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Many of the applications of graphene rely on
its uneven stiffness and high thermal conductiv-
ity, but the mechanical properties of graphene
– and in general of all 2D materials – are still
not fully understood. The harmonic theory pre-
dicts a quadratic dispersion for the out-of-plane
flexural acoustic vibrational mode, which leads
to the unphysical result that long wavelength
in-plane acoustic modes decay before vibrating
one period, preventing the propagation of sound.
The robustness of the quadratic dispersion has
been questioned by arguing that the anharmonic
phonon-phonon interaction linearizes it. How-
ever, this implies a divergent bending rigidity
in the long wavelength. Here we show that ro-
tational invariance protects the quadratic flex-
ural dispersion against phonon-phonon interac-
tions and that, consequently, the bending stiff-
ness is non-divergent irrespective of the tem-
perature. By including non-perturbative anhar-
monic effects in our calculations, we find that
sound propagation coexists with a quadratic dis-
persion. We also show that the temperature de-
pendence of the height fluctuations of the mem-
brane, known as ripples, is fully determined by
thermal or quantum fluctuations, but without the
anharmonic suppression of their amplitude previ-
ously assumed. These conclusions should hold for

all 2D materials.

The theoretical comprehension of the mechanical prop-
erties of 2D materials and membranes, which affect their
acoustic and thermal properties, is one of the oldest prob-
lems in condensed matter physics, dating back to the
times in which the possibility of having 2D crystalline
order was questioned [1, 2]. Even if the discovery of
graphene and other 2D materials [3–5] put aside this
problem, the understanding of how these materials can
propagate sound, what is their bending rigidity, and the
amplitude of their ripples are still under strong debate [6–
22].

Most of the theoretical problems are caused by the
quadratic dispersion of the acoustic flexural out-of-plane
(ZA) mode that is obtained in the harmonic approxima-
tion. Such a quadratic dispersion also implies the un-
physical result that graphene and other 2D membranes
do not propagate sound. Indeed, the phonon linewidths
of the in-plane acoustic longitudinal (LA) and trans-
verse (TA) phonons calculated perturbatively from the
harmonic result do not vanish in the long wavelength
limit [23], precisely, because of the quadratic dispersion
of the ZA modes [24]. This yields the conclusion that
phonons having sufficiently small momentum do not live
long enough for vibrating one period and, thus, the quasi-
particle picture is lost together with the propagation of
sound.

It has been argued [25–33] that the anharmonic cou-
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pling between in-plane and out-of-plane phonon modes
renormalizes the dispersion of the ZA phonons, provid-
ing it with a linear term at small momenta that somewhat
cures the pathologies. It has long been assumed [6, 34]
as well that the out-of-plane vibrational frequency of any
continuous membrane acquires a linear term at small
wavevectors once anharmonic interactions are included.
The linear term stiffens the membrane and consequently
suppresses the amplitude of its ripples, which is usually
studied from the height correlation function in momen-
tum space, 〈|h(q)|2〉. In the classical harmonic approxi-
mation it scales as 〈|h(q)|2〉 ∝ q−4 and it is corrected to
q−4+η, with η ≈ 0.80 − 0.85, when the ZA mode is lin-
earized [6, 29–31, 34]. Since the bending rigidity scales
as κ(q) ∝ 1/(〈|h(q)|2〉q4) in the classical limit [6], this
interpretation implies that the bending stiffness of all
membranes and 2D materials diverges in the long wave-
length limit, yielding the dubious interpretation that the
larger the membrane, the stiffer it becomes. The ex-
perimental confirmation of these ideas is challenging due
to the difficulties in measuring the bending rigidity of
graphene [35, 36] and the substrate effects on the dis-
persion of the ZA modes measured with hellium diffrac-
tion [37–40].

The quadratic dispersion expected for the ZA mode
in the harmonic approximation is imposed by the fact
that the potential energy has to be invariant to a rota-
tion of the system, irrespective of where the atoms sit.
In the harmonic case phonon frequencies are obtained di-
agonalizing the φab/

√
MaMb dynamical matrix, where a

and b represent both atom and Cartesian indices, Ma is

the mass of atom a, and φab =
[

∂V
∂Ra∂Rb

]
0

are the second-

order force constants obtained as the second-order deriva-
tives of the Born-Oppenheimer potential V with respect
to atomic positions R calculated at the positions that
minimize V . Rotational invariance, together with the
fact that in a strictly two-dimensional system force con-
stants involving an in-plane and an out-of-plane displace-
ment vanish, makes the ZA mode acquire a quadratic
dispersion close to zone center [27]. Phonons expected
experimentally, however, should be calculated from the
imaginary part of the phonon Green’s function that in-
cludes anharmonic effects [41]. For low energy modes,
such as the ZA mode, dynamical effects can be safely
neglected. In this static limit the phonon peaks co-
incide with the eigenvalues of the free energy Hessian
[ ∂F
∂Ra∂Rb

]0/
√
MaMb for any theory in the static limit (see

proof in the Methods sections), where F is the anhar-
monic free energy, R the average ionic positions, and the
derivative is taken at the positions that minimize F [41].
This raises a formidable remark that has remained un-
noticed thus far: as both F and V are rotationally in-
variant, a quadratic dispersion should be expected for
the ZA mode not only in the harmonic limit, also when
anharmonic interactions are considered.

We dig into this point by accounting for anharmonic-
ity beyond perturbation theory within the self-consistent
harmonic approximation (SCHA). The SCHA is applied
both in its stochastic implementation [41–43] by making
use of a machine learning atomistic potential [44] and
with a membrane continuum Hamiltonian. The SCHA is
a variational method that minimizes the free energy of
the system

F = 〈T + V +
1

β
ln ρRΦ〉ρRΦ

(1)

with respect to a density matrix ρRΦ parametrized with
centroid positions R and auxiliary force constants Φ
(bold symbols represent vectors or tensors in compact
notation). In Eq. (1) T is the ionic kinetic energy, β
the inverse temperature, and 〈O〉ρRΦ

= tr[ρRΦO] (O is
any operator). We call auxiliary the phonon frequencies
obtained diagonalizing the Φab/

√
MaMb matrix. These

frequencies include non-perturbative anharmonic correc-
tions as they result from the variational minimization of
F that fully includes V . However, phonons probed exper-
imentally are related to the peaks in the imaginary part
of the analytical continuation of the interacting Green’s
function Gab(ω+ iδ) [41, 45, 46], which can be calculated
from the

G−1
ab (iΩn) = G

−1(S)
ab (iΩn)−Πab(iΩn) (2)

Dyson’s equation, where Ωn are bosonic Matsubara’s

frequencies. In Eq. (2), G
−1(S)
ab (iΩn) = (iΩn)2δab −

Φab/
√
MaMb is the non-interacting Green’s function

formed by the auxiliary phonons and Π(iΩn) is the
phonon-phonon interaction self-energy, which we esti-
mate within the SCHA (see Methods). The peaks in
the imaginary part of Gab(ω + iδ) determine the fre-
quencies and linewidths of the physical phonons. In the
static ω = 0 limit the peaks coincide with the eigen-
values of the free energy Hessian. The frequencies de-
rived from these peaks go beyond a mean-field picture,
as they include many more interactions than the aux-
iliary ones [41], which would correspond instead to the
mean-field solution.

In order to preserve rotational invariance, we make
sure that the lattice parameter in our calculations sets
the SCHA stress tensor [43] to zero at each temperature.
The lattice parameter calculated in this way includes an-
harmonic effects as well as the effect of quantum and ther-
mal fluctuations. All the phonon spectra shown in this
work obtained with the atomistic potential are calculated
with the lattice parameter that gives a null stress at each
temperature. The harmonic spectra on the contrary are
always calculated at the lattice parameter that minimizes
V . The temperature dependence of the lattice parameter
is shown in Fig. 1 (a). We include the molecular dynam-
ics (MD) results of Rowe et al. obtained with the same
potential [44], which do not account for quantum effects.
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For comparison, we also include SCHA calculations in
the classical limit, by making ~ = 0 in ρRΦ, and within
the quasiharmonic (QH) approximation. Our quantum
calculations correctly capture the negative thermal ex-
pansion of graphene that has been estimated in previous
theoretical works [28, 44]. Our SCHA result shows a
larger lattice parameter than the classical result. This
is not surprising as classical calculations neglect quan-
tum fluctuations and, consequently, underestimate the
fluctuations associated to the high-energy optical modes
(the highest energy phonon modes require temperatures
of around 2000 K to be thermally populated). This re-
marks the importance of considering quantum effects in
the evaluation of thermodynamic properties of graphene.
Our classical results and the MD calculations of Rowe et
al. [44] are in agreement at low temperatures.

