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Esker Onak

Bueno, ba hemen gaude, hiru urte t’erdi ondoren. Oso ondo ezagutzen nauen pertsona
batek esan zidan orain dela gutxi ez naizela hitz askoko pertsona bat, eta tira, ez det
kontrakoa argudiatuko. Dena den, hiru urte askorako ematen dute, eta ez zen legezkoa
izango bide honetan lagundu duten pertsona guztiei eskerrak ez ematea. Goazen ba.

Burura iristen zaizkidan ideia guztiak modu batean ordenatu behar direnez, hasieratik
hasiko naiz. Lehenik eta behin, eskerrak eman behar dizkiet tesi hau egiteko pertsona
egokia nintzela, nigan konfiantza osoa jarri, eta proposamena luzatu zidaten Igor, Haizea
eta Joni. Kontuan izanda proposamena Ikerlanen apenas aste batzuk neramala jaso nuela,
aurrera jarraitzeko erabakia ez zen erraza izan. Baina honetan, dudarik gabe, areako giro
onak lagundu zuen, beraz 2018-ko Ikerlan Galarreta osatzen zenuten guztiei eskerrak eman
nahi dizkizuet, zeharka izan bazen ere, erabaki hau hartzen laguntzeagatik. Y mención
especial a Victor, que fue mi primer supervisor en Ikerlan, y claramente una figura a la
que seguir en el momento de tomar la decisión.

Behin tesia hasita, eskerrak eman behar dizkiodan lehen pertsona Iñigo Gandi da.
Tesiko lehen hilabete zail haietan bere esfortzua ezinbestekoa izan zen tesia aireratu ahal
izateko. Eta noski, handik aurrera ere bere laguntza oso garrantzitsua izan zen hegaldiak
bide egokia jarraitzeko eta okertzen ez hasteko. Hegaldi erditik aurrera, eta lurreratze
honetara arte, Andonik hartu zuen lan hau, eta beraz toki inportante bat dauka esker
onen lista honetan. Dokumentu honetan ikusiko dituzuen eduki guztietan parte hartu du
berak ere, eta bere laguntza ezinbestekoa izan da urte hauetan zehar. Gainera, memoria
guztia zuzentzeko lana hartu behar izan du, pff tienes el cielo ganado. Iosuri ere eskerrak
eman behar dizkiot tesi zuzendari lanarengatik, bere laguntza beharrezkoa izan baita gure
mila dudei irtenbidea emateko, eta bere aholkuak beti izan direlako lagungarri.

Arearekin jarrituz, puntu honetan doktoregai guztiak aipatu behar ditut, bai tesia
hasterakoan beraien esperientziarekin lagundu zidatenak (Mattin, David, Iñigo, Amaia eta
Jon Ander), zein ordutik piszinara botatzen joan direnak (Nerea, Olatz, Eneko, Markel
eta Xabi, espero det zuei ere nire esperientziak lagundu izana). Hasieran bageneukan elka-
rtasuna, baina argi dago elkartasun hau indartzen joan garela urte hauetan zehar (ejem
esa taza es muy top), eta horrek pilo bat laguntzen du tesiaren egunerokotasunean. Zue-
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tako batzuentzat ere esker berezia daukat. Jon Ander, zurekin izandako diskusio/gogoetek
tesiaren norabidea definitzen joan ziren, zu gabe tesi hau ez zen berdina izango. Mattin eta
David, batez ere tesiko lehen hilabeteetan asko lagundu zenidatelako (David, jo, pon un
David en tu vida, que te resuelve todo). Eta azkenik, baina ez inportantzia gutxiagorekin,
Nerea eta Olatz, niretzako kriston lujazoa izan da bide honetan zehar jada lehendik lagu-
nak ziren, ez bat, baizik eta bi pertsona ondoan izatea. Argi izan hiru urte t’erdi hauek ez
zirela berdina izango zu biok gabe, konfiantza oso handia eman dit beti ikustea hor zeun-
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azkenean, espero baino lehenago, maldaren amaierara iritsiko zarete.

Lehen esan det Galarreta 2018 ezinbestekoa izan zela tesia egiteko erabakia hartzerako
orduan, baina horrek ez du esan nahi gainontzeko urteetan zehar arean egon zaretenok ez
zaretenik garrantzitsuak izan. Oso beharrezkoak izan zarete lan hau aurrera eramateko,
beraz esker onak ere 2018-2022 artean Ikerlan Galarreta osatu dezuten guztioi, modu
batean edo bestean guztiek lagundu dezute tesi hau aurrera eramaten.

Eta bueno, lanetik kanpo ere pertsona askotaz oroitzen naiz. Lo primero, la familia, no
solo porque la familia sea la familia, sino además porque tengo la suerte de haber nacido en
esta familia. Y sin vosotros, pues no sería como soy ahora, y seguramente no estaría donde
estoy. A los aitas, Asier, la amona, tíos, tías, primas, primos. . . de todos me acuerdo. Y
recuerdo especial para el aitona y la abuela, que estaban aquí cuando empecé este camino
hace tres años, y que aunque no vayan a estar al final, espero que estén orgullosos del
trabajo que ha hecho su nieto.

Eta hurrengoa zu zara Eider, jo, eske zer egingo nuke zu gabe. Argi izan tesia amaitzera
iristearen kulpa handi bat zurea dela. Badakizu zarela ese pilar super importante en mi
vida. Que no se caiga nunca, eta bizitza ospatzen jarrai dezagula, izan edozein auzoko
tabernetan, kontzertutan edo munduko beste puntan. Compta amb mi amiga, que incen-
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Abstract

Title: Cost-optimal Integration of Innovative Powertrain Technologies into Rail Vehicles.

Railway is an essential transportation mode in nowadays society, both for passengers
and goods. Considering that the relation between the carried passenger activity and the
derived pollutant emissions is lower than in road transport, railway becomes an essential
stakeholder in the path towards transport decarbonization. During the last decades, a
significant effort to electrify railway lines has been carried out globally. However, due to
its high cost, electrification is not always cost-efficient. Consequently, 65% of rail tracks
are not electrified yet, and diesel still accounts for 53% of the global railway sector energy
use. This demonstrates the importance of searching for cleaner alternatives also in the
railway sector.

Recent techno-economic developments have pushed the use of greener technologies such
as batteries and fuel cells in various transport applications, including railway vehicles. Due
to their technical limitations, hybrid architectures such as the diesel-battery or the fuel cell-
battery become the most promising options, or even the only feasible ones, in many cases.
This hybridization involves additional complexity compared to traditional architectures.
In essence, the main challenge consists of obtaining a cost-efficient solution compared to
conventional vehicles, which will also enable a cleaner transportation.

With the aim of obtaining that cost-efficient solution, this Ph.D. Thesis focuses on
the design of the powertrain of railway vehicles. Important features to be considered
during the powertrain design include the selection of the technologies to be integrated
into the powertrain, the size of the powertrain elements, and the energy management
strategy. Traditionally, these features are defined ad-hoc for a specific context (i.e., for
a particular driving cycle or economic framework), but this is a time-consuming process,
and the replicability of the conclusions is limited. Therefore, evaluating the impact that
the different features of the specific context have on the optimal powertrain design can
help simplify the efforts of the design approach.

In order to overcome all these challenges, this Ph.D. Thesis proposes and implements
a holistic design methodology to achieve a cost-optimal integration of fuel cell and battery
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systems in railway vehicles.

The holistic design methodology is based on a complete analysis of the Life Cycle
Cost, which is composed of several steps. Firstly, the cost of integrating different power-
train sizes, battery technologies and energy management strategies is compared. Secondly,
the obtained conclusions are evaluated in different frameworks, including multiple railway
routes and economic contexts. For the development of this analysis, a power flow-based
simulation model is set. This model is based on the Itiner tool previously developed by
CAF I+D, and it is fed with the data provided by CAF Power & Automation. This will
allow using realistic vehicle and route data to develop the mentioned Life Cycle Cost anal-
ysis. Moreover, within the development of this analysis, this Ph.D. Thesis also proposes
several innovative energy management strategies and a novel chemistry-dependent battery
lifetime estimation model.

Once the holistic design methodology is explained in detail, the methodology and the
whole Life Cycle Cost analysis are implemented in two case studies. Each of the case
studies of this Ph.D. Thesis is based on one of the railway vehicle topologies mentioned
above: (1) the diesel-battery hybrid topology, and (2) the fuel cell-battery hybrid topology.
The development of the two case studies will provide valuable conclusions for the design of
railway vehicle powertrains that integrate battery and fuel cell systems. These conclusions
are claimed to be especially helpful for railway manufacturers to make decisions regarding
the powertrain design of hybrid diesel-battery or fuel-cell battery vehicles.

Key words: railway, battery, fuel cell, hydrogen, energy management, life cycle cost
analysis, optimization, battery ageing, sizing.
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Laburpena

Titulua: Teknologia berritzaileen integrazio optimoa trenbideetako ibilgailuen potentzia-
trenean.

Trenbidea funtsezko garraio mota da gaur egungo gizartean, bai pertsonen mugimen-
durako zein merkataritzarako. Errepideko garraioarekin konparatuz, trenbideek eragiten
duten kutsadura bidaiari bakoitzeko baxuagoa da. Beraz, trenbidea funtsezko elementua
bihurtzen da garraioaren dekarbonizazio bidean. Azken hamarkadetan trenbideak elek-
trifikatzeko ahalegin garrantzitsua egin da mundu mailan. Hala ere, bere kostu altuaren
ondorioz, elektrifikazioa ez da beti errentagarria. Ondorioz, gaur egun trenbideen %65-
a ez dago elektrifikatuta oraindik, eta sektorearen oinarrizko energia erabileraren %53-a
dieselaren bidez egiten da. Honek erakusten du trenbidearen sektorean ere alternatiba
garbiagoak bilatu behar direla.

Azken urteetako garapen tekno-ekonomikoen eraginez, hainbat garraio aplikazioetan
(trenbide ibilgailuetan ere) bateriak eta erregai pilak bezalako teknologia garbien inte-
grazioa bultzatu da. Teknologia hauen muga teknikoak direla eta, diesel-bateria edo er-
regai pila-bateria bezalako arkitektura hibridoak aukerarik egokienak, edo aukera bakar-
rak, dira kasu askotan. Hibridazioak konplexutasun gehigarria eragiten du arkitektura
tradizionalen aldean. Funtsean, erronka nagusiena aukera tradizionalekin konparatuz
irtenbide errentagarri bat lortzea da, zeinak garraio garbiago baten bidea irekitzea ahal-
bidetuko luke.

Irtenbide eraginkor hori lortzeko helburuarekin, Tesi Doktoral hau trenbide ibilgailuen
potentzia-trenaren diseinuan zentratzen da. Diseinu honetan kontuan hartu beharreko
aspektu garrantzitsuak honakoak dira: potentzia-trenean integratuko diren teknologien
hautaketa, potentzia-treneko elementuen tamaina, eta energia kudeaketarako estrategia.
Tradizionalki, ezaugarri hauek ad-hoc definitzen dira testuinguru jakin baterako (hau da,
ibilibide edo tesituinguru ekonomiko jakin baterako), baina hau prozesu oso luzea da, eta
lortzen diren ondorioen erreplikagarritasuna mugatua da. Hori dela eta, testuinguru es-
pezifikoaren ezaugarriek potentzia trenaren diseinuan duten inpaktua ebaluatzeak diseinu
prozesuan jarri beharreko esfortzua gutxitzen lagundu dezake.
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Erronka guzti hauek gainditzeko, Tesi Doktoral honek tren ibilgailuetan erregai pila eta
bateria sistemen integrazio errentagarria lortzeko diseinu metodo holistiko bat proposatu
eta inplementatzen du.

Diseinu holistikoaren metodologia “Life Cycle Cost” edo bizitza-ziklo kostuaren analisi
integral batean oinarritzen da, zeina urrats desberdinez osatzen den. Lehenik, potentzia-
trenaren elementuen tamaina desberdinek, bateria teknologia desberdinek, eta energia
kudeaketa estrategia desberdinek duten kostua alderatzen da. Ondoren, lortutako ondo-
rioak hainbat kontextuetan ebaluatzen dira, besteak beste, hainbat ibilbide edo testuin-
guru ekonomikoetan. Analisi hau garatzeko, potentzia fluxuetan oinarritutako simulazio
eredu bat ezarri da. Eredu hau CAF I+D enpresak lehendik garatutako Itiner simu-
lazio tresnan oinarritzen da, eta CAF Power & Automation enpresak emandako datuekin
elikatu da. Honek bizitza-ziklo kostuaren analisia garatzerako orduan ibilgailu eta ibilbide
errealistak erabiltzea ahalbidetu du. Gainera, aipatutako analisiaren garapenan, Tesi Dok-
toral honek energia kudeaketarako hainbat estrategia proposatzen ditu, eta baita baterien
bizitza estimatzeko modelo berritzaile bat ere, zeina hainbat kimiketarako parametrizatu
den.

Behin diseinu holistikoaren metodologia xehetasunez azalduta, metodologia eta bizitza-
ziklo kostuaren analisi osoa ikerketa-kasu bietan aplikatzen da. Tesi Doktoral honen
ikerketa-kasu bakoitza lehen aiptautako trenbide ibilgailu topologia batean oinarritzen
da: (1) diesel-bateria arkitektura hibridoa, eta (2) erregai pila-bateria arkitektura hibri-
doa. Bi ikerketa-kasuen garapenak bateria eta erregai pilak integratzen dituzten trenbide
ibilgailuen diseinurako ondorio baliagarriak emango ditu. Ondorio hauek lagungarriak
izan daitezke trenbide ibilgailuen fabrikatzaileentzat, bereziki diesel-bateria edo erregai
pila-bateria ibilgailuen diseinurako erabakiak hartzerako orduan.

Hitz gakoak: trenbideak, bateria, erregai pila, hidrogenoa, energia kudeaketa, bizitza-
ziklo analisia, optimizazioa, bateria zahartzea, dimentsionamendua.
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Resumen

Título: Integración óptima de tecnologías innovadoras en el tren de tracción de vehículos
ferroviarios.

El ferrocarril es un modo de transporte esencial en la sociedad actual, tanto para
pasajeros como para mercancías. Teniendo en cuenta que la relación entre el flujo de
pasajeros/mercancías y las emisiones contaminantes derivadas es menor que en el trans-
porte por carretera, el sector feerroviario se convierte en un actor importante en el camino
hacia la descarbonización del transporte. Durante las últimas décadas, se ha llevado a
cabo un importante esfuerzo para electrificar las lineas ferroviarias a nivel mundial. Sin
embargo, debido a su elevado coste, la electrificación no siempre es rentable. En conse-
cuencia, el 65% de las vías ferroviarias a nivel mundial aún no están electrificadas, y el
diésel sigue representando el 53% del uso energético del sector ferroviario. Esto demuestra
la importancia de buscar alternativas más limpias también en este sector.

Los recientes avances tecno-economicos han impulsado el uso de tecnologías más limpias,
como las baterías y las pilas de combustible, en una amplia variedad de aplicaciones de
transporte, incluidos también los vehículos ferroviarios. Debido a sus limitaciones técni-
cas, las arquitecturas híbridas, como la batería-diesel o la pila de combustible-batería, se
convierten en las opciones más prometedoras, o incluso las únicas viables, en muchos casos.
Esta hibridación implica una complejidad adicional en comparación con las arquitecturas
tradicionales. Esencialmente, el principal reto consiste en obtener una solución rentable
en comparación con los vehículos convencionales, lo que permitirá también un transporte
más limpio.

Con el objetivo de obtener esa solución rentable, esta Tesis Doctoral se centra en el
diseño del tren de tracción de los vehículos ferroviarios. Entre las características impor-
tantes que deben tenerse en cuenta durante el diseño del tren de tracción, se encuentran
la selección de las tecnologías que se integrarán en él, el tamaño de los elementos que se
integrarán, y la estrategia de gestión energética. Tradicionalemente, estas características
se definen ad-hoc para un contexto específico (es decir, para un ciclo de conducción o un
marco económico concreto), pero se trata de un proceso que require de mucho tiempo, y
además, la posibilidad de reproducir las conclusiones es limitada. Por lo tanto, evaluar el
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impacto que tienen las diferentes características del contexto específico en el diseño óptimo
del tren de tracción puede ayudar a simplificar los esfuerzos del proceso de diseño.

Con el objetivo de superar todos estos retos, esta Tesis Doctoral propone e implementa
una metodología de diseño holístico para lograr una integración óptima de sistemas basados
en pilas de combustible y baterías en vehículos ferroviarios.

La metodología de diseño holístico se basa en un análisis completo del “Life Cycle
Cost” o coste del ciclo de vida, el cual consta de varios pasos. En primer lugar, se com-
para el coste de integrar diferentes tamaños de los elementos del tren de tracción, diferentes
tecnologías de baterías, y diferentes estrategias de gestión energética. En segundo lugar,
las conclusiones obtenidas se evalúan en diferentes marcos, incluyendo múltiples rutas
ferroviarias y contextos económicos. Para el desarrollo de este análisis, se establece un
modelo de simulación basado en flujos de potencia. Este modelo se basa en la herramienta
Itiner desarrollada previamente por CAF I+D, y se alimenta con los datos proporciona-
dos por CAF Power & Automation. Esto permitirá utilizar datos de vehículos y rutas
realistas para desarrollar el mencionado análisis del coste de ciclo de vida. Además, den-
tro del desarrollo de este análisis, esta Tesis Doctoral propone también varias estrategias
innovadoras de gestión energética, y un novedoso modelo de estimación de vida útil de
baterías, el cual se ha parametrizado para diferentes químicas.

Una vez explicada en detalle la metodología de diseño holístico, dicha metodología y
todo el análsisis del coste del ciclo de vida se implementan en dos casos de estudio. Cada
uno de estos casos se basa en una de las topologías de vehículos ferroviarios previamente
mencionadas: (1) la topología híbrida diesel-batería, y (2) la topología híbrida pila de
combustible-batería. El desarrollo de los dos casos de estudio proporcionará valiosas con-
clusiones para el diseño del tren de tracción de vehículos ferroviarios que integran sistemas
de baterías y pilas de combustible. Estas conclusiones podrán ser especialmente útiles para
que los fabricantes ferroviarios tomen decisiones sobre el diseño del tren de tracción de
vehículos híbridos diesel-batería o pila de combustible-batería.

Palabras clave: ferrocarril, batería, pila de combustible, hidrógeno, gestión en-
ergética, análisis del coste del ciclo de vida, optimización, degradación de batería, di-
mensionamiento.
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General Introduction

Transport accounts nowadays for nearly 25% of the global CO2 emissions, which un-
veils the necessity of deploying initiatives to promote its decarbonization. Among the
different transportation modes, railway mobility becomes an essential stakeholder in this
path due to its intrinsic characteristics, especially the capacity of carrying a large number
of passengers or goods with low energy consumption.

However, not all railway solutions are efficient in terms of pollutant emissions, as this
mainly depends on the primary energy source used to power the vehicle. Railway vehicles
powered by catenary systems are the most efficient alternative. However, the electrification
of railway lines is not always cost-efficient, especially in low-traffic networks. Consequently,
even if a great effort has been accomplished in last decades to electrify railway lines, 65%
of the global rail tracks are not electrified yet. Considering that diesel-based vehicles are
the primary option in these lines, switching to cleaner alternatives is necessary.

Recent techno-economic developments in power generation and energy storage tech-
nologies have encouraged searching for low-polluting alternatives for different transport
sectors, including rail vehicles. On the one hand, battery-based energy storage systems
have become the flagship of transport electrification thanks to their broad integration
in electric vehicles. The development of technologies with higher specific energy (e.g.,
lithium-ion batteries) and the high reduction of acquisition costs (nearly 70%) have driven
this integration in recent years. However, it is still necessary to overcome some challenges.
The selection of an appropriate battery chemistry, the prevention of safety risks, or the
management of temperature and degradation issues are critical challenges for the broader
adoption of battery-based vehicles.

On the other hand, hydrogen-related technologies are recently gaining interest in var-
ious sectors, including mobility applications. A shift to a hydrogen-based economy can
provide zero-emission power generation. Indeed, hydrogen can be obtained from renew-
able sources via electrolysis and then be used as a primary source to generate electricity
via fuel cell systems. Therefore, integrating this technology in rail vehicles enables the
attainment of zero-emission solutions. However, issues related to the fuel cell system cost,
hydrogen supply, safety risks or degradation management need to be solved.
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Due to the technical limitations of pure battery-based or fuel cell-based rail topologies,
the development of hybrid architectures such as the hybrid diesel-battery or the hybrid
hydrogen-battery becomes unavoidable. This hybridization involves additional complexity
compared to traditional architectures. The main challenge consists of obtaining a cost-
efficient solution compared to conventional vehicles, which is essential especially for the
competitiveness of railway manufacturers. In order to obtain that cost-efficient solution,
special attention must be given to the design of the powertrain. The design approach
should consider in an integrated manner the selection of the technologies to be integrated in
the powertrain, the size of the powertrain elements, and the control strategy for managing
the power fluxes between the different sources.

Different technologies can be combined to derive the mentioned hybrid powertrains,
including diesel generators, fuel cells or batteries. The selection of these technologies is a
crucial design step, as their characteristics influence the optimal powertrain operation. For
instance, the dynamic behaviour of a diesel generator differs from that of a fuel cell, which
inevitably influences the powertrain operation. Moreover, different battery chemistries
can be integrated into the vehicle, which differ in characteristics such as specific energy,
energy density, acquisition cost or even the sensitivity to degradation factors.

The control strategy or Energy Management Strategy (EMS) becomes essential to
reduce the operation costs of hybrid vehicles. On the one hand, the way the sources are
managed directly affects the consumption of the different sources (i.e., diesel, hydrogen
or electricity consumption), which contribute to a high proportion of the operation costs.
Thus, obtaining an efficient powertrain operation is one of the main challenges of the
EMS. On the other hand, the designed control strategy should ensure a low degradation
of the power sources, since operation costs are increased as more replacements are required
for these devices. Therefore, identifying the factors that affect their degradation and
adequately foreseeing the replacements becomes essential. Accurate lifetime estimation
algorithms are required for this approach.

As it can be inferred, the design of the control strategy is also constrained by the
characteristics of the powertrain elements. The size of the different power sources limits
the maximum power they can provide, affecting the range in which they operate effi-
ciently. Accordingly, the degradation of the power sources can also be affected by their
size, especially batteries that degrade at high power peaks or deep discharge cycles.

