary of the articles reviewed for solving disassem-
bly tasks up to the time of the study.

The research on RL for disassembly tasks has been conducted for one DOF: the
rotational one. The unscrewing task around the Z-axis by Kristensen et al. [76] and
the removal of a light bulb from its socket by Simonič et al. [77]. Work with more
DOFs has not been reported.

Observation spaces incorporate information in the absolute reference systems.
Furthermore, the tasks start from the same initial spatial position. Kristensen et
al. [76] uses the absolute spatial Cartesian pose of the manipulator’s end-effector.
These particularities make it difficult to generalize the learning to new spatial po-
sitions or to different configurations of the robot manipulator. In disassembly, the
ability to generalize is critical because the state of EOL products can be extremely
diverse as opposed to assembly.

There are very few works on RL for disassembly tasks. A review by Poschmann,
Brueggemann, and Goldmann [28] summarizes current research on disassembly and
robotics. The authors show that the use of robots can bring enormous benefits in
the field of disassembly, where they intend to advance the development of hybrid
and fully autonomous robotic cells, as well as the improvement of HRI conditions
and processes. They also confirm the statement that disassembly is not necessarily
reverse assembly: assembly technologies or specific geometric characteristics pre-
vent reverse assembly, especially if this objective was not considered in the design
phase.In addition, the need for flexible systems and autonomous agents is empha-
sized. Despite this, the review only identifies one article that uses RL to perform
disassembly tasks.

Due to the lack of publications related to RL for disassembly tasks, the literature
review is extended from the perspective of contact-rich manipulation tasks and as-
sembly. It aims to identify key factors and implementations of RL that can be applied
to disassembly.

3.1.2 (Contact-rich) manipulations tasks

RL methods have been researched and applied to a greater extent in contact-rich
robotic manipulation tasks than in disassembly tasks. This section summarizes about
140 research articles published since 2015 in this field.

It is relevant to note that pick-and-place and grasping tasks have their own field
and research community, with promising results and lines of work [78][79][80]. In
fact, these tasks are not included by the scientific community in the context of contact-
rich manipulation, and many of the studies assume that the object to be assem-
bled/manipulated is already picked up and grasped. In the same vein, tasks related
to picking and grasping will not be addressed in this document.
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3.1.2.1 Implemented tasks

In contact-rich manipulation for assembly, there are basically two types of tasks de-
pending on the physical structure of the manipulated objects: manipulation of rigid
solid objects and manipulation of deformable objects.

Within rigid object manipulation, the insertion task stands out in comparison to
other tasks such as surface contact or door opening. In the insertion task, the most
common use case is peg-in-hole (in which a peg is inserted into a fixed hole with a
small clearance) [81][82] followed by ring-in-hole [83]. For both use cases, there are
a series of works that particularize the geometry of the manipulated objects, such as
inserting a USB connector [84], fitting gears [85], or staking Lego pieces [86].

When manipulating deformable objects, it is difficult to represent their state be-
cause they typically lack a clear and consistent shape throughout the whole ma-
nipulation. In an effort to characterize the deformable object configuration spaces,
Sanchez et al. [87] proposed a geometry-based classification, identifying fundamen-
tally three types of deformable objects: linear or uniparametric, planar or biparamet-
ric, and volumetric/solid or triparametric. According to the proposed classification,
most of the publications related to deformable objects refer to manipulations of one-
dimensional objects (ropes) [88] and two-dimensional objects (clothing, fabrics and
tissues) [89]. The folding task [90] predominates over other tasks such as tension-
ing [91], cutting [92] and wrapping [93].

3.1.2.2 Reinforcement learning components

Exploring the RL components (bbservation space, action space, reward function,
etc.) of the different publications is relevant to take advantage of existing knowl-
edge and experience. This allows to build on established concepts, to understand
the advantages and disadvantages of such components, to adapt or extend existing
approaches, to keep up with developments, and to inspire creativity and innovation.

The RL components of the state-of-the-art in contact-rich manipulation tasks are
examined below.

Observation spaces

The Figure 3.2 shows the usage, among all the analyzed articles, of different sen-
sors or data to build the observation space when performing contact-rich tasks for
both rigid and deformable objects. This usage provides an overview of the informa-
tion or sensors that are significant for the execution of these tasks.

Regarding the data used to construct the observation space, the position and
orientation of the end effector in Cartesian space, as well as the force and torque
measured at this link, are the most commonly used data types. This is followed, to
a lesser extent, by the position of the robot’s joints and images captured by digital
cameras.

The force/torque measurement is carried out by external sensors attached to the
robot wrist [94] or by sensors integrated with the robot itself [95]. In the tasks in
which it is used, such information directly indicates the magnitude of contact dur-
ing assembly, as long as there is effective contact between the parts involved. It
is not the case for the manipulation of deformable objects since the configurations
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FIGURE 3.2: Observation space data in contact-rich manipulation
tasks. For deformable objects, the label chain groups the positions or
location of point or grid markers on the manipulated object. Within
the label other are grouped data such as tactile sensors, gripper aper-

ture, inclination and object depth, among others.

used (linear and planar deformable objects) do not offer movement restrictions that
generate significant forces [96].

Another type of relevant information in the manipulation tasks is the Cartesian
position of the end-effector, the Tool Center Point (TCP), or the object to be manipu-
lated, as well as the position of the robot’s joints. Since the task space is typically a
three-dimensional environment, there is a greater tendency for researchers to use the
Cartesian position as it results in simpler and more intuitive observation spaces [97].

In the case of manipulation of deformable objects, the use of cameras is quite
relevant [96]. It is justified for tracking or estimating the positions or localization
of indicators, fiducial trajectories, features or nodes of chains (in linear deformable
objects) [98], such as ropes, or meshes (in planar deformable objects) [99], such as
clothes, fabrics and textiles.

In addition, the use of cameras is reflected in the inclusion of images, both in
RBG color space and grayscale, as well as depth sensors both to construct the obser-
vation space and to specify targets to the agent. Relatively low resolutions (between
48x48 pixels and 224x224 pixels) are used to reduce the dimension of the observation
space [100].
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Action spaces

The Figure 3.2 shows the usage, among all the analyzed articles, of different ac-
tuators or data to build the action space to control the robotic manipulator when
performing contact-rich tasks for both rigid and deformable objects.

FIGURE 3.3: Action space data in contact-rich manipulation tasks.
Within the label other grouped actions such as the adjustment of con-

troller parameters, among others.

For rigid object manipulation, the information of the action space covers posi-
tion, velocity, and force/torque actions, both for the joint space and the Cartesian
space, with the Cartesian position being the most used.

When manipulating deformable objects, the action spaces are most often applied
through both Cartesian and joint position actions. As discussed above, this type
of object offers practically no resistance to manipulation, so this type of action is
sufficient to provide adequate control.

Regarding the type of control used, the Figure 3.4 illustrates the use of differ-
ent variants by the reviewed works to manage the action space in tasks involving
complex and contact-rich interactions.

As in the manipulation of deformable objects, position and velocity controls are
also used to manipulate rigid objects [101][102], although there is a trend toward the
use of impedance control and other force-regulation control methods. Impedance
control methods allow the robot to adapt to changes in the interactions with objects
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FIGURE 3.4: Control methods used to apply the action space in
contact-rich manipulation tasks.

and to the external forces from the environment by regulating the robot’s stiffness
and damping [103][104][105].

They also help to reduce the risk of damage to the robot or the environment by
limiting the forces and torques applied to the manipulator [106]. However, such
control methods require the presence of more sophisticated sensors and control al-
gorithms not available in all industrial manipulator robots [101].

Rewards

The use of the dense reward function predominates over the sparse reward func-
tion. The dense reward function relies in many cases on Euclidean distance to guide
the task due to its spatial nature, but the sparse reward function is widely used even
when RL problems may converge slowly or not at all [107].

Furthermore, to avoid the complex engineering of reward functions, some works
tend to learn this function from multimodal observations [108][109] or expert demon-
strations [110][100].

Reinforcement learning algorithms
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Model-based RL algorithms are used by some authors arguing their high sam-
pling efficiency compared with model-free algorithms [111][112][113][114].

However, the choice of model-free algorithms prevails over model-based algo-
rithms due to the difficulty of generating accurate models. The reason is that the
physics and dynamics of the environment are highly variable, and the forces re-
sulting from collisions, friction, and jams during manipulation are nonlinear and
complex to model [115][116]. Additionally, model-free RL algorithms are preferred
because of their ease of implementation and reprogrammability [100][117].

Within the model-free, actor-critic algorithms (which combine the advantages of
value-based and policy-based methods) [118] enjoy great popularity among authors.
DDPG, SAC, and PPO, all actor-critic algorithms, are among the most popular algo-
rithms used in the reviewed articles.

Environments

The most common practice among the authors is to conduct the training in sim-
ulation and then validate or deploy the trained policy in real-world scenarios [119].

Transferring learned policies from simulation to the real world (also known as
Sim2Real) can be challenging due to differences between both scenarios. Because
simulations are simplified models of the real world, they may not capture all of the
complexities, dynamics, and uncertainties that exist in reality.

Domain randomization [120] is a widely used technique in the reviewed liter-
ature to address the Sim2Real gap. This technique involves randomizing differ-
ent simulation parameters, including both, visual data (such as textures and light-
ing [121][110]), and physical variables (such as object mass, friction, and geome-
try [83][94][113]).

3.1.2.3 Analysis

RL has been used to a large extent for learning and executing contact-rich manipula-
tion tasks for assembly. However, those research and applications do not go beyond
laboratory prototyping based primarily on insertion, such as peg-in-hole, ring inser-
tion, Lego stacking, among others.

Based on the content of the articles and their publication dates, there is a trend to-
wards the development of applications that use impedance control as an alternative
to position control in both, Cartesian or joint space. Impedance control is intended to
ensure the safety of the robotic manipulator itself, its environment and the operators,
at least in tasks involving rigid objects.

In contrast to the manipulation of rigid objects, the manipulation of deformable
objects has received less attention in the robotics community, with emphasis only on
linear or planar deformable objects. One of the challenges in this area is the compu-
tational cost, the difficulty and complexity of modeling the physics of deformation,
and the handling of contact and friction between such objects and other surfaces in
simulation environments. Therefore, they will not be covered in this document.

Overall, RL has shown promising results for contact-rich manipulation, but it
still faces several challenges and limitations. Among them are:
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• The ability to generalize and perform tasks with more complex dynamics re-
mains limited. In particular, as the problem scales, it becomes difficult to iden-
tify appropriate states, actions, and reward functions, leading to slower con-
vergence and weaker performance.

• The design of reward functions can be complex due to lack of specifications,
the presence of multiple goals, or sensitivity to distractors.

• The limited fidelity and scope of simulation platforms limits learning and makes
transfer to reality difficult.

• Real-world interaction is challenging due to unstructured realities and con-
straints.

3.1.3 Summary of state-of-the-art review

In the last years, RL has gained importance in decision-making and control tasks for
adaptive and flexible autonomous systems, mainly due to the use of artificial neural
networks as function approximators.

The majority of research in robotic manipulation and RL focuses on manufac-
turing and contact-rich assembly tasks. Within this field, the manipulation of rigid
objects is extensively investigated while the manipulation of deformable objects (in
particular three-dimensional deformable objects) remains unexplored.

There is a trend in contact-rich assembly tasks, already presented in disassembly,
towards the development of applications using compliance control, as an alterna-
tive to traditional Cartesian or joint space control, to ensure the safety of the robotic
manipulator itself, its environment and human operators. However, research and
applications for contact-rich tasks are addressed in relatively simple tasks and re-
main laboratory prototypes.

As for disassembly, there are only a few works that use RL to perform the tasks,
particularly those requiring contact-rich manipulation skills. In disassembly, which
is not necessarily the reverse of assembly, the ability to generalize is critical since the
state of EOL products can be extremely diverse. This process requires agents that can
handle different physical and geometric properties and uncertainties associated with
the state of the product. However, the extent to which RL algorithms can perform
such tasks is unknown.

Both the lack of work in disassembly tasks and the need for generalizable sys-
tems open the door to a field of research and application of RL algorithms for disas-
sembly processes.

3.2 Reinforcement Learning for Disassembly Tasks

To disassemble EOL products, autonomous systems must be generalist enough to
overcome challenges such as the wide range of product conditions and uncertainties
related to their properties, as well as the complexity of their operation.

This section describes the introductory study performed to determine the extent
to which RL algorithms can generalize disassembly tasks. It also aims to evaluate
some of the most popular libraries and solutions for RL application development
and collaborative robot control.
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To evaluate the generalizability of the RL algorithms and some of their compo-
nents identified in the previous state-of-the-art review, the extraction of a rigid object
that is inside and in contact with a rigid slotted part is proposed as a use case.

3.2.1 Reinforcement learning experimental setup

The experimental setup consists of a robotic manipulator mounted on a table and
an object composed of two rigid bodies in contact with each other. The objective
is, with RL algorithms, to learn how to control a robotic manipulator to remove
the detached object from the fixed slotted base while avoiding actions that generate
undesired forces as a result of the mechanical interaction between the two parts.

3.2.1.1 Real-world setup

The real-world setup consists of the following items:

• The robotic manipulator is a highly sensitive, flexible, and lightweight KUKA
LBR Iiwa 14 R820 collaborative robot with a payload capacity of 14 kg.

• The target to be disassembled contains two rigid solid objects, synthesized us-
ing additive manufacturing, as shown in Figure 3.5.

The object that serves as the base, attached to the table by screws, has dimen-
sions 0.1 x 0.1 x 0.03 meters. This object has a slot of dimensions 0.1 x 0.02 x 0.01
meters positioned 0.01 meters from its top surface and centered with respect
to a pair of opposite sides.

The object to be extracted has a dimension of 0.1 x 0.02 x 0.01 meters. As
part of this work and for future work, different objects to be extracted were
synthesized with a gap with the base ranging from 1.0 millimeters to 0.1 mil-
limeters. Synthesized with different plastic materials and in different print-
ing directions, they also have varying physical properties such as friction and
rigidity.

The combined object is placed 0.65 meters in front of the robot, at the same
level as the robot’s base.

Real-world robot control was performed using the iiwa_stack library [122], a na-
tive ROS Java node for controlling the LBR iiwa robots. The selection of this li-
brary was based on the analysis and comparison of different implementations. The
iiwa_stack was the most versatile and popular implementation for controlling the
robotic manipulator. Despite this, its scope is limited to ROS and any changes or
adaptations depend on a dense code programmed in JAVA (the native program-
ming language of the LBR iiwa). Other popular libraries, such as KUKA-IIWA-API
or iiwa_ros, are more limited in scope or depend on specific hardware that is not
available.

3.2.1.2 Simulated setup

Using simulations to train RL algorithms is less expensive, more efficient, and safer
than their real-world counterparts.
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FIGURE 3.5: Target composed object to be disassembled synthesized
using additive manufacturing.

At the time of this particular research, a replica of the real task was implemented
on the NVIDIA Isaac Sim simulator version 2020.2.2: a photorealistic, real-time,
physically accurate robotics platform that had recently been released in the eval-
uation form. This implementation simulated only one environment (a single robot
and a single object to be disassembled). As in the real world, during the evaluation
the robot was controlled using ROS Melodic through the modules integrated with
the simulator.

3.2.2 Reinforcement learning formulation

A Markov Decision Process (MDP) with a finite-horizon discounted return was used
to frame the problem. The agent will learn how to move the robotic manipulator’s
end-effector on the Cartesian plane parallel to the table to perform the contact-rich
extraction of two rigid objects (object extraction skill).

During each timestep of interaction with the environment, the agent is presented
with an observation o of the state s ∈ S of the environment, which is not fully ob-
servable. The agent then selects an action a ∈ A from the action space using a
parameterized policy πθ . The environment, which changes according to the agent’s
action, provides a reward signal rt = R(st, at, st+1) to the agent, indicating how good
or bad the new state is. The agent’s objective is to optimize the cumulative reward,
discounted by a factor γ ∈ (0, 1], by adjusting the policy’s behavior through some
optimization algorithm.

The following subsections describe the RL formulation:

3.2.2.1 Reinforcement learning elements

Observation space

To evaluate the agents’ generalization capabilities, an observation based on the
object or manipulator pose was designed.

The observation space is made up of several components, including the nor-
malized length of the episode, which is represented as the ratio between the
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current timestep and the maximum allowed timestep (max_steps); the relative
position of the robot’s end-effector in the XY-plane concerning the initial grasp-
ing pose (posXY), and the rotation of the object as shown in Equation 3.1. The
rotation is measured between 0 and 180 degrees and is scaled to the [−1, 1]
interval it from being dominant over the others.

ot = [
step

max_steps
, posXY, rotobject ] (3.1)

Action space

The action space is a 2-dimensional vector. Each component maps to the re-
spective translation (in centimeters) of the robot’s end-effector in the [−1, 1]
continuous interval on the XY-plane as shown in Equation 3.2.

The decision for an action space in relative coordinates responds to the gen-
eralization capabilities in robotic manipulation since they allow the robot to
perform the same task in a variety of initial positions without requiring ex-
plicit knowledge of the absolute positions of the targets.

at = [ ∆x, ∆y ] (3.2)

Reward

A sparse was used to determine how agents learn and generalize the extraction
skill. It is important to note that the sparse reward can make the problem more
difficult to solve, instead of guiding the agents to the goal.

At the end of each episode, a sparse-reward function provides the reward as
described by Equation 3.3, . In the case of successful extractions, the agent
receives a positive reward equivalent to the maximum timestep (max_steps)
provided by the environment. However, if the extraction fails due to the de-
tection of an undesired critical force or if the maximum timestep is reached, the
agent receives a reward from a continuous function described by Equation 3.4.
This function penalizes extractions with short displacement heavily in time as
shown in Figure 3.6. During task execution, the instantaneous reward remains
zero.

rt =


0 if t < max_steps
r f ail if t >= max_steps or extraction fails
max_steps if successful extraction

(3.3)

where

r f ail = −max_steps
2

+ exp
(

ln(1.5 max_steps + 1) , || posXY

0.1
||
)
− 1 (3.4)
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FIGURE 3.6: Graphical representation of the reward function when
extraction fails.

Episode termination

The episodes conclude under two conditions: firstly, when the agent success-
fully completes the disassembly task of extracting the fixed object from the slot-
ted one; secondly, when a critic force is identified, or the maximum timestep
(max_steps) is reached, regardless of the successful execution of the task.

3.2.2.2 Reinforcement learning algorithms

Agents

Model-based RL algorithms depend on the existence of an accurate model of
the environment that is capable of predicting the outcomes of different actions
in different situations. When there is a wide variety of objects with different
physical, mechanical, and geometric properties, as in the case of EOL products,
it is difficult to build an accurate model that can generalize across all this vari-
ability. In these cases, the model may need to be updated frequently to account
for new or changing conditions, and even then, the model may not be able to
capture all the nuances of the environment, which can lead to inaccuracies in
its predictions and suboptimal decision-making.

In contrast, model-free RL algorithms do not require an accurate model of the
environment but learn directly from experience through trial and error. This
makes them more suitable for environments with a wide variety of conditions
and properties, as they can adapt and learn from experience without relying
on a precise model.

Only model-free actor-critic algorithms were considered for this study. Actor-
critic algorithms combine the best of policy optimization algorithms and value-
based algorithms [123]. Within the model-free actor-critic algorithms, off-policy
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algorithms were chosen (in particular DDPG and TD3). Compared to on-
policy algorithms, off-policy algorithms can learn from previous experience
or from any data collected by other policies, not only the current one, which
leads to more sample-efficient learning, at least in one environment.

– Deep Deterministic Policy Gradient (DDPG): a model-free determinis-
tic off-policy actor-critic algorithm. It uses deep function approximators
to learn the policy (and to estimate the action-value function) in high-
dimensional, continuous action spaces [124].

– Twin Delayed Deep Deterministic policy gradient (TD3): an actor-critic
algorithm based on DDPG. This algorithm relies on double Q-learning,
target policy smoothing, and delayed policy updates to address the prob-
lems introduced by overestimation bias, leading to estimates and subop-
timal policies in actor-critic algorithms [125].