In Figs. 1 (b)-(e) we compare the harmonic phonon
spectra with the auxiliary phonons as well as with the
spectra obtained from the peaks in the imaginary part
of the inverse of the interacting Green’s function, the
physical phonons. The main conclusion is that while
the mean-field dispersion of the ZA modes obtained from
Φ is linearized, the physical phonons become close to a
quadratic dispersion and approach the harmonic disper-
sion, as expected by rotational invariance in the static
limit. This is very clear in Fig. 1(d) and (e), where we
show that the bending rigidity, defined as the frequency
divided by the squared momentum, is independent of the
wavevector at any temperature. This suggests that the
bending rigidity is barely affected by interactions, in con-
tradiction to the broadly assumed result that it diverges
at small momentum in membranes due to thermal fluc-
tuations [6].

Even if the anharmonic correction to the phonon spec-
tra may look small in Fig. 1, it has a huge impact on
the acoustic properties of graphene. As shown in Fig.
2, the SCHA non-perturbative calculation based on Eq.
(2) dramatically changes the linewidth of the LA and TA
modes at small momenta by making them smaller as mo-
mentum decreases, in clear contrast to the perturbative
calculation obtained on top of the harmonic result. This
happens thanks to the linearization of the auxiliary flex-
ural phonons that form the non-interacting Green’s func-
tion and enter in Dyson’s equation. When the ratio be-
tween the full-width at half-maximum (FWHM) and the
frequency of the mode is approximately 1, the quasiparti-
cle picture is lost. This value is reached in the 0.001-0.002
Å−1 momentum range in the harmonic case. However,
when the linewidth is calculated within the SCHA, the
ratio never gets bigger than 0.05. These results recover
the quasiparticle picture for in-plane acoustic modes at
any wavevector, guaranteeing that graphene always prop-
agates sound. The momentum range for which the quasi-
particle picture is lost in the harmonic approximation
can be reached experimentally with Brillouin scattering
probes. In fact, for few layer graphene the quasiparticle

picture holds in the 0.001-0.002 Å−1 region [47], in agree-
ment with our calculations. We show here that there is no
need of strain [24] to have physically well-defined phonon
linewidths in graphene.

In order to obtain results at very small momenta and
reinforce the conclusions drawn with the atomistic calcu-
lations, we solve the SCHA equations in a continuum
membrane Hamiltonian. This model has been widely
used in the literature to describe graphene as an elastic
membrane as well as to account for the coupling between
in-plane and out-of plane acoustic modes [6, 29–31, 34].
The most general rotationally invariant continuum po-
tential to describe a free-standing 2D membrane up to
the fourth-order in the phonon fields has the following
form [48]:

V =
1

2

∫
Ω

d2x
(
κ(∂2h)2 + Cijkluijukl

)
, (3)

uij =
1

2
(∂iuj + ∂jui + ∂iu · ∂ju+ ∂ih∂jh) . (4)

Here u(x) and h(x) are the in-plane and out-of-plane
displacement fields, respectively, uij is the stress tensor,
and x is the 2D position vector in the membrane. κ is
the harmonic bending rigidity of the membrane, Ω is the
area of the membrane, and the tensor Cijkl = λδijδkl +
µ(δikδjl + δilδjk) contains the Lamé coefficients λ and
µ. We have calculated the parameters by fitting them
to the atomistic potential, which yields λ = 4.3 eVÅ−2,
µ = 9.3 eVÅ−2, κ = 1.5 eV and, ρ/~2 = 1097 eV−1Å−4.
This continuum model only accounts for acoustic modes.
The harmonic acoustic frequencies given by Eq. (3)
are ωZA(q) =

√
κ/ρq2, ωLA(q) =

√
(λ+ 2µ)/ρq, and

ωTA(q) =
√
µ/ρq, ρ being the mass density of the mem-

brane. The thermal expansion is included in this for-
malism by changing the in-plane derivatives as ∂iuj →
∂iuj + δijδa, with δa = (a− a0)/a0, a0 being the lattice
parameter that minimizes V .

The results obtained in this rotationally invariant
membrane are shown in Fig. 3. All conclusions drawn
with the atomistic model are confirmed and put in solid
grounds. Again the mean-field ZA phonons obtained
from the auxiliary SCHA force constants get linearized
at small momenta. However, when the interacting phys-
ical phonons are calculated from the Hessian of the free
energy (due to the low frequencies of the ZA modes this
static approximation is perfectly valid as shown in Ex-
tended Data Fig. 1), the ZA phonon frequencies get on
top of the harmonic values recovering a quadratic dis-
persion. This means that the physical phonons have a
quadratic dispersion for small momenta in an unstrained
membrane, as it is expected by rotational invariance,
and that the bending rigidity does not increase in the
long wavelength limit and is barely affected by interac-
tions. Consequently the bending rigidity that we obtain
is around the harmonic value of 1.5 eV, in good agree-
ment with the experiments by Al Taleb et al. [38] and
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Tømterud et al. [40]. Fig. 3 remarks that accounting
correctly for the thermal expansion is crucial to recover
the quadratic dispersion of the flexural modes. The va-
lidity of the membrane potential is confirmed by calculat-
ing the linewidths of the LA and TA modes, which yield
consistent results to those obtained with the atomistic
potential (see. Fig. 2).

Our results thus upturn the conventional wisdom of
2D membranes [6, 29–31, 34]: interactions do not lin-
earize the dispersion of the ZA mode and the bending
rigidity does not diverge at small momentum. The main
reason for this is that in previous works the ∂iu · ∂ju
term in the stress tensor, which guarantees the rotational
invariance of the potential (see Methods), is neglected,
unavoidably lowering the power of the ZA phonon fre-
quency to ΩZA(q) ∝ qd as shown in Fig. 3(a), with
d ≈ 1.6 in our case in the range of wave numbers stud-
ied, even if in the ultimate q → 0 limit we expect a
linear dispersion in our quantum calculation (see Meth-
ods), as suggested in Ref. [30]. The amplitude of the
height fluctuations or ripples in the long wavelength
limit reflects as well the absence of rotational invari-
ance in prior calculations. Different calculations within
the self-consistent screening approximation (SCSA) or
non-perturbative renormalization group (NPRG) the-
ory yield consistent values of 〈|h(q)|2〉 ∝ q−4+η, with
η ≈ 0.80 − 0.85 [6, 29–31, 34, 49, 50]. We can estimate
〈|h(q)|2〉 within the SCHA in our membrane model by
calculating the equal time out-of-plane displacement cor-
relation function, which in the static limit leads to the
simple

〈|h(q)|2〉 =
(1 + 2nB(ΩZA(q)))

2ρΩZA(q)
(5)

equation (see Methods), where nB(ω) is the bosonic
occupation factor and ΩZA(q) the interacting physical
flexural phonon frequency coming from the free energy
Hessian. The presence of the bosonic occupation com-
pletely determines the dependence on q of the corre-
lation function: in the classical limit, when temper-
ature is larger than the frequency of the ZA mode,
〈|h(q)|2〉 ∝ ΩZA(q)−2, while in the quantum limit, when
the ZA mode is unoccupied, 〈|h(q)|2〉 ∝ ΩZA(q)−1. In
the classical regime we recover the 〈|h(q)|2〉 ∝ q−3.2 be-
havior when we neglect ∂iu · ∂ju (see Fig. 4), showing
that our result is consistent with previous calculations
within SCSA and NPRG methods in the wave number
range studied [6, 29–31, 34, 49, 50]. However, when we
keep full rotational invariance, the ZA modes acquires a
quadratic dispersion and thus 〈|h(q)|2〉 ∝ q−4, which is
the result obtained in the harmonic case. Consequently,
anharmonicity does not suppress the amplitude of the
ripples in the long wavelength limit, upturning the pre-
vious consensus [6, 29–31, 34]. It should be stressed that
accounting correctly for thermal expansion and not us-
ing a fix lattice parameter a0 is crucial to recover the

quadratic dispersion of the ZA mode (see Fig. 3) as well
as the consequent q−4 power law of the height correlation
function. This explains why the renormalization group
calculations presented in Ref. [51] a q−4 behavior was not
recovered even if the Hamiltonian contained the ∂iu ·∂ju
term and was, thus, rotationally invariant.

The crossover between the regimes in which thermal
and quantum fluctuations determine the ripples (see Fig.
4) is in very good agreement with the conclusions drawn
with atomistic path-integral Monte Carlo simulations
(PIMC) of freestanding graphene [52]. This crossover oc-
curs at different wave numbers depending on the temper-
ature, basically when ~ΩZA(q) ∼ kBT . However, atom-
istic classical Monte Carlo and MD simulations have es-
timated 〈|h(q)|2〉 for small wave numbers in the order of
q ∼ 0.01Å−1 finding a scaling law not far from the q−3.2

obtained in the membrane model when rotational invari-
ance is broken [7, 26, 50, 52, 53]. Even if this contradicts
our results since such atomistic calculations respect in
principle rotational invariance, an uncontrollable strain
in the numerical simulations as small as δa = 10−5 is
enough to lower the exponent from −4 to −3.2 in the
long wavelength limit (see Extended Data Fig. 2). Con-
sidering that the ZA mode with q ∼ 0.01Å−1 requires
about 1 nanosecond to perform one period, very long
simulation times are required to describe a thermody-
namically flat phase of graphene, and, thus, these Monte
Carlo and MD numerical simulations may also be affected
by non-ergodic conditions, affecting the determination of
the height correlation function in the long wavelength
limit. On the contrary, in our SCHA simulations the
centroids are always in the plane. Our results show in-
deed that this flat configuration is a minimum of the free
energy at the studied temperatures.

