
Software Impacts 17 (2023) 100516
Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

BEAUD: A Browser Extension to Automatize End-User Deeds
Iñigo Aldalur
Mondragón Unibertsitatea, Loramendi 4, Mondragón, 20500, Spain

A R T I C L E I N F O

Keywords:
Web Augmentation
Browser Extension
Automation

A B S T R A C T

Web Augmentation allows anyone, computer-literate or not, to adapt the content, style or behavior of any
web page. Searching for information is not always an undemanding task. The information searches carried
out by users cause frustration when they are carried out frequently. Even more so when the interactions
accomplished are numerous or when these interactions lead to errors. In this paper, we present BEAUD, a
Web Augmentation extension that allows automating the information search processes that users make on
the web. This tool drastically reduces the interactions that users make to the minimum, reducing errors and
frustration.

Code metadata

Current code version 0.2.3
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2023-132
Permanent link to Reproducible Capsule
Legal Code License GPL
Code versioning system used Git
Software code languages, tools, and services used JavaScript, HTML and CSS
Compilation requirements, operating environments & dependencies Google Chrome and Microsoft Edge
If available Link to developer documentation/manual https://github.com/ialdalur1/BEAUD/blob/main/README.md
Support email for questions ialdalur@mondragon.edu

1. Motivation and significance

The need to adapt Web pages to the needs and desires of users has
grown in recent years. To carry out this task, different techniques can
be used: personalization, customization or Web Augmentation (WA).

Web personalization is defined as ’’any action that adapts the infor-
mation or services provided by a Website to the needs of a particular
user or a set of users, taking advantage of the knowledge gained from
the users’ navigational behavior and individual interests, in combi-
nation with the content and the structure of the Website’’ [1]. The
objective of a Web personalization system is to ‘‘provide users with
the information they want or need, without expecting from them to
ask for it explicitly’’ [2]. On the other hand, in customization, the web
page is adapted to each user’s desires or preferences with regard to
its structure and presentation. Whenever a user logs in, his customized
web elements are loaded [1]. However, in WA, the user does not need
to be logged in, this technique permits adapting any website to the
user preferences. Web augmentation tools ’’modify Web pages, either
to insert interfaces of their own or to add structure (e.g. links) to the
Web page. This modification can take place at the Web server (perhaps

E-mail address: ialdalur@mondragon.edu.

a Web server translating a proprietary data format into HTML), by
calling scripts that return modified pages, by using a special proxy,
or by modifying the Web pages as, or after they are displayed in the
Web browser’’ [3]. Dı 𝚤az, Arellano and Azanza said that ’’WA is to the
Web what Augmented Reality is to the physical world: layering relevant
content/layout/navigation over the existing Web to enhance the user
experience’’ [4].

The first two techniques (personalization and customization) can
only be performed by being the owner of the site [1]. The WA allows
adapting any web page independently of the creator. This feature of
the WA is very important so that any user can adapt any web page
without the need of the owner. Web pages do not always provide all the
information needed by the user. At other times, the desired information
is not visible and the user must interact with the page to find the desired
information. The most common actions are clicking, scrolling, opening
a new tab, typing, etc.

The performance of these actions causes users to suffer frustra-
tion [5]. In addition, it should be noted that each of the actions
that a user can perform when searching for information on the web
https://doi.org/10.1016/j.simpa.2023.100516
Received 18 April 2023; Received in revised form 9 May 2023; Accepted 17 May 2023

2665-9638/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2023.100516
https://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2023.100516&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2023-132
https://github.com/ialdalur1/BEAUD/blob/main/README.md
mailto:ialdalur@mondragon.edu
mailto:ialdalur@mondragon.edu
https://doi.org/10.1016/j.simpa.2023.100516
http://creativecommons.org/licenses/by/4.0/


I. Aldalur Software Impacts 17 (2023) 100516
Fig. 1. Software architecture of BEAUD.

has disadvantages. For example, a high number of clicks is indicative
of problems [6]. Spending an hour in front of the computer typing
causes muscle fatigue in 66% of people [7]. One solution could be to
copy and paste, but this action causes efficiency problems and errors
when navigating through different tabs (tab-switching) [8]. Users spend
57.4% of their time tab-switching and find it difficult to locate the
desired information [9]. The more tabs opened, the more difficult it
is to find the desired information and in general, users have more than
8 tabs opened (66.9%) [10]. Moreover, when users are continually
tab-switching to find the desired information, they easily lose concen-
tration [11]. URL typing is another common action in which users make
mistakes [12]. Finally, users have to scroll 76% of the sites to find
the information they are looking for. In addition, 22% of the time,
they scroll to the bottom of the site [13]. The fact of not finding the
desired information makes users scroll continuously, increasing their
frustration [6].