FIGURE 3.7: Reinforcement learning schema.

Model architectures

The architecture of the Policy and Q networks used by both DDPG and TD3
agents is the same. The networks receive the observation space as input for the
Policy, and the concatenated components of the observation space and action
space for Q networks as input.

They are followed by two hidden dense layers of 32 neurons each with Rectified
Linear Unit (ReLU) activation functions. The use of two dense hidden layers
with 32 neurons each helps to learn a more complex representation of the ob-
servation space. The ReLU activation function is commonly used in deep neu-
ral networks because of its ability to accelerate the convergence of the learning
process by reducing the vanishing gradient problem.
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The Policy network has two output neurons that use the hyperbolic tangent
function to fit the action space to the expected interval [−1, 1], while the Q
networks use a linear activation function for their output neuron to estimate
an unbounded Q-value.

3.2.3 Experiments and results

The extraction process for DDPG and TD3 in both simulation and the real world is
depicted in Figure 3.8.

FIGURE 3.8: The optimal policies learned were used to perform the
extraction task in both the real world and the simulation. The first and
second rows of the figure show the sequence for DDPG. The third and
fourth rows show the sequence for TD3. The frames for DDPG were
taken every 3 timesteps, while the frames for TD3 were taken at each

timestep.

3.2.3.1 Experiment implementation

The RL environment was defined using the OpenAI Gym interface in Python. for
both, learning and evaluation the RLlib v1.0.0 library was used. The selection was
based on the comparison of features and the level of implementation of the state-of-
the-art RL algorithms. This library, despite its scalability, has a higher complexity of
use compared to other libraries. However, other implementations analyzed prior to
the study have an encapsulated and rigid code around the models that is difficult to
customize.
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In the Table 3.2 are listed the hyperparameter values configured and allowed by
the RLlib library. The architecture for both agents was implemented using the Keras
API from TensorFlow.

Hyperparameters Value
Optimizer Adam
Actor learning rate 10−3

Critic learning rate 10−3

Experience replay buffer size 105

Batch size 256
Discount factor 0.99
Ornstein-Uhlenbeck noise (DDPG) θ: 0.15, σ: 0.2, base scale: 0.1
Gaussian noise (TD3) mean: 0.0, std: 0.1
Exploration decay (type) linear
Exploration decay (initial scale) 1.0
Exploration decay (final scale) 10−3

Target policy smoothing (Gaussian) mean: 0.0, std: 0.1
Target policy smoothing (clip) [-0.5, 0.5]
Maximum timesteps per episode 150

TABLE 3.2: Hyperparameter configured and allowed by RLlib library.

The training was done using a remote workstation with an Intel(R) Xeon(R) Sil-
ver 4114 CPU @ 2.20 GHz, 125 GiB of RAM, and a Graphics Processing Unit (GPU)
GeForce RTX 2080 Ti. Each training session, lasting approximately 18 hours each,
ended in 375 thousand timesteps.

The algorithms were trained 10 times, with different seeds for the random num-
ber generator, to identify repetitive behaviors. The policies with the highest mean
reward during training were selected for both simulation and real-world evaluation.

3.2.3.2 Training

Figure 3.9 shows the mean and standard deviation of both, the perceived reward
(upper) and the Q-value (bottom), for DDPG and TD3, in 10 different training ses-
sions.

DDPG achieves a value of a reward close to the optimal one (40.0) while TD3,
although in the first third of the training shows an increasing trend, falls towards
negative values. In addition, DDPG showed increasing learning with a steep slope
during the exploration phase (first third), but the results in the exploitation phase,
although slightly upward trending, were slow. Considering those results, in this
particular case, DDPG outperforms TD3 in the acquisition of the extraction skill.

Even when the DDPG Q-function overestimated the Q-value (a known DDPG
behavior [125]) during the exploitation phase, it remained relatively stable around
the maximum expectation, as shown in the Figure 3.9 (down). In contrast, TD3
started to learn the skill, but towards the end of the exploration phase, its learning
performance deteriorated and did not recover. This can be attributed to the inappro-
priate estimation of the Q-function used as a basis for updating its actor policy, as
shown in the Figure 3.9 (bottom).
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FIGURE 3.9: Simulation training results: Mean reward and standard
deviation during training (upper). Mean estimated Q-value and stan-
dard deviation returned by Q networks (bottom). For TD3, Q-value

corresponds to Qϕ1 (used to optimize the policy).

Surprisingly, there is a notable difference in the behavior of the two policies. Ac-
cording to the definition of the action space, the initial object position and geometry,
a successful extraction requires at least 10 timesteps. TD3 learns the fastest way to
perform the disassembly task (assuming it can successfully complete an episode),
while DDPG takes more timesteps (about 24 timesteps), as shown in Figure 3.10.

Figure 3.11 illustrates such behavior by mapping the actions taken by both poli-
cies. The “extreme” actions of TD3 (right) are located near the boundaries of the
action space which is [−1, 1] centimeters. In contrast, the scatter of DDPG actions
(left) is concentrated around a central perimeter, resulting in shorter displacements
and slower extraction speed.

3.2.3.3 Evaluation of the generalization capabilities

As stated above, for both simulation and real-world evaluation, the best policies
were selected based on the mean reward value during training.
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FIGURE 3.10: Mean and standard deviation of the length of the
episodes (in timesteps) during the training.

FIGURE 3.11: DDPG (left) and TD3 (right) mapping of the action a ∈
[−1, 1] performed during training.

Simulation

Two tests were performed to evaluate the generalization of the learned skill to
different initial conditions: rotation and location (position). The agents completed 30
episodes for each case, and the evaluations were run with the exploration behavior
turned off.

• Initial object rotation: The rotation of the target object was sampled discretely
between 0 and 180 degrees, with an interval of one degree. The Figure 3.12
shows the mean and the standard deviation of the reward obtained by the best
trained policies as well as their mean episode length.

In 87.29% of the sampled rotations, the policy trained with DDPG was able
to complete the task with more than 15 successful episodes per angle. If the
episode runs for more timesteps (than the maximum allowed) for the rota-
tion interval between 35 and 55 degrees, the proportion of completed tasks for
DDPG could be higher.
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FIGURE 3.12: Mean reward and standard deviation (on the left axis
scale) and mean episode length (on the right axis scale) obtained dur-
ing the evaluation of the learned policies in the simulated environ-

ment at different initial rotations.

On the other hand, the policy trained using TD3 was only able to successfully
complete the task in 35.35% of the sampled rotations. It had more than 15
successful episodes per angle. As expected from the training process, DDPG
outperformed TD3 in the disassembly task, although TD3 performed faster
than DDPG.

• Initial object position: The initial position of the target object on the table was
sampled to cover a rectangular region of 0.1 x 0.25 meters with a step of 2.5
millimeters.

For this scenario, the object maintains a fixed rotation (of 50 and 130 degrees)
selected from the regions where policy performance is quite diverse according
to the Figure 3.12. The center of the region of interest is located at 0.6 meters in
front of the robot. The mean reward achieved by both agents, at the end of the
task, is shown in Figure 3.13.

The results show that the learned skill is generalizable for a wide range of
different initial positions. The policy trained with DDPG is able to perform the
extraction for different initial positions, even for the worst performing rotation.
In the case of TD3, its negative performance for a rotation of 50 degrees is
maintained for different initial positions.

The use of position information relative to its initial value, as part of the obser-
vation space, is key to achieve such behavior.

Transference to the real world

In addition, the study evaluated the generalization of the learned skill in the
real world. For this purpose, the tests were performed for different initial object
rotations. The rotation of the target object was sampled discretely between 0 and
180 degrees with a 10 degree interval to reduce the number of episodes executed.
The agents performed five episodes for each particular case.

36



3.2. Reinforcement Learning for Disassembly Tasks

FIGURE 3.13: Performance of the learned policies (DDPG at the top
and TD3 at the bottom), without exploration, in the simulated envi-

ronment evaluated at different starting positions.

Both the number of angles sampled and the number of episodes evaluated cor-
respond to the difficulty and time required to perform real-world experiments. The
results of the evaluation are presented in Figure 3.14, which shows the mean reward
obtained by the best-trained policies and their mean episode length.

FIGURE 3.14: Mean reward and standard deviation (on the left axis
scale) and mean episode length (on the right axis scale) obtained dur-
ing the evaluation of the learned policies in the real world environ-

ment at different initial rotations.

In the real-world evaluations, the DDPG policy showed very similar behavior
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to that observed in the simulation, successfully performing the disassembly task for
all angles sampled. On the other hand, TD3 continued to show poor performance,
similar to what was observed in the simulation.

In fact, the success rate for the real-world execution was higher than that in the
simulation, attributed to the slight differences in the critical force threshold used
for both environments. The training and evaluation performed in the simulated
environment used a critical force threshold of 30 Newtons, slightly lower than the
60 Newtons established in reality. The measured force during episode execution in
the real world is shown in Figure 3.15.

FIGURE 3.15: Force measurements obtained during the real-world
evaluation of the DDPG and TD3 policies. The dashed line represents
the critical force threshold used as the episode termination condition.

3.2.4 Summary of study results and limitations

DDPG and TD3, the selected model-free actor-critic algorithms, can learn the ability
to extract objects by interacting with the environment. In addition, they can gener-
alize learning across multiple initial conditions, such as positions and rotations. For
this particular use case, TD3 shows poor performance, attributed to the learning of
extreme actions at the boundaries of the action space. This phenomena, which was
also reported in [84], attempts against the learning robustness.

Although the results of this initial study show promising results, its scope is
limited to robot end-effector motions in only 2 DOFs for extraction on the XY-plane,
as well as for the geometry described for the test case. The high degree of variability
that can be found in EOL products, such as the physical properties and geometries
of the objects manipulated, was not addressed.

In RL, training times are long, at least in a single environment, slowing or pre-
venting iterative development and experimentation with different algorithms, ar-
chitectures, or hyperparameters by waiting for training to complete. In addition, the
solutions available to control the KUKA LBR iiwa robot do not allow access to most
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of its features and do not offer integration to be able to use, from a single implemen-
tation, different workflows such as direct control from Python (used to define the
environment) or via ROS.

3.3 Chapter conclusions

Although RL algorithms have been successful in learning robotic skills for manipu-
lation tasks in manufacturing, particularly assembly tasks, their application to disas-
sembly tasks (which are not necessarily the reverse of assembly tasks) has not been
fully explored.

The research conducted responds, in part, to research question 1: The initial
study on the use of RL algorithms for disassembly tasks shows that some RL algo-
rithms can learn object extraction skills through interaction with the environment,
and they can generalize these skills to various initial conditions, such as positions
and rotations. However, the study’s scope is limited to particular extraction motions
and geometry. To perform disassembly tasks, agents must also be able to handle the
high degree of variability of EOL product states.

Furthermore, on one side, training RL algorithms in a single environment can be
time consuming and existing libraries hinder the customization of such applications
as well as to train and evaluate over massive parallel environments.
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Chapter 4

Reducing Learning Time and
Resource Consumption by
Simultaneous Training of
Off-Policy Algorithms in Parallel
Environments

The content of this chapter addresses research question 2 (a): How can the RL algorithms’
learning process be leveraged for reducing training time and resource consumption?

The work presented in this chapter is partially published in the paper: Antonio Serrano-
Munoz, Dimitrios Chrysostomou, Simon Bøgh, Nestor Arana-Arexolaleiba. “skrl: Modular
and flexible library for reinforcement learning”. In: Journal of Machine Learning Research
24.254 (2023), pp. 1–9. URL: https: // www. jmlr. org/ papers/ v24/ 23-0112. html .

The time-consuming training and evaluation of RL algorithms not only limits
the pace of scientific research, but also hinders the design, implementation, and de-
ployment of related applications. Therefore, any effort to optimize those algorithms,
including the use of computational techniques as well as software and hardware
resources, is crucial to accelerate further research and application.

This chapter presents the research conducted to reduce the learning time and the
amount of software and hardware resources required to train (off-policy) RL algo-
rithms in parallel environments. It also describes a new RL library that implements
and enables such a reduction, while providing a flexible and modular API that al-
lows for further customization of research and application solutions.

4.1 Reinforcement learning in parallel environments

Due to the scientific community’s need and interest in RL, several libraries and
frameworks have been developed. Figure 4.1 shows how, starting in 2016, there
is a significant increase in the development of RL libraries. Such growth can be ex-
plained by 3 fundamental milestones that mark the rise of interest in RL in our era:

• The development of new learning algorithms, especially those using artificial
neural networks as approximation functions (Deep RL).
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FIGURE 4.1: Main RL libraries’ lifecycle. The lifecycle is computed
using the repository’s creation date and the last commit message re-

trieved from GitHub.

• The development of Gym by OpenAI (2016). It provides a common interface
for the design and standardization of single and vectorized environments.

• The development of single-environment benchmarking scenarios in areas such
as video games and gaming, autonomous navigation, and robotics. These
benchmarks are widely accepted by the scientific community and allow to
compare results between different implementations.

More recently, with the release of Isaac Gym preview (and later Omniverse Isaac
Gym and Isaac Orbit), a GPU-based physics simulation platform by NVIDIA, a new
generation of robotics simulation has emerged with tens of thousands of parallel
environments running on a single GPU [126]. These platforms allow researchers to
easily run massive experiments using an API similar to OpenAI Gym, offloading
both physics simulation and neural network training to the GPU.

Massive parallelization offers on-policy algorithms, such as PPO and TRPO, the
advantage of diverse exploration, allowing such agents to concurrently experience
a wider range of states and actions. This increased diversity contributes to over-
coming suboptimal solutions and significantly reducing training time. In contrast,
off-policy algorithms such as DDPG, SAC or TD3, do not yield benefits in massively
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parallel environments, requiring a much longer training time and a smaller num-
ber of environments even though these algorithms are more sample efficient than
on-policy.

On-policy high performance increase in massive parallel environments is re-
ported in the NVIDIA family of physics simulators (Isaac Gym, Isaac Orbit and Om-
niverse Isaac Gym), where PPO is presented as the de facto algorithm for performing
training and evaluation [126][127][128][129]. For example, for the Omniverse Isaac
Gym’s Ant environment PPO training (in 4096 parallel environments) runs 16 times
faster than SAC training (in 64 parallel environments).

This research proposes a simultaneous learning method in parallel environments
that takes advantage of the capabilities of off-policy algorithms to learn using previ-
ously generated data in order to reduce the overall training time and save computing
resources. This method is embedded in a new RL library designed with special at-
tention to handle massively parallel environments, mainly because existing libraries
have a structure, even for modular implementations, and rigid code that is difficult
to scale-up and adapt.

The following section describes the implemented library. In the subsequent sec-
tion, and with an understanding of the implementation of simultaneous learning,
the experiments and results are presented.

4.2 Modular and flexible reinforcement learning library

This section describes the design and implementation of a RL library (skrl) that en-
ables simultaneous training in massively parallel environments to reduce training
time and resource consumption. As an added benefit, the implementation focuses
on the following principles: modularity, leaving room for each component to be in-
terchangeable and allowing the creation of more complex systems; readability, sim-
plicity and transparency of algorithm implementations, reducing the learning curve;
and support for different interfaces, among others.

4.2.1 Library architecture and components

skrl is an open-source modular library for RL written in Python (using PyTorch)
and designed with a focus on readability, simplicity, and transparency of algorithm
implementation. In addition to supporting the OpenAI Gym / Farama Gymna-
sium, DeepMind and other environment interfaces, it allows loading and config-
uring NVIDIA Isaac Gym, NVIDIA Isaac Orbit and NVIDIA Omniverse Isaac Gym
environments, enabling agents’ simultaneous training by scopes (subsets of environ-
ments among all available environments), which may or may not share resources, in
the same run.

The library consists of several components that can be integrated under a sin-
gle execution to create experiments for training and testing RL applications. These
components, illustrated in Figure 4.2, are: agents, environments (named as envs),
memories, models, resources, trainers and utilities (named as utils). In turn, the re-
sources are divided into three sub-components: noises, input data pre-processors
(named as preprocessors) and learning rate schedulers (named as schedulers).
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FIGURE 4.2: Reinforcement learning schema.

4.2.1.1 (1) Environments

The environment plays a fundamental and crucial role in the definition of the RL
application. It is the place where the agent interacts, and it is responsible for provid-
ing the agent with information about the current state of the system, as well as the
rewards and penalties associated with each action. The nature of the environment
shapes the problem that the agent must solve, and thus has a profound impact on
the selection of the agent and its design. Because observation and action spaces can
be continuous or discrete in nature, and high or low dimensional, not all problems
can be solved with the same types of agents, policy representations, and value func-
tions or algorithms. For example, a continuous observation and action space will
require a different approach than a discrete one.

As mentioned above, there are several interfaces to interact with the environ-
ments such as OpenAI Gym / Farama Gymnasium or DeepMind. However, each of
them has a different API and works with non-compatible data types.

skrl provides a function to wrap the environment described above and return a
common interface on which the defined agents can operate. This interface is based
on the most updated Gym/Gymnasium1 API in terms of method names, arguments
and return values. In addition, it defines some properties to support parallel envi-
ronments and multi-device execution, as shown in Figure 4.3.

Properties:

• num_envs: Number of parallel environments. If the wrapped environment
does not have this property, it will be set to 1.

• device: The device used by the environment. If the wrapped environment
does not have this property, the value of this property will be cuda:0 or cpu
depending on the device availability.

• observation_space: Observation space as a Gym space object.

• state_space: Alias for observation_space.
1 https://www.gymlibrary.dev/api/spaces/#gym.spaces.Space

43

https://www.gymlibrary.dev/api/spaces/#gym.spaces.Space


Chapter 4. Reducing Learning Time and Resource Consumption by Simultaneous
Training of Off-Policy Algorithms in Parallel Environments

FIGURE 4.3: Supported environment interfaces and wrapping

• action_space: Action space as a Gym space object.

Methods:

• reset(): Resets the environment to an initial state and returns the initial ob-
servation. This method returns the state of the environment after a restart
and optionally additional information that may be useful for the learning al-
gorithms.

• step(): Run one timestep of the environment’s dynamics. This method re-
turns the next state of the environment due to the agent’s actions, the instanta-
neous reward as a result of taking the action, whether the environment reaches
its final state, whether the truncation condition outside the scope of the MDP
is satisfied, and optionally additional information that may be useful for the
learning algorithms.

• render(): Display the current state of the environment to the user. The specific
behavior of this method will depend on the particular RL environment being
wrapped.

• close(): Perform any necessary cleanup.

At the time of writing, the next environment interfaces have been supported:

• OpenAI Gym [130]: A set of tools for developing and comparing RL algo-
rithms. OpenAI Gym provides a standardized Python interface for interacting
with different environments, such as games, robotic simulators, and control
systems. Of all the environment interfaces, this is the most popular in the RL
community.

• Farama Gymnasium [131]: A fork of the OpenAI Gym library maintained by
the Farama2 foundation.

2 Farama is a nonprofit organization working to develop and maintain open source RL tools:
https://farama.org/
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• DeepMind [132][133]: A set of continuous control tasks from DeepMind, with
a standardized structure and interpretable rewards, designed to serve as per-
formance benchmarks for RL agents.

• robosuite [134]: A simulation framework based on the MuJoCo physics en-
gine for robot learning that provides a set of reference environments for repro-
ducible research.

• NVIDIA Isaac Gym preview [127][126]: A physics simulation platform from
NVIDIA for GPU-accelerated RL research.

• NVIDIA Omniverse Isaac Gym [127][126]: An extension that provides an inter-
face for performing RL training and inference in Isaac Sim for GPU-accelerated
RL research.

• NVIDIA Isaac Orbit [128]: An open-source unified and modular framework
for robot learning in Isaac Sim.

