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Second-order filter-based inertia emulation (SOFIE)
for low inertia power systems—Part 1: Principles
and Equivalence with Synchronous Machines

D. A. Aragon*, E. Unamuno, A. Gil de Muro, S. Ceballos, J. A. Barrena

Abstract—The massive integration of power electronic
converters into the power grid has led to a decrease in the
mechanical inertia of the power system, causing an increase
in the rate of change of frequency (RoCoF) that may lead
to stability problems. The scientific community has focused
on developing grid-forming control techniques, although their
implementation implies a significant change in the firmware of the
converter. Grid-supporting approaches, on the other hand, are an
interesting alternative to add frequency support to the grid while
preserving the original control structure of the converter. This
paper proposes three new grid-supporting control techniques
based on the dynamic behaviour of a synchronous machine (SM)
and its equivalence with a second-order low-pass filter. They
endow the converter with the capability of providing synthetic
inertia, damping, droop-based p/f primary response and virtual
reactance. The dynamics of the proposed implementations are
compared with those of a reduced-order synchronous machine
by means of time-domain simulations and in-depth state-space
based small signal analyses. Besides, their operation is validated
in a nine-bus low-inertia power system. Hardware in the loop
(HIL) laboratory results are used to validate experimentally the
proposed techniques.

Index Terms—Grid-supporting control, Second-order low-pass
filter, Small signal analysis, Synchronous machine.

I. Introduction
The ambitious goal of reducing greenhouse gas emissions

has set in motion an accelerated integration of non-
conventional renewable energies (nRES) into the electricity
grid, forecasting that by 2050 the 86% of electricity generated
will be supplied by renewable sources [1]. Most nRES are
connected to the power grid using electronic power converters,
which are synchronised with the grid with phase-locked
loop (PLL) algorithms [2]. These devices are known as
grid-following (GFL) because they do not contribute to the
frequency and voltage regulation of the grid. The replacement
of conventional generation based on synchronous machines
(SM) with this type of nRES leads to a reduction of the
mechanical inertia connected to the grid, degrading the
stability of the power system [3]. Moreover, the stochastic
nature of these sources leads to highly variable generation
profiles, impacting directly on the system power balance. To
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overcome these challenges, nRES are usually integrated in the
grid with energy storage systems (ESS), and are controlled
as grid-forming (GFM) or grid-supporting (GSC) devices to
provide frequency and voltage support [4].
The advantage of GFM is that the converter operates as

a voltage source and is capable of generating the voltage
waveform without using a PLL. This type of devices are
specially relevant at power systems with a 100% penetration
of converter-interfaced devices where nRES and ESS have
replaced all the conventional synchronous generation. In the
literature, several implementations of GFM proposals can
be found, such as the ones based on droop control [5],
synchronous machine emulation [6], [7], virtual oscillators [8]
or matching control [9]. A comparative evaluation of some of
these control strategies can be also found in [10].
GSCs, on the other hand, perform as current sources and

are not capable of forming the grid by themselves, but
they are an interesting alternative because they can provide
frequency support with minimal modifications in the original
controller. Broadly speaking, GSCs can be categorised in
two different groups: droop-based and inertia emulation. Both
approaches employ a PLL for synchronisation and internal
loops to regulate the output current [2]. In droop-based GSCs,
the frequency support is provided by injecting active power
proportionally to the deviation of the frequency, following
a p/f droop characteristic. This approach is simple and
easily implementable, but its dynamic response against power
perturbations highly depends on the dynamics of the PLL [11]
and it does not provide inertial support. In inertia emulation
GSCs, the active power injections are proportional to the rate
of change of the frequency (RoCoF or 3l/3C), thus providing
synthetic inertia. Nonetheless, their main disadvantages are
that the derivative term make them susceptible to the noise of
the estimated frequency and the system response is strongly
linked to the dynamics of the PLL [12]. Some authors try to
overcome these challenges by using a first-order low-pass filter
at the estimated frequency [13] or by replacing the derivative
with a first-order wash-out filter [14].
Unlike GFMs that are capable of emulating effectively the

behaviour of a SM, the main problem of GSCs is that their
dynamic operation under power perturbations deviates from
the expected behaviour of a SM. The first-order filter adopted
to cope with sudden frequency variations does not provide
a response equivalent to the well-known swing equation.
Besides, some authors have reported stability problems due to
adverse interactions induced by the first-order low-pass filter
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inertia control and the LC resonances of the power system
[12], [13]. As a solution, a proposal is to slow down the PLL
dynamics to avoid strong transients [13], but this modification
affects the converter synchronisation and its voltage regulation.
Recently, the so-called external inertial emulation technique
has been proposed to approximate the response of GSCs to
that of SMs [15]. It consists of an external control based on
the swing equation that provides an active power reference to
a traditional GFL control structure. However, there have been
no studies of the impact of the PLL or a detailed analysis of
its equivalence to a synchronous machine.