Therefore, a tool should reduce the number of user deeds. For this
reason we have developed BEAUD (Browser Extension to Automate
User Deeds), to reduce the number of user actions on the web saving
time and effort.

2. Software description

2.1. Software architecture

The software architecture of BEAUD is shown in Fig. 1. This figure
shows that all the architecture consist of four different components:
BEAUD, widget, locators and deeds. BEAUD is developed in JavaScript.
All the information needed for the correct execution is stored in the
local-storage of the browser in JSON format.

BEAUD is the main component of the architecture. It stores the main
information, the address of the web page on which the automation
process should start running.

Widgets are those web elements from third party sites that will be
inserted into the web page that is being adapted. It contains the URL of
the website from which BEAUD will extract the desired web content.
Widgets need two components of information: locators and deeds.

A Web locator is a mechanism for uniquely identifying an element
on the Document Object Model (DOM) [14]. This component must
collect the locators of both the page from which the widget is extracted
and where it will be inserted in the adapted web page.

The deeds component collects chronologically the different actions
that the user can do in his search for information: clicks, double
clicks, copy, paste and write. In addition, of these actions, it must
save the XPath of the element in which the action will be performed.
Furthermore, if the action consists of writing, it must save the written
text.

2.2. Software functionalities

BEAUD is a browser extension that works in Google Chrome and
Microsoft Edge, the two most used web browsers at the moment1. These
extensions, once installed in the browser, appear via the application
icon on the top right. Some extensions are enacted every time a web
page is visited. However, other applications are activated once the
user clicks on the icon of the application the user wants to run. This
is the case of BEAUD. Once the user clicks on the application icon,
three different options are displayed: ’’New’’, ’’Save’’ and ’’Delete’’.
These three actions change BEAUD to its three different states: creation,
automation and deletion. Each of these states will be detailed below.
Table 1 illustrates these states with an illustrative example. Table 2
shows the number of necessary deeds to perform the information search
with BEAUD and without it.

2.2.1. Creation
Once the user clicks on the ’’New’’ option in the menu, BEAUD

goes to the creation state. While the application is in this state, the
background of the node on which the mouse is currently hovering will
change color. In this way, the user, who wants to make the adaptation,
knows at all times to which node is affecting what he is doing at that
moment.

The first step is to enter the address of the web page from which
the user wants to extract the information. To do this, the user must
double-click and BEAUD will show the user under the node, which was
selected, an input in which he must enter the web address from which
the user wants to extract the information. Once entered, a new tab will
be opened with the address entered.

The second step is to select the desired node. Similarly to the
previous step, the background of the selected node will have a different
color. In this step, the user will be able to do all the necessary deeds
to select the desired node: scroll, click, copy&paste, etc. BEAUD is able
to record these actions in order to reproduce them in the automation
phase. What should not be done is to open a new tab because BEAUD
will not collect this information. Once the desired node is visible, the
user must hover over the node and when its background changes color,
double-click. By this action, the extension saves the location of the node
(locator) and closes the tab, returning to the page being adapted.

A special case in capturing user deeds is the automation of web
searches based on a data that changes, for example, the title of a
movie in IMDB. The user, before pressing the ’’Go ahead!’’ button after
entering the URL in the input, must copy the text from the adapting
website. Following the IMDB example, the title of the movie. The user
should proceed to search for information as he would do it manually,
and BEAUD will pick up his actions.

1 https://gs.statcounter.com/browser-market-share/desktop/worldwide
2

https://gs.statcounter.com/browser-market-share/desktop/worldwide


I. Aldalur Software Impacts 17 (2023) 100516

n

t
F
e

2

a
d
r
i
b
b
h
t
c
b
o
n
r
n

s
u
e
s
t
T
s

Table 1
Illustrative example.