4.2.1.2 (2) Memories

Memories are storage components that allow agents to collect and use/reuse re-
cent or past experiences of their interaction with the environment, or other types of
information. They can be large to help to break the temporal correlation between
experiences (such as replay buffers used by off-policy algorithms like DDPG, TD3,
or SAC) or small (such as rollout buffers used by on-policy algorithms like PPO or
TRPO to store batches that are discarded after use).

skrl provides generic memory definitions that are not tied to the agent implemen-
tation and can be used for any role, such as rollout or replay buffers. They are empty
shells when they are instantiated and the agents are in charge of defining the tensors
according to their needs. The total space occupied is the product of the memory size
(memory_size), the number of environments (num_envs) obtained from the wrapped
environment, and the data size for each defined tensor as shown in Figure 4.4.

FIGURE 4.4: Generic definition of tensors in memory

Memories are passed directly to the agent constructor during its instantiation if
needed (not all agents need memory, such as Q-learning or SARSA).

At the time of writing, the following memories have been implemented:

• Random sampling memory: Memory that randomly samples, with or without
replacement, sample batches of transitions.
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4.2.1.3 (3) Models

Models (or agent models) refer to a representation of the agent’s policy or value func-
tion that the agent uses to make decisions. Agents can have one or several models
and their parameters are adjusted via the optimization algorithms.

skrl offers two main types of agent models: tabular models and function approx-
imation models. A tabular model represents the agent’s policy or value function as a
table of values, where each entry in the table corresponds to a particular state-action
pair and contains the corresponding value or probability. Tabular models are only
feasible for problems with a small or discrete state and action space. In this case,
the agent can learn the optimal policy or value function by looking up the values
in the table. A function approximation model represents the agent’s policy or value
function as a mathematical function, such as a neural network, that can be used to
approximate the true values or probabilities for any state-action pair. This allows the
agent to generalize from its experience and make decisions even for unseen states,
making it more sample efficient and able to handle problems with larger state and
action spaces.

In contrast to other implementations, this library does not provide predefined
models or fixed templates (this practice tends to hide and reduce the flexibility of the
system, forcing developers to deeply inspect the code to make even small changes).
Nevertheless, helper classes/mixins are provided to create discrete and continuous
(stochastic or deterministic) models with the library. In this way, the user/researcher
should only be concerned with the definition of the approximation functions (tables
or artificial neural networks), having all the control in his hands.

At the time of writing, the following models have been implemented:

• Tabular model: Models that represent the agent’s policy or value function as a
table of values (for discrete domain observation and action spaces).

• Categorical model: Models that represent the agent’s policy or value func-
tion as function approximators (for discrete or continuous domain observation
spaces and discrete action spaces) that populate a Categorical distribution. Fig-
ure 4.5 depicts the model as it is used in the skrl library.

FIGURE 4.5: Categorical model.

• Deterministic model: Models that represent the agent’s policy or value func-
tion as function approximators (for discrete or continuous domain observation
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spaces and continuous action spaces) that deterministically map states to ac-
tions. Figure 4.6 depicts the model as it is used in the skrl library.

FIGURE 4.6: Deterministic model.

• Gaussian model: Models that represent the agent’s policy or value function as
function approximators (for discrete or continuous domain observation spaces
and continuous action spaces) that populate a Gaussian distribution. Fig-
ure 4.7 depicts the model as it is used in the skrl library.

FIGURE 4.7: Gaussian model.

• Multivariate Gaussian model: Models that represent the agent’s policy or value
function as function approximators (for discrete or continuous domain obser-
vation spaces and continuous action spaces) that populate a multivariate Gaus-
sian distribution. Figure 4.8 depicts the model as it is used in the skrl library.

FIGURE 4.8: Multivariate Gaussian model.
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Models must be collected in a Python dictionary and passed to the agent con-
structor during its instantiation. The number of models is specific to each agent.

4.2.1.4 (4) Noises

Noise refers to a way of adding randomness to the agent’s actions during the ex-
ploration phase to encourage the agent to try different actions and explore the state
space. The goal of adding exploration noise is to balance the use of the agent’s cur-
rent knowledge with the exploration of new states and actions that may lead to bet-
ter rewards. In agents of a deterministic nature, such as DDPG or TD3, it plays a
fundamental role.

As part of its resources, skrl provides classes for instantiating noises. Noise in-
stances must be passed to the agents in their respective configuration dictionaries.

At the time of writing, the following noises have been implemented:

• Ornstein-Uhlenbeck noise: Noise generated by a stochastic process that is char-
acterized by its mean-reverting behavior.

• Gaussian noise: Noise generated by a normal distribution, parameterized by
the mean value and standard deviation.

4.2.1.5 (5) Schedulers

A learning rate scheduler is a technique used in RL to adjust the agent’s learning
rate during training to improve the agent’s performance. The learning rate is a hy-
perparameter that controls the step size of the model parameter update. Learning
rate schedulers help RL systems converge faster and improve accuracy.

skrl supports all PyTorch learning rate schedulers and provides additional sched-
ulers as part of its resources. The learning rate schedulers’ classes and their respec-
tive arguments (except the optimizer argument) are passed to the agents in their
respective configuration dictionaries.

At the time of writing, the following schedulers have been implemented:

• KL Adaptive: Adjust the learning rate according to the value of the Kullback-
Leibler (KL) divergence between two versions of the distribution used by stochas-
tic policies for decision-making.

4.2.1.6 (6) Preprocessors

Input preprocessors are techniques used to process and transform input observa-
tions from the environment before they are used as input to the agent. The goal of
an input preprocessor is to clean or make the input data more suitable for the agent
to learn from and to improve its performance.

skrl provides preprocessor classes as part of its resources. Preprocessor classes
and their respective arguments are passed to the agents in their respective configu-
ration dictionaries.

At the time of writing, the following input preprocessors have been implemented:
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• Running standard scaler: Standardize input features by removing the mean
and scaling to unit variance.

4.2.1.7 (7) Agents

An agent is an autonomous entity that interacts with an environment to learn and
improve its behavior. The agent performs actions in the environment based on its
current state and receives information in the form of a reward signal indicating the
appropriateness of the action performed. The agent’s goal is to learn an optimal
policy, which is a correspondence between states and actions that maximizes the
cumulative reward over time. Such agents use various learning algorithms, such as
Q-learning or policy gradient methods, to update their policy or value function.

The learning and optimization algorithm is implemented within a function un-
der the same name (_update) in all cases.

At the time of writing, the following state-of-the-art agents, alphabetically ar-
ranged, have been implemented:

• Advantage Actor-Critic (A2C) [135]: a model-free, stochastic on-policy policy
gradient algorithm that uses the advantage function to update the policy with
the goal of maximizing the expected cumulative reward. It can be parallelized,
allowing for faster training times.

• Adversarial Motion Priors (AMP) [136]: a model-free, stochastic on-policy pol-
icy gradient algorithm (trained using a combination of GAIL and PPO) for
adversarial learning of physics-based character animation. It enables charac-
ters to imitate diverse behaviors from large unstructured datasets, without the
need for motion planners or other mechanisms for clip selection.

• Cross-Entropy Method (CEM) [137]: a model-free algorithm that selects elite
states and actions based on a performance metric, such as the average reward
received over a fixed number of timesteps.

• Deep Deterministic Policy Gradient (DDPG) [124]: a model-free, determinis-
tic off-policy actor-critic algorithm that uses deep function approximators to
learn a policy (and to estimate the action-value function) in high-dimensional,
continuous action spaces.

• Double Deep Q-Network (DDQN) [138]: a model-free, off-policy algorithm
that relies on double Q-learning to avoid the overestimation of action-values
introduced by DQN.

• Deep Q-Network (DQN) [139]: a model-free, off-policy algorithm that trains
control policies directly from high-dimensional sensory using a deep function
approximator to represent the Q-value function.

• Proximal Policy Optimization (PPO) [140]: a model-free, stochastic on-policy
policy gradient algorithm that alternates between sampling data through in-
teraction with the environment, and optimizing a surrogate objective function
while avoiding the new policy does not move too far away from the old one.

• Q-learning (Q-learning) [141]: a model-free off-policy algorithm that uses a
tabular Q-function to handle discrete observations and action spaces.
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• Robust Policy Optimization (RPO) [142]: a model-free, stochastic on-policy
policy gradient algorithm that adds a uniform random perturbation to a base
parameterized distribution to help the agent maintain a certain level of stochas-
ticity throughout the training process.

• Soft Actor-Critic (SAC) [143]: a model-free, stochastic off-policy actor-critic al-
gorithm that uses double Q-learning (like TD3) and entropy regularization to
maximize a trade-off between exploration and exploitation.

• State Action Reward State Action (SARSA) [144]: a model-free on-policy algo-
rithm that uses a tabular Q-function to handle discrete observations and action
spaces.

• Twin-Delayed DDPG (TD3) [125]: a model-free, deterministic off-policy actor-
critic algorithm (based on DDPG) that relies on double Q-learning, target pol-
icy smoothing and delayed policy updates to address the problems introduced
by overestimation bias in actor-critic algorithms.

• Trust Region Policy Optimization (TRPO) [145]: a model-free, stochastic on-
policy policy gradient algorithm that deploys an iterative procedure to opti-
mize the policy, with guaranteed monotonic improvement.

4.2.1.8 (8) Trainers

Trainers are responsible for the management of agent training/evaluation and their
interaction with the environment as shown in Figure 4.9. They orchestrate the train-
ing/evaluation process in a loop by:

1. Pre-interaction: Execute any agent logic prior to interaction with the environ-
ment.

2. Compute actions: Forward the current state of the environment to the agent to
make a decision based on its policy.

3. Interact with the environments: Executes a timestep of the dynamics of the
environment using the actions taken by the agent.

4. Render scene: Represent on the screen or terminal the current state of the en-
vironment, usually for human consumption.

5. Record transitions: Store an environment transition in memory for use during
training, or store data persistently for future use.

6. Post-interaction: Execute any agent logic after interacting with the environ-
ment. This step runs the agent optimization algorithm.

7. Reset environments: Restores the environment to an initial internal state when
the program is started, or when the environment is terminated or truncated.

They are also responsible for initializing the agents and, unless otherwise speci-
fied, closing the environments at the end of the training or evaluation execution.

At the time of writing, the following trainers have been implemented:
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FIGURE 4.9: Training/evaluation pipeline.

• Sequential trainer: Train agents sequentially (i.e., one after the other in each
interaction with the environment) as shown in Figure 4.10 (left).

• Parallel trainer: Train agents in parallel using multiple processes as shown in
Figure 4.10 (right).

• Manual trainer: Train agents by manually controlling the training/evaluation
loop. If there are simulated agents, they are trained/evaluated sequentially.

These definitions also allow the execution of simultaneous synchronous learning
in Isaac Gym, Isaac Orbit, and Omniverse Isaac Gym.

Agents can specify a scope consisting of set of sub-environments among all avail-
able environments. During each timestep, the trainer collects the actions taken by
each agent within their respective scopes and creates a single action vector that is
fed into the environment stepping pipeline. After stepping, observations, rewards,
and any other information are split and delivered to each agent based on their scope
for learning and optimization.

This approach allows simultaneous learning and comparison of agents, hyper-
parameters, and other components in a single run. In addition, the modular design
of the library allows resources such as memory (buffer replay or rollout buffer) to be
shared between agents.
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FIGURE 4.10: Sequential (left) vs parallel (right) execution.

4.2.1.9 Utils

In addition, as mentioned above, a set of utilities are offered to perform, among
others, the following operations:

• Loading and post-processing of TensorBoard files: Utility to load and iterate
over Tensorboard log files generated during training or evaluation. For exam-
ple, this utility allows to generate comparison and average plots of the training
results to understand the behavior of the system.

• Loading and post-processing of exported memory files: Utility for loading and
iterating over previously generated and exported memory files containing the
transitions resulting from the agent’s interaction with the environment.

• Instantiate models quickly: Utilities for quickly creating instances of different
types of models by minimally specifying the parameters of their architectures.
This utility allows the definition of models in a similar way to other RL li-
braries, but this practice typically hides model details from the user and makes
customization hard.

• Computation of inverse kinematics for robotic manipulators in Isaac Gym and
Omniverse Isaac Gym: Unify under a single and reusable function all the
procedures used to compute the inverse kinematics, using the damped least
squares method show in Equation 4.1, of a robotic manipulator for Isaac Gym
and Omniverse Isaac Gym environments.

∆θ = JT(J JT + λ2 I)−1 e⃗ (4.1)

Where ∆θ is the change in joint angles, J is the robotic manipulator Jacobian, λ
is a non-zero damping constant, and e⃗ is the Cartesian pose error (position and
orientation).

• Hugging Face integration: The Hugging Face Hub is a platform for building,
training and deploying ML models, as well as accessing a variety of datasets
and metrics for further analysis and validation.
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This utility allows to download and use several trained models (agent check-
points) for different environments/tasks of Gym/Gymnasium, Isaac Gym, Om-
niverse Isaac Gym, etc. that are available in the Hugging Face Hub. These
models can be used as comparative benchmarks, to collect environment tran-
sitions in memory (e.g. for offline RL), or to pre-initialize agents to perform
similar tasks, etc.

4.2.2 Documentation

The documentation is written using reStructuredText3 and hosted online by Read
the Docs under the URL https://skrl.readthedocs.io as shown in Figure 4.11.

FIGURE 4.11: Screenshot of the skrl documentation home page

Apart from the library installation steps and API details (classes, functions, pa-
rameters, return values, etc.), snippets are also included to guide the development
of new components or algorithms. In addition, a detailed mathematical description
of the implementation of the RL agents is provided.

Examples of use cases are included with their respective scripts and description
of functionalities such as tracking and visualizing metrics. In addition, examples are
provided showing basic use cases of the Franka Emika Panda and KUKA LBR iiwa
manipulator robots in the real world and sim2real applications in ROS and Robot
Operating System - version 2 (ROS2) to guide and support advanced RL implemen-
tations.

3 A plaintext markup language: https://docutils.sourceforge.io/rst.html
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4.3 Training time and resource consumption reduction via si-
multaneous learning in parallel environments

As described above, skrl offers the capability to perform simultaneous training and
evaluation of several agents by scopes, a unique feature of this library as far as it is
known. This feature, combined with the capability of off-policy algorithms to learn a
policy using data generated by the current policy, other policies, or external sources,
can reduce the overall training time and further increase the obtained reward using
the same computing resources.

For this, the 10 learning runs for DDPG, TD3 and SAC agents, with different
trainers and memory modalities, using the same and hyperparameters and the num-
ber of parallel environments for Omniverse Isaac Gym Ant is carried out. Stan-
dalone and simultaneous sequential and parallel (without shared memory) training
was done on 64 environments per agents. Simultaneous sequential training (with
shared memory) was also done on 64 environments for all agents (where the scope
was divided equally among the available agents).

The architecture of the Policy and Q networks used by all the agents is the same.
The networks receive the observation space as input for the Policy, and the con-
catenated components of the observation space and action space for Q networks as
input. They are followed by two dense hidden layers of 512 and 256 neurons respec-
tively, each with ReLU activation functions. The Policy network has eight output
neurons that use the hyperbolic tangent function to fit the action space to the ex-
pected interval [−1, 1], while the Q networks use a linear activation function for
their output neuron to estimate an unbounded Q-value.

In the Table 6.2 are listed the hyperparameter values configured and allowed by
the skrl library.

Hyperparameters Value
Optimizer Adam
Policy/Value learning rate 5 · 10−4

Actor/Critic learning rate 5 · 10−4

Entropy learning rate (SAC) 5 · 10−3

Initial entropy value 1.0
Experience replay buffer size 15625
Batch size 4096
Discount factor 0.99
Ornstein-Uhlenbeck noise (DDPG) θ: 0.15, σ: 0.2, base scale: 0.5
Gaussian noise (TD3) mean: 0.0, std: 0.1
Exploration decay (type) linear
Exploration decay (initial scale) 1.0
Exploration decay (final scale) 10−3

Smooth regularization noise (TD3) mean: 0.0, std: 0.2
Smooth regularization clip (TD3) [-0.5, 0.5]
Soft update hyperparameter 0.005
Random timesteps 80
Learning starts 80
Gradient norm clip 0.0
State preprocessor running-standard-scaler
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TABLE 4.1: Hyperparameter configured and allowed by skrl library.

Figure 4.12 shows the mean reward and standard deviation of both standalone
and simultaneous training (with shared memories) for each agent.

FIGURE 4.12: Mean reward and standard deviation of both stan-
dalone and simultaneous training (with shared memories) of the
DDPG, TD3 and SAC actor-critic algorithms in the Omniverse Isaac

Gym Ant environment.

Simultaneous training with shared memory yields slightly higher reward values
than standalone training. This result can be attributed to training on data collected
from different sources. In this case, the data collection comes from three different al-
gorithms, each one with a different exploration strategy, making it possible to cover
the observation-action space in a broader extent.

Regarding the training time, the use of sequential and parallel simultaneous
trainers (with or without memory sharing) reduces the total training time, in about
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one-fourth, compared to the overall training time of each algorithm alone, as shown
in the Figure 4.13.

FIGURE 4.13: Relative times for standalone and simultaneous train-
ing using different trainers and sharing memory modes.

A significant portion of the training time reduction is due to the fact that in both
sequential and simultaneous parallel training, the interaction with the environments
(which are created one-time) is performed only once for all involved agents.

Figure 4.14 shows the relative GPU consumption for standalone and simultane-
ous training using different trainers and sharing memory modalities.

According to the plot, the GPU usage is nearly the same for both standalone
and simultaneous sequential training with shared memory. Since shared memory
training is performed on the same number of parallel environments as standalone
training, its replay buffer (and thus GPU) usage is the same. The small difference
is due to the presence of the models (the approximation functions) required by each
agent.

In the case of simultaneous sequential and parallel training without shared mem-
ory, the GPU consumption of the library components, excluding the consumption of
the simulator and PyTorch CUDA kernels4, is at least 3 times higher than that of
standalone training. For parallel training, the PyTorch CUDA kernels are loaded in
each process, which significantly increases the total GPU consumption.

4 PyTorch compiled and optimized code designed specifically to run on NVIDIA GPUs using
CUDA C language.

56



4.4. Chapter conclusions

FIGURE 4.14: Relative GPU consumption for standalone and simul-
taneous training with different sharing memory modalities.

4.4 Chapter conclusions

skrl is a RL library that allows researchers to to compose their experiments using a
modular API. Its development has focused on the readability, simplicity, and trans-
parency of the algorithm implementations. In addition to supporting the traditional
environment interfaces such as OpenAI Gym / Farama Gymnasium and DeepMind,
it also allows loading and training on NVIDIA Isaac Gym, Isaac Orbit and Omni-
verse Isaac Gym environments. In the latter environments, it enables simultaneous
training of agents by scopes (subsets of environments among all available environ-
ments) that may or may not share resources in the same run.

In particular, this last feature allows off-policy RL algorithms that share replay
memory to reduce their training time and computational resource consumption (in
terms of GPU memory) while increasing the mean perceived reward.

This feature answers research question 2 (a): By simultaneously training off-
policy RL algorithms it is possible to reduce the training time of all agents by about
25%. In addition, the use of shared memory can reduce GPU consumption for si-
multaneous training by up to 35% and 70%, respectively, compared to sequential
and parallel training without shared memory.
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Chapter 5

Reducing Contact Forces and
Jamming States using Force
Overlay in Disassembly Tasks

The content of this chapter addresses research question 2 b): How can the capabilities
of a collaborative robot for disassembly tasks be leveraged for reducing contact forces and
jamming states?

The work presented in this chapter is partially published in the paper: Antonio Serrano-
Muñoz, Íñigo Elguea-Aguinaco, Dimitris Chrysostomou, Simon Bøgh, Nestor Arana-Arexolaleiba.
“A Scalable and Unified Multi-Control Framework for KUKA LBR iiwa Collaborative Robots”.
In: 2023 IEEE / SICE International Symposium on System Integration (SII). IEEE.
2023, pp. 1–5. URL: https : / / ieeexplore . ieee . org / abstract / document /
10039308 .

KUKA LBR iiwa robots are among the most popular robotic manipulators and
are widely recognized for their capabilities and reliability in collaborative robotics
and safety applications thanks to their advanced control and sensor technology.