Consequently, a design methodology that considers in an integrated manner the defi-
nition of the powertrain elements (including technology and size) and the EMS needs to
be developed if a cost-effective solution is aimed. Traditionally, optimal designs are solved
ad-hoc for specific contexts, i.e. for a particular drive cycle or economic framework. How-
ever, developing these approaches is a time consuming process, and the replicability of the
obtained solution is limited. Therefore, evaluating the impact of different features of the
specific context (e.g., drive cycle characteristics or parameters of the economic model) in
the optimal powertrain design can help simplify the efforts of the design approach.
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Previous paragraphs have reviewed the main challenges related to the design and con-
trol of innovative powertrains. In short, the relevance of the technology and size of the
power sources, the control strategy, the drive cycle and the economic framework have been
highlighted. To face the identified challenges, this Ph.D. Thesis proposes the following ob-
jective:

Develop a holistic design methodology for the cost-effective definition of
powertrain elements and control strategy in innovative railway vehicles.

Besides the main objective, other secondary objectives are defined for the successful
development of this Ph.D. Thesis:

• To propose, develop and evaluate different EMSs in order to identify appro-
priate strategies for railway vehicles.

• To build accurate and straightforward lifetime estimation models for innovative
powertrain technologies such as batteries and fuel cells.

• To implement and validate the proposed methodology in multiple case studies
involving hybrid diesel-battery and hybrid fuel cell-battery rail topologies.

To cover these objectives, the Ph.D. Thesis is structured in different chapters and
sections. In the following lines, the document organisation is detailed. Besides, Figure 1
helps understand the defined structure.

In the first chapter, the state of the art related to the main aspects covered by this
Ph.D. Thesis is reviewed. In a first step, the innovative powertrain technologies that can
potentially replace or supplement conventional diesel-based traction systems are analysed.
Then, an evaluation of the possible topologies derived from the integration of these tech-
nologies in rail vehicles is carried out. This evaluation will help define the architectures to
be analysed in this research work. In addition, a review of the literature related to con-
trol strategies and powertrain design approaches is developed. Thanks to this review, the
main lacks and possible improvements over the current state of the art will be highlighted,
which will serve as the basis for the definition of the contributions proposed by this Ph.D.
Thesis.

In the second chapter, the holistic design methodology proposed as the main contribu-
tion of this Ph.D. Thesis is presented. The methodology is based on an integral life cycle
cost analysis, which is composed of different steps. Additionally, in this chapter also all
the models and methods required for the development of the life cycle cost analysis are de-
tailed. Firstly, the methodology to calculate the life cycle cost of any case being analysed
is presented. This calculation requires of a vehicle simulation model, an economic model
and degradation models for fuel cell and battery systems. Indeed, the battery degrada-
tion model is presented as one of the novel contributions of this Ph.D. Thesis. Secondly,
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the methodologies for the life cycle cost optimization are presented, which are based on
exhaustive search-based and genetic algorithms-based approaches.

The first case study of this Ph.D. Thesis is presented in the third chapter. This case
study is focused on the diesel-battery hybrid topology. First, the methodology proposed
in the second chapter is particularized to the specific case study. For this approach, the
specifications of the simulated vehicle, all the cases of the sensitivity analysis (including
the energy management strategies, battery chemistries, parameters of the economic model
and driving cycles) and the details of the life cycle cost optimization approaches are given.
Then, the results obtained when deploying the holistic design methodology are presented.
A comprehensive discussion of these results is also developed, which is divided according to
the steps of the holistic design methodology: sensitivity analysis to the powertrain design,
sensitivity analysis to the economic parameters, and sensitivity analysis to the driving
cycle.

In the fourth chapter, the second case study of this Ph.D. Thesis is presented. This
second case study is focused on the hybrid fuel cell-battery topology. As in the previous
chapter, the first part of this chapter is focused on particularizing the holistic design
methodology to the specific topology proposed in this case study. The specifications of the
simulated vehicle, all the cases of the sensitivity analysis (including the energy management
strategies, battery chemistries, parameters of the economic model and driving cycles) and
the details of the life cycle cost optimization approaches are presented. Then, the results
obtained when deploying the holistic design methodology are presented. As in the first
case study, a comprehensive discussion of these results is also developed, which is divided
according to the steps of the holistic design methodology.

Finally, in the fifth chapter the general conclusions and the main contributions of this
Ph.D. Thesis are reviewed. In addition, in this chapter also some possible future lines
related to the main topic of this Ph.D. Thesis are proposed.
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1
State of the Art

Summary
In this first chapter a review of the State of the Art related to the design and control of

innovative powertrain technologies is developed. The analysis considers the potential power
sources to be integrated in the powertrain, the derived innovative powertrain topologies, the
control strategies, and the powertrain sizing approaches. The main gaps identified in the
literature are highlighted, which serve as a baseline to define the research activities and
main contributions of this Ph.D. Thesis.
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State of the Art

1.1 Introduction

The increase of greenhouse gas and CO2 emissions is one of the major concerns of
nowadays society, as they are directly linked to climate change and its impacts [1]. Even
if the importance of this issue has been pointed out from the general public for several
years, a slight but steady increase in the emissions has ocurred in the last decades, only
paused for very short periods during the 2009 crisis and the Covid-19 pandemic [2, 3].
As highlighted in Figure 1.1, transport is a major source of this pollution, accounting for
nearly the 25% of the global CO2 emissions.
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Source: Interna�onal Energy Agency (IEA).

Figure 1.1: Global and transportation-related CO2 emissions, adapted from [2, 3].

Therefore, it is not a surprise that many of the efforts to mitigate the effect of climate
change and greenhouse gas emissions are focused on transportation. As an example, the
European Union has recently presented the “Sustaninable and Smart Mobility Strategy”
(2020), where a set of initiatives have been proposed for the period 2021-2025 in order
to cut the 90% of transport related emissions by 2050 [4]. Typically, this and similar
initiatives point out that effort is required around the following four axes to adequately
attain targets for emissions reduction in transportation [5]:

(1) A structural shift in the modes used to move people and freight. In this concern, the
reinforcement of public transport is understood as a necessary step. Indeed, public
means of transport, such as urban buses or the different alternatives of railway
mobility, enable the movement of passengers with a lower intensity of pollutant
emissions (see Figure 1.2) [2, 6].

(2) A switch to low-carbon forms of energy. In this regard, the lower use of tradi-
tional fuels and the development and deployment of hybrid electric, full electric or
hydrogen-based topologies is essential [1].

(3) An intensification of the research and development of key innovative technologies.
According to the study in [1], nearly a 50% of the effort required for obtaining a net-
zero emissions economy will come from technologies still under development, and

8



1.1 Introduction

that share will be even higher for transportation. Related to the previous point, the
report spotlights the research on technologies such as advanced batteries or hydrogen.

(4) Focus on using energy more efficiently. In a first step until new technologies are fully
ready or behavioural changes are attained, the improvement on energy efficiency
(e.g., measures in lightweighting or aerodynamics) can help in reducing emissions [5].
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Air Large cars Small/Med. cars Bus 2/3 wheelers Rail

Non-urban electric

Urban electric

Diesel

Figure 1.2: CO2 emission intensity of passenger transport modes, adapted from [2].

In this context, railway mobility emerges as an important stakeholder in the path
towards net-zero emissions. First of all, railway has the potential of being the transport
mode with the lowest intensity on energy use and emissions, as already highlighted in
Figure 1.2. In average, it only accounts for the 3% of transport energy use, while being
responsible of the 9% of global motorised passenger movement and 7% of global freight
transport [7]. From the energy efficiency point of view, rail sector has already made
improvements in the past decades. The energy consumption of these vehicles was improved
by nearly a 20% between 1990-2010 thanks to improvements in power electronics and motor
drives [8]. However, not all the railway solutions are such efficient in terms of pollutant
emissions, as this also depends on the primary energy source used to power the vehicle.

Traditionally, rail vehicles have been powered by either fossil fuels (steam at the be-
ginnings, and diesel more recently) or electricity (catenary-based systems). During the
last 50 years, an important effort to electrify railway lines has been conducted globally.
However, electrification share is not expected to reach the 100% in the short term, mainly
due to its high cost: the electrification of a rail track kilometer requires around 0.5-1.5
M€ [9]. Consequently, electrification is barely cost-efficient in some contexts, specially in
low-traffic networks [10]. Nowadays, diesel still accounts for the 53% of the global railway
sector energy use, and the 65% of rail tracks are not electrified yet [7]. In the context
of the European Union, the 40% of the mainline network [11] and the 20% of the traffic
[12] are not electrified yet. Figure 1.3 shows the evolution of the electrification share in
different regions of the world [7].

Therefore, a switch to cleaner alternatives is also necessary in railway mobility. Ac-
cordingly, the interest of the rail industry on integrating innovative power sources on-board
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Figure 1.3: Evolution of rail tracks electrification in different regions, adapted from [7].

railway vehicles has increased in the last years, with the aim to substitute or supplement
traditional fossil fuels powered traction systems [13–15]. However, the emergence of inno-
vative powertrain architectures rises new technological challenges, which need to be solved
in order to obtain cost-optimal solutions compared to conventional technologies.

The design process of a cost-optimal powertrain is conceived as a multi-layer system
[16, 17]. Figure 1.4 shows the different levels of the cost-optimal powertrain design. The
outermost level consists on the definition of the powertrain topology. Depending on which
power sources are integrated on-board, the possible architectures and electrical/mechanical
links may vary. Based on the selected topology, the next step consists on determining
the sizes of the powertrain elements, including the power sources, converters and electric
motors. Finally, the last level consists on the definition of the control strategies for the
powertrain elements. Being the main objective of this Ph.D. Thesis the development of a
methodology for a cost-effective powertrain design, the different levels depicted in Figure
1.4 will be approached.

Control of
Powertrain

Powertrain Sizing

Topology Selection 1.2 Power Sources for Innovative Powertrains

1.3 Innovative Railway Topologies

1.5 Powertrain Design Approaches

1.4 Energy Management Strategies

Figure 1.4: System-level design to achieve a cost-optimal powertrain [16].

In the following sections the literature related to each of the levels defined in Figure
1.4 is reviewed. First, the potential power sources to be integrated on-board railway
vehicles are introduced, and the most appropriate options are selected (Section 1.2). Then,
the potential innovative topologies that integrate the selected power sources are derived
(Section 1.3). Based on this review, the topologies to be analysed in this Ph.D. Thesis are
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defined. Then, the publications that propose powertrain control (Section 1.4) and sizing
definition (Section 1.5) approaches for the considered rail topologies are also reviewed.
Based on this analysis, some literature gaps are identified, which will eventually help
define the main contribution of this Ph.D. Thesis (Section 1.6).

1.2 Power Sources for Innovative Powertrains

One of the most important technological challenges of the last decades has been the
development of technologies that are able to replace Internal Combustion Engines (ICEs)
in transport applications. Several devices have been proposed and developed, with un-
even characteristics that make them be more appropriate for certain applications [18].
Power and energy rating, weight, volume, cost, response time, potential life or operating
temperature are the typical characteristics to be considered in this approach [19].

Given the operational constraints of mobility applications, the most appropriate solu-
tions to replace or assist ICEs are typically identified in the literature as Flywheel (FW),
Electric Double Layer Capacitor (EDLC), Battery (BT) and Fuel Cell (FC) technologies
[15, 20–22]. Some of these technologies are understood as generation systems (FC and
ICE) and the other ones are storage devices (FW, EDLC and BT), also known as Energy
Storage Systems (ESSs). Given that all the devices are able to provide traction power to
drive transport applications, in this Ph.D. Thesis FC, ICE, FW, EDLC and BT systems
will be referred as power sources.

Figure 1.5 shows a Ragone plot of the mentioned power sources. In the following
subsections, the main characteristics, advantages and disadvantages of the technologies
that are able to replace or assist conventional ICEs are reviewed. Eventually, the most
appropriate solutions to be integrated on-board railway vehicles are identified.
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Figure 1.5: Ragone plot of typical power sources for transport, data from [15, 23–27].
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1.2.1 Electric Double Layer Capacitors

EDLCs, also known as supercapacitors or ultracapacitors, are devices similar to normal
capacitors, but with very high capacitance values up to kilo farads [21]. The high capaci-
tance is achieved through the use of an electrochemical double layer and high surface area
carbon electrodes, as seen in Figure 1.6a [19, 28].

Advantages of EDLC systems cover the high specific power (up to 10,000 W/kg, see Fig-
ure 1.5), high energy efficiency (up to 98%), long lifetime (>106 cycles) and rapid response
[14, 29]. However, they show a low specific energy (see Figure 1.5), high self-discharge,
and they involve a high cost [18]. These characteristics make EDLCs well suited for ap-
plications requiring a short-term and fast storage (e.g., regeneration of braking energy in
mobility applications), but not for long-term or more energetic-oriented requirements.

(a) EDLC [28]

Magnetic 
bearing

Vacuum
chamber

Magnetic 
bearing

Generator/
motor unit

Flywheel

Vacuum pump

(b) Flywheel [26]

(c) Battery [21] (d) Fuel cell [21]

Figure 1.6: Working principle of the typical power sources for transport applications.

1.2.2 Flywheels

The FW is a mechanical ESS that stores (or maintains) the kinetic energy through the
rotation of a body (i.e., the rotor) [30]. The storage system comprises the rotating body
in a chamber (typically in a vacuum environment), a group of bearings, and the energy
transmission device (i.e., a generator or motor unit) together mounted with a common
shaft, as depicted in Figure 1.6b [26]. In short, the energy maintained by the constantly
rotating flywheel is converted to electrical energy by means of the mentioned transmission
device.
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FW systems are characterized by the ability of providing a high power peak, as this
feature is only limited by the coupled power converter [30]. In addition, it shows long
lifespans compared to other technologies (>107 cycles) [21]. However, the safety issues
related to the gyroscopic force and the high self-discharge are the main disadvantages
when considering the introduction of FWs in mobility applications [22]. Mainly due to
these reasons, FW systems have been barely introduced in transport applications, normally
just in prototype or trial projects that are far from commercial implementation [26, 30].

1.2.3 Batteries

Rechargable or secundary BTs are devices that store electricity in the form of chemi-
cal energy and produce electricity through an electrochemical reaction process known as
reduction-oxidation (Redox) [31]. As depicted in Figure 1.6c, they are constituted by an
electrolyte, an anode and a cathode.

BT technologies are typically classified according to the materials used to build the
battery cell, and they can be grouped in the following families: lead-based, nickel-based,
sodium-based and lithium-based technologies [32]. As depicted in Figure 1.7, the develop-
ment of these technologies has led to more energetic and powerful BTs, starting from the
Lead-acid (Pb) technology in the 1850’s, until the deployment of the Lithium-ion (Li-ion)
technology in the 1990’s. Nowadays, the Lithium-ion Battery (LIB) is the most common
BT technology installed in mobility applications, due to its high specific energy and power
(Figure 1.7), low rate of self-discharge, long lifetime, and high cost reduction in the last
decade (nearly 79% drop between 2010-2017) [20, 27]. Emergent technologies such as
solid-state and post-lithium batteries are expected to gain higher market penetration in
the following years, but they are still in prototype and non-commercial stage [33, 34].
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Figure 1.7: Ragone Plot of battery technologies, adapted from [24].

LIBs rely on insertion reactions from both electrodes, where lithium ions act as the
charge carrier [35]. Different materials can be used in the fabrication process of the anode
and cathode, what directly affects in features such as voltage, temperature performance,
lifetime, safety or specific energy and power [36]. Typically, the cathode material is an
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intercalated lithium compound. The most used cathode materials are Lithium Cobalt
Oxide (LCO), Lithium Manganese Oxide (LMO), Lithium Iron Phosphate (LFP), Lithium
Nickel Manganese Cobalt Oxide (NMC) and Lithium Nickel Cobalt Aluminium Oxide
(NCA). Besides, the anode material is typically Graphite (G) based, Carbon (C) based,
or Lithium Titanate (LTO) based [32, 35]. Figure 1.8 reviews the main features of the
most used commercial combinations of anode and cathode materials, which are typically
denoted as LIB chemistries [37].
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Figure 1.8: Main features of typical LIB chemistries (cathode/anode material), adapted
from [37]. An outer value represents a better feature.

As it can be inferred from the figure, there is no chemistry that outperforms the rest
of chemistries in all the considered features. Consequently, the selection of a specific cell
for a certain application is typically made after seeking a compromise between the most
limiting characteristics of each chemistry and the application requirements [36].

1.2.4 Fuel Cells

A FC is an energy conversion device that converts chemical energy from a fuel and an
oxidizing agent into electric energy without a combustion [38]. It consists of two electrodes
(anode and cathode) and an electrolyte separator, as shown in Figure 1.6d.

FCs are classified according to the nature of its electrolyte and the used fuel [27, 39].
Table 1.1 reviews the main characteristics of the commercially available FC technolo-
gies [40]. Among the depicted technologies, the Proton Exchange Membrane Fuel Cell
(PEMFC) is considered as the most suitable FC for transportation applications, due to its
low-temperature operation (<100ºC) and the better chemical characteristics of hydrogen
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[41]. The PEMFC produces electricity from a reaction in which hydrogen and oxygen are
combined, with usable heat and water as the principal by-products (Figure 1.6d). Due to
the used fuel, PEMFCs are typically known as hydrogen FCs.

Table 1.1: Classification of FC technologies [27, 40].

FC type Operation T (ºC) FC efficiency (%) Power density Fuel options

AFC 50-230 50-60 High Hydrogen

PAFC 150-220 40-50 Low Natural Gas, Diesel, Hydrogen

MCFC 600-700 30-70 Medium Natural Gas, Diesel, Hydrogen

PEMFC 65-85 40-60 Very High Hydrogen

SOFC 500-1000 40-70 Low Natural Gas, Diesel, Hydrogen

Main advantages of hydrogen FCs are the high specific energy (up to 1,000 Wh/kg, see
Figure 1.5), the continuous power supply, and the emission-free operation [21, 38]. In fact,
they combine the best features of ICE devices (operate as long as fuel is supplied) and
batteries (provide electricity without combustion). On the contrary, main disadvantages
of hydrogen FCs involve the low specific power, slow response, high cost, and the need of
pure hydrogen [27, 41].

1.2.5 Review of Potential Power Sources for Railway Applications

In previous subsections, the potential power sources to be integrated in transport
applications have been introduced. Table 1.2 reviews the main characteristics of these
power sources. PEMFC technology has been defined for the FC case, since it has been
claimed to be the most appropriate option for transport applications. Regarding BT
technologies, LIB has been defined as the most relevant option for transport applications,
due to its specific characteristics (Figure 1.7).

Table 1.2: Characteristics of potential power sources for transportation (shadowed cells
represent technical limitations for railway applications) [15, 23–27].

EDLC FW LIB PEMFC

Specific Energy (Wh/kg) <10 <80 <200 <1,000

Specific Power (W/kg) <10,000 <5,000 <4,000 <100

Self-discharge (%/day) 20 - 40 100 0.1 - 0.3 0

Efficiency (%) 90 - 100 90 - 95 90 - 100 40 - 60

Capital Cost (€/kWh) 300 - 2,000 1,000 - 5,000 500 - 1,500 -

Capital Cost (€/kW) 100 - 300 250 - 350 1,200 - 4,000 600 - 2,500

Lifespan (cycles) >1,000,000 >10,000,000 <30,000 -

Lifespan (hours) - - - <30,000

Safety Risk Moderate High Moderate Moderate

Additionally, Table 1.2 highlights the features that can limit the integration of each
technology in rail vehicles (shadowed cells). FW and EDLC devices provide a low spe-
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cific energy, specially comparing with traditional ICE-based powertrains (see Figure 1.5).
Considering the space and weight limitations of rail vehicles, the potential energetic contri-
bution of these technologies is found to be restricted, what complicates their integration as
main power source especially in vehicles oriented to non-urban environments. In the case
of FWs, the high self-discharge and the related safety issues are also defined as limitations
for its integration in these vehicles. Regarding PEMFC devices, the low specific power
is regarded as their main limitation. This issue can be solved with the hybridization of
the PEMFC with a secondary power source, which is indeed necessary to solve the low
response issue of this technology (this is addressed afterwards in Section 1.3).

Consequently, considering the analysed characteristics, PEMFC and LIB technologies
are identified as the most appropriate power sources to be integrated in railway applications
and substitute or supplement traditional ICE-based powertrains. For the sake of simplicity,
in the remainder FC will refer to PEMFC technology, and BT will refer to LIB technology.

1.3 Traditional and Innovative Railway Topologies

This section reviews the possibilities for the integration of BT and FC systems in rail
applications, focusing on how can they assist or replace traditional ICE-based topolo-
gies. First, the different rail transportation modes and vehicles are introduced to clarify
the used terminology. Then, the evolution from traditional electric- and diesel-powered
topologies to more innovative options is attained. The main characteristics, advantages,
disadvantages and challenges of each option are discussed in detail.

1.3.1 Rail Transport Modes

A railway vehicle is defined as a vehicle that drives on a rail traction system. Different
types of railway vehicles exist depending on its general characteristics, the provided service
and the involved infrastructure [7]. Figure 1.9 depicts a proposal for the categorization of
rail vehicles and rail transport modes, based on the contributions made in [7, 42]. It is
worth to mention that there is no clear arrangement on the terminolology to be used when
making a categorization of railway mobility. In this case the most generalized vehicles and
transport modes have been considered, even if more categories could be added.

Typically, the first division in rail transport modes is made between freight and pas-
senger transportation [7]. In the case of freight, locomotives are used, which consist of a
single vehicle that gives traction to a set of carriages filled of goods. Besides, passenger rail
is divided into several sub-sets, which are gathered into urban and non-urban transport.

Urban transport includes all the rail activities within cities and the immediately sur-
rounding area [7]. The most common urban rail transport modes are light rail and metro.
On the one hand, light rail refers to the urban rail transport systems that ride at street
level, typically sharing the tracks with other urban transport modes. They are usually
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Figure 1.9: Classification of rail transport modes and vehicles, based on [7, 42].

lighter and shorter than rail vehicles driving on metro or interurban lines, and thus they
offer a lower capacity and speed [42]. Light rail vehicles are also known as tramways. On
the other hand, metro rail refers to the urban rail transport system that rides on exclusive
righ-of-way, typically underground. Due to this fact, they reach higher speeds and can
handle a higher passenger capacity compared to light rail [42]. However, metro systems
are more expensive, especially considering the construction costs [2].