Motivated by the need to overcome the previous issues, this
work proposes an alternative GSC controller named second-
order filter-based inertia emulation (SOFIE). As the name
suggests, this control technique is based on an equivalence
between a second-order low-pass filter and the reduced model
of a classical SM. Its main features and novelties with regards
to previous GSCs are:

1) Reproducing accurately the main dynamics defined by
the swing-equation of SMs on which frequency stability
relies.

2) Solving the stability problems of traditional first-order
filter-based inertia emulation techniques, which are
caused by the interactions of the GSC control with
the LC resonances of the power system. This aspect is
discussed thoroughly in [16].

3) Providing fully independent and configurable virtual
inertia constant, droop and damping gains, and virtual
inductance.

4) Facilitating the seamless integration with existing GFL
controllers. State-of-the-art inertia emulation algorithms
based on derivative terms can quickly adopt the
proposed technique by replacing the first-order filter
with a second-order one. These facts enable the
conversion/upgrade of existing converters already in use
to accurately reproduce the dynamics of SMs.

5) Providing virtual damping to attenuate power
oscillations without affecting the steady-state value
of the frequency.

6) Decoupling PLL dynamics with inertia emulation
control, allowing fast PLLs without compromising the
system stability.

The rest of the paper is structured as follows: Section II
introduces the principles and analytical derivation of three
different SOFIE control variants. Section III evaluates their
time-domain operation and carries out a modal analysis
to characterise them. Section IV introduces a parametric
sensitivity analysis of the proposed techniques, while
Section V evaluates the influence of the PLL on their
performance. Section VI compares the performance of the
proposed control against a SM in a low inertia grid. Finally,
Section VII provides experimental validation with a real-time
HIL system and Section VIII concludes the paper.

II. Principles and analytical derivation of the SOFIE
control

The purpose of this section is to lay the foundations
of the proposed SOFIE technique, which is based on an

equivalence between the simplified model of a SM and a
second-order filter. Initially, the swing equation that represents
the electromechanical response of a synchronous generator is
described, as it is the basis of the proposed control philosophy.
Then, the analytical rationale behind the proposed technique
is described, and three different SOFIE control variants are
proposed. The last subsection introduces how to incorporate
these variants in the typical control structure of a power
converter.

A. Simplified synchronous machine

The generator model taken as a basis for the proposed
control techniques is based on a simplified electromechanical
model of a SM, which is driven by a turbine whose governor
is controlled by an active power control (APC). It must be
noted that in the following the response of the governor and
the turbine is assumed to be instantaneous—i.e., no delay is
considered in their response.
The dynamic equation describing the time evolution of the

angular speed of the rotor using per unit notation and assuming
that lA ≈ 1 p.u. is given by [17]:

¤lA =
?< − ?4 − :3

(
l − l6

)
2�

(1)

where ?4 and ?< are the electrical and mechanical power,
respectively. :3 is the damping constant, � is the inertia
constant and l6 is the frequency at the machine terminals. The
mechanical speed of the rotor lA is related to the electrical
speed of the induced electromotive force (l) through the
number of pole pairs (?;) as l = lA ?; . To simplify the
notation and without loss of generality, in the rest of the paper
the system is considered to have a single pair of poles, thus
l = lA .
Since no delays are considered in the turbine and the

governor, the mechanical power is set by the APC, which is
comprised by a ?/ 5 droop control described as:

?< = ?
∗ + :l (l∗ − l) (2)

where ?∗ and l∗ are the output power and grid frequency
setpoints, respectively, and :l is the droop constant.
The stator winding of a SM can be modelled as a series

RL impedance. The current through that winding can be
represented by the following differential equation:

iB =
l1

!B
[eB − vo − ('B + 9 l!B) iB] (3)

where iB is the stator current represented in a dq reference
frame using a vector notation (iB = 83 + 98@). v> is the voltage
at the point of common connection (PCC), and !B and 'B are
the inductance and armature resistance, respectively. eB is the
vector representing the internal voltage of the generator.
The electrical power that the SM exchanges with the grid

can be expressed in a simplified manner by [17]:

?4 =
|eB | |v> |
-B

sin X (4)
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where -B = l!B and X is the angle difference between eB
and v>. This angle difference can be calculated from the SM
electrical frequency and the grid-side frequency as:

¤X = l1
(
l − l6

)
(5)

where l1 is the base angular frequency used in per unit
notation.