One of the distinctive capabilities of such manipulators, which has been used
in contact-rich manipulation and even in disassembly research, is the generation of
oscillating motions (via force overlays) to help redistribute the forces resulting from
contact between the manipulated parts and avoid jamming. However, it is unknown
to what extent the different overlays supported by the KUKA LBR iiwa, and with
different parameterizations (such as oscillation amplitude and frequency), can help
to reduce the forces resulting from the contact of the manipulated parts, especially
in disassembly.

This chapter describes the empirical research conducted to determine the extent
to which the use of force overlay to generate oscillatory motion under different pa-
rameterizations helps to reduce contact forces and the occurrence of jamming during
the execution of a disassembly task. It also describes a new control framework for
KUKA LBR iiwa robots that allows accessing and parameterizing the force overlap
mode of such manipulators among other desirable capabilities for RL and disassem-
bly tasks.
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5.1 Contact force redistribution via oscillating motions

Oscillating motions can help to redistribute the forces resulting from the friction
caused by the contact of the manipulated parts as well as from the occurrence of
jamming.

Some authors have applied oscillating motions in their works. For example, the
Lissajous curve overlay has been used in contact-rich manipulation tasks such as
cleaning on non-flat surfaces [146], filleting geometric profiles [147] or searching the
nut hole for screwing tasks [148]. Also, the spiral overlay has been used to detect a
hollow for insertion [149] as well as for the assembly of wooden components [150].

In disassembly, the sinusoidal overlay was used for evaluating strategies to sep-
arate a pin along a door chain [74], as discussed in Chapter 3. For this, the authors
used superposition only in one of the motion axes and with a single parametrization.

Although oscillating movements have been used in the published literature, it is
not known to what extent the available overlays (with different parameterizations)
can help to reduce the forces resulting from friction caused by the contact of the
manipulated parts, particularly in disassembly.

This empirical research investigates the use of the KUKA LBR iiwa Cartesian
impedance controller with overlaid force oscillation to reduce contact forces and the
occurrence of jamming during the execution of a disassembly task. For this pur-
pose, the different types of force overlays (sinusoidal, Lissajous, and spiral) under
different parameters are evaluated in a disassembly task.

To control and access the capabilities of KUKA LBR iiwa, there are some imple-
mentations using different workflows (such as Python, MATLAB, ROS and ROS2;
they in an standalone implementation). However, only few of them allow the use of
some of the available force overlay types (and under limited parameterization) re-
quired to conduct the study about contact force reduction. Therefore, it is necessary
to have an implementation able to access, to a greater extent, the capabilities of these
cobots.

The following section describes the implemented framework. In the subsequent
section, and with an understanding of the accessible capabilities, the experiments
and results are presented.

5.2 Scalable and unified multi-control framework for KUKA
LBR iiwa cobots

This section describes libiiwa, a control framework for the KUKA LBR iiwa collabora-
tive robots. The design of this framework responds to the needs of our lab, since this
robot is used in our work. As an extra, the framework unifies and enables control
and communication through ROS and ROS2 [151], but also provides direct control
for those applications where minimal control frequency is required through a scal-
able, simple, and well-documented API.
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5.2.1 Framework architecture

The Figure 5.1 shows the architecture of the implemented framework. It is divided
into three main blocks (where each block represents a physical device) as described
below, from the bottom to the top block.

FIGURE 5.1: Framework architecture divided into nested blocks ac-
cording to the devices involved and the robot features and capabili-

ties, as well as the APIs and control workflows provided.

5.2.1.1 KUKA LBR iiwa

The KUKA LBR iiwa1 is a seven-degree-of-freedom serial manipulator with force
and torque sensors along each axis, as illustrated in Figure 5.2. This sensor distribu-
tion allows both position and impedance control, providing compliant behavior in
force-sensitive tasks.

5.2.1.2 KUKA Sunrise Cabinet

KUKA Sunrise Cabinet is the controller workstation of the robotic manipulator, which
has specific software, hardware, and interfaces to control it. KUKA Sunrise.OS is the
cabinet’s operating system, which provides toolboxes and libraries programmed in
JAVA to read and modify the robot’s state. The robot’s control system or the KUKA
Smartpad is the only source of access to any sensory data or information relevant to
the current task.

1LBR iiwa: www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa
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FIGURE 5.2: KUKA LBR iiwa robot and representation of its joints.

The robot can be programmed through both software and hardware interfaces.
Software interfaces include the Standard Interface and the Servo Interface, while
hardware interfaces include the Fast Response Interface (FRI), as described below:

• Standard Interface: A software interface that allows viewing the current state
of the robot, setting parameters, and programming discontinuous blocking or
non-blocking motion sequences.

• Servo (or serving) Interface: A real-time software interface that allows the im-
plementation of non-deterministic applications and continuous and smooth
motion composed of multiple points. This interface requires the presence of
some KUKA-specific software libraries in the cabinet.

• Fast Response Interface (FRI): A hardware interface that allows direct, low-
level, real-time access to the KUKA robot controller from external computers
at high rates of up to 1 kHz. This interface requires KUKA libraries written
in C++ and Java. This interface requires the presence of some KUKA-specific
hardware in the cabinet.

Since our lab setup does not have the FRI hardware interface, the framework is
developed on the Standard and Servo software interfaces.

To access most of the specific features and capabilities of the LBR iiwa, a subcom-
ponent has been programmed in JAVA language that defines an interface using the
KUKA Sunrise.OS libraries: libiiwa - JAVA API. The API allows communication and
control from external stations via TCP/IP protocol. It can also be used to quickly
develop applications that can be executed from the cabinet itself.

The following robot features and capabilities can be configured and used:
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Execution type

Execution type defines how the movements of the robot will be executed by the
internal controller. The types supported by the implemented API are:

• Synchronous: The synchronous type executes a motion command after the
current motion has been completed, blocking the program flow.

• Asynchronous: The asynchronous type executes a motion command without
interrupting the program.

Motion type

Motion type defines the types of movements to be performed by the robot to go
from one pose to another. The types supported by the implemented API are:

• Point-to-point (PTP): Executes a point-to-point motion to the endpoint.

• Linear (LIN): Executes a straight-line motion to the endpoint.

• Linear relative to its current position (LIN_REL): Executes a linear motion rel-
ative to the previous position.

• Circular (CIRC): Executes a circular motion defined by an auxiliary position
and an end position.

Control mode

Control mode defines which controller can be used to operate the robot. The API
allows operating in the following modes:

• Position: Execute the specified motion with the highest possible positional ac-
curacy and without path deviation.

• Joint impedance: Virtual spring damper system with configurable stiffness and
damping values for each joint.

• Cartesian impedance: Virtual spring damper system with configurable stiff-
ness and damping values for Cartesian space. This allows the robot to respond
to external forces in a compliant manner.

• Cartesian sine impedance: Special form of the Cartesian impedance controller
that allows overlaying force values on the motion. Available force overlays are:

– Constant force: overlay a constant force in one Cartesian direction, that
does not change over time.

– Sine: overlay a simple force oscillation in one Cartesian direction.

– Lissajous: overlay a 2-dimensional oscillation in one plane that generates
a Lissajous curve.

– Spiral: overlay a spiral-shaped force oscillation in one plane.
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Control interface

Control interface defines which interface will be used to operate the robot con-
trollers. The API allows selecting between the two software interfaces:

• Standard: A software interface that allows viewing the current state of the
robot, setting parameters, and programming discontinuous blocking or non-
blocking motion sequences.

• Servo: A real-time software interface that allows the implementation of non-
deterministic applications and continuous and smooth motion composed of
multiple points.

Conditions

Conditions can be used to monitor the robot’s control and trigger specific reac-
tions (such as stopping a current motion) when definable limits are exceeded or not
reached. The following conditions can be defined:

• Cartesian force: For each Cartesian axis, define the force condition at which
the robot must stop its motion.

• Joint torque: Define the axis/joint torque condition (lower and upper limits)
for the specified axis at which the robot must stop its motion.

The libiiwa - JAVA API also defines a communication protocol (described in Sub-
section 5.2.2.1) over TCP/IP to allow control and reading of the robot status from
external workstations. Other APIs and functionalities are implemented on top of
this protocol.

5.2.1.3 Workstation

An external computer that acts as an access interface to the operator, to other external
control programs such as learned or designed control policies, or to ROS/ROS2 en-
vironments, for example. External access or control workflows are based on a library
component programmed in Python, (libiiwa - Python API), which communicates via
TCP/IP with the mentioned pair (libiiwa - JAVA API).

5.2.2 Framework API

5.2.2.1 Communication protocol

The communication protocol designed and implemented allows to control the robot
from external workstations. Its structure is designed as a number sequence of float-
ing (32 bits, default configuration) or double (64 bits) precision, which can be con-
figured in both, the Java and Python API. This structure simplifies the segmentation
and use of the transmitted information, extending the control to other programming
languages such as C/C++, MATLAB, JavaScript, and others. The communication
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protocol byte order, size, and alignment uses the network byte order (which is al-
ways big-endian as defined in IETF RFC 17002)

The communication has to be initiated from the external control workstation
which sends a command request and receives the robot state as response as shown
in Figure 5.3.

FIGURE 5.3: Communication protocol flow between the external
workstation (from which the request must be initiated) and the cabi-

net (which returns the robot state as a response).

Command (request)

The command allows to control the robot movement, either in Cartesian or joint
action space, to configure the operating modes, set limits for velocities, accelera-
tions, and jerks and define stop conditions. Its structure, shown in Figure 5.4, is a
sequence of 8 numerical values, where the first value is the code of the command
to be executed (interpreted as an integer value), while the other values are the data
that the command may or may not require. The maximum number of data values
corresponds to the number of joints of the robot: 7 in the case of the LBR iiwa.

Refer to the communication protocol description in the framework documenta-
tion (https://libiiwa.readthedocs.io/en/latest/intro/protocol.html) for more
details about the command codes and their associated data.

Robot state (response)

The state of the robot received as a response is a sequence of 38 numeric values.
The distribution of these values corresponds to the following information: command
status (1), joint positions (7), joint velocities (7), joint torques (7), Cartesian position
(3), Cartesian orientation (3), Cartesian forces (3), Cartesian torques (3), last error (1),
has fired condition (1), is ready to move (1), and has active motion (1).

Refer to the communication protocol description in the framework documenta-
tion (https://libiiwa.readthedocs.io/en/latest/intro/protocol.html) for more
details about the robot state and the data type of its components.

2IETF RFC 1700: https://www.rfc-editor.org/rfc/rfc1700
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FIGURE 5.4: Structure of the communication protocol request com-
mand. The request is composed of the command code to be executed

and its respective parameters.

5.2.2.2 Control workflow

This section describes the various control workflows that have been implemented in
this framework up to the time of this writing.

Python API

The Python API allows direct control of the robot from a simple interface, by
instantiating a class. This API allows rapid prototyping and solution creation, given
the nature of the programming language, especially in the field of ML, where Python
is the most popular language.

Since the Python module does not require any special dependencies except for
NumPy, it is possible to use it from any operating system, not just Linux.

ROS & ROS2 API

On top of the Python API, a node has been developed for both ROS and ROS2
that allows the framework (and thus the manipulator) to be integrated into a ROS
environment. Therefore, this implementation has the advantage of being easy to
debug and extend.

The ROS nodes for both versions implement the entire Python API as follows:
subscription topics for manipulating the robot in Cartesian and joint control space,
and publication topics for exporting sensor information such as joint position, ve-
locity, and torque, the Cartesian pose of the end-effector, and the force and torque
measured in that frame. The messages defined in the standard, geometry, and sensor
packages are used for topics.
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It also implements ROS services to configure and use the features and capabilities
described above. For the services, specific messages were defined, since the message
definition of the standard support is limited.

MoveIt integration

MoveIt is the most widely used and popular motion planning and manipula-
tion software in the robotics community [152]. By default, it uses the ROS Control
FollowJointTrajectory3 action service as a low-level controller for controlling the ma-
nipulator [153].

The ROS nodes of the framework implement this action service, which makes
it possible to use MoveIt to control the LBR iiwa as showcased in Figure 5.5. For
both versions, the topic names, execution frequency, and other parameters can be
modified from the roslaunch files provided.

FIGURE 5.5: MoveIt integration with a real KUKA LBR iiwa robot.

FollowJointTrajectory defines a sequence of joint configurations (trajectory) to be
followed by the controller. The implementation allows specifying the behavior of
the trajectory execution in the following 2 manners:

• Follow the whole trajectory:

The execution of the next joint configuration in the sequence of trajectories
parameterized in the FollowJointTrajectory action service is updated according
to Equation 5.1:

J=7

∑
j
||qj − qjtrajectory || <= ϵ (5.1)

3FollowJointTrajectory: https://docs.ros.org/en/noetic/api/control_msgs/html/action/
FollowJointTrajectory.html
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5.2. Scalable and unified multi-control framework for KUKA LBR iiwa cobots

Where q is the robot joint positions and ϵ is the trajectory update threshold.

The execution is sensitive to different values of speed, acceleration, and jerk.
The ϵ parameter must be adjusted in cases where the trajectory runs intermit-
tently or there are missing joint configurations.

• Go to last trajectory joints configuration: The controller ignores the middle
joint configuration and acts to position the robot at the last joint configuration
parameterized by the FollowJointTrajectory action service.

5.2.2.3 Documentation

The documentation is written using reStructuredText4 and hosted online by Read
the Docs under the URL https://libiiwa.readthedocs.io as shown in Figure 5.6.

FIGURE 5.6: Screenshot of the libiiwa documentation home page

Apart from the library installation steps and API details (classes, functions, pa-
rameters, return values, etc.), snippets are also included for the Python, ROS and
ROS2 APIs. For the last two, the code snippets are extended to call topics and ser-
vices from the terminal and from Python code using the rospy and rclpy libraries for
both versions.

Examples of use cases are included with their respective scripts or ROS packages.

5.2.3 Comparison with existing implementations

Table 5.1 presents a comparison between the proposed framework and other existing
implementations in terms of the capabilities and features of KUKA LBR iiwa robots,
as well as the control workflows described previously.

4reStructuredText is a plaintext markup language: https://docutils.sourceforge.io/rst.html
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The table shows that the proposed framework covers most of the features and ca-
pabilities of the robot, providing the potential for the development of a wide range
of robotic applications at different levels of complexity. This opens up new possibil-
ities for the exploitation of the robot’s capabilities in various domains and tasks.
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Execution
type

Synchronous X X X
Asynchronous X X X X X

Motion
type

PTP X X X X X
LIN X X X X X
LIN_REL X X X X
CIRC X X X X X
SPLINE X

Control
mode

Position X X X X X
Joint impedance X X
Cartesian impedance X X X X X
Cartesian sine impedance X /

Control
interface

Standard X X X X
Servo X X X X
FRI X X X

Condition
Force X
Torque X

Control
workflow

Direct X X X
ROS X X X X
ROS2 X X X

TABLE 5.1: Comparison of libiiwa with other related frame-
works/libraries. Shaded cells do not apply to the marked fields.

5.2.3.1 Relevant features for the execution of disassembly tasks using reinforce-
ment learning

From the list of capabilities and features of KUKA LBR iiwa robots, some are partic-
ular relevant or desirable for carrying out disassembly tasks using RL. Among these
features are:

• Cartesian sine impedance control mode: Oscillating motion can redistribute
the forces resulting from friction between the contact points of the parts to be
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disassembled due to variations in pressure and sliding direction. This redis-
tribution helps to prevent localized areas from experiencing excessive friction
and to reduce the likelihood of jamming [74][161].

While iiwa_stack allows configuring only the overlay of a single-axis sine os-
cillatory motion, libiiwa offers access to all types of motion overlays and other
configurations particular of this control mode.

• Force and torque conditions: Disassembly tasks often involve interactions with
objects that can cause excessive forces and torques that could lead to damage
or injury [162]. Defining conditions that internally monitor the robot control is
relevant to ensure the safety of the operator, the environment and the robotic
manipulator itself.

Compared with other libraries, libiiwa enables the configuration of internal
monitoring operations of the robot control and the triggering of specific re-
actions for force and torque limits. In addition, it allows setting maximum
permissible values for impedance control such as control force, velocity and
Cartesian deviation.

• Control workflows: Python is the widest used programming language for re-
search and application development in RL, thanks to the existence of libraries
and frameworks that provide high-level functionality for both implementing
RL interfaces and codifying ML algorithms [163][164].

Besides providing the most complete API in Python, libiiwa also allows control
through both ROS and ROS2, making it suitable for developing a wide variety
of robotic applications, including RL.

5.3 Reducing contact forces and jamming states using Carte-
sian impedance control with overlaid force oscillation

This section experimentally investigates the use of the KUKA LBR iiwa Cartesian
impedance controller with overlaid force oscillation to reduce contact forces and the
occurrence of jamming (measured as the change in the time required to complete the
motion) during the execution of a disassembly task. For this purpose, the different
types of force overlays (sinusoidal, Lissajous, and spiral), under different amplitudes
and frequencies of oscillation, are evaluated in a disassembly task.

5.3.1 Experimental setup

The experimental setup consists of two elements: a fixed slotted base and an ob-
ject (that fits inside the slot) attached to the manipulator end-effector as shown in
Figure 5.7. The fixed slotted base is placed in the direction of the Y-axis of the ma-
nipulator. The gap between the base and the object is 0.25 millimeters.

For each experiment, the robot end-effector is controlled at a frequency of 15Hz
to go from the initial position to the final position (for a total displacement of 30
centimeters). Although the action (a) move the end-effector in the Y-axis of the ma-
nipulator, a random uniform noise (U) is added in the X and Z-axis to intensify
jamming and friction states according to Equation 5.2.
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FIGURE 5.7: Experimental setup: Fixed slotted base and object at-
tached to the manipulator end-effector (left). Initial position (center)

and final position of the experiment (right).

a = [ ∆x, ∆y, ∆z ] = [ U(−1, 1) cm, 1 cm, U(−1, 1) cm ] (5.2)

For each force overlay type, parameterized by frequency (2.5, 5.0, 7.5, 10.0, 12.5
and 15.0 Hz), amplitude (1.0, 2.0, 3.0, 4.0 and 5.0 Newtons), axis of application (X, Y
and Z for sine type), and plane of application (XY, XZ, YZ for Lissajous and spiral
types), 5 experiments were performed. In addition and as a baseline, 5 experiments
were performed without any force overlay. Five different seeds are set for each of the
5 experiments and common for the different parameterizations. A threshold of 30
Newtons was established to analyze the contact forces involved. Cartesian stiffness
and damping were set to 3500 N and 250 Nm respectively.

5.3.2 Results

Figure 5.8 shows the mean and standard deviation of the end-effector’s Cartesian
force vector magnitude exceeding 30 Newtons (measured every 15 Hz) for each type
of force overlay (parameterized by frequency, amplitude and the axis or plane of
actuation). For this, and the next plots, the values for the baseline execution (no-
overlay) is added for comparison.

According to the plot, practically all tested overlay types (in their different pa-
rameterizations) average below non-overlay measurements. Only for punctual fre-
quency and amplitude parameterization pairs (e.g.: (2.5 Hz, 1.0 N), (15 Hz, 2 N) or
(15 Hz, 3 N)), and for the YZ-plane, the force measurements generated by overlay-
ing Lissajous curves and spiral shapes exceed, up to 1.3 Newtons, the non-overlaid
measurements.

The overlay types that on average have lower contact forces, up to 10% compared
to no-overlay, are Lissajous curves and spiral shapes in the XZ-plane and sinusoidal
oscillation in the X-axis, in that order. It is relevant to note that both the X-axis and
the XZ-plane are perpendicular to the direction of extraction.

Similarly, Figure 5.9 plots the number of such occurrences during the execution
of the experiments. In terms of the amount of contact force exceeding the specified
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FIGURE 5.8: Mean and standard deviation of the end-effector’s Carte-
sian force vector magnitude exceeding 30 Newtons for each force

overlay type under different parameters.