The conclusions presented here are universal and, can
be extrapolated to any strictly 2D material or membrane,
offering a new perspective in the understanding of their
thermodynamic, mechanical, and vibrational properties.
Even if complex hydrodynamic behavior dominates the
thermal conductivity of 2D materials [54], the effects on
the dispersion and lifetimes of acoustic modes found here
may be relevant for the calculation of the thermal con-
ductivity of 2D crystals. Our results open new doors to
calculating all these properties.
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FIGURE CAPTIONS

Figure 1. Mechanical properties of graphene calcu-
lated with the atomistic potential. (a) Lattice pa-
rameter of graphene as a function of temperature obtained
with the SCHA using a machine learning atomistic poten-
tial. Both quantum and classical calculations are included.
The temperature-independent frozen nuclei (FN) result cor-
responds to the lattice parameter that minimizes the Born
Oppenheimer potential V . The MD results obtained by Rowe
et al. [44] are included. The lattice parameter calculated
in the quasiharmonic (QH) approximation is also included.
In the grey zone harmonic phonons become unstable break-
ing down the quasiharmonic approximation. (b)-(e) Har-
monic ZA phonon spectra together with the SCHA auxiliary
phonons and the physical phonons obtained from the peaks
of the Green’s function in Eq. (2) at 0 K (b) and 300 K (c).
Panels (d) and (e) show the bending rigidity, defined as the
frequency divided by the squared momentum. In the panels
the dispersion corresponds to the ΓM direction. For reference,
the M point is at 1.4662 Å−1 at 0 K and at 1.4671 Å−1 at
300 K. The harmonic result (solid black) is computed at the
lattice parameter that minimizes V , while the other results in-
clude thermal expansion. The dashed black lines correspond
to harmonic calculations including thermal expansion (TE).

Figure 2. Sound propagation in graphene (a) Linewidths
(full width at half maximum) of LA and TA phonon modes
at 300 K calculated within perturbation theory on top of
the harmonic result and within the SCHA following Eq. (2).
Squares and circles are calculated with the atomistic poten-
tial and lines correspond to calculations within the membrane
model. Our harmonic results are in good agreement with
other theoretical calculations [23, 24]. (b) FWHM divided by
the phonon frequency in the membrane model. In the inset we
show the phonon frequencies in the same momentum range.
The grey zone corresponds to the region where the fraction
FWHMLA/ωLA is bigger than one in the harmonic case.

Figure 3. Bending rigidity of graphene in the mem-
brane model. (a) Bending rigidity of graphene, defined as
the ratio between the frequency of the ZA mode divided by the
squared momentum, calculated within the harmonic approxi-
mation and within the SCHA auxiliary and physical cases at
0 K in the membrane model. We name rotationally invariant
(RI) the results considering the full potential in Eq. 3. We
name no rotationally invariant (No RI) the results neglecting
the ∂iu · ∂ju term in Eq. (4). (b) Same results at 300 K
with the full membrane potential in the rotationally invariant
case. We also include the results without considering thermal
expansion (NTE).

Figure 4. Fourier transform of the height-height corre-
lation function in the membrane model. Fourier trans-
form of the height-height correlation function at 12.5 K in
the membrane model evaluated at different levels of approxi-
mation: harmonic (black dots), anharmonic RI result (green
filled dots) and anharmonic No RI result (green empty dots).
The dashed vertical line specifies the wavevector at which the
crossover from classical (orange background) to quantum cor-
relations (violet background) occurs at this temperature. The
dashed lines correspond to linear fits with different exponents.
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[10] P. San-Jose, J. González, and F. Guinea. Electron-
induced rippling in graphene. Phys. Rev. Lett.,
106:045502, Jan 2011.

[11] L L Bonilla and A Carpio. Ripples in a graphene mem-
brane coupled to glauber spins. Journal of Statistical Me-
chanics: Theory and Experiment, 2012(09):P09015, sep
2012.

[12] Francisco Guinea, Pierre Le Doussal, and Kay Jörg
Wiese. Collective excitations in a large-d model for
graphene. Phys. Rev. B, 89:125428, Mar 2014.
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Rodolfo Miranda. Resolving localized phonon modes on
graphene/ir (111) by inelastic atom scattering. Carbon,
133:31–38, 2018.

[40] Martin Tømterud, Simen K. Hellner, Sabrina D. Eder,
Stiven Forti, Joseph R. Manson, Camila Colletti, and
Bodil Holst. Temperature dependent bending rigidity of
graphene, 2022.

[41] Raffaello Bianco, Ion Errea, Lorenzo Paulatto, Mat-
teo Calandra, and Francesco Mauri. Second-order
structural phase transitions, free energy curvature, and
temperature-dependent anharmonic phonons in the self-
consistent harmonic approximation: Theory and stochas-
tic implementation. Physical Review B, 96(1):014111,
2017.

[42] Ion Errea, Matteo Calandra, and Francesco Mauri. An-
harmonic free energies and phonon dispersions from the
stochastic self-consistent harmonic approximation: Ap-
plication to platinum and palladium hydrides. Physical
Review B, 89(6):064302, 2014.

[43] Lorenzo Monacelli, Ion Errea, Matteo Calandra, and
Francesco Mauri. Pressure and stress tensor of com-
plex anharmonic crystals within the stochastic self-
consistent harmonic approximation. Physical Review B,
98(2):024106, 2018.
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Brillouin scattering study of low-frequency bulk acoustic
phonons in multilayer graphene. Carbon, 46(15):2133–
2136, 2008.

[48] Lev Davidovich Landau and Evgenii Mikhailovich Lif-
shit’s. Theory of elasticity. Theory of elasticity, by Lan-
dau, LD; Lifshit’s, EM London, Pergamon Press; Read-
ing, Mass., Addison-Wesley Pub. Co., 1959. Addison-
Wesley physics books, 1959.

[49] J.-P. Kownacki and D. Mouhanna. Crumpling transi-
tion and flat phase of polymerized phantom membranes.
Phys. Rev. E, 79:040101, Apr 2009.

[50] Rafael Roldán, Annalisa Fasolino, Kostyantyn V. Za-
kharchenko, and Mikhail I. Katsnelson. Suppression
of anharmonicities in crystalline membranes by external
strain. Phys. Rev. B, 83:174104, May 2011.

[51] O. Coquand and D. Mouhanna. Flat phase of quantum
polymerized membranes. Phys. Rev. E, 94:032125, Sep
2016.
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METHODS

Anharmonic theory: SCHA. We study the lattice
dynamics of graphene in the Born-Oppenheimer (BO)
approximation, thus we consider the quantum Hamilto-
nian for the atoms defined by the BO potential energy
V (R). With R we are denoting in component-free nota-
tion the quantity Rsα(l), which is a collective coordinate
that completely specifies the atomic configuration of the
crystal. The index α denotes the Cartesian direction,
s labels the atom within the unit cell and l indicates
the three dimensional lattice vector. In what follows
we will also use a single compact index a = (α, s, l) to
indicate Cartesian index α, atom s index and lattice
vector l. Moreover, in general, we will use bold letters to
indicate also other quantities in component-free notation.