Action Description

Data based web
search

For the example, we are going to use the DBLP2 web page. This page collects and displays publications
obtained mainly in the field of computer science. It classifies them into journals, conferences or books.
However, it does not show data concerning the number of references obtained by these contributions. For this
reason, if a user wants to know the number of references an author has, the user must copy the name of the
researcher and paste it in the search bar of Google Scholar3, for example. Google Scholar provides information
about the total number of citations, the h- index and the i10 index. Using BEAUD, the goal is to insert this
information into the DBLP web page.
To carry out this process, the first step is to search for a researcher’s profile in DBLP. For this example, the user
has searched for his own profile. Once the user has visited Iñigo Aldalur’s profile, he clicks on ‘‘New’’ in the
BEAUD menu. By double-clicking on it, the user can enter the URL of Google Scholar. The next step is to select
and copy author’s name (see Fig. 2 top-left). Once clicked on ‘‘GO AHEAD!’’, the user must perform a normal
search for information. In this case, paste the name copied previously in the search bar and click on the search
button (see Fig. 2 top-right). The list of results shows the profile of Iñigo Aldalur and the user clicks on the
corresponding result (see Fig. 2 bottom-left). Once the user has accessed the correct profile, he selects the box
with all the cites of the author, and the user double-clicks. The tab closes, and the user will see the item
transferred to the DBLP web page instead of the URL entry item.

Search for
information without
data

Let us think that the user wants information about a journal each time he visits the DBLP page to see if the
impact of a particular journal has changed. For this example, the user will enter the impact factor of the
journal Software Impacts4. Once the user double-clicks again on the DBLP web page, he must enter the web
address of the journal (see Fig. 3 left). In this occasion, the user does not rely on data from the DBLP web page
itself. The system captures the necessary interactions. For this example, the user only has to select the desired
element and double click (see Fig. 3 right). The tab closes, and the user will see the element transferred to the
DBLP web page instead of the URL input element as in the previous case.
Once the adaptation process is finished, the user must click on ‘‘Save’’ in the BEAUD menu. In this way, the
creation process is finished, enacting the automation process.

Parallel automation
process

Once clicked on ‘‘Save’’ or each time the user visits the DBLP web page, the process is enacted. Once the
process is started, the system enters messages in the places where it will replace the extracted information.
These messages warn that if the content is not entered within a reasonable time by leaving the tab open, it is
because there has been a failure. In the example, the content of Software Impacts is transferred before that of
Google Scholar content, since the number of actions is lower. In the top of Fig. 4, it is possible to see the result
of Iñigo Aldalur’s profile in DBLP after the automation. Both external contents are surrounded by a frame to
indicate that it is external content introduced with BEAUD.
In case the user wants information about another person, he looks for the profile in DBLP and the system is
activated again. In the bottom of Fig. 4, it is possible to see the information related to Urtzi Markiegi
researcher. It can be seen that the values related to Google Scholar have been updated, showing the number of
references of the current author.

The user can repeat the first and second steps as many times as
ecessary to adapt the web page to his desire or information needs.

To finish this process, the user must click on the ’’Save’’ option in
he extension menu. By this action, the status changes to automation.
urthermore, the webpage is reloaded, and the automation process is
nacted.

.2.2. Automation
If the application is in this state, each time the user accesses the

dapted web page, the system is automatically enacted, i.e. the user
oes not have to perform any action. Once the adapted web page is
ecognized, the system opens a tab for each of the elements to be
nserted in the adaptation. The user will always see the web page that is
eing adapted, but the user will see that a certain number of tabs have
een opened. BEAUD, in parallel, repeats each of the deeds that the user
as carried out to obtain the desired node. Once the node is accessible,
he node is picked up, the tab is closed and the node is inserted in the
orresponding place. This process ends when each and every node has
een inserted, and all open tabs have been closed. If, for some reason,
ne of the nodes is not accessible because some of the actions could
ot be performed, or the system does not find the desired node, the tab
emains open. In this way, the user will be able to know which of the
odes has failed and in which step.