71



Chapter 5. Reducing Contact Forces and Jamming States using Force Overlay in
Disassembly Tasks

FIGURE 5.9: Number of end-effector’s Cartesian force vector magni-
tude exceeding 30 Newtons for each force overlay type under differ-

ent parameters.
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FIGURE 5.10: Task execution time for each force overlay type under
different parameters.
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threshold, Lissajous curves and spiral shapes in the XZ-plane and sinusoidal oscil-
lation in the X-axis offer the most significant reductions. These reductions are up to
55% for the Lissajous curves, up to 45% for the spiral shapes, and up to 32% for the
sinusoidal oscillations compared to non-overlay measurements.

Although there are some cases in which the occurrences exceed the baseline as
much as 27.5% (e.g. (12.5 Hz, 3 N)), their magnitudes are still less than the latter.

Figure 5.10 depicts the mean time taken to perform the disassembly task for each
set of experiments. The plotted data is used indirectly to analyse the probability
of jamming states (the greater the number of jams, the greater the time required to
complete the extraction).

Regarding the duration of task execution, Lissajous curves and spiral shapes in
the XZ-plane and sinusoidal oscillations in the X-axis again exhibit the most signif-
icant reductions. For Lissajous curves, spiral shapes, and sinusoidal oscillations in
the XZ-plane and on the X-axis, execution times are reduced by up to 28%, 22%, and
18%, respectively, compared to non-overlay execution. Such time reductions can be
associated with a decrease in the probability of reaching jamming states.

5.4 Chapter conclusions

The research carried out answers research question 2 (b): Using the force overlay
types under different parameters reduces the contact forces caused by friction and
the probability of jamming states (measured as the change in the time required to
complete the motion) in the execution of disassembly tasks. In particular, Lissajous
curves and spiral shapes, applied in the plane perpendicular to the extraction direc-
tion, yield the most effective results. The results show reductions of up to 10% and
55% in the mean force magnitude and occurrence of contact force exceeding the es-
tablished threshold, respectively, and a 28% reduction in task completion time (and
thus the mitigation of jamming states) compared to non-overlay execution.

For KUKA LBR iiwa manipulator robots, libiiwa, a control framework is pre-
sented with different workflows, including both, ROS and ROS2 packages for soft-
ware interoperability in robotics, and direct control for RL applications. The pro-
posed interface outperforms current approaches in terms of functionality, accessi-
bility to robot capabilities, and integration. This framework can be useful to the
robotics community for developing research and applications using such manipula-
tors, thus taking advantage of the functionalities offered by this robot.
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Chapter 6

Reinforcement Learning for
Generalization of Collaborative
Disassembly Tasks with High
Variability

The content of this chapter addresses, in part, research question 1: To what extent can RL
algorithms generalize the execution of disassembly tasks using collaborative robots?

The work presented in this chapter is partially derived from the work carried out for
the paper: Íñigo Elguea-Aguinaco, Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Ibai
Inziarte-Hidalgo, Simon Bøgh, and Nestor Arana-Arexolaleiba. “Goal-Conditioned Rein-
forcement Learning within a Human-Robot Disassembly Environment”. In: Applied Sci-
ences 12.22 (2022), p. 11610. URL: https: // www. mdpi. com/ 2076-3417/ 12/ 22/
11610 .

The research conducted in Chapter 3 revealed how some RL algorithms can learn
and generalize object extraction tasks to various initial conditions, such as positions
and rotations.

To perform disassembly tasks, agents must also be able to handle the variabil-
ity of EOL product states such as different geometries and changes in the physical
properties of objects, such as friction, for example. However, it is not known to what
extent RL algorithms can generalize disassembly tasks with high degree of variabil-
ity.

This chapter updates the state-of-the-art of related publications in the domain
of RL and disassembly up to the time of writing. Also, it proposes a RL method
to generalize disassembly tasks in Cartesian space with high degree of variability
in terms of geometric length and spacing between parts, as well as physical friction
between them.

6.1 An updated review on disassembly tasks

The following section provides a recent and updated overview of the state-of-the-art
of research and application in disassembly tasks up to the time of writing.
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6.1.1 Disassembly tasks

Since the previous review discussed in Chapter 3, few works have been published
as well in the execution of disassembly tasks. A snapshot of these works is shown in
Figure 6.1.

FIGURE 6.1: Snapshot of the publications of a) Hjorth et al. [165], b)
Serrano-Muñoz et al. [64], c) Elguea-Aguinaco et al. [68], and d) Qu,

Wang, and Pham [166].

Hjorth et al. [165] propose an algorithm to perform energy-aware impedance
control using a global power-limited energy reservoir. Such an algorithm is eval-
uated on an unscrewing task and compared with a standard impedance controller
and a hybrid force-impedance controller. Unlike the latter, the proposed implemen-
tation guarantees system passivity, safe task execution, and avoids contact loss. A
drawback of the presented control algorithm is the need to manually design the pa-
rameterization of the energy flow limit, which could limit its generalization to tasks
requiring different energy levels.

Serrano-Muñoz et al. [64] conducted (extended in Chapter 3), to their knowl-
edge, the first study on the generalization of object removal skills when applied to
contact-rich disassembly tasks. For this purpose, they implemented a disassembly
task involving one translational DOF on which two off-policy RL algorithms were
trained in simulation. Subsequently, the generalization capabilities were evaluated
in both simulation and the real world. Although the results of this initial study show
generalization capabilities for different initial positions and rotations, its scope is
limited to robot end-effector motions in only 2 DOFs for extraction in the XY-plane,
as well as for the geometry described for the test case.

Elguea-Aguinaco et al. [68] extended previous work to present a novel strategy
that combines the execution of the same disassembly task with real-time collision
avoidance through machine learning for safe human-robot interaction. To achieve
this, a reward function was designed that, at each timestep, guides the learning,
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and therefore the extraction task, in a direction subject to the location of a human
collaborator that avoids colliding with the person. In addition, this work scales the
task implementation from a single environment to hundreds of environments using
NVIDIA Isaac Gym preview and skrl. Although the authors succeed in completing
the task conditioned by the presence of the human being, from the point of view of
disassembly, they have the same limitations as their previous work. Their scope is
limited to extraction movements in the XY-plane and for the same geometry.

Qu, Wang, and Pham [166] recently extended the Herold et al. [74] work (de-
scribed in Chapter 3) to the field of RL. They conducted a research study using
DDPG, and also validated with other off-policy algorithms such as SAC and TD3, to
learn how to separate a bolt along a door chain. The disassembly task involves one
translational DOF. This work performs an empirical study of the effects of changes
in robot precision on the performance of controllers learned by adding uncorrelated
Gaussian noise to the robot’s actions. In contrast to previous RL works, training
is performed in the real world. The work has as drawbacks the reward function,
which guides the policy in the same fixed direction corresponding to the manipu-
lator end-effector X-axis and is designed for that particular geometry. Moreover, it
uses absolute information that prevents the generalization of the task to different
initial configurations.

6.1.1.1 Analysis

An overview of the disassembly tasks presented in the papers of the literature review
is shown in Table 6.1. The table summarizes the use or not of RL and the different
disassembly tasks.

Ref. RL Disassembly task
Hjorth et al. [165] No Unscrewing
Serrano-Muñoz et al. [64] Yes Contact-rich extraction
Elguea-Aguinaco et al. [68] Yes Contact-rich extraction
Qu, Wang, and Pham [166] Yes Contact-rich extraction

TABLE 6.1: A summary of recent articles addressing disassembly
tasks up to the time of this writing.

Research on RL for disassembly tasks has been conducted in previously unex-
plored DOFs. One translational DOF: separating a bolt along a door chain in the
x-axis by Qu, Wang, and Pham [166]. Two translational DOFs: extracting a block
from a slotted base in the XY plane by Serrano-Muñoz et al. [64] and by Elguea-
Aguinaco et al. [68]. However, works with a larger number of DOF has not been
reported.

Observation spaces still incorporate absolute information. Furthermore, the tasks
start from the same spatial position. Qu, Wang, and Pham [166] use the absolute spa-
tial Cartesian pose of the manipulator end-effector while Elguea-Aguinaco et al. [68]
use the same information, but in the XY plane of both the manipulator’s end effect
and the fixed base. As discussed in Chapter 3, the absolute information prevents
generalization of the learning to new spatial positions or to different configurations
of the robot manipulator.

The reward functions guide the policy in a specific direction, making it physically
impossible to complete tasks in other directions. In Qu, Wang, and Pham [166]’s
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work, this function only takes into account one-way advances on the X-axis. In
Serrano-Muñoz et al. [64] and Elguea-Aguinaco et al. [68] work, while the reward
functions allow movement in different directions, they do not prevent the policy
from falling into intermittent movement by exploiting design flaws.

Observations, reward functions, and episode completion conditions are strongly
anchored to the specific geometry used during training. Serrano-Muñoz et al. [64]
and Elguea-Aguinaco et al. [68] setups only support geometries with a length of 0.1
meters while in Qu, Wang, and Pham [166] it is 0.06 meters. Exploration outside
these ranges is not performed during training. The use of RL methods strongly
anchored to the geometries used in related publications makes generalization to new
geometries almost unfeasible.

The high degree of variability in the state of the EOL products leads to uncertain-
ties in the geometries, physical properties and the way of carrying out the extraction
of the objects to be disassembled, for example. In this sense, existing works in the
field of RL are limited to specific geometries and have a reward function that does
not guarantee generalization in the view of such variability. Furthermore, they are
limited to manipulations on one axis or Cartesian planes and the observations still
incorporate absolute information.

Consequently, this chapter aims to provide an RL method capable of generalizing
the performance of disassembly tasks under high variability.

6.2 Reinforcement learning for disassembly tasks with high
variability

This section describes the research carried out to handle the high degree of variabil-
ity of the states of the objects to be disassembled in terms of geometric length and
spacing between the objects in contact, as well as physical friction between them,
for the generalization of extraction tasks. In addition, the RL method proposed in
this research is extended to all translational Cartesian DOFs to operate in the space
rather than on a single axis or a plane.

For this purpose, the extraction of a rigid object that is inside and in contact with
a rigid slotted part is proposed as a use case. Both objects have variable geomet-
ric dimensions in terms of length and air space between them, as well as physical
frictions.

6.2.1 Reinforcement learning experimental setup

The experimental setup consists of a robotic manipulator and an object composed
of two rigid bodies, with variable geometric dimensions and physical frictions, in
contact with each other. The objective is, with RL algorithms, to learn how to control
a robotic manipulator to remove the detached object from the fixed slotted base that
can be oriented towards any direction in Cartesian space.

6.2.1.1 Simulated setup

An environment consisting of a manipulator robot (KUKA LBR iiwa) and a fixed
base was designed. The robot has a 2x2 cm cube attached to it by a fixed joint and

78



6.2. Reinforcement learning for disassembly tasks with high variability

placed 20 cm from its end-effector in the Z-axis, which fits into the slotted base as
shown in Figure 6.2.

FIGURE 6.2: Experimental setup in the simulation and its reference
system. Spherical coordinate notation described by polar (θ) and az-

imuthal (ϕ) angles is used to define the base orientation.

The combined object (fixed base and cube) is placed 0.65 meters in front of the
robot, at the same level as the robot’s base. The length of the geometry of the fixed
base and the width and height of its slot can be modified. The static and dynamic
friction coefficients of both the base and the cube attached to the robot can also be
modified to generate high degree of variability.

6.2.2 Reinforcement learning formulation

A MDP with a finite-horizon discounted return was used to frame the problem. The
agent will learn how to move the robotic manipulator’s TCP on the Cartesian space
X, Y and Z-axes to perform the extraction of two rigid objects in contact (contact-rich
extraction skill).

During each timestep of interaction with the environment, the agent is presented
with an observation o of the state s ∈ S of the environment, which is not fully ob-
servable. The agent then selects an action a ∈ A from the action space using a
parameterized policy πθ . The environment, which changes according to the agent’s
action, provides a reward signal rt = R(st, at, st+1) to the agent, indicating how good
or bad the new state is. The agent’s objective is to optimize the cumulative reward,
discounted by a factor γ ∈ (0, 1], by adjusting the policy’s behavior through some
optimization algorithm.

The following subsections describe the RL formulation:
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6.2.2.1 Reinforcement learning elements

Observation space

The observation space is defined as a 9-dimensional vector. The components
of the observation space are position, velocity and force, all in the Cartesian
space as shown in Equation 6.1.

ot = [ ptcpt
− ptcp0

, ptcpt
− ptcpt−1

, F⃗ ] (6.1)

The position component is calculated as the relative position of the TCP (ptcpt
)

with respect to its initial pose (ptcp0
) in the last 15 timesteps. As discussed in

Chapter 3, the use of relative information is relevant to the generalization of
the task for different initial poses as long as the manipulation is performed
within the operating range of the robot.

The velocity is calculated as the difference between the current TCP position
(ptcpt

) and its previous position (ptcpt−1
). Since the captures are taken at the

same frequency, the time fraction between the two measurements becomes a
constant assumed by the neural network (approximation function).

Force (F⃗) information provides feedback on the mechanical interaction be-
tween the manipulated parts

Action space

The action space is a 3-dimensional vector. Each component maps to the re-
spective translation (in centimeters) of the robot’s TCP in the [−1, 1] continu-
ous interval in the Cartesian space as shown in Equation 6.2.

at = [ ∆x, ∆y, ∆z ] (6.2)

The action space definition allows movements of the manipulator control frame
in its 3 translational DOFs, making it possible to reach any position in Carte-
sian space within the robot’s range.

Reward

To enforce the execution of the extraction task, a dense reward function is pro-
posed in which the agent receives an instantaneous value, at each interaction
with the environment, as a measure of how good or bad its decision-making
was.

The reward value for the extraction task is determined by calculating the cu-
mulative spatial displacement progress of the robot’s TCP at each iteration, as
formulated in Equation 6.3.

rtaskt =

∥∥∥∥∥ t

∑
i=1

(ptcpi
− ptcpi−1

)

∥∥∥∥∥ (6.3)
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The reward formulation overcomes the limitations of the definitions of state-
of-the-art work in disassembly and has the following benefits:

– There is no restriction on the direction of extraction to any particular com-
bination of Cartesian axes.

– For the same extraction direction, it does not limit its sense. Once a mo-
tion sense is defined, the maximum reward values are obtained by per-
forming actions in the same sense.
Moreover, it prevents the policy from falling into intermittent movement
by taking advantage of design flaws. Figure 6.3 shows an example of such
behavior. In this figure, random or intermittent decision making produces
a lower reward value than following the same direction and sense.

– It encourages a fast execution of the extraction task in any of the identi-
fied directions ans senses. Higher reward values are obtained for larger
displacements (in the same direction and sense).

FIGURE 6.3: Examples of the reward function formulated in Equa-
tion 6.3 for 50 spatial displacement samples for both random direction
and sense (red), and for the same direction with intermittent sense
(green) and with the same sense (orange). Random or intermittent
decision making produces a lower reward value than following the

same direction and sense.

Episode termination
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To generalize the extraction learning to geometries with different dimensions,
short episodic training is performed. Each episode lasts 1 second of physics
simulation, where the interaction with the environment occurs at a frequency
of 15 Hz.

This configuration tries to learn to learn to extract fragments instead of doing
the whole task, as is done in the existing state-of-the-art. Learning to extract
fragments has the following advantages:

– Task execution is not limited to one or several objects with specific known
dimensions.

– Extraction execution for fragments is adjustable to the variations in the
geometry of the parts involved and their physical properties.

Note that during the evaluation, it is necessary to use a window (with size 15
timesteps) to keep the value of the TCP initial position (ptcp0

) updated in order
to calculate its relative position for building the observation space.

6.2.2.2 Reinforcement learning algorithms

Agents

For training and evaluation, the following actor-critic algorithms were selected:

– Deep Deterministic Policy Gradient (DDPG)

– Twin Delayed Deep Deterministic policy gradient (TD3)

– Soft Actor-Critic (SAC)

– Proximal Policy Optimization (PPO)

Either DDPG, TD3 and SAC are off-policy algorithms while PPO is an on-
policy algorithm. The PPO selection is performed to take advantage of massive
environment parallelization.

Model architectures

The architecture of the Policy and Q networks used by the DDPG, TD3 and
SAC agents as well as the Value network used by PPO are the same. The net-
works receive the observation space as input for both, Policy and Value net-
works, and the concatenated components of the observation space and action
space for Q networks as input.

The model’s inputs are followed by two hidden dense layers of 64 neurons
each with Exponential Linear Unit (ELU) activation functions. Compared to
the previous study, this time the ELU activation function was chosen. ELU is
a smoother function than ReLU and, unlike the latter, allows negative infor-
mation to be explicitly captured, potentially improving the network’s perfor-
mance and leading to faster convergence in some cases [167][168].
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The Policy network has 3 output neurons that use the hyperbolic tangent func-
tion to fit the action space to the expected interval [−1, 1]. Both, the Q and
Value networks use a linear activation function for their output neuron to esti-
mate an unbounded Q-value and state-value respectively.

6.2.3 Experiments and results

6.2.3.1 Experiment implementation

The RL environment was defined using the NVIDIA Omniverse Isaac Gym inter-
face in Python to allow running massive parallel simulations. To take advantage of
this simulation platform, the environment is replicated until 1024 instances of it are
obtained as shown in Figure 6.4.

FIGURE 6.4: Snapshot of a subset of the 1024 parallel environments
in simulation.

For both, learning and evaluation the skrl library described in Chapter 4 was
used. Using skrl, PPO training was done standalone, while DDPG, TD3 and SAC
were trained simultaneously with shared memory to reduce training times, GPU
consumption and improve their learning. In the Table 6.2 are listed the hyperparam-
eter values configured and allowed by the skrl library.

Hyperparameters Value
Optimizer Adam
Policy/Value learning rate 5 · 10−4

Actor/Critic learning rate 5 · 10−4

Entropy learning rate (SAC) 5 · 10−3

Rollout buffer size 16
Experience replay buffer size 105

83



Chapter 6. Reinforcement Learning for Generalization of Collaborative
Disassembly Tasks with High Variability

Rollouts 16
Learning epoch 8
Number of mini batches 8
Batch size PPO: 256, DDPG, TD3 and SAC: 4096
Discount factor 0.99
Ratio/value clip 0.2
Ornstein-Uhlenbeck noise (DDPG) θ: 0.15, σ: 0.2, base scale: 0.1
Gaussian noise (TD3) mean: 0.0, std: 0.1
Exploration decay (type) linear
Exploration decay (initial scale) 1.0
Exploration decay (final scale) 10−3

Smooth regularization noise (TD3) mean: 0.0, std: 0.2
Smooth regularization clip (TD3) [-0.5, 0.5]
Soft update hyperparameter 0.005
Maximum timesteps per episode 15

TABLE 6.2: Hyperparameter configured and allowed by skrl library.

To generate high degree of variability, both the air gap between the fixed base
and the cube attached to the robot and the physical friction between the two objects
were randomized. A set of air gaps between the fixed base and the object (0.0, 0.10,
0.25, 0.50, 1.00 millimeters), as well as the dynamic and static friction coefficients
(0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.50, 0.75, 1.00), were uniformly distributed across
all parallel environments.

Each time an environment is reseted, the orientation of the fixed base (and the
object attached to the robot) is randomized by uniform sampling (in spherical coor-
dinates), in the range 0 to 180 degrees in polar and -90 to 90 degrees in azimuthal
angles. Since the fixed base is symmetrical, the angular samples in these intervals
cover all possible orientations in the space.

The training were done using a local workstation with an Intel(R) Xeon(R) W-
2295 CPU @ 3.00 GHz, 125 GiB of RAM, and a GPU Quadro RTX 6000. The algo-
rithms were trained 6 times, with different seeds for the random number generator,
to identify repetitive behaviors. PPO was trained for 20000 timesteps while DDPG,
TD3 and SAC were trained for 75000 timesteps. The policies with the highest mean
reward during training were selected for evaluation.

6.2.3.2 Training

Figure 6.5 shows the mean reward and its standard deviation for PPO, trained in-
dividually, and DDPG, TD3 and SAC, trained simultaneously with shared memory.
Timpesteps axis have been normalized to plot all curves on the same time scale, since
the number of timesteps executed is different for PPO and for DDPG, TD3 and SAC.