When the angle difference is very small, sin X ≈ X.
Moreover, when assuming that in per unit eB ≈ v> ≈ 1 p.u.,
Eq. (4) can be linearised around an operating point as:

?4 ≈
1
-B
X (6)

Eqs. (1), (2), (5), and (6) constitute the state-space model
that represent the electromechanical motion of a SM. Taking
the Laplace transformation of these expressions and after some
manipulations, the following transfer function can be defined:

?4 (B) = �1 (B)?∗ + �2 (B)l∗ + �3 (B)l6 (B) (7)

where �1 (B), �2 (B) and �3 (B) are defined as:

�1 (B) =
l1

2�-B
(
B2 + (:3 + :l)B

2�
+ l1

2�-B

) (8)

�2 (B) =
l1 :l

2�-B
(
B2 + (:3 + :l)B

2�
+ l1

2�-B

) (9)

�3 (B) =
−l1 B
-B
− l1 :l
2�-B

B2 + (:3 + :l)
2�

B + l1

2�-B

(10)

B. Introducing the SOFIE controllers
Assuming that the internal power control of a converter

is very fast (i.e., that ?4 ≈ ?∗4), the dynamic response of
a classical inertia emulation GSC can be represented by the
following transfer function [12], [13]:

?4 (B) = −2�
l= B

B + l=
l6 (B) + :l

(
l∗ − l6 (B)

)
+ ?∗ (11)

where l= is the cutoff frequency of the first-order low-pass
filter used to avoid sudden frequency variations. The value of
this low-pass filter is then passed through a derivative term to
emulate an inertial behaviour. Moreover, a droop controller
with gain :l is provided to simultaneously carry out the
primary regulation and to damp the output response, meaning

that droop and damping terms are not decoupled [18], [19].
These characteristics cause the dynamic response of this type
of control to differ significantly from the behaviour expected
from a simplified SM. This can be also concluded from the
differences observed between Eqs. (7)–(10) and Eq. (11).
The purpose of the SOFIE control is to approximate the

behaviour of a power converter to that of a simplified SM, but
without the need to modify the original control structure as it
is done in other SM emulation techniques. For that purpose,
the first-order filter used in the power control of classical
inertia emulation techniques is replaced by a second-order low-
pass filter. In this way the dynamic response of a converter
controlled with a SOFIE technique will be more similar to the
one observed in Eqs. (7)–(10).
Fig. 1 shows three different implementations of the SOFIE

technique. Below their equivalent transfer functions are
analysed to illustrate the similarities compared to Eqs. (7)–
(10).
The first implementation, named SOFIE 1, is formed by

replacing the first-order filter in Eq. (11) by a second-order
filter. Based on the diagram depicted in Fig. 1(a) and following
the notation in Eq. (7), the equivalent transfer functions that
represent the electrical power (?4) provided by converters
controlled with this technique are:

�1 (B) = 1 (12)

�2 (B) = :l (13)

�3 (B) =
−:lB2 + (2�l2= − 2:ll=ZE )B − :ll2=

B2 + 2l=ZE B + l2=
(14)

The denominator of Eq. (14) has the same order as that of
the simplified SM in Eq. (10). Therefore, the natural frequency
(l=) and damping term (ZE ) of the second-order filter in
Eq. (14) can be defined as:

l= =

√
l1

2�-B
(15)

ZE =
(:3 + :l)

√
2

4
√
l1 �

-B

(16)

Note how l= and ZE can be designed as a function of
SM parameters to provide a response similar to a simplified
SM under grid-side frequency variations (l6). Replacing (15)
and (16) into (12)–(14), the following transfer functions are
obtained:

�1 (B) = 1 (17)

Fig. 1. Proposed SOFIE variants.
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�2 (B) = :l (18)

�3 (B) =
−:lB2 +

(
−l1
-B
− :l (:3 + :l)

2�

)
B − :ll1
2�-B

B2 + (:3 + :l)
2�

B + l1

2�-B

(19)

Comparing Eqs. (19) and (10), one can conclude that the
dynamics of the SOFIE 1 controller, defined by the poles of
(19), are the same than those of the swing-equation in Eq. (10).
However, the zeros of both transfer functions are different,
meaning that SOFIE 1 approximates the electromechanical
response of a synchronous machine in the presence of
frequency variations but does not completely match it due to
the divergence in the zeros. Besides, the dynamic response
of SOFIE 1 under power or frequency reference variations—
given by Eqs. (17) and (18), respectively—differ from those
defined in Eqs. (8) and (9). In this sense, it can be concluded
that SOFIE 1 can provide emulated inertia against frequency
changes, but it does not provide an accurate representation of
a synchronous machine.