The execution of the special case differs from the others in the initial
tep. The system collects the text of the adapting website of which the
ser wants to do the search and will introduce this data into the search
ngine of the web page itself that will do the search. Afterward, the
ystem will reproduce the captured user actions. When the system is in
his state, the only option available in the application menu is ’’Delete’’.
his action, once performed by the user, takes the system to the next

Table 2
Number of actions completed by users with and without BEAUD.

Scroll Click Tab-switching New tab URL typing Copy Paste

Without BEAUD 0 1 4 2 2 1 1
With BEAUD 0 0 0 0 0 0 0

2.2.3. Deletion
Once the user selects this option from the extension menu, the

system changes its status and the circle is completed. Once the action is
done, the only option available in the extension menu will be ’’New’’.

During this process, the system removes all the information related
to the adaptation in the system. This action is only available if the
automation has been enacted, i.e. if the current page has an adaptation.
This action reloads the web page, removing all the nodes inserted in the
automation process.

3. Impact overview

Many WA related contributions have been published in recent
years. [15] survey provides the description of the characteristics of WA
tools and analyzes tools from 2007 to 2016. WA can provide help to end
users in very diverse environments. Other more current contributions
have tried to help people with disabilities [16], take- away food
businesses [17] and recommendation systems (movies, restaurants,
hotels...) [18]. Another new area has been mobile browsers. Mobile
extensions have not been possible until a few years ago and for this
reason, contributions in mobile WA are very recent. The fact of having
smaller screens and that certain interactions are more complex, makes
WA tools very useful to minimize interactions, decreasing errors and
also help to obtain information much faster [19,20]. This is not all,
tate, deletion.

3



I. Aldalur Software Impacts 17 (2023) 100516
Fig. 2. Example that shows how to extract content from Google Scholar based on DBLP website data using BEAUD.

Fig. 3. Example that shows how to extract content from Software Impacts journal website using BEAUD.

WA has contributed to improve the interaction with semantic web
pages [21] or Web of Things based applications (web pages that help
end users with their Internet of Things devices) [22]. The impact of WA
is important in different topics, but it is also important for end users to
apply it to their most common web interactions [4,15,19,20].

On the other hand, the most widely used desktop browsers today
are Google Chrome and Microsoft Edge. BEAUD is compatible with
both browsers. This means that more than 77% of users can use this
extension in their usual desktop browsers.

4. Limitations and future work

The main limitation of this tool is a problem that has been explained
before, the update of a web page. These changes cause the mechanisms
used to find the desired nodes (locators) to break down. Consequently,
it is impossible to find the desired node and the automation stops. As
future work, we want to add mechanisms that make the life of a locator
longer [23–27]. In addition, we want to investigate and develop some
mechanisms that further extend the life of the locators.

5. Conclusions

We have introduced BEAUD, a browser extension that uses WA tech-
niques to automate any user’s information search tasks. To complete the

automation, users must enter the address of the page from which they
want to extract the information. Once entered, users simply perform
the usual steps to get the information they want and select the element
that provides the information. Once the action is completed, BEAUD is
able to perform all the defined actions automatically and in parallel.
In this way, the number of interactions required is reduced to zero and
user frustration is reduced as well.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was carried out by the Software and Systems Engineering
research group of Mondragon Unibertsitatea (IT519-22), supported by
the Department of Education, Universities and Research of the Basque
Government, Spain.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.simpa.2023.100516.
4

https://doi.org/10.1016/j.simpa.2023.100516


I. Aldalur Software Impacts 17 (2023) 100516

R

Fig. 4. Final results of the adaptation with BEAUD.

eferences

[1] M. Eirinaki, M. Vazirgiannis, Web mining for web personalization, ACM Trans.
Internet Tech. (TOIT) 3 (1) (2003) 1–27.

[2] M.D. Mulvenna, S.S. Anand, A.G. Büchner, Personalization on the net using web
mining: introduction, Commun. ACM 43 (8) (2000) 122–125, http://dx.doi.org/

10.1145/345124.345165.
[3] N.O. Bouvin, Unifying strategies for web augmentation, in: HYPERTEXT ’99, Pro-

ceedings of the 10th ACM Conference on Hypertext and Hypermedia: Returning
to Our Diverse Roots, February (1999) 21-25, ACM, Darmstadt, Germany, 1999,
pp. 91–100, http://dx.doi.org/10.1145/294469.294493.