In order to take into account quantum effects and an-
harmonicity at a non-perturbative level, we use the Self-
Consistent Harmonic Approximation [41–43] (SCHA).
For a given temperature T , the method allows to find
an approximation for F (R), the free energy of the crys-
tal as a function of the average atomic positions Ra (the
centroids). For a given centroid R, the SCHA free energy
is obtained through an auxiliary quadratic Hamiltonian,
the SCHA Hamiltonian HRΦ, by variationally minimiz-
ing the free energy with respect to the SCHA centroids
and auxiliary force-constants Φ. The free energy Hessian,
or the physical phonons in the static approach, can be
computed by using the analytic formula (in component-
free notation)

∂2F

∂R∂R = Φ +
(3)

ΦΛ(0)[1−
(4)

ΦΛ(0)]−1
(3)

Φ , (6)

with

(3)

Φ =

〈
∂3V

∂R∂R∂R

〉
ρRΦ

(4)

Φ =

〈
∂4V

∂R∂R∂R∂R

〉
ρRΦ

,

(7)

where the averages are with respect to the density ma-
trix of the SCHA Hamiltonian HRΦ, i.e. ρRΦ =
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e−βHRΦ/tr[e−βHRΦ ], and β = (KBT )−1 where KB is
the Boltzmann constant. In Eq. (6) the value z = 0 of
the 4th-order tensor Λ(z) is used. For a generic complex
number z it is defined, in components, by

Λabcd(z) = −1

2

∑
µν

F̃ (z, ωµ, ων)×

×

√
~

2Maωµ
eaµ

√
~

2Mbων
ebν

√
~

2Mcωµ
ecµ

√
~

2Mdων
edν ,

(8)

with Ma the mass of the atom a, ω2
µ (the auxiliary

phonons) the eigenvalues and eaµ the eigenvectors of

D
(S)
ab = Φab/

√
MaMb, respectively, and

F̃ (z, ωµ, ων) =
2

~

[
(ωµ + ων)[1 + nB(ωµ) + nB(ων)]

(ωµ + ων)2 − z2

− (ωµ − ων)[nB(ωµ)− nB(ων)]

(ωµ − ων)2 − z2

]
(9)

where nB(ω) = 1/(eβ~ω − 1) is the bosonic occupation
number.

As shown in Refs. [41, 45, 46], in the SCHA the
Green function G(iΩn) for the correlation of variable√
Ma(Ra − Ra) in the frequency domain (Ωn is a Mat-

subara frequency) is given as

G−1(iΩn) = (iΩn)21−M− 1
2 ΦM− 1

2 −Π(iΩn), (10)

where G−1(0) = −D(F ), D
(F )
ab = 1√

MaMb

∂2F
∂Ra∂Rb

, and

Π(z) is the SCHA self-energy, given by

Π(iΩn) = M− 1
2

(3)

ΦΛ(iΩn)[1−
(4)

ΦΛ(iΩn)]−1
(3)

ΦM− 1
2 ,
(11)

where Mab = δabMa is the mass matrix. For the appli-
cations considered in the present paper, the static term
(4)

ΦΛ(0) is negligible with respect to the identity matrix
(see Extended Data Fig. 3). Extending this approxima-
tion to the dynamical case reduces the SCHA self-energy
to the so called bubble self-energy, namely

Π ≈ Π(B)(iΩn) = M− 1
2

(3)

ΦΛ(iΩn)
(3)

ΦM− 1
2 . (12)

We then neglect the mixing between different phonon
modes and assume that Π(iΩn) is diagonal in the basis of
the eigenvectors eaµ(q) of Φab(q)/

√
MaMb where Φab(q)

is the Fourier transform of the real space Φ (now a and
b represent atoms in the unit cell and Cartesian indices).
We then define

Πµ(q, iΩn) =
∑
a,b

eaµ(−q)Πab(q, iΩn)ebµ(q). (13)

In studying the response of a lattice to inelastic scatter-
ing experiments we need the one-phonon spectral func-
tion. By using Eq. (10) for G(iΩn) we can calculate
the cross-section σ(ω) = −ωTrImG(ω + i0+)/π, whose
peaks signal the presence of collective vibrational excita-
tions (physical phonons in the dynamic approach) having
certain energies. Again, we take advantage of the lat-
tice periodicity and we Fourier transform the interesting
quantities with respect to the lattice indices. In par-
ticular, we consider the Fourier transform of the SCHA
self-energy, Πab(q, iΩn). Neglecting the mixing between
different modes, the cross section is then given by

σ(q, ω) =
1

π

∑
µ

−ωImΠµ(q, ω)

(ω2 − ω2
µ(q) −ReΠµ(q, ω))2 + (ImΠµ(q, ω))2

.

(14)

If we neglect the frequency dependence of the phonon
self-energy, we get the weakly anharmonic limit of the
cross section, which is going to be a sum of Lorentzian
functions. These Lorentzians are well defined physical
phonons in the dynamical approach. The phonon fre-
quencies squared, Θ2

µ(q), corrected by the bubble self-
energy are obtained as

Θ2
µ(q) = ω2

µ(q) +ReΠµ(q, ωµ(q)), (15)

where ω2
µ(q) are the eigenvalues of the Fourier transform

of D(S). The linewidth of the phonons in Eq. (15) is pro-
portional to ImΠµ(q, ωµ(q)). The centers of these peaks
are the ones supposed to be measured in inelastic exper-
iments. By calculating Ω2

µ(q) = ω2
µ(q) +ReΠµ(q, 0) the

static limit in Eq. (6) is recovered, i.e., the eigenvalues
of the free energy Hessian. We show in Extended Data
Fig. 1 that the dynamic effects are negligible in the ZA
modes, meaning that the static approximation and the
phonons coming from the free energy Hessian are a good
approximation for the physical phonons.

Hessian of the free energy and physical phonons
in an exact theory. Here we provide a proof that the
physical phonons coincide with the eigenvalues of the
Hessian of the free energy in an exact static theory as
well at zero temperature, and that this is not a particu-
lar result of the SCHA. At 0 K this is true if [41]

− 1√
MaMb

∂2E

∂Ra∂Rb
= G−1

ab (iωn = 0), (16)

where Ma is the mass of atom a (recall a is a combined
index labeling atoms and Cartesian directions). As men-
tioned above, this is true for the SCHA free energy land-
scape, as demonstrated in Ref. [41]. In the following, we
extend the proof also in the exact case.

From the Kubo’s equation, the Green’s function is de-
fined as

Gab(τ) = −
√
MaMb〈Tτ [ûa(τ)ûb(0)]〉ρ. (17)
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where the displacement operator û is measured from the
equilibrium average positionReq

a , ûa(τ) = R̂a(τ)−Req
a , τ

is the imaginary time, Tτ the time-ordering operator, and

ρ̂ = e−βĤ/Z the density matrix. The partition function

is Z = Tr[e−βĤ ], with Ĥ the Hamiltonian of the sys-
tem. The Lehmann representation of the Green’s func-
tion in the Matsubara frequency domain is given by (see
for instance Many-Body Quantum Theory in Condensed
Matter Physics by Bruus and Flensberg)

Gab(iωn)√
MaMb

=
1

Z

∑
nm

e−βEn − e−βEm

iωn + En − Em

×〈ψn|
(
R̂a −Req

a

)
|ψm〉 〈ψm|

(
R̂b −Req

b

)
|ψn〉 .(18)

At T = 0K, the static limit of the Green’s function can
be written simply as

Gab√
MaMb

=
∑
m

1

E0 − Em

[
〈ψ0|

(
R̂a −Req

a

)
|ψm〉 〈ψm|

(
R̂b −Req

b

)
|ψ0〉

]
+
∑
m

1

E0 − Em

[
〈ψ0|

(
R̂b −Req

b

)
|ψm〉 〈ψm|

(
R̂a −Req

a

)
|ψ0〉

]
, (19)

where |ψn〉 and En are the eigenvectors and eigenvalues of the Hamiltonian Ĥ,

Ĥ |ψn〉 = En |ψn〉 , (20)

and |ψ0〉 and E0 are the corresponding ground state eigenvectors and eigenenergies. Considering that at equilibrium

〈ψ0|
(
R̂a −Req

a

)
|ψ0〉 = 0, we can safely ignore the m = 0 term in the sum. In this way, the zero temperature static

limit of the Green’s function can be written as

Gab√
MaMb

=
∑
m6=0

1

E0 − Em

[
〈ψ0|

(
R̂a −Req

a

)
|ψm〉 〈ψm|

(
R̂b −Req

b

)
|ψ0〉

]
+
∑
m6=0

1

E0 − Em

[
〈ψ0|

(
R̂b −Req

b

)
|ψm〉 〈ψm|

(
R̂a −Req

a

)
|ψ0〉

]
. (21)

To perform similar operations on the left-hand side of Eq. (16), we define positional free energy landscape at T = 0
K as the energy of the system when the average position of the atoms is constrained to R as

E(R) = min
ψ0,λ

{
〈ψ0|Ĥ|ψ0〉+

∑
a

λa

(
〈ψ0|R̂a|ψ0〉 − Ra

)}
, (22)

where the constrain of the average position is obtained thanks to the Lagrange multiplier λa, which needs to be
optimized. Indeed, when R is equal to the equilibrium average positions of the atoms, we recover the standard
definition of the ground state energy in quantum mechanics:

E = min
ψ0

{
〈ψ0|Ĥ|ψ0〉

}
. (23)

We notice that a small perturbation of the energy landscape from equilibrium Ra = Req
a + δRa is equivalent to

perturbing the Hamiltonian with an external potential of the form

δV̂ =
∑
a

λa(R̂a −Ra), (24)

where λ acts as the small parameter that controls the perturbation and is of the order of δR.
The solution of Eq. (22) yields a new ground state ψ̃0 different from ψ0, with λ 6= 0. By construction we know that

δRa = 〈ψ̃0|
(
R̂a −Req

a

)
|ψ̃0〉 , (25)
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where |ψ̃n〉 are the eigenfunctions of the perturbed Hamiltonian. At lowest order in λ this expression becomes

δRa =

[
〈
(1)

ψ 0| (R̂a −Req
a ) |ψ0〉+ 〈ψ0| (R̂a −Req

a ) |
(1)

ψ 0〉

]
, (26)

where |
(1)

ψ n〉 is the first-order change in the ground state eigenfunction. Making use of perturbation theory

|
(1)

ψ 0〉 =
∑
m6=0

〈ψm| δV̂ |ψ0〉
E0 − Em

|ψm〉 , (27)

and thus

δRa =
∑
b

λb
∑
m6=0

[
1

E0 − Em
〈ψ0|(R̂a −Req

a |ψm〉 〈ψm|(R̂b −R
eq
b )|ψ0〉+

1

E0 − Em
〈ψ0|(R̂b −Req

b |ψm〉 〈ψm|(R̂a −R
eq
a )|ψ0〉

]
.