According to the results, PPO and SAC reach very similar mean reward val-
ues. Although SAC quickly reaches maximum values, its performance declines very
slightly in the second half of the training. In the case of DDPG and TD3, their statis-
tics reach a stable behavior, without growth or decay, from very early in the training
process. Both algorithms are ranked under PPO and SAC, with DDPG being the one
with the worst performance during training.
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FIGURE 6.5: Simulation training results: Mean reward and standard
deviation during training for PPO, DDPG, TD3 and SAC agents.

6.2.3.3 Evaluation of the generalization capabilities under variability in simula-
tion

To evaluate the RL algorithms’ generalization capabilities in simulation, a set of ori-
entations resulting from the combination of polar angles (in the range 0 to 180 de-
grees with a 10 degrees of step) and azimuthal angles (in the range -90 to 90 degrees
with a 5 degrees of step) were defined, derived in a total of 648 environments with
different orientations each.

For this phase, a maximum number of 100 timesteps was set as the termination
condition (along with the completion of the extraction task) for the current episode.
500 timesteps, for at least 5 episodes, were run for the combination of friction coef-
ficients (0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.50, 0.75, 1.00) and air gaps (0.0, 0.10, 0.25,
0.50, 1.00 millimeters) defined during training.

Figure 6.6 displays, in a global view, the task completion ratio of all experiments
for the involved algorithms. The task completion ratio is the outcome of the discrim-
ination of the execution status (whether the task has been completed or not) in the
specified amount of timesteps for the evaluation. In addition, it includes the task
completion ratio from the execution of a baseline defined by the execution of actions
that follow the fixed base orientation with the maximum possible displacement.

Since the baseline corresponds to the optimal performance of the extraction task
(maximum displacement in the same orientation of the fixed base), it is expected that
the results obtained with the trained policies will be close to the baseline values, but
never exceed them.

For friction coefficients close to zero, where the probability of jamming is prac-
tically null (for actions close to the orientation direction of the fixed base) the suc-
cessful execution of the task with the learned policies is completed with a high ratio.
However, although the successful execution of the tasks for higher values of the fric-
tion coefficients increase their ratio, as the air gap between the fixed base and the
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FIGURE 6.6: Task completion ratio resulting from the discrimination
of the execution state (completed or not) for the combination of fric-
tion coefficients and air gaps defined during training. The baseline
was generated with actions that follow the fixed base orientation with
the maximum possible displacement. Negative values indicate that
the execution could not be completed within the specified timesteps.
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object to be extracted grows, they remain below 50% of the baseline ratio.

Figure 6.7 represents graphically the mean duration (in timesteps) of the last 5
episodes performed by the PPO (the optimal algorithm according to training results)
for 2 pairs of coefficient of friction and air gap: (0.0, 0.0 mm) and (1.0, 1.0 mm),
among all available pairs.

FIGURE 6.7: Mean duration (in timesteps) of the last 5 episodes for
the PPO algorithm for the pairs of coefficients of friction and air gap
(0.0, 0.0 mm), on the left, and (1.0, 1.0 mm), on the right, respectively.

Such figure allows to visualize in detail (with respect to the different spatial ori-
entations of the parts) how the trained policy behaves for different pairs of polar and
azimuthal angles.

6.3 Chapter conclusions

The results presented in this chapter respond, to a large extent, to research question
1: The proposed RL method is able to generalize, in different extends, extraction
disassembly tasks with high variability in the geometric length, air gap as well as
the physical friction of the objects involved. For low friction coefficients, as the gap
between the manipulated parts increases, the task execution is completed at high
percentage values (above 95%). Not so, for high friction coefficients, where the per-
centage values drop below 50%.

To generalize the task to different geometric lengths and manipulations in Carte-
sian three-dimensional space, the use of relative information to form the observation
space, the reward function and the training of the agents for short periods of time
are essential. The definition of the reward function does not restrict the extraction
direction to any particular Cartesian axis, but promotes the execution of the task for
any of the identified directions and senses.

However, since the reward function does not explicitly define a direction to take,
the decisions made by the trained policies are spread over finding actions that yield
some extraction, leaving little room for task execution once a direction is found (if
found), thereby reducing the probability of task completion. Furthermore, such a
definition does not guarantee the reliability of the trained system with respect to a
specific extraction sense.
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Chapter 7

Disambiguating Disassembly Task
Sense and Narrowing Action Space
Through Human Operator
Experience.

The content of this chapter addresses, in part, research question 1: To what extent can RL
algorithms generalize the execution of disassembly tasks using collaborative robots?

The work presented in this chapter is partially derived from the work carried out for
the paper: Íñigo Elguea-Aguinaco, Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Ibai
Inziarte-Hidalgo, Simon Bøgh, and Nestor Arana-Arexolaleiba. “Goal-Conditioned Rein-
forcement Learning within a Human-Robot Disassembly Environment”. In: Applied Sci-
ences 12.22 (2022), p. 11610. URL: https: // www. mdpi. com/ 2076-3417/ 12/ 22/
11610 .

The research conducted in Chapter 6 showed how some RL algorithms can learn
and generalize object extraction tasks with a high degree of variability in terms of
the geometric dimensions and physical friction of the manipulated objects. How-
ever, disassembly is not always feasible, which makes a human-robot collaboration
approach essential to address this challenge.

This chapter proposes an adaptation of the RL method described in the previous
chapter (Chapter 6) that incorporates the human operator’s experience as a source
of information to narrow the action space around the extraction direction, as well as
to disambiguate the extraction sense of the disassembly task.

7.1 Reinforcement learning for disassembly tasks with exe-
cution disambiguation

Performing the extraction task in a preferred sense, when the geometry is symmet-
rical, may be necessary or desirable in certain cases. For example, when it is nec-
essary to perform the movements in a specific sense for safety reasons or due to
workspace constraints; or when there is an irregularity/obstruction due to the con-
servation/transport/handling state of an EOL product that blocks extraction in one
of the senses.
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The use of conventional cameras may help to identify workspace boundaries
and/or safety requirements [68][169]. However, in case of irregularities/obstructions
in the manipulated parts, they may suffer from occlusions [170] since mechanical in-
teractions occur inside the slotted components.

A review by Goli, Wang, and Saadat [171] investigates the perspective of self-
learning robotics for disassembly automation. The authors highlight that a human-
robot disassembly system can be a more efficient solution than manual disassembly
systems due to the high level of uncertainty and unplanned operations in the field.
They also emphasize the relevance of RL in robotic manipulation tasks.

In this particular scenario, the human operator can make use of his expert knowl-
edge and help by guiding with the extraction sense. The objective is not for the hu-
man operator to provide the exact and specific solution in terms of the magnitude of
the displacement, the direction and the sense of the extraction. In this case, it is de-
sired that the human provides a hint as to where (direction and sense) the extraction
should be performed, with the autonomous agent making the final decision.

7.1.1 Gathering human hints for extraction sense disambiguation.

To obtain a human operator hint, the force measurement system of the robotic ma-
nipulator itself is used as the front-end interface. By exerting an external force on the
manipulator end-effector, the human operator can provide a hint of which direction
and sense (encoded as a Cartesian space vector) to follow, as shown in Figure 7.1.

FIGURE 7.1: Using human hint for extraction sense disambiguation.

The Cartesian space vector for the hint ( ⃗hint) is computed as the normalized
vector of the external force (F⃗ext), plus a small number to avoid division by zero,
sensed in the end-effector frame and rotated by the orientation (qee) of that frame, as
specified by Equation 7.1.
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⃗hint = qee ⊗
F⃗ext

||F⃗ext||+ 10−8
(7.1)

In order to evaluate the feasibility of using the manipulator’s force sensors as
the interface, human hints were sampled with respect to 24 reference points (ground
truths). Figure 7.2 shows the spatial distribution of the ground truths and of the
captured samples.

FIGURE 7.2: Spatial distribution of the ground truth values for the
fixed polar angles of 45 and 90 degrees and the azimuthal angles
in the interval -180 to 180 degrees spaced every 30 degrees (in or-
ange) and the acquired samples of the human hints (in blue) for these

ground truth values.

For each reference point (resulting from the combination of the fixed polar an-
gles 45 and 90 degrees and the azimuthal angles in the interval -180 to 180 degrees
spaced every 30 degrees) 5 samples of the external force exerted by the human (in
the direction and sense of the references) were captured.

Even when the hints computed from the external force exerted by the human
are close to the ground truth values, there is an observable spatial difference even
between the samples made for a same reference. Figure 7.3 shows the differences,
measured as the angle between the hint vectors and their respective ground truth
values for the data set.

The angular differences remain mostly below 7.5 degrees for references parallel
to the horizontal plane (90 degrees polar angle). For the 45 degree polar angle, the
difference is greater. For both example cases, the differences can be up to 15 degrees.
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FIGURE 7.3: Angular difference between predefined ground truth
vectors and hint vectors resulting from the external force exerted by

the human to match reference data.

Despite the differences between the ground truth values and the vectors calcu-
lated from the external force exerted by the human, the latter can be used to provide
hints to disambiguate the sense of the extraction task since the difference is small
enough to distinguish from the opposite side (detectable starting at 90 degrees).

7.1.2 Reinforcement learning experimental setup

The experimental setup is the same as the one described in Chapter 6 but this time,
incorporating the hint information.

7.1.2.1 Simulated setup

The simulation setup includes the possibility of generating hints whose directions
and senses can be parameterized. The parametrization allows to define a sense (to
one side or the other) for the same direction. Also, it enables the adjust of the hint
direction (by a pair of polar and azimuthal angles) to match or not the exact direction
of the extraction. This configuration makes it possible to simulate the directional
deviations of the human-generated hint according to the analysis performed as well
as a specific sense.
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7.1.2.2 Real-world setup

For real-world evaluation five different environments were used as shown in Fig-
ure 7.4. The selection of these environments is based on the creation of variability
with the resources available in our laboratory.

FIGURE 7.4: Different real-world environments for the evaluation of
the learned policies.

The real-world environments are composed of plastic and metal parts, with dif-
ferent coefficients of friction, air gaps between the contacting parts and geometries
in terms of length and dimensions of the fixed base slot as well as the shape (with
sharp or rounded edges) of the object to be extracted, Table 7.1 list each environment
specifications.

Specification
Environments

A B C D E
Base length (cm) 45 45 40 10 10
Object length (cm) 2.0 2.0 2.5 20 20
Air gap 0.15 0.15 0.30 0.05 0.55
Base material Aluminum Aluminum Aluminum Plastic Plastic
Object material Aluminum Aluminum Steel Plastic Plastic
Friction coefficient 0.85 - 1.06 0.85 - 1.06 0.4 - 0.8 0.1 - 0.4 0.1 - 0.4

TABLE 7.1: Real-world environment specifications.

Robot control in the real world was done using the libiiwa Python API as de-
scribed in Chapter 5. In order to guarantee the safety of the operator, the environ-
ment and the robotic manipulator itself, force conditions were defined, with max-
imum admissible values up to 60 Newtons for each Cartesian axis, which activate
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stop reactions when the limits are reached.

In addition, to reduce the contact forces caused by friction and the probability of
jamming states during the execution of the disassembly tasks, force overlay in the
form of Lissajous curves was used. The Lissajous curve, parameterized with ampli-
tude and frequency values of 3 Newtons and 7.5 Hz respectively, was applied in the
plane perpendicular to the direction of action taken by the policy. This configuration
is based on the empirical study carried out in Chapter 5.

The generation of the human hint is performed by the operator using the same
procedure described in Subsection 7.1.1.

7.1.3 Reinforcement learning formulation

The formulation of the RL setup remains the same except for the observation and re-
ward components. These two components are modified to use the human-generated
hint to disambiguate the sense of the extraction task.

7.1.3.1 Reinforcement learning elements

Observation space

The vector of human-generated hint is added to the previously defined obser-
vation space, which is now a 12-dimensional space as shown in Equation 7.2.

ot = [ ptcpt
− ptcp0

, ptcpt
− ptcpt−1

, F⃗, ⃗hint ] (7.2)

Reward

The reward part dedicated to the integration of the hint provided by the hu-
man tries to reduce the difference between this information (hint) and the ac-
tion taken by the policy (at).

For this purpose, in the first instance, an auxiliary value (ρt) involving both
normalized values is calculated according to the Equation 7.3. The closer, in
direction and sense, is the action taken from the provided hint, the closer to
zero is its value.

ρt = 0.5 ∥ĥint − ât∥ (7.3)

Then, the reward function related to the hint is defined by Equation 7.4.

rhintt = clip(∥ât∥, 0, 1) e−5 ρt (7.4)

This function has two components. One is a negative exponential of the aux-
iliary value, with the aim of penalizing the actions taken by the policy that do
not follow the specified hint. The other, it penalizes actions whose norm (and
therefore the expected displacement resulting from its application) is small.
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FIGURE 7.5: Graphical representation of the hint-reward function.

A representation of this reward function can be found in Figure 7.5.

The final reward function is now a weighted sum of the reward functions of
the task execution and the following of the human hint, as formulated in Equa-
tion 7.5. The weights (wtask and whint) allow to adjust the relevance of both
members or turn them off.

rt = wtask rtaskt + whint rhintt (7.5)

7.1.4 Experiments and results

7.1.4.1 Experiment implementation

The implementation of the experiments follows the same configuration described in
Chapter 6 for simulation. To this configuration is added the randomization of the
hints, parameterized by polar and azimuthal angles, to generate angular deviations
of up to 15 degrees per spherical coordinate angle with respect to the fixed base ori-
entation direction (ground truth). The target sense of extraction is also randomized.

The algorithms (PPO, DDPG, TD3 and SAC) were trained 6 times, with different
seeds for the random number generator, to identify repetitive behaviors. The same
hyperparameters from the previous chapter were used for training.

7.1.4.2 Training

Figure 7.6 shows the mean reward and its standard deviation for PPO, trained in-
dividually, and DDPG, TD3 and SAC, trained simultaneously with shared memory.
As in the previous experiments, timpesteps axis have been normalized to plot all
curves on the same time scale, since the number of timesteps executed is different
for PPO and for DDPG, TD3 and SAC.

According to the results, the agents learn in a similar way as those trained in
the previous chapter, but this time they reach a higher mean reward. PPO and SAC
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FIGURE 7.6: Simulation training results: Mean reward and standard
deviation during training for PPO, DDPG, TD3 and SAC agents.

reach very similar mean reward values and maintain a slight increasing trend practi-
cally during the whole training run. In the case of DDPG and TD3, both algorithms
are positioned below PPO and SAC, being DDPG the one with the worst perfor-
mance during training.

7.1.4.3 Evaluation of the generalization capabilities under variability in simula-
tion and real-world

Evaluation in simulation

To evaluate the RL algorithms’ capabilities, the same set of orientations resulting
from the combination of polar angles (in the range 0 to 180 degrees with a 10 degrees
of step) and azimuthal angles (in the range -90 to 90 degrees with a 5 degrees of step)
were used for a total of 648 environments with different orientations each. To this
configuration is added the adjustment of the angular deviation (0.0, 3.0, 6.0, 9.0, 12.0,
15.0 degrees) of the generated hint with respect to the actual orientation of the fixed
base. The extraction sense was uniformly distributed in a random manner.

For this phase, a maximum number of 100 timesteps was set as the termination
condition (along with the completion of the extraction task) for the current episode.
500 timesteps, to guarantee the execution of at least 5 episodes, were run for the com-
bination of friction coefficients and air gaps defined during training. A window of
size 15 timesteps, to keep the value of the initial position of the TCP (pTCP0) updated,
was used for building the observation space.

Figure 7.7, 7.8, 7.9, 7.10 and 7.11 show a view of the overall task completion ratio
for all the different values of friction coefficients (0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.50,
0.75, 1.00), angular deviations (0.0, 3.0, 6.0, 9.0, 12.0, 15.0 degrees) and air gaps (0.0,
0.10, 0.25, 0.50, 1.00 millimeters), grouped by the air gap values.
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FIGURE 7.7: Task completion ratio resulting from discrimination of
execution status (completed or not) for an air gap of 0.0 mm. The
baseline was generated with actions that follow the generated hints
with the maximum possible displacement. Negative values indicate
that the execution could not be completed within the specified num-

ber of timesteps.
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FIGURE 7.8: Task completion ratio resulting from discrimination of
execution status (completed or not) for an air gap of 0.1 mm. The
baseline was generated with actions that follow the generated hints
with the maximum possible displacement. Negative values indicate
that the execution could not be completed within the specified num-

ber of timesteps.
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FIGURE 7.9: Task completion ratio resulting from discrimination of
execution status (completed or not) for an air gap of 0.25 mm. The
baseline was generated with actions that follow the generated hints
with the maximum possible displacement. Negative values indicate
that the execution could not be completed within the specified num-

ber of timesteps.
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FIGURE 7.10: Task completion ratio resulting from discrimination of
execution status (completed or not) for an air gap of 0.5 mm. The
baseline was generated with actions that follow the generated hints
with the maximum possible displacement. Negative values indicate
that the execution could not be completed within the specified num-

ber of timesteps.
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FIGURE 7.11: Task completion ratio resulting from discrimination of
execution status (completed or not) for an air gap of 1.0 mm. The
baseline was generated with actions that follow the generated hints
with the maximum possible displacement. Negative values indicate
that the execution could not be completed within the specified num-

ber of timesteps.
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For friction coefficients near zero, where the probability of jamming is almost
zero for actions close to the orientation direction of the fixed base, the successful
execution of the task with the learned policies is completed with a high ratio. This
phenomenon is also reproduced for the baseline, which is limited to following the
generated hint, even for angular deviation values close to 15 degrees.

When the air gap is very small or non-existent, as the friction coefficient values
increase, the success ratio of task execution for the number of defined timesteps
decreases for both, the baseline and the learned policies for all angular deviations of
the generated hints.

For air gaps that allow for more mobility, as the angular deviation of the provided
hints increases, the performance of the learned policies is maintained even at high
friction coefficient values. However, since the baseline performs actions that deviate
it from the correct extraction direction, the successful completion ratio of the task
decreases.

Action space distribution

Considering the distribution of the actions taken by the policy during the evalua-
tion shown in Figure 7.12, the hints provided are also useful to reduce, considerably,
the search for movements that allow the object to be extracted from the fixed base.

For the RL formulation without human hint (described in Chapter 6), the data
show that although the actions are distributed around the exact extraction vector
(ground truth), they are not concentrated but scattered over a range of up to 50%,
65%, and 25% of the action space amplitude for the X, Y, and Z axes, respectively.
Because the reward function (used during training) does not explicitly define a di-
rection and sense to take, part of execution is spent in finding actions that produce
some motion, leaving little room for extraction once a direction is found (if it is ever
found).

For the RL formulation with human hint, although there are small deviations of
up to 30% of the amplitude of the action space for each axis, the decisions taken are
mainly concentrated around the exact extraction vector (ground truth).

These results shows an improvement in the generalization and extraction task
execution capabilities when policies are provided with a hint (albeit not an exact
one) as to where to focus their actions compared to when nothing is provided, as
discussed earlier in this chapter.

Extraction sense

Since the slot of the fixed base goes through it from one side to the other, it is
possible to perform the extraction in two opposite senses for the same direction,
which may be relevant or desirable in certain circumstances.

To carry out an analysis, in simulation and in the real world, an extraction sense
is defined and the difference between this definition and the extraction sense taken
by the policy during the execution of the task is calculated. If the policy performed
the task in the same defined sense, the execution is marked as “right”, otherwise it
is marked as “wrong”. Figure 7.13 shows the reliability, in terms of the extraction
sense, of the extraction task.
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FIGURE 7.12: Action space distribution of the last 5 episodes, exe-
cuted by the best policy trained without (top chart) and with human
hint (bottom chart) with the PPO algorithm, for the pair of coefficients
of friction and air gap (1.0, 1.0 mm) and the polar and azimuthal an-
gles -50 and 15 degrees respectively. For reference, the components
of the exact vector (ground truth: gt) of the extraction direction are

plotted. The human hint has 15 degrees of angular deviation.