Non-urban rail transport includes conventional and high-speed railway systems. On
the one hand, conventional rail includes medium- to long-distance journeys with a maxi-
mum speed under 250 km/h, and also suburban journeys that connect urban centres with
surrounding areas [7]. Typical nomenclature for conventional rail services include also
suburban, commuter, intercity or interurban modes. Conventional rail services can be
provided by multiple units or locomotives. The main difference between both vehicles is
that in the case of multiple units, the traction elements are distributed among the different
carriages, while in the case of locomotives all the traction elements are included in a single
vehicle unit [42]. On the other hand, high-speed rail is defined as the rail services that
cover long distances and operate at a maximum speed above 250 km/h [7]. The vehicles
that give these services are known as high-speed trains.

Nowadays, conventional services cover most of the global railway lines length (around
1,061 thousand km) and it also handles most of the transport activity (around 2,818
billion passenger-km), as it is shown in the breakdown of Figure 1.10 [7]. Even though the
deployment of new high speed lines has increased in the last years, its transport activity
only accounts for the 15.8%. Urban mobility moves more passengers than conventional
and high-speed systems, but as the covered distances are lower, the involved transport
activity is also low.
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Figure 1.10: Share of main railway transport modes [7].

Table 1.3 shows the main characteristics of the introduced vehicles: tramways, metros,
multiple units, locomotives and high speed trains [42]. As depicted, urban and high speed
rail transport is driven electrically, thanks to the use of catenary or third rail systems.
However, the vehicles used in conventional rail transport (multiple units and locomotives)
are sometimes driven by diesel-based traction systems. This issue is further analised in
Section 1.3.2.

Table 1.3: Characteristics of typical rail vehicles [42].

Tramway Metro Multiple Unit Locomotive High Speed

Main Traction Source Electric Electric
Diesel

Electric

Diesel

Electric
Electric

Distributed Traction Yes Yes Yes No Yes

Supply voltage (V DC)
600

750

900

750

1500

750

1500

3000

750

1500

3000

3000

Supply voltage (kV AC) - -
15 (16.7 Hz)

25 (50 Hz)

15 (16.7 Hz)

25 (50 Hz)
25 (50 Hz)

Electric Motor Size (kW) 75-150 150-250 200-600 340-1400 200-600

Converter Size (kW) 150-300 350-1000 200-1400 500-1400 200-1400

Electric Motors per Converter (-) 2-4 2-4 2-8 1-2 2-8

Carriages (-) 3-6 4-8 3-12 1 3-12

Weight (tons) 20-50 40 120-160 90-120 120-160

Top speed (km/h) 50-70 80 120-250 100-200 250-350

Therefore, it is found that conventional rail transport is an appropriate sector for the
integration of innovative powertrain technologies, given that: (1) it is the sector accounting
for most of the rail transport activity, and (2) it is the only sector where diesel-based
traction systems are predominant yet. Hence, it is concluded that the developments of
this Ph.D. Thesis will be oriented to the integration of innovative powertrain technologies
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in conventional rail vehicles, specifically in multiple units.

1.3.2 Traditional Rail Vehicle Topologies

Nowadays, most of the powertrains of conventional multiple units are electrified, since
they use a common DC link to transmit electrical power between the main power source
and the traction motors [43]. As introduced in previous sections, the main power source
can rely on diesel- or electric-based technologies (Table 1.3). In the case of the diesel-based
topology, mechanical or hydraulic transmissions have also been used in the past [44], but
they are not the main option nowadays [45].

In this section, and before introducing the possibilities offered by the integration of BT
and FC systems in multiple units, the conventional topologies (depicted in Figure 1.11)
are analysed in detail. These configurations are presented from a generic scope, and can
be valid for nearly any rail vehicle. Anyway, as previously outlined, the developments of
this Ph.D. Thesis are oriented to multiple units, and therefore the scope of this section is
focused on these vehicles.
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Figure 1.11: Traiditional powertrain topologies for Multiple Units. Arrows represent
potential power fluxes to/from DC bus.

The Electric Multiple Unit (EMU) obtains from the catenary system the required power
for the auxiliaries and traction motors, as depicted in Figure 1.11a. The catenary systems
can be different depending on the particular country or area where they are located, since
the electrification of railway lines was developed differently according to the specific state-
of-the-art technologies of each location [42]. Therefore, typically different AC and DC
systems can be found, with different voltage amplitudes and frequencies (Table 1.3). Due
to the fact that AC is easier to transmit over long distances, it is the preferred option
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in long-distance rail lines. As the example of Figure 1.11a shows, in the case of an AC
catenary system, a transformer and a converter are used to adapt the high voltage AC to
adequate values for the DC link.

The second topology is the Diesel-Electric Multiple Unit (DEMU). The DC link of
the DEMU is fed by a synchronous generator that converts the power generated by the
diesel ICE, as it is depicted in Figure 1.11b. Both the ICE and the generator constitute
the diesel generator set, also known as genset. In this topology, the voltage of the DC link
can be adjusted depending on the design of the generator [42]. The DEMU is a typical
choice for non-electrified railway lines, which nowadays constitute around the 65% of the
global and 40% of the european rail networks (see Figure 1.3) [7, 11].

In some cases, rail vehicles serve services that drive through both electrified and non-
electrified track sections. For these contexts, vehicles that are fed by both a catenary and
a genset are required. This leads to the Bi-mode Diesel-Electric Multiple Unit (Bi-mode
DEMU) topology, which is depicted in Figure 1.11c. As it is seen, the topology consists
of a mixture between the EMU and the DEMU. In electrified sections, the catenary is
the main power source, and in non-electrified sections the genset becomes the primary
source. In some other cases, the term bi-mode is also used when referring to EMUs that
drive through catenary systems of diverse characteristics (e.g., railway lines that include
DC and AC track sections) [42].

1.3.3 Innovative Rail Vehicle Topologies

This subsection analyses the innovative topologies derived from the integration of BT
and FC technologies in railway vehicles. Being an ESS, the BT can act both as a pri-
mary power source (replacing conventional technologies) or as a secondary power source
(supporting conventional technologies). In contrast, the FC is understood as a generation
device, and therefore it can only act as a primary power source, replacing conventional
diesel- or catenary-based technologies. In the following subsections, the main features
of each derived topology are reviewed, together with the commercial solutions already
proposed by rail manufacturers.

1.3.3.1 BT as Primary Power Source

As mentioned, the BT can act as the primary and unique power source in a rail vehicle,
what allows a 100% electric operation in non-electrified track sections. This topology is
referred in the literature as the Battery Electric Multiple Unit (BEMU) [46], and it is
depicted in Figure 1.12. In the cases where the vehicle drives in a railway line with both
electrified and non-electrified track sections, the BT will be charged from the catenary
using the same technology as in the EMU. Besides, in the cases where the vehicle drives
exclusively in a non-electrified track, charging points are required to charge the battery.
These charging points can be understood as very short catenary sections located in specific
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points (e.g., the terminal station) [47]. Therefore, essentially both alternatives include the
same elements, as it is depicted in Figure 1.12.
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Figure 1.12: Battery Electric Multiple Unit (BEMU).

Some rail manufacturers have already proposed and developed the BEMU technology.
Table 1.4 summarizes the projects that have ordered BEMUs for regular passenger use.
The information has been obtained through a revision of the State of the Art and a compi-
lation of press releases from railway manufacturers. The table includes the manufacturer
of the vehicle, the operator that has ordered it, the year when the vehicle started the
regular service, the BEMU model, the number of ordered vehicles, the deployed ESS tech-
nology, the capacity of the storage system, and the range of the vehicle in non-electrified
sections. The cases in which an order has been signed but the commercial use has not
started yet are specified with the year when the commercial use is expected to start. Trial
or development projects are not included.

As seen in the table, the maximum provided ranges are around 120 km (Siemens’
Mireo Plus B and Alstom’s Coradia Continental) and 150 km (Stadler’s Flirt Akku), what
makes these vehicles impractical for long distance rail services without catenary support.
The main barrier for the extension of the vehicle range is the limited available space and
weight for the integration of big BT systems [12, 48]. In this sense, the development of
BT technologies with a lower energy density and specific energy are required.

1.3.3.2 BT as Secondary Power Source

As second option, the BT can act as secondary power source to help the main supply
of traditional topologies. This leads to the topologies known as Battery Hybrid Electric
Multiple Unit (H-EMU) and Battery Hybrid Diesel-Electric Multiple Unit (H-DEMU).
The hybridization offers some benefits and additional flexibility to the conventional EMU
or DEMU vehicles. Among others, the following can be highlighted [43, 49, 50]:

• Peak shaving: Control of main source consumption to prevent power peaks. In the
case of the H-EMU, this enables the possibility of downsizing the catenary power
substations. In the case of the H-DEMU, it is possible to downsize the genset.

• Backup mode: Running capability when the primary source (catenary or genset) is
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Table 1.4: Commercial projects involving BEMUs.

OEM OPERATOR
(Country)

YEAR MODEL QTY. ESS
(OEM)

QTY.
(kWh)

RANGE
(km)

J-TREC JR East (JP)
2014
2017

EV-E301
1
3

LIB LMO
(GS Yuasa)

190 22.4 2

BOMBARDIER
(ALSTOM)

Network
Rail (UK)

2015
Electrostar
Class 379

1
LIB LFP
(Valence)

400 50

SNCF (FR)
Expected

(2023)
AGC 1 5

LIB
(Leclanché)

- 80

HITACHI

JR Kyushu
(JP)

2016 BEC819 7
LIB LMO

(GS Yuasa)
360 10.8 2

JR East (JP) 2017
EV-E801

Series
1

LIB LMO
(Hitachi)

360 26.6 2

SIEMENS

ÖBB (AT) 2019 CityJet Eco 1 1
LIB LTO
(Toshiba)

528 -

NVBW (DE)
Expected

(2023)
Mireo Plus B 20

LIB LTO
(Toshiba)

- 120

NEB (DE)
Expected

(2024)
Mireo Plus B 26

LIB LTO
(Toshiba)

-
120
86 2

STADLER

Schleswig-
Holstein (DE)

Expected
(2022)

Flirt Akku 55 BT - 150

Wales &
Borders (UK)

Expected
(2022)

City Link
BEMU

36 BT -
Short

sections

Arriva (NL)
Expected

(2025)
Wink BEMU 18 BT 180

Short
sections

ALSTOM
VMS and

ZVNL (DE)
Expected

(2023)
Coradia

Continental
11 LIB -

120
80 2

CAF
VRR and

NWL (DE)
Expected

(2025)
Civity BEMU 60 LIB - 60-80

1 Retrofitted models
2 Values in italic represent length of non-electrified section, not the range of the vehicle

not available.

• Energy Efficiency: Energy recovery capability when braking (for both H-EMU and
H-DEMU) and efficient operation of genset (for the H-DEMU).

• Power Boost: Increase of available power either for accelerating or for facing steep
gradients.

• Electric Mode: 100% electric operation in low emission zones (e.g., in city centres).

Essentially, the H-EMU can be considered the same topology as the BEMU. As it was
previously outlined, the BEMU requires of an external power source, which is typically a
pantograph connected to a catenary (Figure 1.12). Therefore, the only difference between
the H-EMU and the BEMU consists on how the different sources are operated: in the
BEMU the battery works giving all the required demand, while in the H-EMU both power
sources help in satisfying the demand. Indeed, some of the commercial vehicles depicted
in Table 1.4 are expected to work also in H-EMU mode. In order to avoid potential
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misunderstandings, in the remainder of this Ph.D. Thesis the term BEMU will refer to
both alternatives.

Regarding the H-DEMU topology, the configuration is depicted in Figure 1.13. As
it was outlined in Section 1.3.2, the H-DEMU can drive through railway lines with both
electrified and non-electrified track sections. Therefore, the battery hybrid bi-mode DEMU
is also possible. In order to simplify the terminology, H-DEMU will also refer to the battery
hybrid bi-mode topology.

Traction
motors

DC bus

Aux.

DC

AC

M

M

M

M

Genset

G
3~ICE

ICE AC

DC

Catenary

AC

DC

DC

DC

Battery
(bi-mode case)

Figure 1.13: Battery Hybrid Diesel-Electric Multiple Unit (H-DEMU).

Table 1.5 reviews the commercial H-DEMU vehicles that are driving in regular pas-
senger use (or are expected to). The table shows the manufacturer, the operator that
has ordered the vehicle, the year when the commercial operation began, the H-DEMU
model, the number of ordered vehicles, the storage technology, and the integrated storage
capacity. Compared to the BEMU case, it can be noticed that smaller BT systems are
integrated, due to the fact that the storage technology is not intended to be the main
power source.

1.3.3.3 FC as Primary Power Source

An additional alternative for the electrification of railway vehicles is the integration
of FC technology as primary energy source. The main benefit of this technology is that
it allows a 100% electric operation. Moreover, if the hydrogen fuel is produced by an
electrolysis driven by renewables, it can be considered that no pollution is generated [38].

However, the FC technology has also some disadvantages. The dynamic characteristic
of the FC is relatevely low because of the auxiliary systems such as the air compressor,
humidifier and cooler [51]. Accordingly, operating the FC with fast transients directly
affects on its degradation [52, 53]. Therefore, the hybridization with a secondary power
source is found to be essential for the correct integration of FC technology in railway
vehicles [54, 55]. Following the analysis of the potential power sources developed in Section
1.2, it is concluded that a BT system is the most appropriate option for the auxiliary power
source, even if hybridizations with EDLC systems have also been proposed in the past [56].
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Table 1.5: Commercial projects involving H-DEMUs.

OEM OPERATOR
(Country)

YEAR MODEL QTY. ESS
(OEM)

QTY.
(kWh)

J-TREC

JR East (JP)
Koumi

2007 KiHa E200 3
LIB LMO
(Hitachi)

15.2

JR East (JP)
Oito, Tsugaru,

Ominato and Gono
2010 HB-E300 Series 5

LIB LMO
(Hitachi)

-

JR East (JP)
Senseki-Tohoku

2015 HB-E210 Series 8
LIB LMO
(Hitachi)

15.2

TOSHIBA JR West (JP) 2017
Twilight Express

Mizukaze
1

LIB LTO
(Toshiba)

120

CRRC
Malaysia Rail

Link (MY)
2020 Class 61 13

UC
(CRRC)

-

STADLER
Arriva (NL) 2021 WINK 18 BT 180
Wales and

Borders (UK)
Expected

(2023)
FLIRT

Tri-mode
24 BT -

ALSTOM
NASA (DE)

Expected
(2021)

Coradia Lint 3 LIB -

SNCF (FR)
Expected

(2022)
TER hybride
(retrofitted)

1 LIB -

PORTERBROOK1

Chiltern
Railways (UK)

Expected
(2021)

Turbostar Class
168-170

2 LIB 60.8

Irish Rail (IE)
Expected

(2021)
Class 22000 3 LIB 91.4

VIVARAIL1 Transport
for Wales (UK)

Expected
(2021)

Class 230 5
LIB NMC
(Kokam)

200

SIEMENS Amtrak (US)
Expected

(2025)
Venture 9

LIB LTO
(Toshiba)

-

1 Porterbrook and Vivarail are companies oriented to the retrofitting of existing rail vehicles

Therefore, the configuration depicted in Figure 1.14 is found to be the most appropriate
option for the integration of a FC in a multiple unit. Considering that a configuration
with the FC as unique power source is not practical, and with the aim of simplifying
the terminology, the depicted topology is defined as the Hydrogen Electric Multiple Unit
(H2EMU). As outlined in the previous section, railway vehicles can drive through lines
with both electrified and not electrified track sections. In these cases, the bi-mode H2EMU
can be also deployed, as it is highlighted in Figure 1.14.

Some rail manufacturers have already proposed their concepts for the H2EMU. As
shown in Table 1.6, Alstom and Stadler have already won contracts to supply several
H2EMUs for regular passenger use. In the case of Alstom, two Coradia iLint vehicles are
already driving in regular service since 2019. Additionaly, it is also known that companies
such as Siemens (Mireo Plus H, which will be tested in Germany), CAF (Civity Hydrogen,
which will be tested in Spain), Talgo (Vittal-One), Porterbrook and Vivarail are also
working on their H2EMU prototypes. As it is shown in the table, these vehicles are
expected to have a driving range in non-electrified tracks of around 600-700 km, which
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Figure 1.14: Hydrogen Electric Multiple Unit (H2EMU).

is close to the ranges of diesel-based topologies. Therefore, H2EMU vehicles become an
appropriate alternative for long distance railway lines.

Table 1.6: Commercial projects involving H2EMUs.

OEM OPERATOR
(Country)

YEAR MODEL QTY.
POWER

SOURCES
(OEM)

QTY. RANGE
(km)

ALSTOM

LNVG (DE) 2019
Coradia
i-Lint

2
FC (Cummings)

LIB NMC (Akasol)
FC 400 kW

LIB 111 kWh
700

LNVG (DE)
Expected

(2022)
Coradia
i-Lint

12
FC (Cummings)

LIB NMC (Akasol)
FC 400 kW

LIB 111 kWh
700

FAHMA
(DE)

Expected
(2022)

Coradia
i-Lint

27
FC (Cummings)

LIB NMC (Akasol)
FC 400 kW

LIB 111 kWh
700

FNM (IT)
Expected

(2023)
Coradia

Polivalent
12

FC (Cummings)
LIB NMC (Akasol)

- 600

SNCF (FR)
Expected

(2025)
Coradia
Stream

6
FC (Cummings)

LIB NMC (Akasol)
- -

STADLER

Zillertalbahn
(AT)

Expected
(2022)

ÖBB Class
4090

5
FC
BT

- 321

SBCTA
(USA)

Expected
(2024)

Flirt H2 5
FC
BT

- 14.51

1 Values represent length of non-electrified section, not the range of the vehicle

1.3.3.4 Review of Innovative Topologies

Figure 1.15 reviews the evolution of the commercial projects involving the innovative
railway topologies identified through Section 1.3.3: BEMU, H-DEMU and H2EMU vehi-
cles. The evolution is shown with the commulative number of ordered vehicles. The graph
demonstrates that the interest of railway operators on innovative multiple unit topologies
is exponentially increasing in the last few years.

As it has been highlighted, the integration of BT technologies in BEMU, H-DEMU
and H2EMU vehicles offers some advantages compared to the traditional EMU and DEMU
topologies. However, some challenges do also emerge. The high cost of this technology,
the involved additional weight, safety risks, temperature and degradation management,
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Figure 1.15: Evolution of commercial projects involving innovative powertrain technolo-
gies in rail vehicles (dates refer to the values at 1st January).

and the complexity of the energy management between the different sources are typically
mentioned as the main challenges for the development of BT technology in rail vehicles
[49, 57]. Accordingly, in the case of the H2EMU, the integration of the FC involves
additional challenges. Issues related to the FC cost, hydrogen supply, and the degradation
that the FC suffers are commonly highlighted [58].

This Ph.D. Thesis will deal with the correct integration of FC and BT technologies on
the mentioned multiple unit topologies. In this sense, the high cost of these technologies
is identified as a crucial barrier not only for a wider deployment of BEMU, H-DEMU
and H2EMU vehicles, but also for the competitiveness of railway manufacturers. The
literature typically identifies that for the optimal design of the powertrain, the size of
their elements and the integrated control strategy need to be correctly defined (see Figure
1.4). Consequently, Section 1.4 and Section 1.5 analyse in detail the literature that deals
with both issues. As already mentioned, the main contributions of this Ph.D. Thesis will
be defined based on the conclusions extracted from these reviews.

1.4 Energy Management Strategies

The energy management is the control layer that organically coordinates the on-board
energy sources in order to satisfy the power demand of the vehicle [59]. It is the outermost
level in the hierarchy of control systems, as it is located above the power management and
local control (see Figure 1.16) [18, 27]. The energy management plays a critical role in
hybrid powertrain configurations (e.g., H-DEMU or H2EMU), due to the fact that it is in
charge of splitting the power supply between the different power and energy sources.

The energy management control is performed based on a strategy, which is denoted
as the Energy Management Strategy (EMS). The design of the EMS is found to be one
of the mayor challenges of hybrid powertrain configurations [16, 60, 61]. In order to
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Figure 1.16: Control hierarchy in powertrain systems [18, 27].

obtain an efficient EMS, the strategy should be designed aiming certain objectives and
ensuring the constraints or limitations of all the involved internal and external physical
systems. Typically, the mentioned objectives include the improvement of fuel economy
(both diesel or hydrogen), the increase of overall efficiency, the reduction of pollutant
emissions, the maximization of the BT and/or FC lifetimes, or even a compromise among
all the mentioned goals [16, 62–65]. Besides, the designed strategy should respect the
operation constraints of each power source (i.e., the response time of the FC or the limits
of the BT charge), it should exhibit resilience to possible external disturbances, it should
be applicable under various driving conditions, and it should require a low computational
burden in order to allow its implementation on a real-time controller [16, 66, 67]. Figure
1.17 reviews all the objectives and constraints for the design of an EMS.

Fuel
Economy

Overall
Efficiency

BT and FC
Life�me

Power
Sources

Constraints

Robustness to
disturbances

Resilience 
to Driving 
Condi�ons

Real Time
Execu�on

EMS
Design

Op�mize...
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Figure 1.17: Objectives and considerations of EMS design.
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All these requirements make the design of an efficient EMS a challenging task. This
issue has been faced in the literature following different approaches, which are reviewed
in the next subsections. First, the typical categorization of EMSs for hybrid vehicles is
introduced in Section 1.4.1. Then, the specific literature related to EMSs for railway
vehicles is reviewed in Section 1.4.2.

1.4.1 Classification of Energy Management Strategies

Figure 1.18 shows the generally accepted classification of EMSs, which includes three
main categories: Rule-based (RB), Optimization-based (OB) and Learning-based (LB)
strategies [16, 58]. Each category is further introduced in the following paragraphs.

Energy
Management
Strategies
(EMS)

Op�miza�on-based
(OB)

Rule-based
(RB)

Learning-based
(LB)

Off-line

On-line

Dynamic programming (DP)
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Others...
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Neural Networks

Unsupervised Learning

Supervised Learning
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Adap�ve

Predic�ve

Thermostat

Power Follower

State Machine

Frequency decoupling

Figure 1.18: Classification of Energy Management Strategies [16, 58].