(28)
Comparing to Eq. (21), we deduce the important

δRa =
∑
b

λb
Gab√
MaMb

(29)

relation. Inverting this relation, we obtain

λa =
∑
b

√
MaMbG

−1
ab δRb, (30)

which determines the relation between the Lagrange multipliers and the shift of the average position.
In order to estimate the Hessian of the free energy when the average position is forced to shift from the equilibrium

position, we will also assume perturbation theory. Thus,

E(R + δR) = E(Req) + 〈ψ̃0| Ĥ |ψ̃0〉 . (31)

Considering that the linear order term vanishes, we need to go to second order to have a non-vanishing contribution:

E(R + δR) = E(Req) + 〈
(2)

ψ 0| Ĥ |ψ0〉+ 〈
(1)

ψ 0| Ĥ |
(1)

ψ 0〉+ 〈ψ0| Ĥ |
(2)

ψ 0〉 . (32)

Considering that the second-order change in the wave-function is given by

|
(2)

ψ 0〉 =
∑

ml,m6=0,l 6=0

〈ψl| δV̂ |ψm〉 〈ψm| δV̂ |ψ0〉
(E0 − Em)(E0 − El)

|ψl〉−
∑

m,m 6=0

〈ψm| δV̂ |ψ0〉 〈ψ0| δV̂ |ψ0〉
(E0 − Em)2

|ψm〉−
1

2
|ψ0〉

∑
m,m 6=0

| 〈ψm| δV̂ |ψ0〉 |2

(E0 − Em)2
,

(33)
we obtain

E(R + δR) = E(Req)−
∑
m 6=0

E0
| 〈ψm| δV̂ |ψ0〉 |2

(E0 − Em)2
+
∑
m 6=0

Em
| 〈ψm| δV̂ |ψ0〉 |2

(E0 − Em)2
= E(Req)−

∑
m6=0

| 〈ψm| δV̂ |ψ0〉 |2

(E0 − Em)

= E(Req)−
∑
ab

λaλb
∑
m6=0

1

(E0 − Em)
〈ψ0|(R̂a −Req

a |ψm〉 〈ψm|(R̂b −R
eq
b )|ψ0〉

= E(Req)− 1

2

∑
ab

λaλb
Gab√
MaMb

. (34)

Making use of Eq. (30) we finally obtain

E(R + δR) = E(Req)− 1

2

∑
ab

√
MaMbG

−1
ab δRaδRb,

(35)

which proves Eq. (16) in the T = 0 K case, i.e., it shows
that for any static theory the physical phonons coincide
with the eigenvalues of the free energy Hessian.
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Empirical potential benchmark and calculation
parameters of the atomistic calculations. For calcu-
lating the forces needed in the atomistic SCHA minimiza-
tion [42] we have used an empirical potential trained with
machine learning and density functional theory (DFT)
forces. The details about the machine learning training
are explained in Ref. [44]. Here we have benchmarked
the ability of the potential to account for anharmonic
effects. For that purpose we have applied the SCHA
method by using DFT and empirical forces in a 2 × 2
supercell and we have checked the anharmonic effects in
the optical modes at the Γ point. The machine learn-
ing potential is trained with the exchange-correlation in
Ref. [55] and for the DFT calculations we have ap-
plied a PBE [56] ultrasoft pseudopotential [57] with Van
der Walls corrections [58]. The results are shown in Ex-
tended Data Figs. 4 and 5. As we can see in Extended
Data Fig. 4, the two potentials provide very similar har-
monic phonons. Due to the different exchange correla-
tion functional there is a slight offset in Extended Data
Fig. 5, however, the anharmonic lineshifts are very well
captured within the empirical potential. For the self-
consistent DFT calculations used in the benchmark we
have used a plane wave cutoff of 70 Ry and a 700 Ry
cutoff for the density. For the Brillouin zone integration
we have used a Monkhorst pack grid [59] of 32×32 points
with a Gaussian smearing of 0.02 Ry.

The atomistic calculations of the linewidth in the
main text have been performed with a grid of 400× 400
momentum points for the bubble self-energy, with
a Gaussian smearing (δ) of 1 cm−1. For the stress
calculation in order to account for the thermal expansion
we have used a 10 × 10 supercell. We have used the
same supercell for the SCHA auxiliary and physical
frequency calculations in the atomistic case. For the

linewidth calculations we have used
(3)

Φ calculated in
a 3 × 3 supercell and fourier interpolate it. We have
tested all the calculations with denser grids and bigger
supercells.

SCHA applied to the continuum membrane
Hamiltonian. The general rotationally invariant po-
tential for a membrane can be written as follows

V =
1

2

∫
Ω

d2x

κ(∂2h)2 +
∑
n≥2

ui1j1 . . . uinjnC
(2n)
i1j1...injn

,
(36)

where Ω is the area of the membrane in equilibrium, κ
is the bending rigidity, h is the out-of-plane component
of the displacement field and the rotationally invariant
strain tensor uij is defined using the in-plane displace-
ment field ui

uij =
1

2
(∂iuj + ∂jui + ∂iu · ∂ju+ ∂ih∂jh). (37)

C
(2n)
i1j1...injn

is the generic elastic tensor of rank 2n. In
the previous expression the subscripts label the 2D co-
ordinates x, y and the sum over indices is assumed. The
second-order expansion of Eq. (36) with respect to the
phonon fields is given by

V =
1

2

∫
Ω

d2x
(
κ(∂2h)2 + C

(4)
ijkluijuil

)
, (38)

with C
(4)
ijkl = λδijδkl+µ(δikδjl+δilδjk). By using equation

(37) and C
(4)
ijkl = Cijkl, equation (38) can be rewritten as

V =
1

2

∫
Ω

d2x[κ(∂2h)2+Cijkl∂iuj∂kul+C
ijkl∂iuj∂kh∂lh+

+
Cijkl

4
∂ih∂jh∂kh∂lh+

Cijkl

2
∂iu · ∂ju∂kh∂lh+

+ Cijkl∂iuj∂ku · ∂lu+
Cijkl

4
∂iu · ∂ju∂ku · ∂lu]. (39)

If we allow the lattice spacing a to be a variable, we can
vary it by simply shifting the derivatives of the in-plane
displacements according to ∂iuj → ∂iuj + δijδa, where
δa = (a− a0)/a0. Then, by taking into account periodic
boundary conditions,

∫
Ω
d2x∂iuj = 0, we can rewrite the

potential as

V → V + 2Ω(1 + δa)(λ+ µ)δa2+

+ (1 +
δa

2
)δa(λ+ µ)

∫
Ω

d2x∂kh∂kh+

+
δa

2

∫
Ω

d2xCijkl∂iuj∂kh∂lh+

+ (1 +
δa

2
)δa

∫
Ω

d2xCijkl∂iuj∂kul+

+ (1 +
δa

2
)δa(λ+ µ)

∫
Ω

d2x∂ku · ∂ku+
δa4Ω

2
(λ+ µ)+

+
δa

4

∫
Ω

d2xCijkl[∂iu · ∂ju∂kul + ∂iuj∂ku · ∂lu]. (40)

The displacement fields u(x), h(x) can be expanded in
the following plane wave basis set:

u(x) =
1√
Ω

∑
q

u(q)eiq·x, (41)

h(x) =
1√
Ω

∑
q

h(q)eiq·x, (42)

where q are discrete wavevectors determined by periodic
boundary conditions and u(q), h(q) the corresponding
Fourier transforms, which are defined according to

u(q) =
1√
Ω

∫
Ω

d2x u(x)e−iq·x, (43)

h(q) =
1√
Ω

∫
Ω

d2x h(x)e−iq·x. (44)
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Then, the SCHA free energy can be written as (we use
~ = kB = 1):