[4] O. Dıaz, C. Arellano, M. Azanza, A language for end-user web augmentation:
5

http://refhub.elsevier.com/S2665-9638(23)00053-2/sb1
http://refhub.elsevier.com/S2665-9638(23)00053-2/sb1
http://refhub.elsevier.com/S2665-9638(23)00053-2/sb1
http://dx.doi.org/10.1145/345124.345165
http://dx.doi.org/10.1145/345124.345165
http://dx.doi.org/10.1145/345124.345165
http://dx.doi.org/10.1145/294469.294493


I. Aldalur Software Impacts 17 (2023) 100516
Caring for producers and con- sumers alike, ACM Trans. Web 7 (2) (2013)
9:1–9:51, http://dx.doi.org/10.1145/2460383.2460388.

[5] T.Y. Lee, B.B. Bederson, Give the people what they want: studying end-user needs
for enhancing the web, PeerJ Comput. Sci. 2 (2016) e91, http://dx.doi.org/10.
7717/peerj-cs.91.

[6] A. Aula, R.M. Khan, Z. Guan, How does search behavior change as search
becomes more difficult?, in: Proceedings of the 28th International Conference
on Human Factors in Computing Systems, CHI 2010, Atlanta, Georgia, USA,
April (2010) 10-15, ACM, 2010, pp. 35–44, http://dx.doi.org/10.1145/1753326.
1753333.

[7] B. Callegari, M.M. de Resende, M. da Silva Filho, Hand rest and wrist support
are effective in preventing fatigue during prolonged typing, J. Hand Therapy 31
(1) (2018) 42–51.

[8] K.T. Stolee, S.G. Elbaum, G. Rothermel, Revealing the copy and paste habits
of end users, in: IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC 2009, Corvallis, OR, USA, 20-24 2009, Proceedings, IEEE
Computer Society, 2009, pp. 59–66, http://dx.doi.org/10.1109/VLHCC.2009.
5295296.

[9] J. Huang, R.W. White, Parallel browsing behavior on the web, in: HT’10,
Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, Toronto,
Ontario, Canada, June 2010 13-16, ACM, 2010, pp. 13–18, http://dx.doi.org/10.
1145/1810617.1810622.

[10] J.C. Chang, N. Hahn, Y. Kim, J. Coupland, B. Breneisen, H.S. Kim, J. Hwong, A.
Kittur, When the tab comes due: challenges in the cost structure of browser
tab usage, in: CHI ’21: CHI Conference on Human Factors in Computing
Systems, Virtual Event/ Yokohama, Japan, May (2021) 8-13, ACM, 2021, pp.
148:1–148:15, http://dx.doi.org/10.1145/3411764.3445585.

[11] O. Dıaz, J.D. Sosa, S. Trujillo, Activity fragmentation in the web: empowering
users to support their own webflows, in: 24th ACM Conference on Hypertext and
Social Media (part of ECRC), HT ’13, Paris, France - May (2013) 02-04, ACM,
2013, pp. 69–78, http://dx.doi.org/10.1145/2481492.2481500.

[12] R. Tahir, A. Raza, F. Ahmad, J. Kazi, F. Zaffar, C. Kanich, M. Caesar, It’s all
in the name: Why some urls are more vulnerable to typosquatting, in: 2018
IEEE Conference on Computer Communications, INFOCOM 2018, Honolulu, HI,
USA, April (2018) 16-19, IEEE, 2018, pp. 2618–2626, http://dx.doi.org/10.1109/
INFOCOM.2018.8486271.

[13] K. Athukorala, D. Glowacka, G. Jacucci, A. Oulasvirta, J. Vreeken, Is exploratory
search different? A comparison of information search behavior for exploratory
and lookup tasks, 67, (11) 2016, pp. 2635–2651, http://dx.doi.org/10.1002/asi.
23617,

[14] F. Ricca, M. Leotta, A. Stocco, D. Clerissi, P. Tonella, Web testware evolution,
in: 15th IEEE International Symposium on Web Systems Evolution, WSE 2013,
Eindhoven, The Netherlands, September 27, 2013, IEEE Computer Society, 2013,
pp. 39–44, http://dx.doi.org/10.1109/WSE.2013.6642415.