The results show that the trained RL system, according to the RL formulation
(described in Chapter 6) does not take into account the sense of extraction during
the task execution. For the evaluated algorithms, the distribution of “right” and
“wrong” senses is more or less similar. Although there are slight tendencies towards
execution in the same sense for all cases, these are not significant enough to guaran-
tee the reliability of the trained system with respect to the extraction sense.

The RL formulation with human hint information, to disambiguate the execu-
tion, is able to follow such information and thus guarantee to a greater extent (com-
pared to policies trained without the hint information) the reliability of the trained
system with respect to the task extraction sense.

Transference to the real world

In addition, the study evaluated the generalization of the learned skill in the real
world. For this purpose, the tests were performed for different real-world environ-
ments. The spatial position and orientation of the target objects were sampled . The
best agent performed five episodes for each particular case.

102



7.1. Reinforcement learning for disassembly tasks with execution disambiguation

FIGURE 7.13: Reliability of the learned extraction task, without (top
chart) and with human hint (bottom chart), in terms of extraction

sense for both simulation and real-world evaluation.

Figure 7.14, 7.15, 7.16, 7.17 and 7.18 show a sequence of extraction for environ-
ments A, B, C, D, E respectively.

FIGURE 7.14: Extraction sequence for environment A using the best
trained policy in simulation. Frames were taken each 42 timesteps.
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FIGURE 7.15: Extraction sequence for environment B using the best
trained policy in simulation. Frames were taken each 36 timesteps.

FIGURE 7.16: Extraction sequence for environment C using the best
trained policy in simulation. Frames were taken each 42 timesteps.

FIGURE 7.17: Extraction sequence for environment D using the best
trained policy in simulation. Frames were taken each 14 timesteps.

Table 7.2 shows a record of the statistics of the evaluations performed in the real
world using the baseline and the best trained policy.
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FIGURE 7.18: Extraction sequence for environment E using the best
trained policy in simulation. Frames were taken each 16 timesteps.

Metric Actor
Environments

A B C D E

Success ratio
baseline 1 / 5 3 / 5 0 / 5 2 / 5 4 / 5
trained policy 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5

Mean number
of timesteps

baseline 282 242 - 97 115
trained policy 254 223 257 84 94

TABLE 7.2: Real-world evaluations statistics of the baselines and
trained policy. The mean number of timesteps was computed for suc-

cessful episodes only.

According to the results listed in the table, the policy trained using RL executes
the extraction task satisfactorily for all environments and evaluations while the base-
line fails in the majority. In particular, the baseline cannot perform the extraction task
for the environment C. This environment has pronounced curvatures that make the
sole use of the information provided by the human operator insufficient to perform
the disassembly.

Furthermore, the execution of the extraction task is performed, between 8% and
15%, faster using the learned policy, which is capable of adapting to variations in the
environment, than the baseline.

7.2 Chapter conclusions

The research conducted responds, for the most part, to research question 1: The
extended RL method for extraction disassembly tasks is able to generalize such tasks
to different geometric properties and physical friction of the objects involved. Under
this method, the execution of the task is completed with percentage values above
95% for all the evaluated scenarios.
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The introduction of the operator’s experience to generate hints that indicate (even
if not exactly) where the extraction should be performed and the redefinition of the
reward function are key not only to generalize the task, but also to significantly re-
duce the search for movements to extract the objects and to guarantee to a greater
extent the reliability of the trained system with respect to a given extraction sense.
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Chapter 8

Towards the Implementation of
Disassembly (and Assembly) Tasks
Using Ready-to-Use Packages for
Rapid Robotic Prototyping

The integration of robotic automation into industrial processes around the world
has become essential to improve production speed and accuracy while reducing op-
erating costs. However, as processes demand greater flexibility and agility, new
obstacles and challenges have arisen in the use of robots, particularly with regard to
the significant engineering costs of work cells.

These costs, in terms of resources and time, can include the design, manufacture,
and installation of equipment and accessories such as conveyors, sensors, and third-
party software, for example.

This chapter proposes the creation of a collection of ROS and non-ROS packages
that can be used to prototype such projects quickly. The packages are designed to
reduce the development and deployment time of robotic systems. In addition, they
are designed to provide users with a high degree of customization and flexibility to
accelerate the creation and testing of collaborative robotic disassembly and assembly
systems.

8.1 Solutions for creating robotic systems

Some solutions exist to accelerate the creation of robotic systems, which can help
reduce development time and costs while improving efficiency and flexibility.

Simulation

Robotic simulation has become a fundamental part of the development and test-
ing of new robotic systems, as well as robotics research [172].

Computer simulation allows engineers and personnel to model their designs in
a virtual environment. This practice helps to dramatically reduce the time and cost
associated with the design and development of robotic solutions, enabling compa-
nies to bring new robotic systems to market more quickly and efficiently [173][174].
It also makes it possible to identify problems or limitations of a design before it is
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physically built, allowing adjustments and improvements to be made early in the
development process.

Simulations can be used to test a wide range of scenarios, environments, and
working conditions (which may be difficult or impossible to replicate in the real
world), allowing the performance and capabilities of a robotic system to be fully
evaluated prior to deployment and reducing the risk of damage during the opera-
tional phase [175][176].

In summary, robotic simulation has proven to be a powerful tool for accelerating
the development of robotic systems, allowing designers and engineers to rapidly it-
erate and improve their designs, ultimately resulting in more capable, reliable and
cost-effective implementations. Although robotic simulation is an important tool
for developing such systems, it also has some limitations. One of the most impor-
tant is that it cannot fully reproduce the complexity and unpredictability of the real
world [177][178].

Ready-to-use packages

Ready-to-use packages are pre-written, pre-built if applicable, and tested soft-
ware components that can be easily integrated into robotic systems. These packages
can include libraries, algorithms, controllers and drivers, and other software com-
ponents that are commonly used in robotics development.

By using ready-to-use packages, developers can significantly reduce the time and
effort required to develop complex robotic systems, as they do not have to build
everything from scratch and can focus on the unique aspects of their systems. In
addition, they can be especially useful for developers who do not have in-depth
knowledge of all the software components required to create a robotic system and
leverage the expertise of other members of the community.

The standardized framework for building and integrating robotic systems pro-
vided by ROS, an open source platform, is a critical aspect of the development pro-
cess. The platform comes with a large collection of ready-to-use packages developed
and maintained by a broad community of experts. ROS also provides tools and in-
frastructure that support the development and sharing of new packages [56]. This
allows developers to contribute their own software components to the robotics com-
munity, fostering collaboration and innovation in the field.

Among the most relevant ROS packages (or frameworks) is MoveIt, which fo-
cuses on motion planning, manipulation, kinematics, and control [152][179]. In ad-
dition, Nav2 provides perception, planning, control, localization, visualization, and
other capabilities for building reliable mobile autonomous systems [180].

Examples of notable ROS package collections are ros_control and NVIDIA Isaac
ROS. The first one is a set of packages, originally developed for the PR2 robot, that
includes a controller interface, controller manager, gears, and other tools to make
controllers generic to all robots [153]. The last one is a collection of individual
hardware-accelerated packages for image processing and computer vision and per-
ception using AI [181].

While the large collection of ready-to-use ROS packages can significantly speed
the creation of robotic systems, it can also create challenges related to integration,
consistency, and scalability.
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With so many packages available, it can be difficult to determine which ones
are best suited for a particular project and how to integrate them into a cohesive
system. It is important to ensure that each package is properly integrated into the
overall system and that there are no conflicts or compatibility issues. This can be
especially difficult when working with multiple packages developed by different
people and organizations [59]. In these scenarios, it is critical to pay special attention
to architecture and design to ensure that robotic systems are reliable, efficient, and
easy to maintain, even as they grow in complexity.

Skill-based system

Skill-based systems provide an easy-to-use interface for programming robots,
allowing users to define tasks and goals using natural language or other intuitive
modes without the need for specialized programming skills. These systems typically
operate at three abstraction levels. The primitive level represents the lowest level of
abstraction, defining actions that are directly executed by the robotic system. The
skill level combines different primitives to create more complex behaviors. Finally,
at the task level, higher-level goals and objectives are defined. Using this approach,
users can program the system without having to worry about the specific details of
how these behaviors will be executed.

Some solutions have been developed on top of ROS. SkiROS [182] is a framework
for knowledge integration and autonomous mission execution. For the cognitive
part, symbolic representations designed by the personnel are formalized through
an ontology. A Graphical User Interface (GUI) helps to organize the robot knowl-
edge and its behavior. In the same vein, SkillMaN [183] proposes a planning and
execution framework for mobile robotic manipulators. Such a system also has the
ability to store experience-relevant information for later use, and a recovery module
that provides knowledge for interpreting failures and suggests recovery strategies.
However, manual processing is required to generate semantic descriptions for the
task at hand.

In [184] a way for combining the skill based programming with an architecture
based on finite state machines is proposed for controlling dual-arm robots. In this
work, the ROS parameter server is used to enable the communication between skills.
The implementation allows for sequential execution of skills, but lacks task model-
ing and scheduling.

Another solution is the Skill Based System (SBS) [185][186][187], a task-level pro-
gramming software tool intended for use on both stationary and mobile collabo-
rative robots. This development comprises the three abstraction layers (task, skill
and device primitives) and services (use of multiple devices to provide advanced
functionality to the skill layer), and provides a GUI to program, teach, monitor and
control the tasks. ROS is employed to enable communication between most of the
software nodes. The system has been used in several research projects [187] and for
for performing a screwing tasks [186].

REpac, an extendable framework for creating skill-based industrial robot appli-
cations is presented in [188]. This framework allows robot skills to be provided and
shared via a central marketplace and to be freely combined in the application. The
skills have to be programmed to be compatible with three extension stages: loading
and registration, knowledge management, and automated task planning. Although
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the system enables easy configuration of the skills, the development cost is high
compared to the subsequent benefits in operation.

Although skill-based systems are designed to be used by operators with no ex-
perience in robot programming, they require expert personnel to develop and main-
tain, whose knowledge extends beyond their base, such as ROS, as well as a signifi-
cant amount of time. Such systems may not be as flexible or customizable and may
not provide the level of control and precision needed for more complex or special-
ized tasks.

8.2 Framework description

This document presents an organized rich collection of ready-to-use, modular, and
highly configurable ROS and non-ROS packages to accelerate the creation of robotic
systems for collaborative manufacturing and remanufacturing projects.

This implementation provides a set of packages specifically designed to address
the integration, consistency, and scalability challenges that often arise when working
with multiple packages developed by different people and organizations. By being
generic and highly configurable, the packages can be easily adapted to the specific
needs of different projects, ensuring a cohesive and reliable overall system.

In addition, the packages in this collection can be integrated into the solutions
described above. For example, they can form part of a simulation system, be com-
bined with other ready-to-use packages, or provide additional functionality to exist-
ing skills-based systems.

Three elements are key to this: First, the definition of a common structure for the
packages. Second, the semantic naming of packages. And third, the use of control
version utilities for storage, sharing and composition of projects. These elements are
discussed in the following subsections.

8.2.1 Package structure

Having a common structure for packages is critical when developing modular ap-
plications. This standardization enables seamless integration and compatibility be-
tween different packages, resulting in a more efficient and reliable system. In ad-
dition, a common framework streamlines the programming process and promotes
a better understanding of package operations, making them more reusable across
projects. Consistency in package design also improves documentation and support
by allowing developers to leverage prior knowledge and experience to create more
robust and trustworthy packages.

The packages structure is based on the common structure that ROS packages1

must follow. Some folders and files are added to this structure to ensure integration
with repositories and version control systems, compiled files and installation and
configuration scripts as show in Table 8.1 and Table 8.2.

Group Name Description Type
bin Binaries files folder

1ROS packages: http://wiki.ros.org/Packages
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C/C++ code include Headers exposed for public
consumption

folder

src Source code folder
Python code scripts Script folder
Test test Unit tests folder

msg ROS topic definition (custom
messages)

folder

ROS messages srv ROS service definition (custom
messages)

folder

action ROS actionlib definition (cus-
tom specification)

folder

ROS launch launch ROS launch files folder
.git Git repository folder
.gitignore List of files and folder to be ig-

nored
file

Git project .gitmodules Git submodule definitions file
README.md Information about the project file
LICENCE License file file
package.xml Catkin package manifest file

ROS package CMakeList.txt CMake’s input for building
software packages

file

Setup install.bash Shell script to install and setup
the package

file

TABLE 8.1: Directory and file structure of ROS packages.

Group Name Description Type
bin Binaries files folder

C/C++ code include Headers exposed for public
consumption

folder

src Source code folder
Python code scripts Script folder
Test test Unit tests folder

.git Git repository folder

.gitignore List of files and folder to be ig-
nored

file

Git project .gitmodules Git submodule definitions file
README.md Information about the project file
LICENCE License file file

Setup install.bash Shell script to install and setup
the package

file

TABLE 8.2: Directory and file structure of non-ROS packages.

8.2.2 Semantic package naming

The use of meaningful and descriptive names provides a structured approach to
organizing packages, which facilitates the management and maintenance of soft-
ware systems. Such semantic naming helps convey the purpose and functionality
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of each package, allowing developers to easily identify and locate implementations
that meet their needs.

The names are assigned under the format skros_CATEGORY_SUBCATEGORY_NAME.

Category

In skros, categories are named using a semantic taxonomy inspired by the ab-
straction layers of skill-based systems. In this sense, the following categories are
defined:

• Device: this refers to a physical component or tool that is integrated into the
overall system to perform specific functions. Devices can include robots, sen-
sors, actuators, among others that are used to observe and interact with the
environment.

• Service: this refer to software implementations that process or return some
type of data during execution and are not tied to a specific physical device.
Note that although they have the same name, they are not related to ROS ser-
vices (a communication protocol for sending and receiving requests and re-
sponses).

• Extension/Extra: this refer to software implementations that provide some
specific functionality that does not fall into the above classifications. For exam-
ple, they may be simulation files or scripts to perform pre- or post-processing
of some data in an offline fashion.

• Task: this is a high level of organization that groups, under the same direc-
tory (ROS workspace), one or more of the above elements as needed, as well
as external packages or other files, to support the execution/control of some
simple or complex process. Typically, it contains a file, a main program, or a
state machine that controls the operation of the system.

Subategory

Subcategories are labels that help organize similar components under the same
semantic name. This allows for better organization, search, and initial understand-
ing of the packages. Examples of such subcategories for the “device” category could
be the terms actuators, cameras, robots, etc. to help organize the different types of
devices.

Name

The name, as the term implies, provides a unique identifier for each type of com-
ponent within the appropriate categories and subcategories.
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8.2.3 Storage, exchange and project composition

Each package is conceived as a main directory that includes other directories and
files. Such packages are built as Git2 repositories (a distributed version control sys-
tem) and are stored and shared through GitLab (cloud repository hosting site).

Building the packages as repositories allows for issue tracking, code review, con-
tinuous integration and deployment, as well as integrated wiki documentation.

To compose tasks (and projects), Git submodule3 is used. This is a feature of Git
that allows to include a repository as a subdirectory of another repository, keeping
them separate. This composition makes it possible to design tasks that follow the
architecture shown in Figure 8.1.

FIGURE 8.1: Skros’s task architecture.

Using Git submodules for task composition provides certain flexibility and ad-
vantages when managing complex compositions. Among them are:

• Modularity: Using submodules allows breaking down a complex project into
smaller, independent modules or components.

• Dependency management: Submodules provide a convenient way to manage
dependencies between different components of a project. This reduces the risk
of conflicts and compatibility issues.

• Version control: Each submodule has its own repository, allowing version con-
trol on an individual basis. This makes it easier to manage and update specific
components without affecting the entire project.

• Simplified project configuration: Project configuration allows reusable load-
ing of dependencies, ensuring that the correct versions of submodules are ex-
tracted and configured correctly.

• Collaboration: Submodules enable collaborative development but maintain a
centralized project structure that facilitates integration of changes.

2Git: https://git-scm.com
3Git submodule: https://git-scm.com/book/en/v2/Git-Tools-Submodules
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8.3 Main framework components

A description of the primary components, grouped by category and subcategory,
that have been developed to the time of this writing follows.

8.3.1 Devices

This section lists and describes the main devices implemented in the following sub-
categories.

8.3.1.1 Actuators

Actuators are components of an automation system that convert electrical, hydraulic,
or pneumatic signals, for example, into physical motion. Actuators are used to con-
trol various mechanical devices in automated systems, such as valves, motors, and
others.

Gripper

The GripperCommand is a ROS Control action message to send commands to a
gripper. By setting a maximum force value that can be applied by the gripper, this
action interface makes it easy to control those actuators [179].

The ROS package skros_device_actuator_gripper provides an implementation for
the GripperCommand action service. Figure 8.2 shows the graphical representation
of the main node of the ROS package (device:gripper) as well as possible nodes
involved and their topics.

FIGURE 8.2: Graphical representation of the nodes and topics in-
volved in the ROS skros_device_actuator_gripper package.

The node provides only a communication interface to the ROS environment. It
is the user’s responsibility to implement the interface between the node and the
specific control hardware for the gripper or similar device. To assist in the creation
of the hardware access interface, a code for using the general-purpose input/output
(I/O) pins of the NVIDIA Jetson Nano is provided.
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For example, Figure 8.3 shows the physical deployment of the controller using
such a package on a high gripping force light industrial pneumatic gripper.

FIGURE 8.3: A pneumatic gripper with generative designed fingers
printed using additive manufacturing for disassembly and its control

system.

8.3.1.2 Cameras

Cameras (digital cameras) are devices used in automation to capture images or video
of the environment, such as products, parts, or components. Cameras can be in-
stalled at various points along the production line or on robots to provide visual
information to the system.

USB Camera

USB cameras (or webcams) are digital cameras that use USB technology, typically
USB 2.0 or USB 3.0, to transfer image data to a computer or other device. They may
have high-resolution image sensors, the ability to adjust focus and exposure, and
support for various image and video formats.

They are often used as webcams for videoconferencing, but can also be used
for other applications, such as video recording, security and surveillance, scientific
research, and industrial automation. They are versatile imaging devices compati-
ble with a wide range of operating systems such as Windows, MacOS and Linux,
and with a wide range of different manufacturers and models, from simple and af-
fordable cameras for personal use to very advanced cameras for professional and
industrial use.

The ROS package skros_device_camera_usbCamera provides a wrapper for the ROS
cv_camera package. The cv_camera package uses the open-source computer vision li-
brary OpenCV [189] capture object to capture the image from various sources such as
USB cameras, remote cameras in steaming, video files, among others. This package
also allows to configure various parameters and image formats. Figure 8.4 shows the
graphical representation of the main node of the ROS package (device:usbCamera)
as well as possible nodes involved and their topics.
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FIGURE 8.4: Graphical representation of the nodes and topics in-
volved in the ROS skros_device_camera_usbCamera package.

The wrapper has two functionalities. The first functionality allows the instal-
lation of the base ROS package by executing all the necessary steps to obtain and
install dependencies from a single file. The second one, allows to unify under a
common framework, components whose name and topics have an understandable
semantics for the usability and scalability of the system.

RealSense

RealSense cameras are a family of high-resolution depth-sensing cameras that in-
clude infrared sensors in addition to RGB sensors as shown in Figure 8.6, developed
by Intel Corporation [190]. These cameras use various technologies, such as laser or
stereo vision, to capture depth information and enable 3D imaging and sensing.

They are compatible with various operating systems, such as Windows, Linux,
and Android, and have various SDKs and APIs for developers to create custom ap-
plications, as well as ROS packages for publishing related topics. They are primarily
designed for use in robotics, but can also be found in gaming, virtual and augmented
reality, and 3D scanning applications.

The ROS package skros_device_camera_realSense provides a wrapper for the ROS
realsense2_camera package for Intel RealSense devices connected via USB 3.0 inter-
face. Figure 8.5 shows the graphical representation of the main node of the ROS
package (device:realSense) as well as possible nodes involved and their topics.

FIGURE 8.5: Graphical representation of the nodes and topics in-
volved in the ROS skros_device_camera_realSense package.