F(V) = FV + 2Ω(1 + δa+
δa2

4
)(λ+ µ)δa2+

+
1

2

∑
q

{
g[ω

(h)
SCHA(q)]κ|q|4+

+ {(λ+ 2µ)g[ω
(LA)
SCHA(q)] + µg[ω

(TA)
SCHA(q)]}|q|2+

+
λ+ 2µ

4Ω

∑
k

g[ω
(h)
SCHA(q)]g[ω

(h)
SCHA(k)][|q|2|k|2+2(q·k)2]+

+
1

2Ω

∑
k

g[ω
(h)
SCHA(k)]{g[ω

(LA)
SCHA(q)] + g[ω

(TA)
SCHA(q)]}×

× [λ|q|2|k|2 + 2µ(q · k)2]+

+ 2(1 +
δa

2
)δa(λ+ µ)g[ω

(h)
SCHA(q)]|q|2+

+2(1+
δa

2
)δa{(λ+2µ)g[ω

(LA)
SCHA(q)]+µg[ω

(TA)
SCHA(q)]}|q|2+

+2(1+
δa

2
)δa(λ+µ){g[ω

(LA)
SCHA(q)]+g[ω

(TA)
SCHA(q)]}|q|2+

+
1

4Ω

∑
k

[
4g[ω

(LA)
SCHA(q)]g[ω

(TA)
SCHA(k)]×

× [λ(q · k)2 + µ|q|2|k|2 + µ(q · k)2](q̂⊥ · k̂)+

+ 2g[ω
(LA)
SCHA(q)]g[ω

(TA)
SCHA(k)][λ|q|2|k|2 + 2µ(q · k)2]+

+(g[ω
(LA)
SCHA(q)]g[ω

(LA)
SCHA(k)]+g[ω

(TA)
SCHA(q)]g[ω

(TA)
SCHA(k)])×

× [λ|q|2|k|2 + 2µ(q · k)2]+

2(g[ω
(LA)
SCHA(q)]g[ω

(LA)
SCHA(k)])×

× [λ(q · k)2 + µ|q|2|k|2 + µ(q · k)2](q̂ · k̂)+

+ 2(g[ω
(TA)
SCHA(q)]g[ω

(TA)
SCHA(k)])×

× [λ(q · k)2 + µ|q|2|k|2 + µ(q · k)2](q̂⊥ · k̂⊥)

]
+

−
∑
α

g[ω
(α)
SCHA(q)]Φ

(α)
SCHA(q)

}
, (45)

where g(ω) = coth((ω/2T ))/(2ρω) and ωαSCHA(q) =√
Φ

(α)
SCHA(q)/ρ (α = h, LA, TA) is the SCHA auxiliary

frequency. ρ is the mass density. In Eq. (45) the in-
plane displacement vector u(q) is separated into longi-
tudinal and transversal components u(q) = uLA(q)q̂ +
uTA(q)q̂⊥, q̂⊥ being the unitary vector perpendicular to
q̂. FV is the harmonic free energy of the harmonic aux-
iliary potential V. Now, by taking the derivative of the
SCHA free energy with respect to the lattice constant
and SCHA auxiliary frequencies, we arrive to the SCHA

equations:

∂F(V)

∂δa
= 0 = 2Ω(2δa+ 3δa2 + δa3)(λ+ µ)+

+
1

2

∑
q

g[ω
(h)
SCHA(q)]2(1 + δa)(λ+ µ)|q|2+

+
1

2

∑
q

g[ω
(LA)
SCHA(q)][2(1+δa)(λ+2µ)|q|2+2(1+δa)(λ+µ)|q|2]+

+
1

2

∑
q

g[Ω
(TA)
SCHA(q)][2(1+δa)µ|q|2+2(1+δa)(λ+µ)|q|2],

(46)

Φ
(h)
SCHA(q) = κ|q|4 + 2(1 + δa/2)δa(λ+ µ)|q|2+

+
λ+ 2µ

2Ω

∑
k

g[ω
(h)
SCHA(k)][|q|2|k|2 + 2(q · k)2]+

+
1

2Ω

∑
k

{g[ω
(LA)
SCHA(k)]+g[ω

(TA)
SCHA(k)]}[λ|q|2|k|2+2µ(q·k)2],

(47)

Φ
(LA)
SCHA(q) = (λ+2µ)|q|2 +2(1+δa/2)δa(λ+2µ)|q|2+

+ 2(1 + δa/2)δa(λ+ µ)|q|2+

+
1

2Ω

∑
k

g[ω
(h)
SCHA(k)][λ|q|2|k|2 + 2µ(q · k)2]+

+
1

4Ω

∑
k

{
4g[ω

(TA)
SCHA(k)][λ(q·k)2+µ|q|2|k|2+µ(q·k)2](q̂⊥·k̂)+

+ 2g[ω
(TA)
SCHA(k)][λ|q|2|k|2 + 2µ(q · k)2]+

+ 2g[ω
(LA)
SCHA(k)][λ|q|2|k|2 + 2µ(q · k)2]+

+4g[ω
(LA)
SCHA(k)][λ(q ·k)2 +µ|q|2|k|2 +µ(q ·k)2](q̂ · k̂)

}
(48)

and,

Φ
(TA)
SCHA(q) = µ|q|2 + 2(1 + δa/2)δaµ|q|2+

+ 2(1 + δa/2)δa(λ+ µ)|q|2+

+
1

2Ω

∑
k

g[ω
(h)
SCHA(k)][λ|q|2|k|2 + 2µ(q · k)2]+

+
1

4Ω

∑
k

{
4g[ω

(TA)
SCHA(k)][λ(q·k)2+µ|q|2|k|2+µ(q·k)2](q̂⊥·k̂⊥)+

+4g[ω
(LA)
SCHA(k)][λ(q ·k)2 +µ|q|2|k|2 +µ(q ·k)2](q̂⊥ · k̂)+

+ 2g[ω
(TA)
SCHA(k)][λ|q|2|k|2 + 2µ(q · k)2]

}
. (49)

When solving this set of equations, it has been taken into
account that the assumed periodic boundary conditions
make the reciprocal space discrete. In order to reach
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wavevectors a magnitude of order smaller than in our
atomistic calculations, we have worked with a squared
membrane of size Lx = Ly = 2π

0.01 Å. On the other side,
the implicit continuity of the membrane Hamiltonian
makes Fourier transforms to be non-periodic. Then, as
displacement fields u(x) and h(x) are smooth functions
in real space, their discrete and non-periodic Fourier
transforms u(q) and h(q) (and related magnitudes) are
expected to decay rapidly in reciprocal space. Therefore,
we can converge our results with respect to a cut-off
radius in momentum space, defining in this way a circu-
lar grid. The value of this cut-off radius is temperature
dependent, because modes with greater q values are
thermally excited when increasing the temperature.
We have found that with a value of Rcut = 0.8 Å−1

convergence is achieved for temperatures close to 0 K.
This radius encloses 20080 q-points, which yields a
total of 60241 coupled equations that we have solved by
applying the Newton-Raphson method [60]. This model
accounts for the negative thermal expansion of graphene
as it can be seen in Extended Data Fig.6.

Regarding the second derivative of the free energy, the
physical phonons in the static approach, the most general
formula for the correction to the SCHA auxiliary phonon
frequencies is

Dcorr
αβ (−q, q) =

∑
γδεζ

∑
pk

(3)

Dαγδ(−q,p, q − p)×

× [1−
(4)

Dγδεζ(−p,p−q,k, q−k)]−1
(3)

D εζβ(−k,k−q, q),
(50)

where the subindexes run on the normal coordinates
α, β, γ, δ, ε, ζ = h, uLA, uTA and the dynamical matrices
in normal coordinates are defined as

(3)

Dαβγ(q,k,p) =
1

ρ3/2

〈
∂3V

∂α(q)∂β(k)∂γ(p)

〉
ρV

√
Gβγ(k,p),

(51)

(4)

Dαβγε(q, q
′,k,k′) =

1

ρ2

〈
∂4V

∂α(q)∂β(q′)∂γ(k)∂ε(k′)

〉
ρV

×
√
Gαβ(q,k)Gγε(q′,k′). (52)

The matrix Gαβ(q,k) is defined as

Gαβ(q,k) =
F̃ (0, ωαSCHA(q), ωβSCHA(k))

ωαSCHA(q)ωβSCHA(k)
, (53)

F̃ (0, ωαSCHA(q), ωβSCHA(k)) being the function defined in
Eq. (9). We are interested in the corrections to the out-
of-plane modes, therefore, we are interested in the terms

of the type

Dcorr
hh (−q, q) =

∑
γδεζ

∑
pk

(3)

Dhγδ(−q,p, q − p)×

× [1−
(4)

Dγδεζ(−p,p−q,k, q−k)]−1
(3)

D εζh(−k,k−q, q).
(54)