RB strategies define the power split based on predefined rules, which are designed based
on heuristics, intuition, or human expertise [63, 65]. Therefore, they are simple to design
and allow a feasible real-time implementation [64, 66]. However, in order to guarantee
an optimal performance, a significant calibration effort is required, what typically leads
to non-optimal or sub-optimal solutions [16, 62]. The rules can be either deterministic
or fuzzy. Deterministic rules are useful for simple systems that can be easily interpreted
or modelled. Besides, fuzzy rules are more oriented to complex systems, especially in the
cases were linguistic knowledge can be efficiently implemented together with numerical
data to model the controller [58]. Typical deterministic RB strategies include thermostat,
power follower, state machine or frequency decoupling approaches; while fuzzy-logic RB
strategies can be divided into conventional, adaptive or predictive approaches [16, 58].

OB strategies try to find the optimal control sequence that minimizes a cost-function
[60, 63, 65]. This cost-function can be defined as the fuel consumption, BT lifetime, FC
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lifetime, or even the life cycle cost of the system (which includes all the mentioned terms).
OB strategies are further classified into off-line and on-line optimization.

On the one hand, off-line OB strategies perform a global optimization, which requires
a priori information of the whole drive cycle and its conditions [60, 62]. Therefore, the
minimum value of the objective function is obtained for the whole feasible space of the
optimization problem [59]. However, these methods require high computational burden
to be solved, what sometimes complicates their real-time implementation [59, 63]. The
capacity to be implemented in real time, as well as the robustness of the OB strategy,
also depends on the optimized variable: if the optimization returns a control sequence
(e.g., a sequence of references for the FC or genset power), the solution is hard to be
implemented in real time, and it will not be very robust against changes in the drive cycle.
However, if the algorithm finds the optimal set of rules or thresholds for RB strategies,
it is easier to implement, and it will be also robust to changes in the drive cycle (as long
as the rules are designed to do so). Dynamic Programming (DP), Portryagin’s Minimum
Principle (PMP), and approaches based on metaheuristic search (e.g., genetic algorithms)
are some of the typical off-line OB strategies [58].

On the other hand, on-line OB strategies perform a local optimization, which does
not require a priori knowledge of the past and future driving conditions [16]. This is
obtained by designing a cost-function that only depends on the present state of the sys-
tem parameters [62, 65]. Therefore, the optimization can be implemented efficiently in
real-time, but it only minimizes the cost-function for a limited space of the optimization
problem. In some cases, in order to increase the space of the optimization problem, the
use of predictive approaches is also proposed. Regarding the robustness, it depends on the
used optimization algorithm. Equivalent Consumption Minimization Strategy (ECMS)
and Model Predictive Control (MPC) are some well-known on-line OB strategies [16, 58].

Finally, LB strategies use advanced data mining methods, which allow deriving a
control sequence based on historical, real-time and/or off-line optimized data [64, 65]. With
data-driven and machine learning methods, causal and close-to-optimal strategies can be
obtained, but a difficult and time-consuming approach to create an accurate database
for the training step is required [58]. Neural network and reinforcement learning-based
methods are some of the most used LB strategies in mobility applications [16, 58].

1.4.2 Energy Management in Hybrid Railway Vehicles

In the following paragraphs, the literature related to EMSs in railway applications
is reviewed. The literature search has only been focused on hybrid diesel or hybrid FC
topologies (e.g., H-DEMU or H2EMU), considering their potential integration in innovative
railway vehicles. Eventually, 42 research papers have been identified. In Figure 1.19, these
publications are distributed according to the EMS type, publication year and the primary
power source. As it can be noticed, only approaches dealing with RB and OB strategies
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have been proposed for railway applications.
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Figure 1.19: Identified literature according to EMS type and publication year.

1.4.2.1 Deterministic Rule-based Strategies

Regarding deterministic RB strategies, one of the most simple approaches consists on
the thermostat strategy. The primary power source is turned on or turned off depending
on the state of the auxiliary power source or power sources. This strategy is also referenced
in the literature as the charge depleting and charge sustaining strategy. In the literature of
hybrid railway systems, authors in [68] propose a thermostat strategy for a hybrid diesel-
electric locomotive. They set the genset at its nominal operation point when the State of
Charge (SOC) of the BT is below a certain threshold. On the contrary, when the SOC
is above that threshold, the genset is turned off. In [69] a similar approach is proposed
for a hybrid diesel-electric locomotive, but in this case the auxiliary ESS is composed of
a BT and an EDLC. The thermostat controller defines the power output for the genset,
and then a frequency decoupling strategy is proposed for splitting the remainder demand
between the BT and EDLC.

Another typical deterministic RB strategy is the baseline control. This strategy con-
sists on defining a constant power reference for the primary power source, so that the
auxiliary system gives or absorbs the difference with the power demand. Indeed, it con-
sists on the turned on state of the thermostat strategy. Authors in [54, 70] propose a
baseline control for a hydrogen electric locomotive, and they define the constant operation
point as the FC nominal power. Besides, the authors in [71] propose a similar approach
for a hydrogen electric subway, but in this case the constant operation point of the FC
is defined as the average power demand of the journey, so that the charge of the BT is
sustained along the whole journey.

Some other simple deterministic RB strategies include the power follower and the
frequency decoupling. The power follower is proposed in [72] for a hydrogen electric
locomotive, and it consists on defining the FC power reference depending on the driving
pattern (acceleration, cruising or braking). Besides, the frequency decoupling approach
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consists on using a low-pass filter to split the power demand between different power
sources. In [73] this strategy is proposed for a hybrid diesel-electric locomotive with an
ESS composed of a BT and an EDLC. The genset works on its nominal operation point
and then the low pass filter is used to split the rest of the demand between the auxiliary
sources.

In some other publications, more complex deterministic RB strategies are proposed. A
common approach is the state machine controller, which consists on varying the proposed
rules depending on the state of the auxiliary power source. For instance, authors in
[74, 75] propose a state machine controller for a H-DEMU with an EDLC as secondary
power source. Three states are defined according to the SOC of the EDLC, and at each
state a different power reference for the genset is set. Then, the same authors adapt this
approach for a H2EMU based on an EDLC [76]. A similar approach is proposed in [77] for
a hydrogen electric locomotive, in which three states are defined depending on the SOC
of the BT.

Some other authors combine a state machine controller with a droop control to split
the demand in hybrid powertrains composed of three power sources. Authors in [78, 79]
and in [80–82] have proposed separately similar approaches for hydrogen electric tramways
with an ESS composed of a BT and an EDLC. They design a state machine controller
with different states to define the FC power reference, and then a droop control adjusts
the split between the BT and EDLC to maintain the voltage of the DC bus. Finally, in
a more recent approach, authors in [52] design a state machine controller for a H2EMU
based on the results of a DP off-line optimization.

Another trend in deterministic RB strategies consists on designing a controller based on
classic control theory. In some approaches, the controller is designed aiming a reduction of
the error between a reference SOC and the real SOC of the auxiliary power source. Authors
in [83] define this controller for a H2EMU, authors in [84] for a diesel-electric locomotive,
and authors in [85] for both a H-DEMU and a H2EMU. Besides, some other authors have
designed controllers to maintain the voltage of the DC bus in stable conditions, which
is attained by means of a droop control. Authors in [86] propose this approach for a
H2EMU, and authors in [53, 87] for a hydrogen electric tramway. In both cases, the ESS
is composed of a BT and an EDLC.

1.4.2.2 Fuzzy Logic Rule-based Strategies

The algorithm of a fuzzy logic controller is composed of three steps, as it is summarized
in Figure 1.20. First, in the fuzzification approach the measurable variables (inputs)
are translated to subjective or linguistic format. Then, this information is compared
to heuristic rules, which are implemented with if-condition-then sentences. Finally, the
defuzzification translates again from linguistic to measurable format in order to define the
controller output [18].
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Figure 1.20: Working principle of Fuzzy Logic RB controller [18].

This scheme is followed in conventional fuzzy logic approaches. Authors in [79] pro-
posed this EMS for a hydrogen electric tramway with BT and EDLC systems as auxiliary
power sources. The SOC of both storage devices and the power demand are defined as the
inputs of the fuzzy controller, and the FC reference and the change rate of the BT refer-
ence are defined as outputs. The obtained results are compared against a state machine
controller (0.6% higher fuel consumption) and a couple of on-line OB strategies (2.6%
higher fuel consumption than the best approach).

Besides, authors in [88] also propose a conventional fuzzy logic strategy for the same
vehicle application. However, in this case the power demand is divided into different
signals following a frequency decoupling approach. These signals, together with the SOC
of both auxiliary power sources, are used as inputs to two fuzzy logic structures: the
first one returns the FC reference, and the second controller the reference for the EDLC.
The proposed strategy is compared to a frequency decoupling approach (11.4% overall
efficiency improvement) and a fuzzy logic controller without frecuency decoupling (4.4%
overall efficiency improvement).

Finally, a conventional fuzzy logic approach is also proposed in [72], in this case for a
hydrogen electric locomotive. As in this case the powertrain is composed just of a FC and
a BT, the controller is simplified: the power demand and the SOC of the BT are defined
as inputs, and the FC reference as the output. The obtained results are compared against
a power follower strategy, what unveils that 2.5% fuel reduction can be achieved.

In the case of the adaptive fuzzy logic approach, the parameters of the fuzzy-sets
are weighted in order to vary the importance of a certain parameter or variable. The
weight values are adapted depending on internal or external conditions (e.g., the driving
environment). Besides, in predictive fuzzy logic approaches look-ahead windows are used
to predict future states and take decisions based on this information. However, neither
adaptive or predictive fuzzy logic approaches have been proposed for the hybrid railway
vehicle topologies being analysed.
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1.4.2.3 Off-line Optimization Strategies

One of the typical off-line OB strategies is the Dynamic Programming (DP) approach.
This algorithm returns the optimal control trajectory to reduce a certain cost function
based on Bellman’s optimality principle. This principle states that an optimal decision
can be derived by breaking down a complex problem into several subproblems [89]. A
chart representing the working principle of DP is depicted in Figure 1.21. Typical DP
optimization is proposed in [45] and [90] for a H-DEMU and in [77] for a hydrogen electric
locomotive. In all cases, the secondary power source consists of a BT. In these publications
the optimization aims a minimization of the fuel use (diesel or hydrogen), and it returns
the optimal sequence of the split factor between the powertrain sources. DP results are
compared against a state machine strategy (from 17% to 25% improvement in fuel use)
in [45], and against a Quadratic Programming (QP) optimization (9.8% higher operation
cost) in [77]. Besides, the authors in [91] propose a DP optimization for a H-DEMU
that also returns the optimal sequence of the vehicle speed that minimizes the overall fuel
consumption. The simulation results are compared against a traditional DEMU, obtaining
a 33% reduction in the fuel consumption.
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Figure 1.21: Dynamic Programming working chart.

The Pontryagin’s Minimum Principle (PMP) is also a typical off-line OB approach
proposed in the field of EMS problems. This principle relies on the idea that the optimal
control sequence is obtained by solving the minimization of the Hamiltonian function [59].
The authors in [92] propose this approach for a H-DEMU with a BT as secondary power
source. The algorithm returns the optimal control sequence for the genset aiming the
minimization of the fuel consumption. The obtained results are compared against a RB
state machine strategy, achieving a 7.3% reduction in the fuel use.

Some other non-linear optimization techniques have been proposed to solve the problem
of the optimal EMS in hybrid railway vehicles. Authors in [77] propose the previously
mentioned QP approach for a hydrogen electric locomotive with a BT as secondary power
source. This method consists on a simplification of the typical DP approach in order to
reduce the computational burden, but at the expense of the simplification and linearization
of the cost function. Nevertheless, the simulation results unveil a 9.8% cost reduction
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compared to DP. Besides, the method of Lagrange Multipliers is proposed in [93] to solve
the optimal control sequence of the FC of a hydrogen electric tramway with an EDLC as
secondary power source. This optimization also aims the reduction of the fuel use. The
obtained hydrogen consumption is compared to that of a power follower strategy (2.5%
reduction) and an ECMS (3.2% reduction). Finally, the authors in [94] apply the non-
linear Simplex method to optimise the performance of a H-DEMU with a BT as secondary
power source. In this case, the cost function includes both the fuel use and the deviation
from a predetermined SOC value. The results unveil a 23% fuel reduction compared to a
traditional DEMU.

The off-line OB approaches reviewed so far are typically used as benchmark to evaluate
other strategies, since they return the global solution to the EMS optimization problem.
However, and as it was already highlighted, the control sequences that these methods
return are hardly implementable on-line, as they are optimized for a specific context or
driving cycle. In other words, the replicability of these sequences in other driving cycles
is limited. Nevertheless, some other optimization approaches can be proposed to optimize
controllers that can be implemented on-line.

Metaheuristic search methods are typically implemented for this purpose. Authors in
[95] propose a state machine controller for a hydrogen electric tramway with a BT and
an EDLC as secondary power sources. The state machine relies on a series of thresholds
for the power demand and SOC of both storage systems. These thresholds are optimized
by two different evolutionary algorithms (Artificial Fish Swarm Algorithm and Multi-
Population Genetic Algorithm), with the objective of reducing the operation costs of the
tramway. The best result is obtained with the first evolutionary algorithm, achieving a
25% cost reduction compared to the non-optimized state machine strategy. Besides, an
adaptive fuzzy logic controller for a hybrid diesel-electric locomotive is optimized in [96].
The auxiliary power system is composed of a BT and an EDLC. The membership functions
of the fuzzy-logic controller are tuned based on a Genetic Algorithm (GA) optimization,
which aims the reduction of the fuel use.

A more complex approach is proposed by the authors in [56]. In this case, an ECMS
is proposed for a hydrogen electric tramway with a BT and an EDLC as auxiliary power
sources. This on-line OB controller (introduced later in Section 1.4.2.4) returns the power
references for the FC and BT, but they are later adjusted by a state machine controller.
The balance factor that determines the performance of the ECMS-based controller is
optimized by the Firefly Algorithm approach in order to reduce the operation costs of the
tramway. The results are compared against a simple RB controller and the non-optimized
ECMS, unveiling a reduction on the operation costs of the 39.6% and 13.8%, respectively.

In addition to metaheuristic search methods, non-linear optimization algorithms can
also be used to optimize RB controllers. For instance, authors in [43] propose a classic
control loop to control the SOC of the BT in a H-DEMU. Using a Direct Optimization
approach, the controller parameters are optimized aiming a diesel use reduction. According
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to the authors, a 16.5% fuel reduction can be achieved compared to a traditional DEMU.
Besides, authors in [97] optimize a controller based on frequency decoupling for a H-DEMU
with a BT and an EDLC as auxiliary power sources. The frequency decoupling based
controller was already introduced in [73] (see Section 1.4.2.1). The authors propose a
Sequential Quadratic Programming (SQP) approach to optimize the value of the low pass
filter and the reference value for the genset power, with the aim of reducing the fuel use.

1.4.2.4 On-line Optimization Strategies

Regarding on-line OB strategies, the ECMS is one of the most used approaches. It
consists on converting the electric consumption of the secondary power source (e.g., the
BT) to the fuel consumption of the primary power source (e.g., the genset) at each sample
time. In this way, the control action that minimizes the total equivalent fuel consumption
can be defined [58].

Authors in [79] and authors in [98] have proposed an ECMS for a hydrogen electric
tramway with a BT and an EDLC as auxiliary power sources. As the ECMS is designed
for powertrains comprised of only two power sources, in both cases the optimization dis-
misses the equivalent consumption of the EDLC device. The controller returns the power
reference for the BT, and then additional rules are set for the EDLC reference defini-
tion. The proposed strategies are compared against a series of RB strategies, and in both
publications the ECMS is found to be a better option in terms of fuel consumption.

A similar approach is proposed in [99], but in this case instead of the equivalent fuel
consumption, the equivalent efficiency of the secondary power source is calculated. The
authors name this strategy the Equivalent Energy Consumption Minimization Strategy
(EECMS), and they propose it for a hydrogen electric tramway with an EDLC as secondary
power source. The strategy is tested in a Hardware in the Loop environment and in a
trial operation of a real tramway. The obtained results are compared against the typical
power follower strategy, obtaining a 2.4% and an 8.2% fuel improvement in the Hardware
in the Loop and in the trial operation tests, respectively.

Another well-known on-line OB strategy is the Model Predictive Control (MPC), which
is depicted in Figure 1.22. This approach consists on applying the predictive control
theory to manage a hybrid powertrain system. At each sample time the controller makes
the following steps: (1) it takes the current state as the initial state, (2) it predicts the
model outputs and states over a specific horizon, (3) it optimizes the control actions over
that horizon, and (4) it applies the optimized control action [100]. MPC is proposed for
a hydrogen electric tramway with a BT and an EDLC as auxiliary power sources in [79].
They compare its performance against a series of RB strategies and the ECMS. The
MPC strategy is a better option than the RB approaches in terms of fuel consumption,
but it requires a longer computation time. Compared to ECMS, 1.8% higher fuel use is
obtained, and it also requires a longer computation time. Besides, authors in [101] propose
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a variation of the MPC for a H2EMU with a BT as secondary power source. In this case,
they add an online adaptively estimated co-state (as in PMP) to avoid the definition of
a SOC reference for the controller. The results show a reduction of the 12.1% in the fuel
use compared to a classic MPC.
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Figure 1.22: Model Predictive Control structure and working example [79].

Finally, authors in [102, 103] propose a novel on-line OB strategy based on the classic
PMP. In this case, they propose an approach to regularly correct the co-state using an
analytical formula derived from the energy conservation principle. This reduces the com-
putational burden and allows the on-line implementation of the typically off-line computed
PMP. They apply the proposed strategy to a H2EMU with a BT as the secondary power
source. The performance of the strategy is tested in a simulation environment and in a
test bench, obtaining a maximum deviation on the fuel consumption of the 2.7% compared
to the classic off-line optimized PMP.

1.4.3 Review of Energy Management in Railway Vehicles

The literature reviewed in this section has unveiled some limitations on the EMSs
proposed for hybrid railway vehicles. These limitations are reviewed below:

(1) Most of the proposed strategies are designed aiming only one of the optimization
objectives defined in Figure 1.17. A typical choice is to optimize the EMS just to
reduce the fuel use, but without checking the overall efficiency or lifetime of the
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other power sources. Only the approaches that propose to optimize the total cost of
the vehicle (including acquisition and operation costs) consider together the three
points mentioned above.

(2) Accordingly, most of the designed strategies do not analyse the design considerations
highlighted in Figure 1.17. The analysis of the real time execution, the resilience to
driving conditions or the robustness to potential disturbances are barely addressed
in the reviewed literature, even if they are essential to develop adequate strategies.

(3) Publications analysing different EMSs and comparing their characteristics are scarce.
Typically, the obtained results are just compared to a simple RB strategy or to the
global optimization result given by the DP algorithm. This impedes the obtention
of a real conclusion on which are the most appropriate strategies.

(4) LB strategies developed for the hybrid railway vehicles analysed in the current ap-
proach are missing. These EMSs become essential to replicate on-line the OB strate-
gies that are hardy applicable in real operation (e.g., DP strategy).

In order to face the enumerated challenges, this Ph.D. Thesis proposes to develop and
analyse different EMSs. This analysis will allow comparing the strategies according to the
features highlighted in Figure 1.17. Among the proposed approaches, LB strategies will
be developed, which will result in one of the contributions of the current Ph.D. Thesis.

1.5 Powertrain Design Approaches

The problem of finding the optimal EMS to control the different sources in a hybrid
powertrain is closely coupled with the problem of finding the optimal size of the powertrain
elements [63, 90]. Indeed, the performance of any control strategy is constrained by the
capabilities and characteristics of the involved physical elements. Therefore, and as it
has been already highlighted in Figure 1.4, an optimal design of the powertrain should
consider in an integrated manner both levels: the sizing of the powertrain elements and
the associated control strategy (or EMS) [17].

Ideally, the sizing approach should consider all the elements of the powertrain, includ-
ing converters and traction motors (Figures 1.12, 1.13 and 1.14). However, the scope of
this Ph.D. Thesis is solely focused on the design of the power sources (i.e., genset, FC or
BT). It is assumed that the converters are associated to the size of each power source,
and that the traction motors and related devices are designed to comply with the general
features of the vehicle.

Different approaches can be followed in order to coordinate the powertrain sizing and
powertrain control levels [16, 17]. A classification of these approaches is depicted in Figure
1.23. A typical procedure is to derive analytically the required sizing without deploying
an optimization. In these cases, the EMS is designed ad hoc for the defined sizing, and
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it can consist of an optimized or a non-optimized strategy (see Section 1.4). When an
optimization is deployed for the sizing approach, different coordination architectures can
be followed to handle the design and optimization of both levels. In the non-optimized
EMS, only the powertrain sizing is optimized, with a predefined control strategy that
is not altered by the obtained sizing. When a sequential optimization is followed, both
levels are independently optimized. In the alternating optimization, the sizing and EMS
optimization are deployed independently and alternatively until a certain convergence is
reached. In the nested optimization, for each evaluation of a certain powertrain sizing
the optimal EMS is derived. Finally, in the simultaneous optimization, both levels are
optimized in a single approach.

Powertrain

Size and EMS 

Design Coordina�on

Op�mized Sizing

Analy�cal Sizing 

Non-op�mized EMS

Sizing EMS

Sequen�al op�miza�on

Non-op�mized EMS

Op�mized EMS

Simultaneous op�miza�on

Nested op�miza�on

Alterna�ng op�miza�on

Figure 1.23: Powertrain design coordination concepts.

In most of the literature reviewed in Section 1.4.2, the sizing of the powertrain elements
was predefined, as the main objective was the design of a novel control strategy. However,
there are some other publications that deal together with the design of both the powertrain
elements and the control strategy. In the following subsections these publications are
reviewed.

1.5.1 Analytical Powertrain Designs in Hybrid Railway Vehicles

Regarding the analytical designs for hybrid railway powertrains, a simple approach
consists on retrofitting previously designed conventional vehicles. For instance, authors
in [84, 92] base their researches on existing diesel-electric vehicles. In both cases, half of
the original gensets are removed, and in the released space BT packs are integrated. The
followed sizing procedure consists on integrating the maximum amount of BT energy that
the space or the weight limitations allow.
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Another well-known analytical procedure consists on designing the primary power
source considering that it will work most of the time on its nominal working point. One
of the most deployed EMSs consists on the primary power source giving a constant power
value around the average demand of the journey (baseline control, see Section 1.4.2). In
these cases, the primary power source can be sized so its nominal operation point coincides
with that average demand value. This approach is followed in [69] for a genset-based hybrid
powertrain, and in [71, 78, 79, 86] for FC-based hybrid powertrains. In these cases, the
secondary sources are designed so that they can provide the required power peaks or so
that they do not perform deep charge and discharge cycles.