Fig. 1(b) shows a second implementation (SOFIE 2), where
the second-order filter also operates over the frequency input
used to implement the droop controller. Following the same
reasoning as in the previous case, and making use of Eqs. (15)
and (16), the transfer functions that define the response of
SOFIE 2 take the form given by Eq. (7), where:

�1 (B) = 1 (20)

�2 (B) = :l (21)

�3 (B) =
−l1 B
-B
− l1 :l
2�-B

B2 + (:3 + :l)
2�

B + l1

2�-B

(22)

Eqs. (22) and (10) are now identical since they have the
same zeros and poles. Hence, one can conclude that the
response provided by SOFIE 2 to frequency changes in the
grid replicates with accuracy that of the simplified model of
the SM. The electrical power injected in the grid by the SOFIE
2 controller to respond against variations in the grid frequency
emulates the electrical power of an equivalent synchronous
machine with a defined inertia, impedance, and droop and
damping gains. However, Eqs. (20) and (21) are different from
(8) and (9), indicating that the response of SOFIE 2 to changes
in the power or frequency references does not match that of a
SM.

In the third implementation, named SOFIE 3, the second-
order filter operates over the electrical power reference instead
of only over the grid frequency (Fig. 1(c)). The transfer
functions that determine the dynamic response of SOFIE 3,
provided that the equivalences in Eqs. (15) and (16) are used,
takes the same form as Eq. (7), where:

�1 (B) =
l1

2�-
(
B2 + (:3 + :l)B

2�
+ l1

2�-

) (23)

�2 (B) =
l1 :l

2�-B
(
B2 + (:3 + :l)B

2�
+ l1

2�-B

) (24)

�3 (B) =
−l1 B
-B
− l1 :l
2�-B

B2 + (:3 + :l)
2�

B + l1

2�-B

(25)

In the SOFIE 3 implementation, Eqs. (23)–(25) are identical
to (8)–(10), so it can be concluded that this controller provides
a response that matches that of the simplified SM model under
variations in the grid frequency, the reference power and the
reference frequency.
Among the proposed implementations, SOFIE 3 is the

approach that most accurately replicates the response of a
simplified SM. Nevertheless, its implementation implies a
slight variation on the structure of classical inertia emulation
techniques as the filter does not only operate on the grid
frequency. SOFIE 2 is an interesting approach because it
achieves the same dynamic response as SMs under grid
frequency variations by providing synthetic inertia, while
it responses instantaneously to changes in the power and
frequency set-points set by the plant operator or a higher
level controller. SOFIE 1 requires almost no variation on the
structure of classical inertia emulation controllers. However,
it replicates the operation of SMs with a minor degree of
accuracy.

C. Integration of SOFIE controllers in the control structure
of a grid-connected converter
The diagram in Fig. 2 illustrates how SOFIE controllers can

be integrated within the typical structure of a grid-connected
converter developed in the 3@ synchronous reference frame.
This controller basically consists of PI regulators to control the
current, including the coupling terms (:xc) and feed-forward
terms (:ffv). As depicted in Fig. 1, the output of SOFIE
controllers is the electrical power reference of the converter
(?∗4), which is converted into current set-points (i∗2) taking into
account the measured terminal voltage (v>). Consequently, the
integration with the inner converter control loops is seamless.
The integration with other control implementations on the
natural or stationary reference frame is also possible, since
SOFIE controllers are agnostic of the structure of the inner
control loops.
It is also convenient to remark that the frequency of the

grid that is used as an input to the SOFIE controller is
estimated using a classical synchronous reference frame PLL.
The transfer functions of the SOFIE controllers in the previous
section have been obtained neglecting the dynamics of the PLL
and the inner current control loops. However, they will play
a role in the final dynamic response of the converter. The
effect of synchronisation algorithms in the dynamic response
is usually neglected in the literature related to GSC, so this
aspect is addressed in the following sections.

III. Time-domain performance of SOFIE control
The aim of this section is to corroborate the hypotheses

made in the analytical description of the three SOFIE
implementations. For that purpose, initially the testing scenario
is described, and then the performance of the controllers
is evaluated by providing the time-domain response under
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Fig. 2. Control structure of the converter.

various disturbances and by comparing the system modes of
oscillation. The simplified model of a SM is taken as the
benchmark system.

A. Description of the testing scenario
Since the SOFIE controller is a GSC, another grid-

connected device must be responsible for setting the grid
voltage and frequency. In this case, the testing scenario shown
in Fig. 3 consists of an inverter with a series inductive filter
(! 5 ) connected to an infinite bus via an inductive transmission
line (!6). A small resistance, accounting for the line and filter
losses, has been considered as well.

The configuration employed to obtain the results of the
simplified SM model is the same as the one shown in Fig. 3,
but the inverter and its filter is replaced by the SM modelled
in II-A.