[15] I. Aldalur, M. Winckler, O. Dıaz, P.A. Palanque, Web augmentation as a
promising technology for end user development, in: New Perspectives in End-
User Development, Springer International Publishing, 2017, pp. 433–459, http:
//dx.doi.org/10.1007/978-3-319-60291-2_17.

[16] C González-Mora, I. Garrigós, S. Casteleyn, S. Firmenich, A web augmentation
framework for accessibility based on voice interaction, in: Web Engineering -
20th International Conference, ICWE 2020, Helsinki, Finland, June (2020) 9-12,
Proceedings, in: Lecture Notes in Computer Science, 12128, Springer, 2020, pp.
547–550, http://dx.doi.org/10.1007/978-3-030-50578-3_42.

[17] L. Goffe, S.S. Chivukula, A. Bowyer, S.J. Bowen, A.L. Toombs, C.M. Gray,
Web augmentation for well- being: the human-centred design of a takeaway
food ordering digital platform, Interact. Comput. 33 (4) (2021) 335–352, http:
//dx.doi.org/10.1093/iwc/iwac015.

[18] M. Wischenbart, S. Firmenich, G. Rossi, G. Bosetti, E. Kapsammer, Engaging end-
user driven recom- mender systems: personalization through web augmentation,
Multim. Tools Appl. 80 (5) (2021) 6785–6809, http://dx.doi.org/10.1007/
s11042-020-09803-8.

[19] I. Aldalur, A. Perez, F. Larrinaga, MAWA: A browser extension for mobile web
augmentation, in: Human- Computer Interaction - INTERACT 2021-18th IFIP
TC 13 International Conference, Bari, Italy, August 30 - September 3, 2021,
Proceedings, Part IV, in: Lecture Notes in Computer Science, 12935, Springer,
2021, pp. 221–242, http://dx.doi.org/10.1007/978-3-030-85610-6_14.

[20] G.A. Bosetti, S. Firmenich, S.E. Gordillo, G. Rossi, An approach for building
mobile web applications through web augmentation, J. Web Eng. 16 (1 & 2)
(2017) 75–102.

[21] C. Sottile, S. Firmenich, D. Torres, An end-user semantic web augmentation
tool, in: End-User De- velopment - 7th International Symposium, IS-EUD 2019,
Hatfield, UK, July (2019) 10-12, Proceed- ings, in: Lecture Notes in Computer
Science, 11553, Springer, 2019, pp. 239–243, http://dx.doi.org/10.1007/978-3-
030-24781-2_23.

[22] J. Lobo, S. Firmenich, G. Rossi, N. Defossé, M. Wimmer, Web of things
augmentation, in: Proceedings of the Eighth International Workshop on the Web
of Things, WoT 2017, Linz, Austria, October 22 2017, ACM, 2017, pp. 11–15,
http://dx.doi.org/10.1145/3199919.3199923.

[23] I. Aldalur, F. Larrinaga, A. Perez, Abla: an algorithm for repairing structure-based
locators through attribute annotations, in: Web Information Systems Engineering
- WISE 2020-21st International Confer- ence, Amsterdam, The Netherlands,
October (2020) 20-24, Proceedings, Part II, in: Lecture Notes in Computer
Science, 12343, Springer, 2020, pp. 101–113, http://dx.doi.org/10.1007/978-
3-030-62008-0_7.

[24] M. Biagiola, A. Stocco, F. Ricca, P. Tonella, Diversity-based web test generation,
in: Proceedings of the ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August (2019) 26-30, ACM, 2019,
pp. 142–153, http://dx.doi.org/10.1145/3338906.3338970.

[25] M. Hammoudi, G. Rothermel, A. Stocco, WATERFALL: an incremental approach
for repairing record- replay tests of web applications, in: Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, Seattle, WA, USA, November (2016) 13-18, ACM, 2016, pp. 751–762,
http://dx.doi.org/10.1145/2950290.2950294.

[26] H. Kirinuki, H. Tanno, K. Natsukawa, COLOR: correct locator recommender for
broken test scripts using various clues in web application, in: 26th IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering, SANER
2019, Hangzhou, China, February (2019) 24-27, IEEE, 2019, pp. 310–320,
http://dx.doi.org/10.1109/SANER.2019.8667976.