Besides, authors in [75] focus on designing the secondary power source (an EDLC)
of a H-DEMU. They predefine the genset size, and based on an energetic simulation,
they estimate the energy that the EDLC would absorb. A similar approach is followed
in [43]. In this case, the secondary power source (a BT) of a H-DEMU is sized based
on the braking energy that can be potentially recovered. Then, the genset size is defined
considering the traction requirements and the maximum peak that the BT would give.

A more comprehensive approach is proposed in [73] for a hybrid diesel-electric lo-
comotive. First, a relation between the EDLC and BT sizes and the EMS (frequency
decoupling) is analytically derived. This allows obtaining the corresponding EDLC and
BT sizes for each genset size. Then, the possible sizing combinations are analysed from
the battery degradation, diesel use, powertrain volume and powertrain acquisition cost.
A compromise between the analysed factors is found in order to select the most appropri-
ate sizing of the powertrain. Therefore, it can not be considered that an optimization is
deployed, as an analytical solution is deduced.

1.5.2 Optimized Powertrain Designs in Hybrid Railway Vehicles

The solutions obtained by the reviewed analytical approaches do not ensure optimality,
as they are typically oriented just to comply with some minimum requirements (e.g., sizing
the BT so it is able to recover all the braking energy). Therefore, some other works propose
to implement an optimization to solve the most appropriate sizing for the power sources.

In most of the reviewed literature dealing with the optimization of the powertrain
sizing, the EMS is independently designed and non-optimized. Authors in [54, 70] optimize
the FC and BT sizes of a hydrogen electric locomotive by means of a Particle Swarm
Optimization (PSO). The objective function considers the acquisition and replacement
costs of the powertrain elements. In publication [70], the cost function additionally includes
the cost related to the fuel use. Besides, authors in [72] propose the optimization of the FC,
BT and traction motor sizes of a hydrogen electric locomotive by means of the bisection
method. The deployment of a exhaustive search optimization is proposed in [76] to obtain
the FC and EDLC sizes that involve the lowest acquisition costs for a H2EMU.

A nested design optimization is proposed in [45] in order to handle together the EMS
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and powertrain sizing problems for a H-DEMU. The genset size is predefined, so the
optimization algorithm is focused on seeking the BT size that involves the lowest fuel con-
sumption. The optimization is solved by an exhaustive search, since the feasible solution
region is discretized. For each evaluation of a potential solution (i.e., for each BT size)
the EMS is optimized by means of the DP algorithm.

Finally, authors in [97] deploy a SQP approach in order to simultaneously optimize
the EMS (frequency decoupling) and the genset and BT sizes of a H-DEMU. As the
EMS performance is defined by the value of the low pass filter, a single optimization
algorithm can handle all the optimization variables together. The optimization aims the
minimization of the powertrain acquisition costs.

1.5.3 Review of Powertrain Design Approaches

This section has reviewed the literature that handles together the sizing of the power
sources and the design of the EMS. On the one hand, analytical procedures derive the
required sizing without deploying any optimization. It has been found that most of the
identified literature works propose analytical procedures. On the other hand, optimization
approaches can be followed to derive the optimal sizing and/or EMS. In this case, different
architectures can be followed to handle both levels together. It has been found that most
of the publications that propose an optimization of the powertrain sizing do not consider
the optimization of the EMS in an integrated manner. Considering that a cost-optimal
powertrain design should consider together both approaches, nested or simultaneous op-
timization architectures are identified as the most appropriate ones.

Additionally, it is important to highlight that typically the powertrain is designed ad-
hoc for a specific drive cycle and/or economic context. The effect of varying this environ-
ment has not been comprehensively addressed in the literature, what requires reproducing
the optimization each time the drive cycle and economic context is varied. In order to
overcome this issue, in this Ph.D. Thesis the interrelations between the cost-optimal pow-
ertrain design and the context related to the driving scenario and the economic model will
be studied.

1.6 Conclusions and Main Gaps

The objective of the reviewed State of the Art has been to summarize the background
knowledge related to the design and control of innovative powertrain technologies for
railway vehicles. Therefore, this section aims to determine the challenges identified in
this field, as well as to highlight the main lacks and possible improvements over the
current research works. The obtained conclusions serve as basis for the definition of the
contributions proposed by this Ph.D. Thesis.

Section 1.2 has reviewed the potential innovative technologies to replace ICE-based
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powertrains. The characteristics of FW, BT, EDLC and FC devices have been analysed
considering the specific requirements of railway applications. Due to the space and weight
limitations of these vehicles, the need of technologies with high specific energy has been
identified. Therefore, FC and BT systems have been found to be the most appropriate
power sources to be integrated in railway applications and substitute or supplement tra-
ditional ICE-based technologies. Amidst FC systems, PEMFC technology shows the best
characteristics for the integration in rail vehicles, while LIB technology is claimed to be
the best option for BT systems. However, different LIB chemistries can be found in the
market, which differ in terms of safety, specific energy and power, degradation or cost.
The literature has barely addressed the issue of the most appropriate LIB chemistry for
railway mobility applications.

Then, Section 1.3 has introduced a classification of the different railway transport
modes and railway vehicles. Conventional rail accounts for most of the rail transport
activity, and it is the only sector where diesel-based traction systems are predominant yet.
Therefore, it has been defined that the developments of this Ph.D. Thesis will be oriented to
conventional rail transportation, specifically to the vehicles denoted as multiple units. In a
next step, the integration of FC and BT technologies in multiple units has been evaluated.
A market evaluation of these topologies has unveiled that the interest of railway operators
on deploying BEMU, H-DEMU and H2EMU vehicles is exponentially increasing in the
last few years. Consequently, it has been stated that this Ph.D. Thesis will be oriented to
these powertrain architectures.

The emergence of innovative topologies rises new technological challenges, which need
to be solved in order to obtain cost-optimal solutions compared to conventional technolo-
gies. The optimal design of a powertrain needs to consider the sizing of the power sources
and the design of the integrated EMS if a cost-optimal solution is aimed. In Sections 1.4
and 1.5 the literature related to EMS and sizing approaches has been reviewed.

Regarding the concept of the EMS, the requirements that a control strategy should
meet have been first identified: the optimization objectives that may be defined, and
the constraints that should be considered. Then, an analysis of the existing literature
related to this topic has been developed. The reviewed State of the Art has unveiled some
limitations in the EMSs proposed for hybrid railway vehicles. First, most of the strategies
are designed aiming only one of the identified optimization objectives. For instance, EMSs
are typically designed just to consume the lowest possible fuel consumption, but other
objectives such as overall efficiency or the degradation suffered by FC and BT devices are
disregarded. Another limitation deals with the design constraints that should be checked
for the correct implementation of an EMS. Specifically, the analysis of the real time
execution, the resilience to driving conditions or the robustness to potential disturbances
are barely addressed in the reviewed literature. Besides, publications analysing different
EMSs and comparing their characteristics are scarce. Typically, the obtained results
are just compared to a simple RB strategy or to the global optimization result, what
impedes the obtention of a real conclusion regarding which are the most appropriate
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strategies. Finally, LB strategies developed for hybrid railway vehicles have not been
proposed yet. These EMSs become essential to replicate on-line the OB strategies that
are hardy applicable in real operation.

Finally, Section 1.5 has reviewed the possible approaches to handle together the sizing
of the power sources and the EMS design. This review has unveiled that recent researches
have been more focused on analytical procedures, which do not derive an optimal solution.
Moreover, most of the publications that propose an optimization of the powertrain sizing
do not consider the optimization of the control strategy in an integrated manner. Con-
sidering that a cost-optimal powertrain design should consider together both approaches,
nested or simultaneous optimization architectures are identified as the most appropriate
ones. Additionally, it is necessary to highlight that the optimizations of both EMS and
powertrain sizing are typically developed considering static conditions. That is to say, the
powertrain is designed ad-hoc for a specific drive cycle and economic context. The effect of
varying this environment is not comprehensively addressed in the literature, what requires
reproducing the optimization each time the drive cycle and economic context is varied.

In order to handle all the identified challenges and literature gaps, this Ph.D. proposes
the development of a holistic design methodology for innovative railway vehicles
focused on the definition of the power sources (sizing and BT technology selection)
and the EMS or control strategy. A comprehensive Life Cycle Cost (LCC) analy-
sis is proposed in the next chapters, which aims finding the interrelations between the
cost-optimal powertrain design and the context related to the driving scenario and the
economic model. Considering the importance of the EMS design on the optimal power-
train solution, this Ph.D. Thesis proposes to develop and analyse different EMSs in order
to compare their main features related to the identified optimization objectives (fuel use,
power sources degradation and overall efficiency) and performance constraints (real time
execution, resilience to driving conditions and robustness to potential disturbances).
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2
Holistic Design Methodology for

Rail Vehicles Powertrain and
Operation Definition

Summary
The second chapter presents the holistic design methodology proposed as the main

contribution of this Ph.D. Thesis. As it was concluded in Chapter 1, the methodology
focuses on the design of the powertrain elements (sizing and technology definition) and
the design of the energy management strategy. The holistic design methodology is based
on an integral life cycle cost analysis composed of different steps. In this second chapter,
all the models and methods required for the development of the life cycle cost analysis are
explained in detail. As additional contribution of this Ph.D. Thesis, a chemistry-dependent
battery degradation model is also presented in this chapter.
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2.1 Introduction to Holistic Design Methodology

The objective of this Ph.D. Thesis is the development of tools and methodologies for
the cost-effective integration of innovative technologies (FC and BT) in the powertrain of
railway vehicles, specifically in H-DEMU and H2EMU vehicles. The review developed in
Chapter 1 has concluded that this research should focus on the design of the powertrain
elements (sizing and technology definition) and control strategy (EMS), considering also
the impact of the context (driving cycle and economic parameters) on that design. In
order to face the identified challenges, in this Ph.D. Thesis a holistic design methodology
based on an integral LCC analysis is proposed, which is depicted in Figure 2.1.

The proposed analysis considers holistically the effect that all the features mentioned
above have on the LCC of the innovative vehicles: rail topology, EMS design, BT chem-
istry, size of power sources, driving scenario and parameters of the economic model. The
ultimate goal of the LCC analysis is the identification of the parameters and/or features
most dependent and most transversal to the context characteristics (i.e., to the driving
scenario and to the parameters of the economic model). Based on these conclusions, a
tool for the optimal design of the powertrain elements (technology and sizing) and the
control strategy (EMS) based on the context characteristics could be developed for each
of the analysed vehicle topologies. In the following sections, the integral LCC analysis is
explained in detail, including all the models and methods required for this approach.

Topology

BT chemistry

Transversal to context 

Context-dependent

Conclusions

Powertrain
Sizing

EMS design

Driving
scenario

Economic
parameters

Integral LCC Analysis

Powertrain design:
components + EMS

Powertrain
Design

Context

Figure 2.1: General overview of the methodology proposed in the Ph.D. Thesis.

2.2 Structure of Integral Life Cycle Cost Analysis

The LCC analysis should consider the effect of all the parameters and features high-
lighted in Figure 2.1. Developing a sensitivity analysis that considers together the vari-
ations of all the parameters or features is a time-consuming and therefore unviable ap-
proach. Consequently, the LCC analysis proposed in this Ph.D. Thesis is divided into
different steps, as depicted in Figure 2.2. The entire LCC analysis presented in the follow-
ing paragraphs is developed individually for each of the vehicle topologies to be analysed:
H-DEMU and H2EMU.
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Figure 2.2: Detailed Methodology for Integral LCC analysis.

First of all, a sensitivity analysis is developed for the nominal case, that is to say, for a
specific context defined as the nominal case study. A fixed drive cycle and economic model
is defined for this nominal case. This first sensitivity analysis is focused on the design of
the powertrain: different BT chemistries and EMSs are compared, as it is shown in the
upper rectangle of Figure 2.2. As previously discussed in Chapter 1, it can be considered
that each EMS is related to an optimal sizing of the powertrain sources. Therefore, instead
of analysing the sensitivity of the LCC to the powertrain sizing, an optimal sizing is solved
for each combination of BT chemistry and EMS. This corresponds to the inner rectangle
of the previously mentioned upper part of Figure 2.2. In the cases of the optimized EMSs,
the optimization approach also considers the optimization of the internal parameters of
the control strategy, as it will be further discussed in the following sections of Chapter 2.

Once the analysis of the nominal case is completed, the next step consists on evaluating
the replicability of the obtained conclusions in different contexts. For this approach, two
independent sensitivity analyses are developed: on the one hand, a sensitivity analysis
to the parameters of the economic model (lower-left rectangle of Figure 2.2); and on the
other hand, a sensitivity analysis to the driving cycle (lower-right rectangle of Figure 2.2).
The sensitivity analysis to the parameters of the economic model includes variabilities to
the fuel price (hydrogen or diesel), BT price, FC price, and total service hours during the
useful life. Besides, the aim of the sensitivity analysis to the driving cycle is to evaluate
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routes with different average demands and lengths.

In the following sections, the different steps of the integral LCC analysis are explained
in detail. In short, the proposed LCC analysis is based on two approaches: on the LCC
value estimation, and on the optimization of this LCC value. Therefore, the remainder
sections of this chapter are organized following this sequence:

• In a first step, Section 2.3 presents the methodology for the calculation of the LCC
value of each case being analysed. This methodology includes a simulation model
for the evaluation of the vehicle performance in a certain drive cycle, the technical
verification of the simulation results, and a model for the economic evaluation. An
important step of this model consists on the estimation of the BT and FC lifetimes.
Therefore, the used lifetime estimation models are also introduced.

• Then, in a second step, Section 2.4 introduces the optimization methodologies used to
obtain the cost-optimal powertrain sizing for each case being analysed. Depending on
the EMS being analysed, the number of optimization variables may vary. Therefore,
different methodologies are proposed to solve the optimization problem.

• Finally, Section 2.5 reviews the main methods and models presented in this chapter,
and the main conclusions and the links with the following chapters are derived.

2.3 Calculation of Life Cycle Cost

The core of the LCC analysis proposed in Section 2.2 consists on the LCC evaluation
of each case being analysed and/or optimised. For this approach, a simulation-based
methodology is proposed, which is depicted in Figure 2.3. The methodology obtains the
LCC value of each case l, being l any combination of vehicle topology, EMS, BT chemistry,
powertrain sizing, driving scenario and economic parameters. The LCC calculation is
divided into three main steps: vehicle simulation, technical verification, and economic
evaluation.

For the vehicle simulation step, an electric model of the powertrain has been developed
and implemented in a Matlab environment (Section 2.3.1). This model allows to evaluate
the performance of different powertrain configurations in diverse driving scenarios. Once
the vehicle has been simulated, the obtained results are technically verified to check if
the proposed powertrain configuration can provide a feasible performance in the evaluated
driving scenario (Section 2.3.2). Finally, the simulation results are extrapolated to the
whole vehicle lifetime in order to calculate the LCC of the case being analysed. For this
approach, a LCC model has been proposed, which includes costs related to the acquisition,
operation and maintenance of the vehicle (Section 2.3.3). Among operation costs, the
replacement of the power sources (specifically FC and BT systems) cannot be ignored.
In order to include these costs in the LCC model, lifetime estimation models for FC and
BT systems have been developed (Section 2.3.4 and Section 2.3.5, respectively). The BT
lifetime estimation model is one of the novel contributions of this Ph.D. Thesis.
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Figure 2.3: Diagram for LCC calculation approach.

2.3.1 Vehicle Simulation Model

Modelling the vehicle is a fundamental step in any study approaching an energy and/or
power analysis of a hybrid powertrain system [104]. The vehicle simulation model devel-
oped for this Ph.D. Thesis is partially based on the ITINER tool previously developed by
CAF I+D [105]. This tool allows the simulation of diverse rail vehicles and routes, and it
enables an energetic analysis of the vehicle performance by post-processing the returned
results. Specifically, some ITINER modules have been extracted from the main tool, and
they have been set up to work independently.

The deployed simulation model is of quasi-static nature, what means that during each
discrete time step k the values of the variables are considered constant [18, 106]. Besides,
the model is based on the backward or wheel-to-engine approach: the signals flow from
the power consumed by the vehicle through the powertrain elements in one way [27].
Considering that the analysis proposed in this Ph.D. Thesis is focused on the energy
management level (see Figure 1.16), and that a compromise between the simulation detail
and the computational cost has to be reached, a time step of ∆t = 1s has been selected.
This time step also coincides with the one used in ITINER.

As previously mentioned, the developed model has been implemented in a Matlab en-
vironment. The diagrams of Figure 2.4 show which elements of the H-DEMU and H2EMU
vehicles have been modelled. As already mentioned, the model input consists on the power
demanded by the vehicle, which has to be filled by the rest of the powertrain elements.
In the following subsections each component of the simulation model is introduced in de-
tail. As the arquitecture of the powertrain differs depending on the vehicle topology being
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analysed, in this section the model is explained in a generic way. The models will be
particularized for the H-DEMU in Chapter 3 and for the H2EMU in Chapter 4.
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Figure 2.4: Block diagrams of the modelled powertrain architectures.

As it was already mentioned in Chapter 1, BT and FC systems lose performance capa-
bilities during their useful life due to ageing phenomena. Due to the suffered degradation,
they cannot offer the same power or energy capabilities at Beginning of Life (BOL) con-
ditions and at End of Life (EOL) conditions. Therefore, it becomes relevant to check if
the proposed powertrain configuration is able to provide a feasible performance when the
BT and FC are both at BOL and EOL conditions. Consequently, for each Case l being
evaluated, two simulations are developed. Firstly, BT and FC characteristics are set at
BOL, and secondly, the characteristics are set at EOL. Further information regarding
BOL and EOL conditions is given in the following subsections.

2.3.1.1 Traction Demand

The power demanded by the traction motors (PEM [W ]) constitutes the input of the
quasi-static simulation model. The adopted sign convention considers a positive power
value when there is an electrical power demand or mechanical traction (PEM > 0) and a
negative value when there is an electrical power absorption or mechanical braking (PEM <

0). The PEM profiles used in the current Ph.D. Thesis have been provided by CAF Power
and Automation and CAF I+D. Figure 2.5 shows an example of a PEM profile for the
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railway line “Badajoz - Madrid”, which is located in Spain. The profiles used in each of
the case studies are introduced in Chapter 3 and Chapter 4.
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Figure 2.5: Example of input for the vehicle simulation model: PEM .

2.3.1.2 Power Split

The power demand PEM has to be provided/absorbed by the remainder powertrain
elements, except the auxiliaries converters, which always absorb power to feed the auxiliary
systems (e.g., lights, cooling or air conditioner). Therefore, the total power demand to be
provided/absorbed by the power sources is defined as:

PDem(k) = PEM (k) + PAux(k) (2.1)

being PDem [W ] the total power demand at the DC bus, and PAux [W ] the power demanded
by the auxiliaries converters at the DC bus.

As it was reviewed in Section 1.4, the EMS is the control unit in charge of splitting the
power demand PDem at each time step. However, the deployed strategy varies depending
on the characteristics of the track section where the rail vehicle is driving, as the available
power sources may differ. As depicted in the example of Figure 2.5, a railway line can be
composed of electrified (E = 1) and non-electrified (E = 0) sections. When a line combines
both scenarios, bi-mode vehicles are required, as the ones modelled in the current approach
(see Figure 2.4).

In non-electrified sections, the genset (in the H-DEMU) or the FC (in the H2EMU)
becomes the primary power source, and it works together with the BT, which works as
secondary source. In electrified sections, the genset or the FC is turned off, and the
catenary becomes the primary power source. In these conditions, the BT remains as
secondary power source. Besides, in any of the working modes introduced so far, when
there is an electrical power absorption (PDem < 0), the braking resistors may be activated
to burn the power that cannot be absorbed by the remainder powertrain elements. In
short, the power split is realized meeting the following conditions, being (2.2) the case of
the H-DEMU and (2.3) the case of the H2EMU:
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PDem(k) =



PGS(k) + PBT (k) for E(k) = 0, PDem(k) > 0
PGS(k) + PBT (k) + PRes(k) for E(k) = 0, PDem(k) < 0
PCat(k) + PBT (k) for E(k) = 1, PDem(k) > 0
PCat(k) + PBT (k) + PRes(k) for E(k) = 1, PDem(k) < 0

(2.2)

PDem(k) =



PF C(k) + PBT (k) for E(k) = 0, PDem(k) > 0
PF C(k) + PBT (k) + PRes(k) for E(k) = 0, PDem(k) < 0
PCat(k) + PBT (k) for E(k) = 1, PDem(k) > 0
PCat(k) + PBT (k) + PRes(k) for E(k) = 1, PDem(k) < 0

(2.3)

where PGS [W ] is the power provided by the genset, PBT [W ] is the power provided/ab-
sorbed by the BT, PCat [W ] is the power provided/absorbed by the catenary, PRes [W ] is
the power absorbed by the braking resistors, and PF C [W ] is the power provided by the
FC. All these variables represent the power fluxes at the DC bus. The objective of the
EMS is to define these power targets at each time step.

As it was already discussed in Chapter 1, the developments of this Ph.D. Thesis are
focused on non-electrified sections. The EMSs proposed for non-electrified sections will be
introduced in Chapter 3 and Chapter 4, as they differ depending on the vehicle topology
and case study. Regarding electrified sections, it is assumed that due to the characteristics
of the catenary system (unlimited power to be provided) it is not necessary to use the BT
to provide traction power. Consequently, the design of the EMS will barely affect on the
LCC, what reduces the need of developing a precise EMS to split the demand.

Due to these reasons, in this Ph.D. Thesis a simple RB strategy is proposed for the
electrified sections, which is depicted in Figure 2.6. Essentially, the catenary is in charge
of providing all the traction demand (PDem > 0), while the BT recovers the regenerative
power (PDem < 0). If the BT cannot recover all the power, the braking resistors are
activated. However, as it can be deduced by the available regenerative power in Figure
2.5, the energy generated in the braking stage may not be enough for the BT to recover
the SOC value in which it started the previous non-electrified section. Therefore, the EMS
adds an additional feature, which consists on charging the BT from the catenary, in case
this is necessary to recover the mentioned SOC value. This value is defined as PBT −cat [W ]
in Figure 2.6. Besides, at the same time, the EMS is in charge of ensuring that the BT
charging does not accelerate its degradation.