The parameters and set-points employed in the following
tests are gathered in Appendix A. The control parameters
of the SOFIE controllers (i.e., l=, ZE ,) are calculated using
Eqs. (15) and (16), and taking the SM parameters as a
reference. The modulus optimum criterion technique is used
to tune the current PI regulators [20]. Moreover, the PLL is
tuned employing the symmetric optimal criterion technique to
ensure the maximum phase margin at the crossover frequency
of the open-loop transfer function [21].

B. Performance tests
1) Active power reference variation: Fig. 4 depicts the

behaviour of the electrical system described in Fig. 3 under a
step-shaped variation of 0.1 p.u. in the active power reference
(?∗) of the SOFIE implementations and the simplified SM
model at C = 1s.

Fig. 3. Testing scenario: power converter connected to an infinite grid model.

The results show that the dynamic response of SOFIE 1
and SOFIE 2 implementations is significantly faster than that
of the SOFIE 3 implementation and the SM. As stated in
Section II-B, the reason is that the power reference is not being
filtered in SOFIE 1 and 2 (refer to Fig. 1). However, under
the power set-point variation, the SOFIE 3 implementation
emulates the behaviour of the SM very closely, confirming
the hypothesis made with the equivalent Eqs. (23)–(25).
2) Grid frequency variation: The behaviour under grid-

side frequency variations is studied by making a step-shaped
change of -0.01 p.u. in the infinite bus frequency at C = 1s.
Fig. 5 shows the time-domain evolution of the active power
supplied by the SOFIE implementations and the SM.
The active power in the steady state takes the same value for

all the cases; this makes sense as it only depends on the droop
gain :l . Regarding the transient response, all the systems
have similar behaviour, but SOFIE 1 exhibits a faster transient
response and a higher overshoot. This is due to the fact that the
second-order filter is not applied to the frequency term used
in the p/f droop curve, which is directly driven by frequency
estimated by the PLL. This overshoot is not observed in
SOFIE 2 and SOFIE 3 implementations as the estimated
frequency is filtered before applying the droop characteristic
and the derivative term. Consequently, the dynamic behaviour
of SOFIE 2 and SOFIE 3 matches very well the response
expected from a SM.
The time-domain results provided in these two sections

Fig. 4. Active power for a 0.1 p.u. variation in the power reference (?∗)
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Fig. 5. Active power for a -0.01 p.u. variation in the grid frequency (l6)

demonstrate that, even if the SOFIE controller depends on
a synchronisation algorithm such as a PLL to synchronise
with the grid, their transient behaviour can be designed to
be equivalent to the simplified model of a SM.

IV. Parametric sensitivity analysis
This section further evaluates how the variation of several

physical or control parameters influences the location of
eigenvalues of the proposed SOFIE controllers in the complex
plane. The analysis will help to identify the similarities
between the SOFIE implementations and the SM. To make the
analysis, a state-space representation of the SOFIE controllers
has been made and their eigenvalues are computed by making
use of the CSTEP tool introduced in [22].

A. Inertia constant (�) variation
Fig. 6 shows the location of the electromechanical

eigenvalues in the complex plane for the three SOFIE
implementations (SOF) and the SM machine (l), as the
value of the inertia constant � changes. The eigenvalues
move almost identically in the four cases, corroborating once
again the similarities in the behaviour of the proposed SOFIE
controllers and the SM.

For low inertia constants, the eigenvalues are real,
revealing a non-oscillatory nature of the electromechanical
modes. However, as the inertia increases, the poles describe
a circumference with diameter (2l1)/((:3 + :l) -B).
Consequently, as � increases the eigenvalues become complex
numbers and the electromechanical modes exhibit an under-
damped oscillatory behaviour. The damping factor of the
modes decreases as � increases.

B. Damping constant (:3) variation
Fig. 7 shows the root locus for the damping gain parametric

sweep. As :3 increases the electromechanical eigenvalues
describe a semi-circumference with centre at the origin and
radius equal to the natural frequency (16). This tendency
continues until a threshold point is reached where the
eigenvalues become real. For the proposed case study, this
threshold value is :3 = 151. Results shows that for :3 < 151
the damping factor of the electromechanical eigenvalues of the
SM and the SOFIE implementations is lower than 1, resulting
in an under-damped system. For all the implementations, the
imaginary part of the electromechanical eigenvalues decreases

Fig. 6. Root-locus under a variation of the inertia constant (� ).

Fig. 7. Root-locus under a variation of the damping gain (:3).

as :3 increases. For :3 > 151, the damping factor becomes
Z > 1, thus the eigenvalues associated to the electromechanical
response become real and begin to separate from each other
in the real axis. These results illustrates how, for high values
of emulated inertia �, the damping gain :3 of the SOFIE
controllers can be properly adjusted to increase the damping
of the electromechanical modes.