The wrapper has two functionalities. The first functionality allows the installa-
tion of the base ROS package by performing all necessary steps to obtain and install
dependencies from a single file. The second one, allows to unify under a common
framework, the component whose name and topics have an understandable seman-
tics for ease of use and scalability of the system.
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FIGURE 8.6: RealSense capture (from left to right and from top to
bottom): RGB, infrared, depth (colored) and point cloud.

8.3.1.3 Interfaces

Interfaces refer to the inputs through which a human interacts with a given elec-
tronic device. Their purpose is to allow the user to operate the device intuitively
and effectively, with a minimum of training or technical knowledge. They can be
graphical, such as a touch screen, or voice-based, using speech synthesis and speech
recognition technologies, for example.

TedCube

The TedCube is a touchless natural user interface developed by TedCas, a health-
care technology provider. This device allows healthcare professionals to operate any
medical system using voice commands and hand gestures. The system uses Mi-
crosoft Kinect and the Myo Armband gesture control system for gesture recognition
and includes an advanced user interface for managing medical instruments and ac-
cessing medical data in a hospital environment [191][192].

Although it is primarily designed for healthcare environments in smart operat-
ing rooms, its use can be extended to other scenarios such as robotics.

The ROS package skros_device_interface_tedCube provides a ROS interface for us-
ing the TedCube to control any device as part of a ROS environment. Figure 8.7
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shows the graphical representation of the main node of the package (device:tedCube)
as well as possible nodes involved and their topics.

FIGURE 8.7: Graphical representation of the nodes and topics in-
volved in the ROS skros_device_interface_tedCube package.

This package implements the communication with the TedCube and an initial
processing step of the messages coming only from the voice control interface through
a Representational State Transfer (REST) API. Although not yet implemented, ges-
ture control could be easily integrated. The data are published to the ROS environ-
ment encoded in JavaScript Object Notation (JSON) format. The Figure 8.8 show a
sample of a custom voice control configuration.

In addition, to facilitate testing or system integration, a fake interface based on
an easily configurable Graphical User Interface (GUI) is provided through an input
file that maps buttons to voice commands. This functionality allows you to use the
TedCube without being physically present.

FIGURE 8.8: A TedCube device (on the left) and an example of a voice
interface configuration (on the right).

8.3.1.4 Robots

A robot is a sophisticated machine that can perform complex tasks either under re-
mote control or autonomously. Typically, a robot consists of a set of actuators, sen-
sors, controllers, and a communication system that work together to achieve the
desired functionality.

KUKA LBR iiwa
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The KUKA LBR iiwa is a seven-degree-of-freedom serial robotic manipulator
with force/torque sensors along each axis. This sensor distribution allows both po-
sition and impedance control, providing compliant behavior in force-sensitive tasks
as described in Chapter 5.

The ROS package skros_device_robot_libiiwa provides a wrapper for the ROS libi-
iwa package. Figure 8.9 shows the graphical representation of the main node of the
ROS package (device:libiiwa) as well as possible nodes involved and their topics.

FIGURE 8.9: Graphical representation of the nodes and topics in-
volved in the ROS skros_device_robot_libiiwa package.

The wrapper has two functionalities. The first functionality allows the installa-
tion of the base ROS package, and not of the other libiiwa components, performing
all the necessary steps to obtain and install the dependencies from a single file. The
second one, allows to unify under a common framework, the component whose
name and topics have an understandable semantics for ease of use and scalability of
the system.

8.3.1.5 Signaling

Signaling is the exchange or provision of information to the operators or machines
of an automated system. It can be essential for coordinating the behavior of different
parts of a system, as well as for providing information about a particular work status
or safety condition.

Industrial signal/light tower

Industrial light towers are a typical and useful way to implement light signaling
in automation. They typically consist of a vertical mast with multiple colored light
sources attached. In addition, they may include a buzzer sound emitting device.
Such towers can be mounted on a machine or at a specific location in a plant to
provide visual signaling to operators or machines.

They can provide a variety of signaling information, including status, safety and
communication information. Table 8.3 lists the colors of the indicator lights and their
meaning with respect to the machine status as described in IEC 60204-1 [193]. The
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light towers must have the applicable colors in the same order, from top to bottom,
as described in that table.

Color Meaning Explanation Action by operator
Red Emergency Hazardous condition Immediate action to deal

with hazardous condition
(for example switching off
the machine supply, being
alert to the hazardous condi-
tion and staying clear of the
machine)

Yellow Abnormal Abnormal or impending
critical condition

Monitoring and/or inter-
vention (for example by
re-establishing the intended
function)

Blue Mandatory Indication of a condition
that requires action by
the operator

Mandatory action

Green Normal Normal condition Optional
White Neutral Other conditions. May

be used whenever doubt
exists about the applica-
tion of the other colors

Monitoring

TABLE 8.3: Colors for indicator lights and their meanings with re-
spect to the condition of the machine. Content adapted from the IEC

60204-1 standard.

The ROS package skros_device_signaling_lightTower provides a ROS implemen-
tation to handle up to five-color generic light towers and an alarm buzzer. Fig-
ure 8.10 shows the graphical representation of the main node of the ROS package
(device:lightTower) as well as possible nodes involved and their topics.

FIGURE 8.10: Graphical representation of the nodes and topics in-
volved in the ROS skros_device_signaling_lightTower package.

The implementation allows, by setting a floating precision value, to disable (0) or
enable each light independently, permanently (inf) or intermittently (value greater
than 0, in seconds).

The node provides only a communication interface to the ROS environment. It
is the user’s responsibility to implement the interface between the node and the spe-
cific control hardware for the light tower or similar device. To assist in the creation
of the hardware access interface, a code for using the general-purpose input/output
(I/O) pins of the NVIDIA Jetson Nano is provided.
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Light projector

Projection of light or images onto a work area is a technique that consists of
projecting images, symbols, or messages onto a workpiece or work area. The goal
is to provide workers with visual guidance or information to help them perform
their tasks more efficiently and accurately [194], or to provide safety messages or
warnings to prevent accidents and ensure a safe work environment [195][196].

The ROS package skros_device_signaling_lightProjector provides an implementa-
tion for projecting colors or patterns from a ROS environment. Figure 8.11 shows the
graphical representation of the main node of the ROS package (device:lightProjector)
as well as possible nodes involved and their topics.

FIGURE 8.11: Graphical representation of the nodes and topics in-
volved in the ROS skros_device_signaling_lightProjector package.

The node generates a full-screen display of the input information on the device
on which it is located. This visualization can be displayed on the work environment
using a conventional or laser projector as shown in Figure 8.12.

FIGURE 8.12: Example of illumination of the work area using a con-
ventional light projector to indicate different conditions.

The input information can be a string with the color name or its hexadecimal
value of the X11 standard colors [197], or an RGB image. Through the continuous
publication of images (frames) to this node, it is possible to display videos.

8.3.2 Services

This section lists and describes the main services implemented in the following sub-
categories.

8.3.2.1 Measuring

Measurement in the context of services is the process of determining or estimating
numerical values associated with the size, quantity, or degree of something, for ex-
ample, using a standardized system of units.
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Transformation distance

ROS transform is a powerful feature designed to provide a standardized way to
represent and manage coordinate frames in a robotic system and to perform trans-
formations between them in an easy and efficient way [198].

The ROS package skros_service_measuring_tfDistance implements a node that cal-
culates and publishes the distance between two specified links. This can be useful
in applications where monitoring the distance between two elements is required, for
example, to make a safety decision. Figure 8.13 shows the graphical representation
of the main node of the ROS package (device:tfDistance) as well as possible nodes
involved and their topics.

FIGURE 8.13: Graphical representation of the nodes and topics in-
volved in the ROS skros_service_measuring_tfDistance package.

The implementation internally subscribes to the /tf through the standard ROS
package tf2_ros, which provides an API to create and use a transform listener to
perform query operations on the ROS transform.

The selection of links between which the distance is to be calculated can be con-
figured through the node’s own launch file. This allows multiple instances with
different configurations to be launched to calculate the distance between different
links.

8.3.2.2 Tracking

Tracking refers to the ability of a system to follow or track a moving object or its
trajectory. This can be accomplished by using a variety of sensors and algorithms
that provide data on the object’s position, velocity, and acceleration, for example.

Skeleton tracking
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Human skeleton (or skeletal) tracking refers to a method employed in the field
of computer vision and image processing that enables real-time tracking of human
movements by detecting and localizing the joints of the human body [199][200].

The skros_service_tracking_skeletonTracking package allows to detect and localize
the joints of the human body on an image in RGB format and to publish, to the ROS
transformation, the spatial pose of the identified skeletons. Figure 8.14 shows the
graphical representation of the main node of the package (service:skeletonTracking)
as well as possible nodes involved and their topics.

FIGURE 8.14: Graphical representation of the nodes and topics in-
volved in the ROS skros_service_tracking_skeletonTracking package.

The logic behind the functionality of such a package consists of two components:
1) the detection of the human skeletons in a color image and 2) the spatial deprojec-
tion of the identified joints using a depth image.

For the first phase, the implementation supports the switching between two
backends to estimate the location of the human skeletons present in a frame as
shown in Figure 8.15:

• YOLOv7: version 7 of the YOLO (You Only Look Once) family of one-step
real-time object detection algorithms introduced in July 2022 [201]. Skeleton
detection was added as an extra feature in that release.

• MediaPipe: an open-source and cross-platform framework designed to create
machine learning pipelines for live and streaming media applications [202].
Although it has a lower precision compared to YOLOv7, unlike the latter, it is
possible to perform real-time identification on the CPU. This is especially use-
ful for testing on systems that do not have dedicated hardware for algorithm
acceleration, such as GPUs.

To allow compatibility between both backends, only the following 17 common
joints are used in the subsequent pipeline: nose, left_eye, right_eye, left_ear, right_ear,
left_shoulder, right_shoulder, left_elbow, right_elbow, left_wrist, right_wrist, left_hip, right_
hip, left_knee, right_knee, left_ankle, right_ankle.

For the deprojection and joint spatial pose estimation phase, pyrealsense2, a Python
wrapper of the Intel RealSense SDK 2.0 [190] for accessing these cameras, is used.
This library allows to compute the corresponding point in 3D space relative to the
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FIGURE 8.15: Estimation of human skeleton positions using the Me-
diaPipe (left) and YOLOv7 (middle and right) backends.

camera, given the pixel coordinates, the depth in the image and the distortion coef-
ficients. After that, the spatial points are grouped and published to the ROS trans-
formation (/tf).

Since no estimation of the human pose is made based on the modeling of the
skeletal structure of the human body, only the position of the joints can be deter-
mined, not their rotation. All the rotations are set to the default value wxyz [1, 0, 0, 0]
as quaternion.

8.4 Industrial/research tasks applications

skros has been developed, tested and used in the following industrial/research projects.

8.4.1 Projects

8.4.1.1 chARmER

The Assistive Robotic Disassembly System for Recycling (chARmER) project envi-
sions the creation of a sustainable manufacturing system that enables flexible, hybrid
human-robot automation for disassembly processes. This approach can not only
generate a business from EOL products, but also reduce their environmental impact
while improving working conditions for people with physical and intellectual dis-
abilities.

The consortium of this project comprises five, Spanish and Danish, companies
who have been awarded the SMART S0218 seal (from European Union’s SMART
EUREKA programme). These companies have collaborated to pool their expertise
in various areas such as robotics, human-robot interaction, AI, disassembly, natural
language, manufacturing, and occupational health, among others, to develop the
proposed solution.
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FIGURE 8.16: Demos presented during the chARmER project: labo-
ratory prototype (left), factory prototype (center and right).

8.4.1.2 VALU3S

The objective of the European Union’s Horizon 2020 ECSEL Joint Undertaking project
Verification and Validation of Automated Systems’ Safety and Security (VALU3S)4

is to evaluate the latest verification and validation (V&V) methods and tools and to
create a multi-domain framework to provide a clear structure for the various com-
ponents and elements required to perform the V&V process. The primary benefit of
this framework is to reduce the time and cost required to verify and validate auto-
mated systems for safety, cybersecurity, and privacy requirements.

The VALU3S project consortium includes a combination of 25 industrial partners,
6 leading research institutes and 10 universities from 10 different countries, working
together to achieve the project goal.

Within this project, skros has been used in the “Use Case 7: Human-robot collabo-
ration in a disassembly process with workers with disabilities” (based on chARmER’s
use case) as shown in Figure 8.17.

This use case uses simulation to implement a collaborative robotic system in a
disassembly process with disabled workers. The solution enables intelligent human-
robot interaction and learning, as well as the use of augmented reality technologies
to validate the robotic solution in different virtual scenarios before implementing
it in a real environment. It uses the KUKA LBR Iiwa manipulator and ISO/TS
15066:2016 monitoring to regulate the robot’s speed depending on the safety zone
in which the operator is located.

8.4.2 Lessons learned

The development and utilization of the collection of ROS and non-ROS packages
described above, for the development of disassembly and assembly tasks in par-
ticular and any other robotic task in general, has produced relevant feedback from
which lessons have been learned. In some occasions, these feedbacks have even led

4VALU3S: https://valu3s.eu/
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FIGURE 8.17: Real (top) and simulated (bottom) case study evalua-
tion scenario in VALU3S.

to the redesign of certain packages to increase and improve their functionality and
integration.

Regarding the creation of new packages, the development process of the cur-
rent packages and their use has demonstrated the need for programming and ROS
knowledge for their implementation. In addition, a careful design is required to
define input/output parameters that guarantee the reconfigurability of the imple-
mented packages for any application launched from the ROS launch files. Other-
wise, it would be necessary to modify the source code at the slightest need of the
target applications, limiting its generality and hindering its scalability and interop-
erability between different tasks or projects. Furthermore, there is the need to know
Git, both for version control during the development of new packages, and for the
installation and use of existing packages via Git submodules.

Regarding the use of the existing packages in the proposed collection, their re-
configurable designs and their modular and semantic conception have proven to
accelerate the creation of prototypes and robotic applications for both assembly and
disassembly tasks, as well as non-robotic applications that use the devices and ser-
vices system for other purposes.

In general, the collection of existing packages as well as their conception and
design has been well accepted both by those persons involved in their development
and by those who have used or heard about them, not only within the context of the
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previously mentioned industrial/research tasks applications, but also by staff and
exchange students from other research centers and universities.

8.5 Chapter conclusions

skros is a rich and organized collection of ready-to-use ROS and non-ROS packages
that allows to rapidly create and deploy robotic applications for the execution of
robotic assembly and disassembly tasks, as well as general robotic and non-robotic
applications. Its modular, parameterizable and semantic conception and design pro-
vide a high level of flexibility, reconfigurability and customization for both simula-
tion and real-world applications.
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Chapter 9

Conclusions and Future Work

9.1 Thesis conclusions

This dissertation explored RL for learning and generalization of disassembly tasks,
in particular contact-rich extraction tasks, with uncertainties due to geometric vari-
ability and physical friction of the objects to be disassembled using the KUKA LBR
iiwa collaborative robot.

The research conducted shows that some RL algorithms can learn object extrac-
tion skills by interacting with the environment, and can generalize these skills to
different initial conditions, such as positions and rotations, as well as to different
physical frictions and geometric variations, such as the air gap between parts and
different lengths. The following elements are essential to this:

• The use of relative information to generalize the task execution for different
initial positions and orientations, as long as the manipulation is within the
robot’s operating range.

• The definition of a reward function for task execution that does not restrict the
policy to making decisions in a specific direction and sense, making it physi-
cally impossible to execute the tasks in other directions and senses.

• Training for short periods of time, not to learn to complete the whole task,
but to learn to extract fragments and thus achieve generalization to different
geometries with unknown dimensions.

Moreover, the research showed how the incorporation of the human operator’s
experience, as a source of information for the disambiguation of the extraction task,
are key to both significantly reduce the search for movements to extract the objects as
well as further guarantee the reliability of the trained system with respect to extrac-
tion in a given removal sense. In this case, the human operator provides a hint, by
exerting an external force on the manipulator end-effector, as to where (in terms of
direction and sense) the extraction task should be performed, with the autonomous
agent making the final decision.

Under this method, the execution of the disassembly task is completed with per-
centage values above 95% for all the evaluated scenarios.

Also, as part of this investigation and to overcome existing barriers for RL and
robotics in the domain of applied engineering, three major developments were made:
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• Given that training RL algorithms can be time-consuming and require con-
siderable computational resources to handle complex environments and high-
dimensional state and action spaces, skrl a modular RL library was created.
This library focuses on readability, simplicity, and transparency of algorithm
implementations and their customization.

In addition to supporting the interfaces of traditional environments such as
OpenAI Gym / Farama Gymnasium and DeepMind, it also allows loading
and training in NVIDIA Isaac Gym, Isaac Orbit, and Omniverse Isaac Gym
environments. In the latter environments, it enables simultaneous training of
agents by domains that may or may not share resources, reducing training
time while consuming the same amount of resources and increasing perceived
reward.

• KUKA LBR iiwa collaborative robot is one of the most famous collaborative
robots in industry and research. libiiwa is presented as a control framework for
such manipulators, with different workflows including ROS and ROS2 as well
as direct control for reinforcement learning applications. The proposed inter-
face outperforms current approaches in terms of functionality, access to robot
capabilities (including parameterization and use of all types of force overlays),
and integration.

Using such a framework, an experimental study was conducted on how the
use of different types of oscillating force overlays reduces the contact forces
caused by friction and the probability of jamming states during the execution
of disassembly tasks. In particular, Lissajous curves and spiral shapes applied
in the plane perpendicular to the disassembly direction provide the most ef-
fective results.

• To rapidly create and deploy robotic applications for carrying out robotic as-
sembly and disassembly tasks, skros, a rich and organized collection of ready-
to-use ROS and non-ROS packages, is proposed. The modular concept and
design of such packages provides a high degree of flexibility, reconfigurability,
and customization for both simulation and real-world applications (See Chap-
ter 8).

9.2 Future work

Although this dissertation addresses the execution of disassembly tasks using RL
algorithms, there are several remaining avenues for further exploration of the field.
The following points outline potential areas of future work that could advance the
presented research and extend its domain.

• Although current research focuses on uncertainties due to geometric variabil-
ity (in terms of length and air gap between manipulated parts) and physical
friction, there are other sources of uncertainty in disassembly scenarios in the
real world that can be investigated. For example, the geometric shapes of the
parts or the environmental factors and use/storage conditions. Future work
could investigate how RL algorithms can deal with these uncertainties and
adapt their policies accordingly. This could involve incorporating additional
sensory inputs or using uncertainty quantification techniques to make the sys-
tem more robust and adaptable to different disassembly scenarios.
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• Current research is mainly concerned with disassembly tasks in a limited sub-
set of Cartesian space (translational DOFs). Extending the domain of disas-
sembly tasks to all available DOFs in Cartesian space, including rotational mo-
tions, poses significant challenges. Addressing the increasing complexity of
multi-DOF disassembly tasks would require sophisticated RL algorithms, ef-
ficient representations of state and action spaces, and careful consideration of
safety constraints.

• The current research has been conducted on rigid objects, but in the real world
it is common to disassemble deformable objects, such as soft materials or flex-
ible components. Learning to disassemble deformable solid objects poses ad-
ditional challenges due to their dynamic nature and variable stiffness. Future
work could explore how RL algorithms can be adapted to the complexities of
interacting with deformable objects, for example by incorporating tactile or
gripping force information to improve manipulation strategies and adapt to
the changing properties of the object during the disassembly process.

• Although the present research explored the inclusion of human operators as a
source of information for disambiguation, there is potential for further research
on how to improve human-robot collaboration in disassembly tasks. Investi-
gating shared control strategies, where the human operator and the RL agent
work together to accomplish the task, could lead to more efficient disassembly
processes as long as safety is guaranteed.

• Moving RL-based disassembly algorithms from research prototypes to real-
world industrial applications requires addressing several challenges. Future
work could focus on validating the proposed methods in practical manufac-
turing environments, taking into account factors such as real-time constraints,
safety requirements, and hardware limitations. In addition, investigating how
to seamlessly integrate RL-based disassembly systems into existing robotic au-
tomation setups and manufacturing processes is critical for wider adoption
and commercial deployment.
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