In order to ease this task, and considering that this EMS is not the main focus of this
Ph.D. Thesis, it is assumed that the strategy knows in advance the PDem profile of the
whole electrified section. Therefore, the EMS is able to calculate which will be the amount
of energy recovered by the regenerative braking trough all this section (Ebraking [Wh]).
Based on this value, the catenary will be just in charge of providing the remainder energy
required to recover the aimed SOC (EBT −cat [Wh]). In order to ensure a low degradation,
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Figure 2.6: EMS for electrified sections (E = 1).

this energy should be provided at the lowest possible current. Therefore, EBT _cat is
proportionally distributed through all the electrified section. In short, Equations (2.4)-
(2.6) introduce the expressions to calculate at each time step which should be the power
provided by the catenary to charge the BT:

PBT −cat(k) = EBT −cat(k)
tres(k) (2.4)

EBT −cat =
EBT ·

(
SOCref − SOC(k)

)
· ηeff − Ebraking(k)

tres(k) (2.5)

Ebraking(k) =
K∑
k

PDem · (PDem < 0) · ∆t (2.6)

being tres [s] the remaining time until the end of the electrified section, ηeff [%] the
coefficient to consider the efficiency of battery charging, EBT [Wh] the nominal energy of
the BT, and SOCref [%] the SOC value to be recovered. As the efficiency may vary due
to different reasons, it is assumed that the PBT −cat value may not be always enough to
recover the aimed SOC. In order to avoid this issue, the EMS updates PBT −cat at each
time step. In this way, the possible deviations can be corrected, as the required remainder
energy to charge the battery is also updated at each time step (in the end, the EMS acts
as a controller to recover the defined SOC reference).

2.3.1.3 Power Electronic Devices

The current study is focused on simulating the power flows through the powertrain
elements. Hence, all the power converter devices have not been modelled in detail. Specif-
ically, an average fixed efficiency value has been used for the transformer and the AC/DC
rectifier of the catenary (ηtr_cat [%] and ηinv_cat [%]), the DC/DC converter of the battery
(ηconv_BT [%]), the AC/DC rectifier of the genset (ηinv_GS [%]) and the DC/DC converter
of the FC (ηconv_F C [%]). Therefore, the power values calculated at the DC bus are trans-
lated to the power values provided/absorbed by each powertrain element following these
expressions:

51



Holistic Design Methodology

P ′
cat(k) = Pcat(k)

ηtr_cat · ηinv_cat
(2.7)

P ′
GS(k) = PGS(k)

ηinv_GS
(2.8)

P ′
F C(k) = PF C(k)

ηconv_F C
(2.9)

P ′
BT (k) = PBT (k) · η

−sgn(PBT (k))
conv_BT (2.10)

being P ′
cat [W ], P ′

GS [W ], P ′
F C [W ] and P ′

BT [W ] the power provided/absorbed by each
powertrain element, and sgn(x) a function that returns the sign of the argument x. All
these power values were also depicted in Figure 2.4. Table 2.1 shows the considered
efficiency values.

Table 2.1: Efficiency of modelled converters.

Element Efficiency
Catenary transformer (ηtr_cat) 97 %
Catenary AC/DC rectifier (ηinv_cat) 92 %
Genset AC/DC rectifier (ηinv_GS) 95 %
Fuel Cell DC/DC converter (ηconv_F C) 95 %
Battery DC/DC converter (ηconv_BT ) 95 %

It is worth to mention that the converter efficiency may differ depending on the voltage
and current flowing on the device. Therefore, some constraints have been considered on
the operation of the BT system to avoid a poor energy conversion, as it is further detailed
in the section related to its modelling (Section 2.3.1.7).

2.3.1.4 Auxiliary Consumptions

The consumptions of the auxiliary loads (e.g., air conditioning, air compressor, cooling
pump, power steering or lights) have been modelled by a constant average value (Paux)
for the entire journey.

2.3.1.5 Genset Model

The genset is a power device composed by an ICE and an electric generator, which are
connected mechanically by a clutch. In this Ph.D. Thesis, the genset has been modelled
based on efficiency maps, and therefore the dynamics related to its operation have not
been addressed.

The input for the genset model is the power target defined by the EMS (PGS), which
is translated to the value P ′

GS once the AC/DC inverter efficiency is considered. This
value can be obtained by different combinations of ICE rotational speed (ωICE [ rad

s ]) and
torque (TICE [Nm]). Each combination of rotational speed and torque leads also to a
different fuel mass consumption (ṁf [g/s]). Figure 2.7 shows the genset consumption
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map considered in the current Ph.D. Thesis, represented by the required fuel mass per
generated energy unit (ṁ′

f [g/kWh]). It is worth to mention that the depicted ṁ′
f values

are calculated considering the generated energy at the genset output (EGS [kWh]), so
they also consider the efficiency of the electric generator.
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Figure 2.7: ICE efficiency map. Source: CAF Power and Automation.

In order to improve the efficiency of the genset operation, an operation path has been
defined (depicted blue line in Figure 2.7). This path assigns a fixed ωICE and TICE value
for each ICE output power (PICE [W ]). Both the depicted map and operation curve have
been provided by CAF Power and Automation, and correspond to a 700 kW genset. In
the optimization approaches presented in Section 2.4, different genset sizes are evaluated.
For each sizing evaluation, the operation curve will be proportionally scaled.

2.3.1.6 Fuel Cell Model

A FC system is composed of the FC stack and a series of auxiliary or balance of plant
devices [107]. The FC system has been modelled based on the efficiency curves given in
[108], which are depicted in Figure 2.8. The curves correspond to a 60 kW system, and
therefore they are proportionally scaled when different sizes are evaluated (Section 2.4).

The input to the FC model is the power target assigned by the EMS (PF C), which
is translated to the value P ′

F C once the efficiency of the DC/DC power conversion is
considered. As it was already highlighted in Chapter 1, the dynamic properties of FC
systems are poor [51]. In order to avoid fast transients on the FC operation point, P ′

F C is
subjected to the following constraints:

P ′
F C(k) < P ′

F C(k − 1) + ∆PF C_max · ∆t (2.11)
P ′

F C(k) > P ′
F C(k − 1) − ∆PF C_max · ∆t (2.12)

being ∆PF C_max [W/s] the maximum deviation of the FC operation point per time unit.
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Additionally, a minimum operation point (P ′
F C_min [W ]) is also defined to avoid poor FC

performance.

From the P ′
F C value the corresponding FC current (IF C [A]) and FC efficiency (ηF C [%])

are obtained, following the curves depicted in Figure 2.8a and Figure 2.8b, respectively.
Once the system efficiency is obtained, the fuel mass consumption of the FC is deduced
from the following expression:

ṁH2(k) = P ′
F C(k)

ηF C(k) · LHV
(2.13)

being ṁH2 [g/s] the hydrogen mass consumption and LHV [J/g] the low heating value of
hydrogen.
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Figure 2.8: Fuel Cell model [108].

The components that constitute the FC tend to suffer from aging phenomena, what
makes the FC lose performance capability during its useful life. Among the diverse effects,
the degradation causes a drop of the FC voltage for the same generated current [109].
Therefore, a degraded FC will generate a lower power P ′

F C value for each current IF C ,
as depicted in Figure 2.8a. A typical convention adopted in the literature defines the
EOL of FCs at the moment when the voltage decreases a 10% from the initial rated value
[109–111]. Hence, in the current approach the power curve will be reduced a 10% in the
EOL simulation. Further information regarding FC degradation is given in Section 2.3.4.

Table 2.2 shows the considered parameters for the FC modelling. As specified, the
values refer to a 60 kW module, and therefore they will be proportionally scaled when
different sizes are evaluated (Section 2.4).

Table 2.2: Fuel cell parameters (reference values for 60 kW module).

Parameter Value
∆PF C_max 7.8 kW/s
PF C_min 7 kW
LHV 120,000 J/g
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2.3.1.7 Battery Model

BT systems are characterized by internal, complex and non-linear chemical processes,
what complicates building accurate models to adequately describe and simulate their per-
formance [112]. Different approaches have been proposed in the literature to model BT
systems, with uneven accuracy levels and computational requirements [113]. In order to
find a compromise between the accuracy and computational cost, in this Ph.D. Thesis an
equivalent circuit model based on an open-circuit voltage source (Vocv) connected in series
with and an internal resistance (Rint) is proposed. This model is typically denoted as the
Rint model [18, 27], and its diagram is depicted in Figure 2.9.
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Figure 2.9: Battery model: from cell to module.

As it is shown, the model is based on an equivalent circuit of the BT module, which
considers the connection of ncell cells in series and mcell cells in parallel. Therefore, the
open-circuit voltage and internal resistance values at module level are obtained as follows:

VOCV _BT (k) = VOCV _cell(k) · ncell (2.14)

Rint_BT (k) = Rint_cell(k) · ncell

mcell
(2.15)

being VOCV _BT [V ] the open circuit voltage value at module level, VOCV _cell [V ] the open
circuit voltage value at cell level, Rint_BT [Ω] the internal resistance value at module level
and Rint_cell [Ω] the internal resistance value at cell level. Both VOCV _cell and Rint_cell

are non-linear functions of the SOC and charging condition (charge/discharge), as the
example depicted in Figure 2.10 shows. It is worth to mention that these curves may
differ depending on the BT chemistry.

The input of the BT model is the power assigned by the EMS once the converter
efficiency is considered (P ′

BT ). In order to evaluate the state of the BT, it is necessary
to obtain the current (IBT [A]) and voltage (VBT [V ]) values of the system. The electric
model is solved to obtain these values, what leads to the following expressions:
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Figure 2.10: State-of-charge dependency of BT parameters [32].

IBT (k) =
VOCV _BT (k) −

√
VOCV _BT (k)2 − 4 · Rint_BT (k) · P ′

BT (k)
2 · Rint_BT (k) (2.16)

VBT (k) = VOCV _BT (k) − IBT (k) · Rint_BT (k) (2.17)

where a positive current means that the BT is discharging (IBT > 0) and a negative
current means that it is charging (IBT < 0).

Both values are constrained by the maximum and minimum allowable BT current and
voltage, as defined in expressions (2.18) and (2.19). Therefore, if the EMS asks a P ′

BT

value that bring IBT and/or VBT out of their bounds, the BT will not be able to provide
or absorb the targeted power.

IBT _max_ch < IBT (k) < IBT _max_dch (2.18)
VBT _min < VBT (k) < VBT _max (2.19)

being IBT _max_ch [A] the maximum current allowed when charging the BT, IBT _max_dch

[A] the maximum current allowed when discharging the BT, VBT _min [V ] the minimum
allowed BT voltage, and VBT _max [V ] the maximum allowed BT voltage.

VBT _min and VBT _max are defined to ensure an optimal converter operation. Besides,
IBT _max_ch and IBT _max_dch are defined according to the maximum charging and dis-
charging C-rates recommended by the BT manufacturer. The C-rate (C [h−1]) is a BT
current value normalized against the battery capacity, and therefore it represents also the
charging or discharging speed. Therefore, the maximum current values are defined as:

IBT _max_ch = Cmax_ch

QBT (k) (2.20)

IBT _max_dch = Cmax_dch

QBT (k) (2.21)

where Cmax_ch [h−1] refers to the maximum charging C-rate, Cmax_dch [h−1] refers to the
maximum discharging C-rate, and QBT [Ah] refers to the actual battery capacity.
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Once the BT current and voltage are calculated, the model updates the SOC [%] of
the BT using the Coulomb counting method [114], as depicted in Equation (2.22). The
expression reflects the need of defining a SOC value for the initial time step, which is
defined as SOC0.

SOC(k) = SOC(k − 1) − IBT (k) · ∆t

QBT (k) · 100 (2.22)

Very high and low SOC values are not recommended for BT systems. Therefore, the
BT is not allowed to be further discharged if the charge is below SOCmin [%], and it is
not allowed to be further charged if the charge is above SOCmax [%]. Consequently, IBT

is also constrained by the BT SOC:

IBT (k) =


0 for SOC(k) < SOCmin, PBT (k) > 0
0 for SOC(k) > SOCmax, PBT (k) < 0
IBT (k) otherwise

(2.23)

It is worth to mention that the BT capacity value (QBT ) may change during the
battery life due to the degradation that it suffers. The State of Health (SOH) reflects the
loss of BT performance capability in relation to the initial conditions. It can be related to
different variables, such as the loss of capacity or the increase of the internal resistance.
In the approach of the current Ph.D. Thesis, the SOH is defined by the loss of capacity,
being the most typical choice in the literature [36]:

SOHBT (k) = QBT (k)
QBT _0

· 100 (2.24)

where SOHBT [%] refers to the BT SOH, and QBT _0 [Ah] refers to the BT capacity at
BOL, when the SOHBT is defined at the 100%.

The typically adopted convention defines the EOL of a BT system at the 80% of SOH
[36]. Additionally, in the current approach the BT will be simulated at EOL conditions
with the internal resistance (Rint_BT ) increased to the 150%. Further information regard-
ing BT degradation and SOH evolution is given in Section 2.3.5.

2.3.1.8 Catenary Model

As previously highlighted, the scope of this Ph.D. Thesis is oriented to the analysis
of rail vehicles operation in non-electrified sections. Therefore, the AC catenary has been
modelled as a linear system in which the electricity consumption (ECat [Wh]) is calculated
based on an average transmission efficiency factor (γcat [%]). The value for the transmission
efficiency factor has been set at the 95% [11]:
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ECat(k) = P ′
Cat(k) · ∆t

γcat
(2.25)

2.3.2 Technical Verification

Once the simulation is finished, in the next step the obtained results are verified to
check if the simulated powertrain configuration (Case l) is feasible for the proposed driving
scenario. Specifically, the results are evaluated following the demand fulfilment and the
energy balance criteria:

• On the one hand, the backwards nature of the simulation model and the limitations
defined in the operation of FC and BT systems do not ensure that the demand is
filled at each time step. Therefore, in the technical verification step the simulation
results are analysed to check if the expressions defined in (2.2) and (2.3) are met for
all time steps, from k = 1 to k = K (being K the total number of time steps).

• On the other hand, the energy balance of the BT must be ensured. If the SOC of the
BT is lower at the end of the simulation (end of the trip) compared to the beginning
of the simulation (beginning of the trip), it can not be ensured that in a second trip
the vehicle will perform similarly. Therefore, the final SOC must be constrained as
follows:

SOC(k = K) ≥ SOC(k = 0) (2.26)

As previously mentioned in Section 2.3.1, for each Case l being evaluated two simu-
lations are launched: the first one, with BT and FC characteristics set at BOL (nominal
conditions); and the second one, with BT and FC characteristics set at EOL (P ′

F C curve
downgraded a 10%, QBT reduced a 20%, and Rint_BT increased a 50%). Therefore, the
evaluated powertrain configuration is only considered feasible if the demand fulfilment and
energy balance criteria are met in both simulations.

2.3.3 Economic Evaluation Model

After the simulation results are checked to ensure the feasibility of the powertrain
configuration being analysed, in the next step the LCC of Case l is calculated. This
section introduces the economic model for the calculation of the LCC. The objective
of the model is to estimate all the costs related to the useful lifetime of the rail vehicle
starting from the simulation results of a single trip.

The LCC is divided into acquisition, operation and maintenance costs, as Equation
(2.27) shows:

LCC(l) = Cacq(l) + Cop(l) + Cmaint (2.27)
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being Cacq [€] the acquisition costs, Cop [€] the operation costs, and Cmaint [€] the main-
tenance costs. In the following subsections, each of the LCC terms is further defined. As
it will be explained, Cacq and Cop depend on Case l, while Cmaint does not.

2.3.3.1 Acquisition Costs

Acquisition costs include all the costs related to the initial investment of the vehicle
and the powertrain elements. In order to ease the expression, all the invariable costs are
gathered into the term Ctrain [€], which is not dependent of Case l. The rest of the terms
refer to the variable acquisition costs, including genset (CGS [€]), FC system (CF C [€])
and BT system (CBT [€]) costs, as shown in Equation 2.28. Logically, in the case of the
H2EMU the genset cost is not considered, and in the case of the H-DEMU the FC cost is
not considered.

Cacq(l) = Ctrain + CGS(l) + CF C(l) + CBT (l) (2.28)

The terms related to the powertrain sources are calculated based on their size:

CGS(l) = nGS(l) · SGS · cGS (2.29)
CF C(l) = nF C(l) · SF C · cF C (2.30)
CBT (l) = nBT (l) · SBT · cBT (2.31)

being nGS [−] the number of gensets deployed in the vehicle, nF C [−] the number of FC
modules deployed in the vehicle, nBT [−] the number of BT modules deployed in the
vehicle, SGS [kW ] the size of a genset, SF C [kW ] the size of a FC module, SBT [kWh]
the size of a BT module, cGS [€/kW ] the referential cost of the genset, cF C [€/kW ] the
referential cost of the FC, and cBT [€/kWh] the referential cost of the BT module.

2.3.3.2 Operation Costs

Regarding operation costs, they include the costs related to the fuel consumption (ei-
ther diesel or hydrogen), catenary consumption, and replacement of BT and FC elements.
Equation 2.32 shows the related expression. The replacement costs of the power sources
could also be included as maintenance costs. However, as the degradation speed of both
BT and FC systems is influenced by the way they are operated, in the approach of the
current Ph.D. Thesis they are considered as operation costs:

Cop(l) = Cf (l) + CH2(l) + Ccat(l) + CF Crepl(l) + CBT repl(l) (2.32)

being Cf [€] the costs related to the diesel consumption (only in the H-DEMU), CH2 [€]
the costs related to the hydrogen consumption (only in the H2EMU), Ccat [€] the costs
related to the catenary consumption, CF Crepl [€] the costs related to the FC replacements
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(only in the H2EMU), and CBT repl [€] the costs related to the BT replacements.

The costs related to the consumptions from the irreversible power sources (i.e., Cf ,
CH2 and Ccat) are calculated annualizing the daily consumptions obtained at simulation:

Cf (l) =
Y∑

y=1

(
Lf_day(l) · cf

)
· top · (1 + I)−y (2.33)

CH2(l) =
Y∑

y=1

(
LH2_day(l) · cH2

)
· top · (1 + I)−y (2.34)

Ccat(l) =
Y∑

y=1

(
ECat_day(l) · ccat

)
· top · (1 + I)−y (2.35)

being Lf_day [L] the daily diesel consumption, LH2_day [kg] the daily hydrogen consump-
tion, ECat_day [kWh] the daily electricity consumption from catenary, cf [€/L] the ref-
erential diesel cost, cH2 [€/kg] the referential hydrogen cost, ccat [€/kWh] the referential
electricity cost, top [days

year ] the numer of operation days per year, I [%] the discount rate,
y [year] the current year, and Y [years] the vehicle service life.

It is worth to mention that for the calculation of the daily fuel and electricity consump-
tions, the results of both BOL and EOL simulations are considered. Ideally, the fuel and
electricity consumptions may differ each time the FC or the BT degrades. For instance,
when the BT losses capacity, the genset or FC may increase its consumption. In order
to reduce the number of performed simulations, in this approach it is assumed that the
daily consumptions will approximate to the average of the BOL and EOL consumptions.
That is to say, the consumptions may change linearly when the power sources degrade.
Therefore, the expressions for Lf_day, LH2_day and ECat_day are obtained as follows:

Lf_day(l) = Lf_BOL(l) + Lf_EOL(l)
2 · ntrips (2.36)

LH2_day(l) = LH2_BOL(l) + LH2_EOL(l)
2 · ntrips (2.37)

ECat_day(l) = ECat_BOL(l) + ECat_EOL(l)
2 · ntrips (2.38)

where Lf_BOL [L] and Lf_EOL [L] refer to the diesel consumptions in BOL and EOL
simulations, respectively (which are computed from ṁf ); LH2_BOL [kg] and LH2_EOL [kg]
refer to the hydrogen consumptions in BOL and EOL simulations, respectively (computed
from ṁH2); ECat_BOL [kWh] and ECat_EOL [kWh] refer to the electricity consumptions
from catenary in BOL and EOL simulations, respectively (computed from ECat); and
ntrips [ trips

day ] refers to the number of trips that the vehicle undertakes in a day.

Regarding the replacements of the power sources, they are calculated following these
expressions:
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CF Crepl(l) =
RF C(l)∑
rF C=1

nF C(l) · SF C · cF C · (1 + I)−rF C ·yF C(l) (2.39)

CBT repl(l) =
RBT (l)∑
rBT =1

nBT (l) · SBT · cBT · (1 + I)−rBT ·yBT (l) (2.40)

being RF C [−] the total number of FC replacements, RBT [−] the total number of BT
replacements, rF C [−] the current FC replacement, rBT [−] the current BT replacement,
yF C [years] the estimated FC lifetime, and yBT [years] the estimated BT lifetime.

RF C and RBT are calculated considering the estimated lifetimes of each source (yF C

and yBT ) and the service life of the vehicle (Y ). Regarding the approaches used to esti-
mate both FC and BT lifetimes, they are explained in detail in Sections 2.3.4 and 2.3.5,
respectively.

2.3.3.3 Maintenance Costs

The costs related to the maintenance of the vehicle can be diverse, but it is assumed
that they are not affected by the vehicle operation. Consequently, they are calculated
based on an average vehicle maintenance cost per year, as represented in the following
expression:

Cmaint =
Y∑

y=1
cmaint · (1 + I)−y (2.41)

where cmaint [€/year] refers to the average maintenance cost per year.

2.3.4 Fuel Cell Lifetime Estimation

As mentioned in Section 2.3.3, the proposed economic model considers the replacements
of the FC system during the vehicle useful life. For this approach, it is necessary to estimate
the FC lifetime from the operation profiles obtained in simulation. In this section, first the
principles behind the degradation of FC systems are reviewed, and then the degradation
model and lifetime estimation approach proposed for the development of the Ph.D. Thesis
are explained.

2.3.4.1 Fuel Cell Degradation Principle

The durability is yet an essential milestone for the widespread commercialization of
FC systems. The degradation of a FC is related to the deterioration of the components
constituting the cell. The typical components subject to the mentioned degradation are
the membrane, the electrocatalyst, the catalyst layer, the gas diffusion layer, the bipolar
plates and the sealing gaskets [115, 116]. These elements can be affected by different
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degradation modes (including mechanical, chemical or thermal degradation), which can
be accelerated due to different causes. Table 2.3 overviews the main FC components
subject to degradation, the degradation or failure modes they suffer, and the involved
causes [115].

Table 2.3: Major failure modes of FC components [115].