By looking at Eq. (40) we can see that only the terms
of the type

∫
Ω
d2xCijkl∂iuj∂kh∂lh will contribute to the

statistical average in Eq. (51). Therefore, Eq. (50) can
be rewritten as

Dcorr
hh (−q, q) = 4

∑
αβ

∑
pk

(3)

Dhhα(−q,p, q − p)×

×[1−
(4)

Dhαhβ(−p,p−q,k, q−k)]−1
(3)

Dhβh(−k,k−q, q),
(55)

where now the subindexes only run in α, β = uLA, uTA.
Now, we can calculate the statistical averages〈

∂3V

∂h(k1)∂h(k2)∂uLA(k3)

〉
ρV

=
1 + δa√

Ω
δk1+k2+k3,0×

×
[
λ|k3|k1 · k2 + 2µ

(k3 · k1)(k3 · k2)

|k3|

]
, (56)

〈
∂3V

∂h(k1)∂h(k2)∂uTA(k3)

〉
ρV

=
µ(1 + δa)√

Ω
δk1+k2+k3,0×

×
[

(k3 · k1)(k3⊥ · k2) + (k3 · k2)(k3⊥ · k1)

|k3|

]
, (57)

〈
∂4V

∂h(k1)∂h(k2)∂uLA(k3)∂uLA(k4)

〉
ρV

=

1

Ω
δk1+k2+k3+k4,0

k3 · k4

|k3||k4|
[λ(k3 · k4)(k1 · k2)+

+ µ(k3 · k1)(k4 · k2) + µ(k3 · k2)(k4 · k1)], (58)

〈
∂4V

∂h(k1)∂h(k2)∂uTA(k3)∂uTA(k4)

〉
ρV

=

1

Ω
δk1+k2+k3+k4,0

k3⊥ · k4⊥

|k3||k4|
[λ(k3 · k4)(k1 · k2)+

+ µ(k3 · k1)(k4 · k2) + µ(k3 · k2)(k4 · k1)], (59)

and〈
∂4V

∂h(k1)∂h(k2)∂uLA(k3)∂uTA(k4)

〉
ρV

=

1

Ω
δk1+k2+k3+k4,0

k3 · k4⊥

|k3||k4|
[λ(k3 · k4)(k1 · k2)+

+ µ(k3 · k1)(k4 · k2) + µ(k3 · k2)(k4 · k1)]. (60)
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The equations cannot be further simplified but we have
all the ingredients to calculate them numerically. We
have checked numerically that, as in the atomistic case,

the contribution of
(4)

D is completely negligible. To show
that we Taylor expand Eq. (11)

Π(z) = M− 1
2

(3)

ΦΛ(z)[1−
(4)

ΦΛ(z)]−1
(3)

ΦM− 1
2 '

'M− 1
2

(3)

ΦΛ(z)
(3)

ΦM− 1
2 + M− 1

2

(3)

ΦΛ(z)
(4)

ΦΛ(z)
(3)

ΦM− 1
2 ,
(61)

and we calculate the contribution of the term containing
the fourth-order tensor to the linewidth. We also cal-
culate the spectral function with and without including
the frequency dependence of the self energy. We show
the results in Extended Data Fig. 7. The figure clearly
shows that the contribution of the fourth-order tensor
is at least one order of magnitude smaller than the
main term, justifying the bubble approximation of the
self-energy, and, what it is more important, it also
decays as momentum decreases. The figure also shows
that the Lorentzian approximation is justified for the
acoustic modes in graphene.

By neglecting the fourth-order terms containing in-
plane displacement fields in Eq. 36, which means that
the potential is not rotationally invariant, the SCHA can
be applied analytically in this model. The SCHA equa-
tions simplify to

δa = − 1

4Ω

∑
q

|q|2g[ω
(h)
SCHA(q)], (62)

Φ
(h)
SCHA(q) = κ|q|4 + 2δa(λ+ µ)|q|2+

+
λ+ 2µ

2Ω

∑
k

g[ω
(LA)
SCHA(k)][|q|2|k|2 + 2(q · k)2]. (63)

By inserting Eq. (62) in Eq. (63) and considering the
infinite volume limit (Ω→∞), we obtain

Φ
(h)
SCHA(q) = κ|q|4 + γ|q|2, (64)

where γ is given by the solution of

γ = γ
λ+ 3µ

16πκ
√
ρκ

∫ Λ
√
κ/γ

0

ds
s2coth[γs

√
1 + s2/(2T

√
ρκ)]

√
1 + s2

.

(65)
Λ is an ultraviolet cutoff that avoids divergences. Eqs. 64
and 65 show that the dispersion of the SCHA auxiliary
ZA modes is linear. By calculating the correction for
getting the physical phonons in the static approach in
Eq. 55 (in this case the fourth-order tensor is 0) the
result is

Φ
(h)
F (q) = κ|q|4 + (γ − σ)|q|2 +O(|q|4), (66)

where at T = 0 K:

σ =
ρ
√
γ

8πκ3/2

∑
α=LA,TA

vαf(Λ
√
κ/γ, vα

√
ρ/γ), (67)

with

f(x, y) =

∫ x

0

ds
s2

√
1 + s2[

√
1 + s2 + y]

. (68)

By setting the ultraviolet cutoff to the value of the

Debye momentum, Λ =
√

8π
31/2a0

= 1.55Å, we obtain

1−σ/γ = 20%. This means that the linear component of
the physical frequencies turns out to be a factor of 40%
smaller than the one of the SCHA auxiliary frequency.
The non zero linear term in the physical frequencies ap-
pears because neglecting the fourth-order terms including
in-plane displacements breaks the rotational invariance
of the potential. This result suggest that the ultimate
q → 0 limit of the behavior of physical phonons in the
non-rotationally invariant case is linear at 0 K in this
quantum theory.

Rotational invariance of the membrane Hamil-
tonian. In order to prove explicitly that the membrane
potential in Eq. (3) is rotationally invariant, let us con-
sider a continuous elastic membrane embedded in the 3D
space. Without loss of generality, we assume that, in the
equilibrium configuration, the flat membrane lies in the
xy plane. We introduce the local deformations of the
membrane from the flat geometry by means of the vector

δR(r) = ux(r)i + uy(r)j + h(r)k, (69)

where r = xi + yj is the coordinate relative to the flat
membrane, ux, uy are the in-plane displacements and h
is the out-of-plane displacement. The strain tensor cor-
responding to the deformation in Eq. (69) is defined as

uij =
1

2
(∂iuj + ∂jui + ∂iu · ∂ju + ∂ih∂jh) , (70)

where we omitted the explicit dependence on r for sim-
plicity. The energy cost for the deformation is given by

δE =
1

2

∫
d2r

[
Cijkluijukl + κ

(
∂2h

)2]
, (71)

where ijkl = x, y, Cijkl = λδijδkl + µ
(
δikδjl + δilδjk

)
is

the elastic moduli tensor, λ, µ are the Lamé coefficients
and κ is the bending rigidity as defined in the main text.

In what follows we show that the model of Eq. (71) is
invariant under any rigid rotation about the plane of the
membrane. To this purpose, we first define the rotation
axis: n = nxi + nyj, |n| = 1. The rigid rotation of the
membrane about n by the angle θ is defined by the linear
transformation

r→ r′ = exp [θn×] r. (72)
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In this case we can write

δR(r) = [exp (θn×)− 1] r =
∑
k≥1

θk

k!
(n×)

k
r. (73)

One can easily note that

n× r = (nxy − nyx)k, (74a)

(n×)
2
r = (nxy − nyx)(nyi− nxj), (74b)

(n×)
2k+1

r = (−)kn× r (74c)

(n×)
2k

r = (−)k−1 (n×)
2
r, (74d)

and then write Eq. (73) as

δR(r) = sin θ (n× r) + (1− cos θ)
[
(n×)

2
r
]
. (75)

Identifying Eqs. (69) and (75) and using (74) yields

ux(r) = u0
xf(r), uy(r) = u0

yf(r), h(r) = h0f(r),
(76a)

where

(u0
x, u

0
y, h

0) = [ny(1− cos θ),−nx(1− cos θ), sin θ] ,
(76b)

and

f(r) = nxy − nyx. (76c)

The strain tensor of Eq. (70) can then be written as:

uij =
1

2

{
u0
i ∂jf + u0

j∂if +
[(
u0
x

)2
+
(
u0
y

)2
+
(
h0
)2]

∂if∂jf
}
.

(77)
It is straightforward to show that Eqs. (76) imply uij = 0

∀ij. Concerning the term κ
(
∂2h

)2
in Eq. (71), it is triv-

ially zero as h is a linear function of r in the rigid rotation
that we are considering. This finally shows that δE = 0
for any rigid rotation about the membrane’s plane. Note
that the ∂iu ·∂ju term in the potential is needed to keep
δE = 0. When it is neglected, δE 6= 0 for a rigid rotation.