[27] A. Stocco, R. Yandrapally, A. Mesbah, Visual.web.test. repair, Visual web test
repair, in: Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November (2018)
04-09, ACM, 2018, pp. 503–514, http://dx.doi.org/10.1145/3236024.3236063.
6

http://dx.doi.org/10.1145/2460383.2460388
http://dx.doi.org/10.7717/peerj-cs.91
http://dx.doi.org/10.7717/peerj-cs.91
http://dx.doi.org/10.7717/peerj-cs.91
http://dx.doi.org/10.1145/1753326.1753333
http://dx.doi.org/10.1145/1753326.1753333
http://dx.doi.org/10.1145/1753326.1753333
http://refhub.elsevier.com/S2665-9638(23)00053-2/sb7
http://refhub.elsevier.com/S2665-9638(23)00053-2/sb7
http://refhub.elsevier.com/S2665-9638(23)00053-2/sb7
http://refhub.elsevier.com/S2665-9638(23)00053-2/sb7
http://refhub.elsevier.com/S2665-9638(23)00053-2/sb7
http://dx.doi.org/10.1109/VLHCC.2009.5295296
http://dx.doi.org/10.1109/VLHCC.2009.5295296
http://dx.doi.org/10.1109/VLHCC.2009.5295296
http://dx.doi.org/10.1145/1810617.1810622
http://dx.doi.org/10.1145/1810617.1810622
http://dx.doi.org/10.1145/1810617.1810622
http://dx.doi.org/10.1145/3411764.3445585
http://dx.doi.org/10.1145/2481492.2481500
http://dx.doi.org/10.1109/INFOCOM.2018.8486271
http://dx.doi.org/10.1109/INFOCOM.2018.8486271
http://dx.doi.org/10.1109/INFOCOM.2018.8486271
http://dx.doi.org/10.1002/asi.23617
http://dx.doi.org/10.1002/asi.23617
http://dx.doi.org/10.1002/asi.23617
http://dx.doi.org/10.1109/WSE.2013.6642415
http://dx.doi.org/10.1007/978-3-319-60291-2_17
http://dx.doi.org/10.1007/978-3-319-60291-2_17
http://dx.doi.org/10.1007/978-3-319-60291-2_17
http://dx.doi.org/10.1007/978-3-030-50578-3_42
http://dx.doi.org/10.1093/iwc/iwac015
http://dx.doi.org/10.1093/iwc/iwac015
http://dx.doi.org/10.1093/iwc/iwac015
http://dx.doi.org/10.1007/s11042-020-09803-8
http://dx.doi.org/10.1007/s11042-020-09803-8
http://dx.doi.org/10.1007/s11042-020-09803-8
http://dx.doi.org/10.1007/978-3-030-85610-6_14
http://refhub.elsevier.com/S2665-9638(23)00053-2/sb20
http://refhub.elsevier.com/S2665-9638(23)00053-2/sb20
http://refhub.elsevier.com/S2665-9638(23)00053-2/sb20
http://refhub.elsevier.com/S2665-9638(23)00053-2/sb20
http://refhub.elsevier.com/S2665-9638(23)00053-2/sb20
http://dx.doi.org/10.1007/978-3-030-24781-2_23
http://dx.doi.org/10.1007/978-3-030-24781-2_23
http://dx.doi.org/10.1007/978-3-030-24781-2_23
http://dx.doi.org/10.1145/3199919.3199923
http://dx.doi.org/10.1007/978-3-030-62008-0_7
http://dx.doi.org/10.1007/978-3-030-62008-0_7
http://dx.doi.org/10.1007/978-3-030-62008-0_7
http://dx.doi.org/10.1145/3338906.3338970
http://dx.doi.org/10.1145/2950290.2950294
http://dx.doi.org/10.1109/SANER.2019.8667976
http://dx.doi.org/10.1145/3236024.3236063

	BEAUD: A Browser Extension to Automatize End-User Deeds
	Motivation and Significance
	Software Description
	Software Architecture
	Software Functionalities
	Creation
	Automation
	Deletion


	Impact overview
	Limitations and future work
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