C. Droop constant (:l) variation
The analysis of the droop constant is fundamental because

it determines how active power is shared among the devices
participating in the frequency regulation of the grid. Its value
is usually defined according to the maximum power of the
device and the critical frequency boundaries established by the
grid operator. Depending on the value of this droop constant,
a converter might be constrained to work in certain operation
conditions because it might cause undesired oscillations or
instabilities. It can be observed in the zoomed regions of
Fig. 8 that the electromechanical eigenvalues of the SOFIE
controllers and those of the SM exhibit a similar behaviour as
:l is swept, thus certifying that the SOFIE implementation
approximates the dynamic response of SMs. As :l increases,
the damping factor of the electromechanical modes increases
as well. This behaviour is similar to that exhibited in Fig.
7 when :3 increased, being possible to conclude that in the
proposed SOFIE controllers, the damping and droop gains
play an equivalent role in defining the damping factor. This
is aligned with the analytical expression of the damping
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Fig. 8. Root-locus under a variation of the droop gain (:l).

factor provided in (16). However, it is important to note that,
while the droop gain modifies the point of operation of the
converter in steady-state (because it is a proportional gain),
the damping term only reacts under frequency variations (Δl),
and therefore it should not cause a steady-state deviation.

In addition, the eigenvalues with high participation factor
of the PLL state variables are also displayed in Fig. 8. While
in the SOFIE 2 and 3 the variation of the droop gain does not
have any influence in their location, in SOFIE 1 the attenuation
constant of these eigenvalues decreases (the eigenvalues move
towards the right half plane) as the droop gain increases.
Therefore, it takes more time to damp these oscillatory modes.
This is due to the fact that the dynamic response of the droop
loop in SOFIE 1 is directly coupled to the PLL because the
estimated frequency is not filtered.

D. Series reactance (-B) variation
The influence of a variation of the virtual series reactance

of SOFIE implementations and the SM stator reactance are
shown in Fig. 9.

It can be observed in the zoomed regions of Fig. 9 that, as
the virtual reactance increases, the electromechanical modes of
the three SOFIE implementations and those of the SM move
towards the real axis of the complex plane, thus becoming
more damped. This is aligned with the analytical expression
found for the damping factor in (16). Above a threshold
value of the virtual reactance, the damping factor becomes
higher than 1 and the electromechanical modes become real
numbers. For virtual reactances higher than this threshold, one
of the eigenvalues moves toward the right half plane, thus
implying longer attenuation times. Thus, the SOFIE controllers
offer the possibility of selecting a proper virtual reactance
to improve the damping of the electromechanical modes.
In general, the higher the reactance, the more damped the
electromechanical modes are. However, it is not recommended
to select values that exceed the threshold. Otherwise, the
system may become too slow and, additionally, the angle
stability may be compromised.

Besides, in Fig. 9 it can be observed how the variation of the
virtual reactance plays also an important role in the location
of the high frequency eigenvalues associated to the PLL of
the SOFIE implementations. The higher the reactance, the
lower the damping factor of these eigenvalues. Consequently,

Fig. 9. Root-locus under a variation of the virtual reactance (-B).

these results suggest the need to achieve a trade-off in the
selection of the virtual reactance to properly attenuate both
electromechanical and PLL modes.

V. Impact of the PLL in the performance of the SOFIE
control

The aim of this section is to provide a more in depth analysis
of the impact of the PLL dynamics on the proposed SOFIE 2
and 3 implementations.
As mentioned previously, the gains of the PI regulator of the

PLL are calculated using the Symmetrical Optimum method,
which determines the controller constants based on the output
filter time constant (g 5 ), and on a factor 0 that determines the
crossover frequency and sets the damping. The values of the
PI gains can be obtained as [21].

: ?pll =
1

0 g 5 l1
:8pll =

: ?pll

02 g 5
(26)