The equal time height-height correlation func-
tion within SCHA. Within an interacting picture, the
ensemble average of any displacement-displacement cor-
relation function is given by the following equal time
Green function (we use ~ = kB = 1):√

MaMb〈uaub〉 = Gab(τ = 0+) = −T
∑
n

Gab(iΩn),

(78)
where Gab(iΩn) is the SCHA Green function in fre-
quency domain for the variable

√
Ma(Ra −Raeq) defined

in Eq. (2) and Ωn = 2πTn are the bosonic Matsubara’s
frequencies. Raeq are the centroid positions that minimize
the SCHA free energy.

The summation has to be done via the Lehmann rep-
resentation:√
MaMb〈uaub〉 = −T

∑
n

Gab(iΩn) =

∫ ∞
−∞

dω

2π
σ(ω)nB(ω)

(79)

being σ(ω) the spectral function of the Green function:
σ(ω) = −2Im[G(ω + i0+)]. Retaining only the first term
of the dynamical SCHA self energy (bubble aproxima-
tion) and neglecting the mode-mixing, the spectral func-
tion resembles a superposition of Lorentzians, but with
frequency dependent shifts and widths. When the quasi-
particle picture is valid after the inclusion of anharmonic-
ity, the spectral function can actually be expressed as a
superposition of Lorentzians:

σ(ω) =
∑
µ

εaµε
b
µ

(
1

ω

[
Γµ

(ω −Θµ)2 + (Γµ)2
+

+
Γµ

(ω + Θµ)2 + (Γµ)2

])
, (80)

where Θµ is the frequency of the SCHA quasiparticle in
the Lorentzian approximation and Γµ its half width at
half maximum (HWHM).

We can avoid divergences in the integral by redefining
the sum as

√
MaMb〈uaub〉 = −TGab(0)+

∫ ∞
−∞

dω

2π
σ(ω)

[
nB(ω)− T

ω

]
.

(81)
Regarding the first term in the sum, the static limit of
the Green function corresponds to the inverse of the free
energy dynamical matrix:

Gab(iΩn = 0) = −[D(F )]−1
ab =

∑
µ

εaµε
b
µ

(
− 1

Ω2
µ

)
, (82)

where Ωµ are again the frequencies of the free energy
phonons.

Inserting Eqs. (82) and (80) in Eq. (81):

√
MaMb〈uaub〉 =

∑
µ

εaµε
b
µ

(
T

Ω2
µ

+

∫ ∞
−∞

dω

2π
×

×
(

1

ω

[
Γµ

(ω −Θµ)2 + (Γµ)2
+

Γµ
(ω + Θµ)2 + (Γµ)2

])
×

×
[
nB(ω)− T

ω

])
. (83)

This integral can be simplified when the phonon-phonon
linewidth tends to zero. For those cases, the Lorentzian
representation of the Dirac delta function can be used:

δ(x) =
1

π
lim
ε→0+

ε

x2 + ε2
. (84)
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Then,

√
MaMb〈uaub〉 =

∑
µ

εaµε
b
µ

(
T

Ω2
µ

+
1

2

∫ ∞
−∞

dω×

×
(

1

ω
× [δ(ω −Θµ) + δ(ω + Θµ)]

)[
nB(ω)− T

ω

])
.

(85)

And

〈uaub〉 =

∑
µ ε

a
µε
b
µ√

MaMb

(
T

Ω2
µ

+
−~nB(−Θµ) + ~nB(Θµ)

2Θµ
− T

Θ2
µ

)
.

Finally, when free energy Hessian phonons (physical
phonons in the static approach) and physical ones are
nearly identical (Ω2

µ ≈ Θ2
µ), we recover the formula of

the non-interacting case but evaluated with free energy
Hessian (equivalently, physical) phonons:

〈uaub〉 =

∑
µ ε

a
µε
b
µ√

MaMb

[
(nB [Ωµ]− nB [−Ωµ])

2Ωµ

]
=

=

∑
µ ε

a
µε
b
µ√

MaMb

[
(1 + 2nB [Ωµ])

2Ωµ

]
.

(86)

In the case of the membrane model, the displacement-
displacement correlation function is:

〈ua(x)ub(x
′)〉 =

∑
µ ε

a
µ(x)εbµ(x′)

ρ

[
(1 + 2nB [Ωµ])

2Ωµ

]
,

(87)
where a and b are the Cartesian indexes and µ =
h, LA, TA in this case. Essentially, discrete magnitudes
are now continuous, while the individual atomic masses
Ma and Mb are replaced by the mass density of the mem-
brane ρ. The corresponding Fourier transform is given by

〈ua(q)ub(k)〉 = δq,−k

∑
µ ε

a
µ(q)εbµ(−q)

ρ

[
(1 + 2nB [Ωµ(q)])

2Ωµ(q)

]
.

(88)
We are particularly interested on the Fourier transform
of the out-of-plane correlation function. As in the mem-
brane model ZA is the only mode with an out-of-plane
component, we finally obtain:

〈|h(q)|2〉 =
(1 + 2nB [ΩZA(q)])

2ρΩZA(q)
, (89)

which is the formula implemented to obtain the Fourier
transform of the height-height correlation function.

Nearly all the approximations taken in this mathe-
matical derivation have been demonstrated for graphene
throughout here. The only task left is showing that the
linewidth of the ZA mode is as small as the ones corre-
sponding to the in-plane phonon modes, which is indeed
true as shown in Extended Data Fig. 8.

Extra calculations of the equal time height-
height correlation function. The out-of-plane cor-
relation function is governed by the bosonic occupation
factor. Quantum correlations appear for those flexural
modes that are barely occupied thermally, that is, in
those modes whose quantum zero-point energy is bigger
than the thermal energy:

1

2
~ωZA(q) > KBT <=> qT >

(√
ρ

κ

2KBT

~

)
. (90)

Decreasing the temperature and/or increasing the wave-
length favors the emergence of quantum correlations [52].

In this subsection we provide extra calculations ana-
lyzing the extreme cases at 0 K and 300 K. At null tem-
perature there is no phonon mode thermally occupied,
but all of them fluctuate due to quantum zero-point mo-
tion. The height-height correlation function shows then a
fully quantum behavior, with no crossover to a classical
regime as shown in Extended Data Fig. 9. The har-
monic and anharmonic rotational invariant results yield
the same exponents due to their quadratic dispersion:
〈|h(q)|2〉 ∝ q−2. The anharmonic non rotational invari-
ant phonons are quadratic in the short wavelength limit,
but they are linearized in the long wavelength limit with
〈|h(q)|2〉 ∝ ΩZA(q)−1 ∝ q−1.62. This exponent coincides
with the one obtained in the self consistent screening ap-
proximation (SCSA), which scale as qν with ν ≈ 1.6 [50].

At 300 K the classic to quantum crossover occurs at
1.18 Å−1, so that all the modes are largely occupied in the
q range in which we have focused our analysis. Thermal
fluctuations rule and the height-height correlation func-
tion shows a classical behavior as shown in Extended
Data Fig. 10. Again, the quadratic dispersion of the
harmonic and anharmonic rotational invariant results is
behind the exponent of the correlation function, which is
now of 〈|h(q)|2〉 ∝ q−4 as predicted by classical statistics.
The linearization of the anharmonic phonons in the long
wavelength limit when the rotational invariance is bro-
ken makes us recover the exponent obtained in classical
references in the literature.

Dependence of the ZA frequency on strain. To
assess the significance of small strains on the behavior
of the height-height correlation function, we formulate
a simple harmonic model that describes the relationship
between the ZA frequency and the biaxial strain δa. In
Eq. (40) the only second-order term involving h is δa(λ+
µ)
∫

Ω
d2x ∂kh∂kh. Consequently, the modified harmonic

potential energy for h due to strain can be expressed as

Uδa =
1

2

[∫
Ω

d2x κ(∂2h)2 + 2δa(λ+ µ)

∫
Ω

d2x ∂kh∂kh
]

(91)
whose diagonalization leads to

ωZA(q) =

√
2(λ+ µ)δaq2 + κq4

ρ
. (92)
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We plug Eq. (92) in the equation for the height-height
correlation function in the main text (Eq. (5)) and cal-
culate explicitly 〈|h(q)|2〉 at T = 12.5 K. The result is
shown in Extended Data Fig. 2. A strain as small as
δa = 10−5 can deviate the ripples amplitude from the
q−4 law lowering it to q−3.23.

DATA AVAILABILITY

All the data generated in this work is presented in the
figures in the main text and the extended data. It is also
available upon request from I.E.

CODE AVAILABILITY

The atomistic calculations of the SCHA theory are
performed with the SSCHA code. This code is open
source and can be downloaded from www.sscha.eu. The
calculations of the SCHA in the membrane model are
performed with an in-house program adapting the dis-

tributed SCHA code, which may be shared upon reason-
able request.
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