Component Failure Modes Causes

Membrane

Mechanical Degradation
- Mechanical stress due to non-uniform press
pressure, inadequate humidification or penetration
of the catalyst and seal material traces

Thermal Degradation - Thermal Stress
- Thermal Cycles

Chemical/Electrochemical Degradation - Contamination
- Radial attack

Electrocatalyst or
Catalyst Layer

Loss of activation - Sintering or de-alloying of catalyst
Conductivity loss - Corrosion of electrocatalyst support

Decrease in reactants mass transport rate - Mechanical stress
Loss of reformate tolerance - Contamination

Decrease in water management ability
- Change in hydrophobicity of materials due to
Nafion or PTFE dissolution

Gas Diffusion
Layer

Decrease in mass transport - Degradation of backing material

Decrease in water management ability - Mechanical stress
- Change in the hydrophobicity of materials

Conductivity loss - Corrosion

Bipolar Plate
Conductivity loss - Corrosion

- Oxidation
Fracture/deformation - Mechanical stress

Sealing Gasket Mechanical failure - Corrosion
- Mechanical stress

Depending on the way the FC is operated, the degradation causes and failure modes
introduced on Table 2.3 will be enhanced or dismissed. Besides, some of the causes can be
mitigated by a correct balance-of-plant system. In short, the application in which the FC
is integrated restricts its life expectancy. For instance, a considerable lifetime difference
between FCs integrated in stationary and in transport applications is typically denoted.
This is caused more due to the significantly different operation conditions, rather than
due to the inherently different designs for the two applications [117].

In the case of transport applications, as it is the case of the current Ph.D. Thesis, the
drive cycle of the vehicle has a direct impact on the degradation that the FC suffers. The
FC operation modes and related drive cycle segments that influence FC degradation are
listed below [118]:

(1) Constant load current or galvanostatic operation during constant speed.

(2) Current cycling or load changing during speeding up or slowing down.

(3) Low current or open circuit voltage during idling.

(4) High current during rapid acceleration.
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Additionally, as in the H2EMU the FC is hybridized with a BT, the deployed EMS
also influences the FC ageing. Indeed, a correct designed EMS can mitigate some of the
degradation modes reviewed above. Some of the potential actions that the EMS may
adopt in order to maximize the FC lifetime are listed below [119]:

(1) Avoid running at very low currents to limit the reduction of the electrochemical
active surface area.

(2) Ensure that the current demand does not exceed reactant supply limitations to
prevent reactant starvation.

(3) Avoid excessive transient loading to maintain a stable temperature and humidity.

(4) Limit start-up/shut-down cycling to prevent localised starvation.

2.3.4.2 Fuel Cell Degradation Model

As it has been reviewed, the degradation suffered by FC systems may be originated
by diverse causes and affect in different components, what inevitably complicates its mod-
elling. FC degradation models can be divided into empirical (also called data-driven) and
physical models [62]. Empirical models rely on mathematical functions that relate health
indicators and stress factors observed in degradation tests, while physical models detail
the degradation phenomena of FCs from a more physical, chemical and/or electrochemical
scope. Typically, physical models try to model the degradation of one of the FC compo-
nents, such as the catalyst [120–122] or the membrane [123–125]. Regarding empirical
models, the main trend in the literature consists on approaches that relate FC operating
conditions and the decrease of the voltage curve [110, 111, 119, 126]. Besides, some other
approaches also propose empirical fittings that integrate physical or chemical basis, which
are known as a semi-empirical models [127].

Considering that physical models require high computational effort and that a high
detail of the degradation suffered by the FC is not required, in this Ph.D. Thesis an
empirical degradation model is used to estimate FC lifetime. The used model was first
proposed by Pei et al. in [110], and it considers that the voltage degradation is linear with
time. This degradation is affected by four operation conditions, which are denoted as load
change, start-stop, idle and high power. Figure 2.11 shows an example of the mentioned
operation conditions.

Therefore, the FC lifetime can be obtained from the following expression:

yF C = ∆VF C

δF C
(2.42)

being ∆VF C [V ] the voltage decrease at EOL and δF C [ V
year ] the degradation rate.

As it was already mentioned in Section 2.3.1.6, the typically adopted convention defines
the EOL at the moment when the voltage decreases a 10% from the initial rated point
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Figure 2.11: Operation conditions affecting FC degradation.

[109–111]. Besides, the degradation rate is obtained quantifying the effect of the four
operation conditions, as the following expression defines:

δF C = p0 · (p1 · w1 + p2 · w2 + p3 · w3 + p4 · w4) (2.43)

where p0 [−] is the accelerating coefficient, p1 [ V
cycle ] is the degradation rate resulted by

load change cycling, p2 [ V
cycle ] is the degradation rate resulted by start-stop cycles, p3 [V/s]

is the degradation rate resulted by idle operation, p4 [V/s] is the degradation rate resulted
by high power load condition, w1 [ cycles

year ] is the number of load changing cycles, w2 [ cycles
year ]

is the number of start-stop cycles, w3 [ s
year ] is the time in idle operation, and w4 [ s

year ] is
the time in high power load condition.

The degradation rate coefficients p0, p1, p2, p3, and p4 have been adapted from the val-
ues proposed in [109–111] in order to better fit with the lifetimes claimed by FC manufac-
turers nowadays [128, 129]. Table 2.4 shows the degradation rate coefficients implemented
in the model of the current Ph.D. Thesis.

Table 2.4: Coefficients for FC degradation model.

Coefficient Value
p0 [-] 1

p1 [µV/cycle] 0.2092
p2 [µV/cycle] 3.45

p3 [µV/h] 2.166
p4 [µV/h] 2.5

Regarding the variables related to the operation time at each condition, w2, w3 and w4
are obtained straightforward from the operation profile. Besides, w1 is obtained calculating
the equivalent number of full cycles that the FC performs. A full cycle is considered as
a cycle from idle operation to maximum power condition, and back to idle operation.
Figure 2.12 shows an example of different load changing cycles and their representation
into variable w1.

As it was already mentioned, the introduced FC lifetime estimation model will be used
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Figure 2.12: Different load changing cycles and the equivalent w1 values.

during the developments of the current Ph.D. Thesis to infer the number of required FC
replacements during the lifetime of a railway vehicle.

2.3.5 Battery Lifetime Estimation

As it was explained in Section 2.3.3, the proposed economic model considers the num-
ber of BT replacements during the vehicle useful life. For this approach, it is necessary
to estimate the BT lifetime from the operation profiles obtained in simulation. In this
section, first the principles behind the degradation of BT systems are reviewed. Then, the
degradation model and lifetime estimation approach proposed in this Ph.D. Thesis are
explained. It is worth to mention that the development and parametrization of the BT
degradation model is one of the contributions of this Ph.D Thesis.

2.3.5.1 Battery Degradation Principle

Due to the occurring internal chemical reactions, BT systems irrevocably suffer from
performance decline over time and use. The suffered degradation is not generated from a
single cause. High and low temperatures, high charge and discharge currents, mechanical
stresses, high and low operation voltages, and even the course of time are considered the
main BT ageing stress factors [130, 131]. These stress factors accelerate diverse degrada-
tion mechanisms, including the Solid Electrolyte Interphase (SEI) growth, SEI decompo-
sition, electrolyte decomposition, lithium plating, or particle cracking [132–136]. An illus-
tration of the diverse degradation mechanisms is given in Figure 2.13 [137]. Eventually,
these mechanisms cause Loss of Lithium Inventory (LLI), Loss of Active Material (LAM)
and Ohmic Resistance Increase (ORI), which are considered the main degradation modes
of BT systems [138].

From a macroscopic point of view, the degradation induces a capacity decay and an
internal resistance increase, which are typically established as the health indicators for
evaluating the remaining useful life of BT systems [139]. For a straightforward evaluation
of the degradation, the EOL is defined as the moment when the capacity decays below
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Figure 2.13: Graphical illustration of the various degradation mechanisms [137].

a certain value (e.g., 80% of the initial value) or the resistance increases above a certain
value (e.g., 150% of the initial value) [140, 141]. As it was already defined in Section 2.3.1,
in this Ph.D. Thesis a capacity decay of the 20% has been defined as the EOL criteria.

As previously mentioned, a BT can suffer from degradation both when being at rest
(what is known as calendar ageing) and when being in use (what is known as cycling age-
ing). Figure 2.14 shows a series of examples of the capacity decay at different conditions.
These capacity decay curves correspond to laboratory tests held at specific conditions (as
indicated in the graphs), and have been compilated from different research works [142, 143].

On the one hand, Figure 2.14a depicts the ageing that a BT cell suffers when being
at rest at different temperatures and SOCs. Indeed, temperature and SOC are considered
the main stress factors accelerating calendar ageing [144]. The degradation evolution is
expressed by the number of days. On the other hand, Figure 2.14b depicts the ageing that a
BT cell suffers when being cycled at different temperatures, Depth of Discharges (DODs),
charge and discharge C-rates, and middle SOCs. These are considered the main stress
factors accelerating cycling ageing [145]. The DOD is defined as the SOC difference in a
cycle, and the middle SOC is the average value of that cycle (e.g., a cycle between 20%-
80% SOC is defined as a 60% DOD and a 50% middle SOC). In this case, the degradation
evolution is expressed by the number of Full Equivalent Cycles (FECs). One FEC is
defined as a full charge and full discharge cycle, that is to say, a cycle with a 100% DOD.
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Figure 2.14: BT capacity decay at different conditions.

2.3.5.2 Classification of Battery Degradation Models

BT degradation models are developed in order to replicate, estimate or predict the
ageing that BT systems suffer. Several models have been proposed in the literature, with
uneven levels of complexity, accuracy and representativeness of the internal physics and
chemical processes occurring in these devices [146].

The typical categorization of BT degradation models results in physical and empirical
models [147]. On the one hand, physical models detail the degradation phenomena oc-
curring within BTs from a physical, chemical, mechanical and/or electrochemical scope.
However, this requires an increased level of complexity and computational cost, which
leads to complications when implementing these models in real applications [148]. On the
other hand, empirical models consist of building up a mathematical function relating the
health indicators and stress factors observed in the degradation tests. The main strength
of empirical models is their potential effectiveness in real applications. However, they lack
of generality if enough degradation tests are not deployed, and they are not as robust as
physical models [137].

Considering that the degradation detail level required for the methodology proposed
in this Ph.D. Thesis is not high, it is assumed that for the current approach empirical
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models are the most appropriated option. Therefore, as in the case of the FC, an empirical
degradation model will be used to estimate the BT lifetime.

Related also to the estimation of the BT lifetime, one of the objectives of this Ph.D.
Thesis is the comparison of different BT chemistries for the specific case of railway mobility.
Among other characteristics, BT chemistries differ in terms of degradation phenomena,
what unveils the necessity of developing a degradation model for each specific BT chem-
istry. A review of the BT degradation models proposed in the literature [143, 149–157]
concludes that most of them are based on degradation tests held to a single BT reference
(defined as a specific product from a BT manufacturer). Even if based on the same com-
bination of cathode and anode materials, BT references of the same chemistry can show
different degradation behaviour due to differences in the manufacturing process.

Consequently, this Ph.D. Thesis proposes the development of a BT degradation model
that will be parametrized for different BT chemistries. This parametrization will be set
based on data from multiple BT references. Considering that this is a novel approach
in the literature, this degradation model is presented as one of the contributions of the
current Ph.D. Thesis.

2.3.5.3 Proposed Battery Degradation Model

This section introduces the chemistry-dependent empirical BT degradation model de-
veloped in this Ph.D. Thesis. As previously mentioned, the development consists on two
steps: (1) the empirical degradation model is set, and (2) the model is parametrized for
different BT chemistries. In the following paragraphs, the main ideas behind this degrada-
tion model are reviewed. Further details of the methodology followed for this development
can be found in the publication by Olmos et al. [36], which was written in the framework
of this Ph.D. Thesis.

First of all, the degradation will be divided into the terms related to the calendar and
cycling ageing. As already introduced in Equation (2.24), the degradation will be measured
by the SOH evolution. Considering that the SOH starts at the 100% and reduces its value
depending on the calendar and cycling terms, the following expression is proposed for the
evolution of the SOH:

SOHBT (t, FEC) = 100 − ∆SOHBT _cal(t) − ∆SOHBT _cyc(FEC) (2.44)

being ∆SOHBT _cal [%] the capacity decay due to calendar ageing and ∆SOHBT _cyc [%]
the capacity decay due to cycling ageing. As it was already introduced in Figure 2.14,
calendar ageing is expressed by the course of the time (t [days]), and cycling ageing is
expressed by the number of FECs that the battery has performed (FEC [−]).

On the one hand, considering that the main focus of this Ph.D. Thesis is the analysis
of rail vehicles operation, the calendar part will be assumed to be similar in all cases being

68



2.3 Calculation of Life Cycle Cost

analysed. Consequently, the term ∆SOHBT _cal is modelled just with a linear capacity
decay over time:

∆SOHBT _cal = δBT _cal · t (2.45)

where δBT _cal [%/day] refers to the BT degradation rate due to calendar ageing. One
δBT _cal value will be defined for each of the BT chemistries being analysed.

On the other hand, the modelling and parametrization of the cycling degradation will
be the main contribution of the developed chemistry-dependent BT degradation model.
The model considers the effect of the main stress factors conditioning cycling degradation:
temperature (T [K]), depth of discharge (DOD [%]), charge C-rate (Cch [h−1]), discharge
C-rate (Cdch [h−1]) and middle SOC (mSOC[%]). A huge batch of degradation tests is
required in order to develop and parametrize a degradation model that considers diverse
stress factors, BT chemistries and BT references. Developing all these tests in a laboratory
environment is a time- and cost-consuming approach. Therefore, the model developed in
the current Ph.D. Thesis is based on a compilation of nearly 500 degradation tests available
in the literature [32, 139, 143, 145, 153–182].

Table 2.5 summarizes the data batches obtained for each BT chemistry, together with
the stress factors that can be modelled at each case. It can be checked that it is only possi-
ble to parametrize an accurate degradation model that considers all the defined stress fac-
tors in the case of NMC and LFP chemistries. Therefore, the degradation model has been
first developed based on the data from NMC and LFP, and then it has been parametrized
for each of the BT chemistries depicted in Table 2.5.

Table 2.5: Collected data batch for each BT chemistry.

BT chemistry Number of tests Analysed factors References
NMC 285 T , DOD, Cch, Cdch, mSOC [139, 145, 157–168]
LFP 131 T , DOD, Cch, Cdch, mSOC [32, 143, 153, 155, 169–173]
LCO 30 T , DOD, Cch, Cdch [154, 174–178]

NMC-LMO 27 T , DOD, Cdch, mSOC [179]
LTO 16 T , DOD, Cch, Cdch [180]
NCA 10 T , Cdch [181, 182]

Based on the gathered data, a methodology for the development and parametrization
of the chemistry-dependent degradation model has been proposed. Figure 2.15 presents
the main steps of this methodology, which it is further detailed in the following lines:

(1) Data conditioning. This step consist on removing noisy, incomplete or inconsistent
data sets (e.g., initial capacity increases are removed). Additionally, tests set at
extreme conditions are withdrawn from the data batch (e.g., too high temperatures
or C-rates), as they are not representative of the typical recommended safe operation
conditions.

(2) Regression to SOH(FEC) curves. This step consists on defining a general expression
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Figure 2.15: Methodology for the degradation model development and parametrization.

for the curve y = SOH(FEC), which is the format typically used to represent
the degradation tests results (see Figure 2.14). As the graphs inside the second
rectangle of Figure 2.15 show, these curves can show different trends. Therefore, the
objective of this step is finding a trend that it is well adjusted to the majority of the
curves. This trend is defined by coefficient α [−]. Once this coefficient is defined, a
degradation rate factor (denoted as δBT _cyc [%/FEC]) is assigned to each test from
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the data batch. The objective of the following steps of the methodology is to relate
the value δBT _cyc to the degradation stress factors.

(3) Data clustering. In order to individually analyse the effect of the stress factors, this
step consists on clustering the degradation tests in groups that share four equal stress
factors, so the fifth factor can be analysed independently from the other four. In
the third rectangle of Figure 2.15 an example of a cluster at T = 25◦C, Cch = 0.5C,
Cdch = 1C, and mSOC = 50% is presented. In the example, this cluster is used in
the next step to analyse the relation between the DOD and the degradation rate
δBT _cyc, as seen in the graph “Cluster DOD 1”.

(4) Individual analysis of stress factors. Once a series of graphs have been obtained for
each stress factor, the aim of this step is to obtain an expression that models the
effect of each stress factor. For this approach, the step is divided into two parts,
which are presented in Figure 2.15. First, an expression is proposed for each stress
factor by analysing the most representative clusters (“4.1 Definition of expression”
in Figure 2.15). Then, the proposed expression is fitted to all the clusters of each
stress factor, in order to define the appropriate model parameters (“4.2 Fitting of
expression” in Figure 2.15).

(5) Integration in full model. The last step consists on gathering together all the expres-
sions obtained for each stress factor. This is made by fitting the parameter β [−]
with all the degradation tests of the data batch.

It is worth to mention that step 4.1 has only been implemented with LTO and NMC
chemistries, as they are the only ones that provide enough data to model all the stress
factors. For the remainder chemistries, the expressions proposed with LTO and NMC have
been directly used in step 4.2 to parametrize the model. Eventually, the implementation
of the methodology has lead to the definition of the following expression for ∆SOHBT _cyc:

∆SOHBT _cyc = β · exp
(
k1 · T − k2

T
+ k3 · DOD + k4 · Cch + k5 · Cdch

)
·
[
1 + k6 · mSOC ·

(
1 − mSOC

k7

)]
· FECα (2.46)

being k1 [−] and k2 [K] the coefficients related to the temperature, k3 [%−1] the coefficient
related to the DOD, k4 [h] the coefficient related to the charging C-rate, k5 [h] the coeffi-
cient related to the discharging C-rate, and k6 [%−1] and k7 [%] the coefficients related to
the middle SOC.

As mentioned before, once the general expression for the degradation model is set, the
next step consists on obtaining the model parameters for each of the BT chemistries being
analysed. The results obtained after deploying the proposed parametrization methodology
are depicted in Table 2.6. These values allow implementing the proposed degradation
model with each of the BT chemistries for which data was gathered, which is an important
step of the holistic design methodology proposed in the current Ph.D. Thesis.
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Table 2.6: Parameters for the chemistry-dependent degradation model.

Parameter NMC LFP LCO NMC-LMO LTO NCA
δBT _cal 0.003653 0.005479 0.005479 0.005479 0.002740 0.005479

β 0.001673 0.003414 0.047368 0.118470 0.022528 0.407644
k1 21.67 5.8755 9.1716 6.3173 16.3118 -6.1342
k2 293 293 293 293 293 293
k3 0.022 -0.0046 0 0.0043 -0.0049 0
k4 0.2553 0.1038 0.0849 0 0.0125 0
k5 0.1571 0.296 0.4522 0.0895 0.0125 -0.1798
k6 -0.0212 0.0513 0 0 0 0
k7 42 42 1 1 1 1
α 0.915 0.869 0.841 0.652 0.541 0.698

2.3.5.4 Integration of Battery Degradation Model in LCC Calculation

Once the chemistry-dependent BT degradation model is built, another important step
consists on integrating in the LCC calculation methodology proposed in this Ph.D. Thesis.
For this approach, it is necessary to derive the BT lifetime value (yBT ) from the developed
empirical degradation model. This is carried out by iteratively calling Equations (2.44),
(2.45) and (2.46) until the EOL criteria is met (i.e., the SOH reaches the 80%). The stress
factors affecting the expression of Equation (2.46) may change at each simulation time
step k. Consequently, it is necessary to deduce for each time step the values of T , DOD,
Cch, Cdch and mSOC, as well as the cumulative number of FECs. A post processing of
the simulation results is required for this approach.

The most challenging step of the post processing consists on the estimation of the
DOD and mSOC that the battery is doing at each time step. Different approaches can
be followed to estimate these variables. In the current Ph.D. Thesis, the use of the Rainflow
algorithm is proposed. The process carried out by this algorithm is depicted in Figure
2.16, and it can be summarized as follows [18]:

(1) First, the SOC profile obtained in simulation is analysed beginning from the highest
value and making an always decreasing path until the lowest SOC value is found
(Figure 2.16, green path 1).

(2) Then, the algorithm restarts from the next highest SOC value and it repeats the
process until the next lowest SOC value is found, without overlapping the previous
path (Figure 2.16, green path 2). The process is repeated as many times as necessary
until all the discharging semi-cycles are analysed (Figure 2.16, all green paths).

(3) Once the discharging semi-cycles are analysed, the same process is repeated, but
analysing the charging semi-cycles. Therefore, the algorithm starts from the lowest
SOC value and makes an always increasing path until the highest SOC value is found
(Figure 2.16, blue paths).

(4) Finally, the charging and discharging semi-cycles are grouped in cycles with the same
DOD and mSOC (e.g., discharge cycle 1 and charge cycle 1 in Figure 2.16).
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Figure 2.16: Rainflow algorithm working principle [18].

With this approach, each simulation time step has a DOD and mSOC value assigned.
However, Equation (2.46) requires also the assignment of a Cch value and a Cdch value for
each time step. Obviously, it is not possible for a battery to be charging and discharging
at the same time. A possible solution is setting one of the values to zero, but as the degra-
dation model was not built considering this circumstance, this is not a feasible solution.
In order to solve this issue, the approach presented in Figure 2.17 is proposed. The figure
follows the same example depicted in Figure 2.16, focusing on the charge/discharge cycle
1. The approach is further detailed in the following lines:

• If the current time step is part of a discharging semi-cycle (case depicted in Figure
2.17), the Cdch value corresponds to the C-rate that the BT is giving in the current
time step. For the Cch value, the root mean square of all the Cch values of the linked
charging semi-cycle is calculated, and then it is used in the model.

• If the current time step is part of a charging semi-cycle, the Cch value corresponds
to the C-rate that the BT is receiving in the current time step. For the Cdch value,
the root mean square of all the Cdch values of the linked discharging semi-cycle is
calculated, and then it is used in the model.
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Figure 2.17: Cdch and Cch definition at each time step (example of discharge semi-cycle).
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2.4 Optimization of Life Cycle Cost

Once all the details of the LCC calculation approach have been given in Section 2.3,
including all the methods and simulation models, this section is focused on explaining how
is the LCC optimized.

As it was explained in Section 2.2, for each case being analysed in a sensitivity analysis,
an optimization of the LCC is carried out (see inner rectangle in the upper part of Figure
2.2, “LCC optimization”). The main objective of this optimization is obtaining the cost-
effective sizing of the powertrain sources, as it is assumed that each EMS is related to a
different optimal sizing. However, some other parameters related to the EMS operation are
also optimized in the LCC optimization approach. Specifically, the initial SOC in which
the BT starts the journey is also optimized. This variable is considered important as it
limits the absolute quantity of energy that the BT can absorb/provide during the whole
journey. Additionally, in some optimization-based EMSs some parameters that define the
internal rules of the strategy will be also optimized.