The filter time constant g 5 is proportional to the response
time of the PLL; the smaller the value of g 5 , the faster can
the PLL react under frequency variations. This phenomena
can be clearly observed in Fig. 10, where the eigenvalues of
the SOFIE 3 implementation are illustrated for different g 5
values. If g 5 is below a threshold, meaning that the PLL is
slow, the electromechanical eigenvalues are displaced towards
the right half-plane, and the response of the SOFIE controllers
starts to diverge from that of the SM. However, when g 5 is
above the threshold, and the PLL is fast enough, the PLL
dynamics do not influence the electromechanical eigenvalues.
This is an interesting feature of the proposed SOFIE 2 and
3 controllers that make it possible to decouple the dynamics
of the electromechanical modes from those of the PLL loop.
In this sense, these controllers are recommended for power
systems that are weak in terms of inertia but allow the use of a
fast PLL to improve the dynamics of the converter. Under these
conditions, the PLL eigenvalues have an attenuation constant
significantly higher than that of the electromechanical modes
and do not play a significant role in the dynamic response
of the SOFIE controllers. Consequently, SOFIE controllers
approximate the dynamic operation of SM properly.
Fig. 11 (a) depicts the time-domain waveforms of the active

power of the SOFIE 3 controller for different values of g 5
under a -0.01 p.u. grid frequency variation and compares them
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Fig. 10. Root-locus under a variation of the time constant ()5 ).

Fig. 11. SOFIE 3 performance under a −0.01 p.u. grid frequency variation
for different g 5 values: a) Active power of the converter and the SM, b)
Frequency estimated by the PLL and mechanical frequency of the SM.

against that of a SM. Alternatively, Fig. 11 (b) displays the
frequency estimated by the PLL. The results reveal that when
the PLL is fast, the SOFIE controller reproduces accurately
the behaviour expected from a SM.

VI. Comparison of control SOFIE and SM in low
inertia power system.

To study the dynamics of SOFIE control and its equivalence
to a SM in a low inertia power system, the IEEE 9 test case
shown in Fig. 12 is modelled [23]. The inverters and the SM
have been connected to the grid via an RL series impedance
(/6 = /2 = 0.006 + 0.08 9). The SM is in charge of forming
the grid and is modelled by a reduced-order system with a
turbine and governor, as described in [10]. The parameters
of the study can be found in Appendix A. Several studies
have emphasised the need to use dynamic models to represent
the transmission lines in converter-dominated networks, due
to the adverse interaction that can take place between the
converter and the lines and endanger the system’s stability
[24]. Thus, the transmission lines have been implemented
as equivalent c models. The loads are implemented as
constant RL impedances. In order to analyse the dynamic
operation of the proposed control, the following case studies
are proposed: i) inverters 1 and 2 are controlled with a classical
droop control, but without inertia emulation (Droop case); ii)
inverters 1 and 2 are equipped with SOFIE control (SOFIE
case); iii) the inverters are replaced by the SM studied in the
previous sections (SM case).

To analyse the inertial behaviour of the grid in the presence
of power imbalances, a load variation of 0.05 p.u. at C = 1 s is
applied at bus 6. Figure 13 shows how, when the converters do
not provide emulated inertia (droop case), the grid frequency
exhibits a significantly higher RoCoF and nadir. On the other
hand, when the converters provide frequency support through
the use of the SOFIE control, the system remains stable and
their dynamic response matches accurately that of SMs’, even
for different inertia constants.

Fig. 12. Nine-bus power transmission system diagram [23].

Fig. 13. Frequency behaviour under power imbalance, varying the inertia.

As mentioned above, one of the main challenges of the
massive integration of converters into the power grid is the
adverse interactions between the converter dynamics and the
LC resonances of transmission lines. Therefore, to study
these interactions, the eigenvalues of the nine-bus system are
analysed. Figure 14 shows the root loci for the three proposed
scenarios.
The eigenvalues associated to the electromechanical part are

shown in the zoomed-in area. Outside the zoomed-in area are
the modes associated with the resonances of the transmission
lines.
The resonant modes in the droop case exhibit adverse

interactions between the droop control and the transmission
line resonances, causing these eigenvalues to move towards
the right half plane. To achieve a stable point of operation the
PLL speed has been reduced by setting the time constant as
g 5 = 0.01 (refer to Eq. (26)).
On the other hand, in the SOFIE case, the poles linked

with the transmission line resonances remain in very similar
positions compared to the SM scenario because the converter

Fig. 14. Resonant and electromechanical modes behaviour.
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dynamics do not interact with the passive components of the
grid. This means that the SOFIE control keeps the system
stability without exciting the modes associated with the LC
resonances in a similar way to a SM in a traditional power
system. It overcomes the stability drawbacks of classical GSCs
based on droop control and first-order filter inertia emulation
caused by interactions between the GSC control, the PLL and
the LC resonances described in [12], [13].

VII. Experimental validation of SOFIE control

The aim of this section is to validate the performance of the
proposed SOFIE implementations experimentally.
For that purpose, a hardware-in-the-loop (HIL) test bench

based on an OPAL-RT is used (Fig. 15). The inverter
semiconductors, inductive filter, grid-side impedance and the
infinite bus have been has been emulated in the FPGA of the
OPAL-RT. In contrast, the converter control comprised by the
SOFIE implementation, the current reference calculator, the
current controller, the PLL and the space vector modulator
are implemented on a Texas Instruments TMS320F28379D.
The validation is carried out following the same methodology
as in Section III, which consists of testing the time
domain performance of SOFIE implementations under varying
network frequency (l6) in the system of the figure 3.
The results in Fig. 16 show that for a 0.01 p.u. variation

in the active power reference, the experimental results match
the dynamic response of the linearized models used to
elaborate previous sections, thus validating them against a grid
frequency variation. As mentioned previously, how the SOFIE
1 implementation has a higher power overshoot under sudden
frequency variations compared to the other two variants.
Additionally, it is also worth noting how the experimental
results of the SOFIE 1 exhibit a significantly bigger noise than
in the second and third configuration. This demonstrates the
effectiveness of the second-order filter in the droop loop (refer
to Fig. 1), since the frequency noise is not directly fed to the

Fig. 15. Opal-RT based real-time HIL testbed.

power controller. In SOFIE 2 and 3, the ripple is reduced to
0.02 p.u. compared to the 0.1 p.u. ripple of SOFIE 1.

VIII. Conclusions

This paper presents a new grid-supporting control approach,
with three different variants, that allows the converter to
support the grid frequency while providing the equivalent
inertial behaviour, primary response and damping of a SM.
To validate whether the converter can reproduce the dynamics
of a SM, time-based simulations and a detailed analysis of the
eigenvalues of the system have been carried out. The results
show how the proposed control implementations allow to a
greater or lesser extent to operate a grid-connected converter
with dynamics close to those of an ideal SM. Among the
proposed implementations, SOFIE 3 is the approach that
most accurately replicates the response of a simplified SM,
while SOFIE 1 and SOFIE 2 require almost no variation
on the structure of classical inertia emulation controllers, but
replicate the operation of SMs with a lower degree of accuracy.
Furthermore, the effect of the PLL has been analysed. If the
PLL loop is fast enough, the dynamics of the dominant modes
of the proposed SOFIE 2 and 3 controllers are decoupled
from those of the PLL. It has been also shown how the faster
the PLL, the closer the behaviour of the converter to that
of a synchronous machine. The low inertia network study
showed that SOFIE control emulates the inertial behaviour
of an SM, improving the stability of converter-dominated
systems without exciting the LC resonances of the grid.
Experimental results have shown a good match with those of
the analytical study, thus validating its main conclusions and
the technical feasibility of the proposed SOFIE controllers.

Fig. 16. Validation of the linearized model against real-time simulation
based on Opal-RT in the face of a change of grid frequency. a) SOFIE 1
implementation, b) SOFIE 2 implementation, c) SOFIE 3 implementation.
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Additionally, experimental results reveal that SOFIE 2 and 3
achieve considerable noise reduction.

All in all, SOFIE 2 implementation is recommended for
applications where the dynamics of the power set-point should
not be modified. This is the case, for instance, of the
converter of a photovoltaic or wind generation system where
the power set-point is calculated with a maximum power point
tracking (MPPT) algorithm. On the other hand, the SOFIE
3 implementation is recommended for applications in which
sharp changes in the power set-point require filtering to avoid
sudden power transients.
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Appendix
A. Parameter values

Table I shows the general system parameters and converter
control loop parameters used in this study.

TABLE I
Parameter values for each case study.

System general values
(1 2.75 MVA E1;;−A<B 690 V l1 2c50 rad/s

Stiff grid
!6 0.03 p.u. '6 0.01 p.u. l∗6 1 p.u.

Synchronous machine
( 1 p.u. !B 0.27 p.u. 'B 0.006 p.u
:3 141 :l 20 � 3.50 s

Converter
( 1 p.u. ! 5 0.08 p.u ' 5 0.006 p.u.
5sw 2.12 kHz

Control set-points
?∗ 0 p.u. &∗ 0 p.u. l∗, Edc 1 p.u.

Inner Current loop
:pc 0.54 :ic 12.72 :ffv, :xc 1

SOFIE
:3 141 � 3.50 s :l 20
-B 0.03 l= 12.23 rad/s ZE 0.94
:?pll 0.53 :8pll 29.47 g 5 0.002 s

Low inertia power system (Sec. VI)
SM (connected at bus 2)

� 1 s :l6 4 :36 0
C) 1 s C� 0.1 s :E 0.1

SM (connected at buses 1 and 3)
!B 0.3 p.u. 'B 0.006 p.u. � 2, 4, 6 s
:3 206 :l 4

SOFIE
:3 206 � 2, 4, 6 s :l 4
-B 0.30 l= 9.34 rad/s ZE 0.94
:?pll 0.53 :8pll 29.47 g 5 0.002 s
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