In short, the following optimization variables are defined: number of gensets (nGS , only
in the case of the H-DEMU), number of FC modules (nF C , only in the case of the H2EMU),
number of BT modules (nBT ), initial SOC (SOC0) and the EMS internal parameters
(gathered in variable pEMS). pEMS can represent a different amount of optimization
variables depending on the specific EMS being analysed. These specific optimization
variables will be detailed in Chapter 3 and Chapter 4 together with the introduction
of the corresponding EMSs. In this section, the generic pEMS variable will be used to
represent them.

In order to face the optimizations, in this Ph.D. Thesis the use of two different method-
ologies is proposed: an exhaustive search-based optimization, and a GA-based optimiza-
tion. The reason of this split is the different amount of variables that can be found in the
proposed optimization problems. Indeed, as more optimization variables, the number of
feasible solutions increases exponentially, what complicates or even makes unfeasible the
use of methodologies such as the exhaustive search.

In the cases when the internal parameters of the EMS are not optimized, the problem
consists of 3 variables: nF C/nGS , nBT and SOC0. For these cases, it is considered that
a methodology based on an exhaustive search is an appropriate approach to solve the
problem. Indeed, with an appropriate discretization of the optimization variables, the
number of potential solutions can be maintained in a feasible value without compromising
the obtention of a solution close to the global optimal one. The methodology for the
optimization based on exhaustive search is further detailed in Section 2.4.1.

Besides, in the cases when the internal parameters of the EMS are optimized, at
least 4 variables have to be optimised: nF C/nGS , nBT , SOC0 and all the variables that
compose pEMS . Due to the increased number of feasible solutions, it is considered that a
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GA-based methodology is more suitable for these cases. The GA is a metaheuristic search
method widely implemented in the literature related to optimization-based EMSs, as it was
reviewed in Section 1.4.2. Being an stochastic solving method, the GA does not ensure
reaching the global optimal solution [18]. However, compared to the exhaustive search
method, the number of iterations to reach the optimal solution is reduced significantly.
The methodology for the GA based optimization is further detailed in Section 2.4.2.

2.4.1 Exhaustive Search Based Optimization

Figure 2.18 depicts the general diagram for the optimization by exhaustive search. The
methodology is based on four main steps, and basically it consists on an iterative process
in which all the feasible solutions (denoted as j) are evaluated. The steps are further
described in the following lines:

Parametrization of
optimization variables: j

j = Nj ?

j = j + 1

Load Case s of
sensitivity analysis

Optimal LCC for Case s

Topology

BT chemistry

EMS 
Driving
scenario

Economic
parameters

nFC / nGS H2

nBT

SOC0

j

LCC Calculation

Section 2.3

yes

no

Figure 2.18: Diagram for optimization by exhaustive search.

(1) The first step consists on the initialization of the characteristics of the sensitivity
analysis case that is being currently analysed. This case is denoted as s, being s any
combination of vehicle topology, EMS, BT chemistry, driving scenario and economic
parameters.

(2) Once the characteristics of Case s are set, the iterations of the exhaustive search
optimization are initialized. At each iteration, a specific combination of the opti-
mization variables is set (j). As mentioned before, each j consists on nF C/nGS ,
nBT and SOC0. All the optimization variables are discretized in order to obtain a
manageable number of solutions (Nj).

(3) Each combination of optimization variables j is evaluated following the LCC calcu-
lation approach explained in Section 2.3, which corresponds to the optimization cost

75



Holistic Design Methodology

function. Therefore, a LCC value is assigned to each j.

(4) Once all the feasible solutions Nj are evaluated, the methodology returns the optimal
LCC and the combination of variables that have led to that optimal value for the
Case s being evaluated.

2.4.2 Genetic Algorithms Based Optimization

The GA is a metaheuristic optimization solving method based on the concept of natural
selection [183]. The algorithm is based on the concepts of individuals (i) and generations
(x). One individual is a feasible solution (i.e., a combination of optimization variables,
equal to j in the exhaustive search optimization), while a generation is a set of individu-
als. In short, the algorithm repeatedly modifies the sets of individual solutions to create
new generations. From each generation, the GA selects the best features of the current
individuals and uses them as parents to produce new children (i.e., a new generation).
The algorithm evolves until it is allowed, hence the obtained solution will be closer to the
optimal solution depending on the defined degree of evolution [18].

Figure 2.19 depicts the general diagram for the optimization by GA, which is mainly
based on two iteration layers that are composed of different steps. These steps are further
described in the following lines [184]:

Generation x

i = Ni ?

i = i + 1

Load Case s of
sensitivity analysis

Optimal LCC for Case s

LCC Calculation

Section 2.3

Individual i

x = Nx ?

nFC / nGS H2
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SOC0
i

pEMS

x = x + 1

Selection,
Crossover
& Mutation

Topology

BT chemistry

EMS 
Driving
scenario

Economic
parameters

yes

no

yes

no

Figure 2.19: Diagram for optimization by genetic algorithms.

(1) As in the exhaustive search optimization, the first step consists on initializing the
characteristics of the Case s of the sensitivity analysis.
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(2) Once Case s is set, the outer iteration loop of Figure 2.19 is initialized. For this
approach, the first generation is created. This generation is based on a random
initial population of Ni individuals, which generally represents the search domain.

(3) At each generation, the inner loops depicted in Figure 2.19 are run. The aim of these
iterations is to evaluate all the individuals from the current generation, based on the
optimization cost function. As previously mentioned, the fitness function consists
on the LCC value, whose calculation was widely explained in Section 2.3. Therefore,
a LCC value is assigned to each i.

(4) Once all the Ni individuals have been evaluated, the next step consists on the se-
lection of the best individuals from the current generation, based on the obtained
fitness function. According to the evolutionary theory, the best individuals have the
highest probability to join the next population.

(5) The last step before starting with the new generation consists on the generation of
the new individuals. Three types of individuals are created: elite, crossover and
mutation. Elite individuals are the solutions selected in step (4), and therefore
they can be considered the parents of the next generation. Crossover individuals
are created by combining characteristics of the parents or elite individuals. Finally,
mutation individuals are created by introducing random changes to a single parent.

(6) In order to finalize the algorithm, steps (3)-(5) are repeated until the desired number
of generations (Nx) is reached. Once these number of generations is reached, the
optimization methodology returns the optimal LCC and the combination of variables
related to that optimal value for Case s of the sensitivity analysis.

2.5 Conclusions

This chapter has presented the holistic design methodology proposed as the main
contribution of this Ph.D. Thesis. This methodology has been developed based on the
conclusions derived from Chapter 1, and it will be implemented in Chapter 3 for the
H-DEMU case study and in Chapter 4 for the H2EMU case study.

Section 2.1 has introduced the general overview of the proposed methodology, which
is based on an integral LCC analysis. This analysis considers holistically the effect that
the features identified in Chapter 1 have on the LCC of innovative railway vehicles. These
features are defined as (i) the rail topology, (ii) the EMS design, (iii) the BT chemistry,
(iv) the size of the power sources, (v) the driving scenario, and (vi) the parameters of the
economic model. The aim of the LCC analysis is the identification of the features most
dependent and most transversal to the context characteristics.

The structure of the LCC analysis has been presented in Section 2.2. Developing a
sensitivity analysis that considers together all the features identified above is an unviable
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approach. Consequently, the LCC analysis is divided into several steps. First, a sensitiv-
ity analysis is developed for the specific context defined as the nominal case. This first
sensitivity analysis is focused on the design of the powertrain, as different BT chemistries
and EMSs are compared. For each combination of BT chemistry and EMS, the optimal
sizing of the powertrain sources is also solved. Once the analysis of the nominal case is
finished, in a second step the replicability of the obtained conclusions in different contexts
is evaluated. On the one hand, the sensitivity to the parameters of the economic model is
developed. On the other hand, the sensitivity to different driving scenarios is developed.

Section 2.3 has presented the approach to calculate the LCC value of each case being
analysed. This approach is divided into three main steps. First, the vehicle is simulated
in a Matlab environment. Therefore, the proposed powertrain electric model has been
explained in this section. Then, the results obtained in simulation are verified technically
to check if the proposed powertrain configuration can provide a feasible performance.
Finally, the LCC of the case being analysed is estimated from simulation results by means
of an economic model. The different terms of the economic model have been explained
in detail. An important step of the economic model is the estimation of the BT and
FC lifetimes. Therefore, the algorithms used to estimate their lifetimes have also been
introduced. In the case of the BT, a chemistry-dependent degradation model has been
proposed, which constitutes one of the additional contributions of the current Ph.D. Thesis.
In order to define the FC and BT lifetime estimation algorithms to be used in the current
approach, a literature review of the existing models has also been performed. This review
has complemented the State of the Art presented in Chapter 1, but focusing on the specific
needs of the proposed holistic design methodology.

As mentioned in the introduction of the LCC analysis, the proposed methodology in-
cludes the optimization of the LCC to obtain the cost-optimal powertrain sizing for each
case being analysed in a sensitivity analysis. Section 2.4 has introduced the different ap-
proaches to solve this optimization. A differentiation in the optimization solving methods
has been defined due to differences in the number of optimization variables of the differ-
ent cases. For the cases where 3 optimization variables are defined, an exhaustive search
approach is proposed. Besides, for the cases with more than 3 variables (i.e., the cases
where the parameters of the EMS are also optimized), an optimization based on GA is
proposed. Both solving methods have been introduced in this section.

The methodology presented in this Chapter has been introduced from a generic view,
and in the following chapters it will be particularized for each of the case studies proposed
in this Ph.D. Thesis: for the H-DEMU in Chapter 3 and for the H2EMU in Chapter 4.
Specifically, at each case study all the cases of the sensitivity analysis will be defined,
including the different control strategies, BT chemistries, parameters of the economic
model, and driving cycles to be analysed.
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3
Case Study A: Hybrid

Diesel-Electric Multiple Unit

Summary
In this third chapter the first case study of this Ph.D. Thesis is developed. The holistic

design methodology described in Chapter 2 is implemented with the vehicle topology denoted
as the Bi-mode Hybrid Diesel-Electric Multiple Unit. On the one hand, the methodology
is particularized for the current case study: the different cases of the sensitivity analysis
are introduced, and the details of the optimization problems are given. On the other hand,
the results of the different sensitivity analyses are explained: the sensitivity analysis to the
powertrain design, the sensitivity analysis to the economic parameters, and the sensitivity
analysis to the driving cycle.
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3.1 Introduction

This chapter deals with the first case study of the current Ph.D. Thesis. The chapter
aims the implementation of the methodology proposed in Chapter 2 with the vehicle topol-
ogy denoted as the Bi-mode H-DEMU. The bi-mode vehicles will drive in rail lines that
combine electrified and non-electrified sections, what becomes important for the design
and analysis of the control strategies.

Figure 3.1 shows the powertrain architecture of the vehicle topology analysed in the
current Chapter. The vehicle can be powered by a genset (which was modelled in Section
2.3.1.5), a BT (modelled in Section 2.3.1.7) or a catenary (modelled in Section 2.3.1.8).
As already specified in Chapter 2, the genset and BT characteristics are proportionally
scaled when analysing different sizings, and the BT parameters are defined depending on
the chemistry being analysed (this will be defined in Section 3.2.2).
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Figure 3.1: Considered Bi-mode H-DEMU architecture.

Additionally, Table 3.1 shows the general characteristics of the simulated vehicle, which
is based on the CIVITY vehicle family manufactured by CAF [185].

Table 3.1: General information of modelled Bi-mode H-DEMU.

Parameter Value
Length 86 m
Weight 124 t
Number of traction motors 4
Maximum speed 210 km/h
Maximum traction power at wheel 4.4 MW
DC Bus voltage 3,000 V
AC Catenary voltage 22.5 kV
Auxiliaries consumption 165 kW

The remainder of the chapter is organized as follows. First, Section 3.2 presents all
the cases of the sensitivity analyses developed as part of the holistic design methodology.
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Specifically, the different EMSs, BT chemistries, parameters of the economic model and
driving cycles are detailed. Section 3.3 also particularises the generic optimization prob-
lems presented in Section 2.4 to the specific case study analysed in the current chapter.

Then, the holistic design methodology proposed as the main contribution of this Ph.D.
Thesis is implemented step by step in Sections 3.4 to 3.6. First, the sensitivity analysis is
focused on the powertrain design (different BT chemistries and EMSs, Section 3.4); then,
on the parameters of the economic model (Section 3.5); and finally on the driving cycles
(Section 3.6). At each step, the obtained results are discussed in detail to derive the main
conclusions related to the design of H-DEMU vehicles.

3.2 Overview of Sensitivity Analyses

As a previous step before implementing the holistic design methodology, this section
introduces all the cases of the sensitivity analyses that compose the mentioned methodol-
ogy. The proposed control strategies, BT chemistries, parameters of the economic model
and driving cycles are detailed in the following subsections.

3.2.1 Energy Management Strategies

Starting with the control strategies, the review of the State of the Art developed in
Chapter 1 concluded that in this Ph.D. Thesis Rule-Based (RB), Optimization-Based
(OB) and Learning-Based (LB) strategies will be developed and analysed. Specifically, in
the current case study 5 strategies are based on rules, 3 strategies are based on an off-line
optimization approach, and an additional strategy is based on a learning approach.

In all the cases, the EMS defines time step by time step the operation point of the
genset (PGS). Therefore, the BT will give or absorb (PBT ) the power difference between
the defined genset operation point and the power demand (PDem). If the BT cannot absorb
all the defined power, the braking resistors will be activated. Therefore, the description
of each EMS will be focused on how the strategy defines the genset operation point.

For the design of the RB strategies, the efficiency curve of the genset has been taken
into account. This curve has been generated considering the optimal path defined in the
genset efficiency map (Figure 2.7), and it is depicted in Figure 3.2. Three regions have
been defined in the efficiency curve: low, medium and high efficiency. The objective of
the RB strategies will be to maximize the operation time in the high efficiency region.
Therefore, for the design of the rules, the thresholds PGS1 and PGS2 will be considered,
together with the maximum efficiency operation point (PGS−eff ) and the maximum load
operation point (PGS−max).
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Figure 3.2: Genset efficiency curve, extracted from the efficiency map of Figure 2.7.

3.2.1.1 RB - Baseline Control (RB1)

The first strategy is called the Baseline Control. Figure 3.3 depicts the working prin-
ciple of this strategy. Basically, the Baseline Control consists on defining a constant
operation point for the genset, which is the most simple control approach. In order to en-
hance the efficiency of the main traction source, this reference is defined at the maximum
efficiency point, PGS−eff . However, as the figure shows, there are some conditions that
force to alter this operation point. These conditions are enumerated below:
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Figure 3.3: Baseline Control (RB1).

(1) In high demand conditions (e.g., in an acceleration peak), it may happen that the
BT is not able to give all the required peak, as the difference between PGS−eff and
PDem may be higher than PBT _max_dch. When this happens, the genset power is
increased to PGS−max in order to comply with the vehicle demand. This is shown
at the left part of Figure 3.3.

(2) In low demand conditions (e.g., when the vehicle maintains its speed or brakes), the
BT receives from the genset the power difference between PGS−eff and PDem. In
these conditions, it may happen that the BT is not able to receive all that power,
either because it exceeds the maximum BT charge power (PBT _max_ch) or because
the BT is totally charged (SOC > SOCmax). When this happens, the genset oper-
ation point is reduced in order to avoid an unnecessary diesel waste. This is shown
at the right part of Figure 3.3.
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In order to ease the classification of the different strategies, in the remainder of the
chapter this strategy will be denoted as RB1.

3.2.1.2 RB - Improved Baseline Control for Charge Sustaining (RB2)

The second strategy is known as the Improved Baseline Control for Charge Sustaining.
As the name indicates, the strategy is understood to be an improvement of the Baseline
Control. The objective of this improvement is to adapt the genset operation point to
the demand, but maintaining a nearly constant and high efficient operation. For this
approach, the operation point is switched between PGS−max and PGS2, instead of working
constantly at PGS−eff . Indeed, all these operation points are located at the high efficiency
area of the genset, as it was shown in Figure 3.2. Therefore, it is understood that the
global efficiency will not be much lower than in RB1, and at the same time the BT will
give and receive lower peaks.

Figure 3.4 depicts the working principle of the strategy, which can be divided into three
operation conditions, similarly to the case of RB1. These conditions are listed below:
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Figure 3.4: Improved Baseline Control for Charge Sustaining (RB2).

(1) In normal operation, the genset is fixed at PGS2, which is the lower limit of the
genset high efficiency zone. This condition is shown in the middle part of Figure 3.4.

(2) When the demand is higher than PGS−max, the genset operation point is fixed at
full load (PGS−max). This prevents a situation when the BT is not able to give all
the required power, for instance when an acceleration peak happens. This condition
is shown in the left part of Figure 3.4.

(3) In low demand conditions (e.g., when the vehicle maintains the speed or brakes),
the BT receives from the genset the power difference between PGS−eff and PDem.
In this condition, it may happen that the BT is not able to receive all that power,
either because it exceeds PBT _max_ch or because the BT is totally charged. When
this happens, the genset operation point is reduced. However, contrary to the case of
RB1, in this case the lowest genset operation point is limited at PGS1. This prevents
the genset from working at the low efficiency operation area of Figure 3.2. This
condition is shown in the right part of Figure 3.4.
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In order to ease the classification of the different strategies, in the remainder of the
chapter this strategy will be denoted as RB2.

3.2.1.3 RB - Improved Baseline Control for Charge Depleting (RB3)

The third strategy is known as the Improved Baseline Control for Charge Depleting.
As the name indicates, this EMS is based on the previously introduced RB1 and RB2
strategies. One of the characteristics of RB1 and RB2 is that in low demand sections
(which are common in rail operation) the BT is charged from the genset. In the case
study being analysed in this chapter, the BT can also be charged from the catenary when
an electrified section starts, which in terms of diesel use is a more efficient way of charging
it. Therefore, the objective of this EMS is to reduce the energy transferred from the genset.
To do so, the genset is allowed to work at lower operation points, including the medium
efficiency zone of Figure 3.2. Consequently, the efficiency of the genset is sacrificed; but
at the same time, the use of diesel is reduced, as the BT is now charged from the catenary
when the non-electrified section ends.

Figure 3.5 depicts the working principle of this strategy, which can be divided into
four operation conditions. These conditions are listed below.
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Figure 3.5: Improved Baseline Control for Charge Depleting (RB3).

(1) In normal operation, the genset is fixed at PGS1, which is the lower limit of the
middle efficiency zone. This condition is shown at the middle part of Figure 3.5.

(2) When the demand is higher than PGS2, but lower than PGS−max, the genset opera-
tion point is increased to PGS2, which is the lower limit of the high efficiency zone.
This condition is shown at the left-middle part of Figure 3.5.

(3) When the demand is higher than PGS−max, the genset operation point is fixed at full
load (PGS−max), as it was done in the case of RB2. This prevents a situation when
the BT is not able to give all the required power, for instance when an acceleration
peak happens. This condition is shown at the left part of Figure 3.5.

(4) As it was highlighted in previous strategies, in low demand conditions (e.g., when
the vehicle brakes), it may happen that the BT is not able to receive all the power
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from the genset. In this circumstance, the genset operation point is not reduced to
avoid the low efficiency zone of Figure 3.2. This condition is shown at the right part
of Figure 3.5.

As it can be deduced from the comparison of Figures 3.4 and 3.5, the BT SOC will fall
faster in the case of the current strategy. That is the reason to call this EMS “Improved
Baseline Control for Charge Depleting”, while RB2 is called “Improved Baseline Control
for Charge Sustaining”. In order to ease the classification of the different strategies, in
the remainder of the chapter the Improved Baseline Control for Charge Depleting will be
denoted as RB3.

3.2.1.4 RB - State Machine Controller (RB-SM) and OB - Optimized State
Machine Controller (GA-SM)

Both alternatives for the Improved Baseline Control (RB2 for charge sustaining and
RB3 for charge depleting) have some advantages and disadvantages: RB2 uses more diesel
but maintains the charge of the BT, while RB3 uses less diesel but discharges faster the BT.
In order to combine the characteristics and avoid the disadvantages of both alternatives,
a strategy based on a State Machine (SM) controller is proposed.

Figure 3.6 shows the different states of the SM controller, which are defined according
to the current SOC of the BT. Specifically, the SM states are divided according to the
thresholds kSM1 [%], kSM2 [%], kSM3 [%] and kSM4 [%]. Each of the states is further
detailed below:

Battery SOC (%)

SOCmin SOCmaxkSM1 kSM2 kSM3 kSM4

High
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RB3 (CD)

RB2 (CS)
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Figure 3.6: State Machine Controller (SM).

(1) When the SOC is high, it is considered that more energy can be asked to the BT,
as the risk of running out of energy is low. Therefore, RB3 strategy is adopted in
this state.

(2) When the SOC is in a medium value, more energy is asked to the genset to reduce
the contribution of the BT. Therefore, RB2 strategy is adopted in this second state.

(3) Finally, when the SOC is low, it is considered that the priority is recovering the
BT energy to avoid a traction power shortage. Therefore, a SOC recovering mode
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is applied in this state. Figure 3.7 shows the working principle of this last mode:
nominally, the genset works at full load (PGS−max), and this power reference is only
reduced when the BT cannot be further charged.
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Figure 3.7: SOC recovery mode for low SOC state in State Machine Controller (SM).

As it can be deduced, thresholds kSM1, kSM2, kSM3 and kSM4 may influence the
performance of the SM-based EMS. In a first approach, these thresholds have been defined
based on the conclusions obtained after some first tests. Precisely, values 50%, 60%, 70%
and 80% have been defined, respectively. However, this parametrization does not ensure an
optimal operation. Therefore, in a second approach these values are optimized by means of
a GA-based optimization method. Further information regarding how is this optimization
approach coupled with the powertrain design optimization is given in Section 3.3.

In order to differentiate between both parametrizations, the strategy with the hand-
tuned values will be denoted as the Rule Based State Machine (RB-SM), and the strategy
with the optimized values will be denoted as the Optimized State Machine (GA-SM).

3.2.1.5 RB - Fuzzy Logic Based Controller (RB-FL) and OB - Optimized
Fuzzy Logic Based Controller (GA-FL)

Another option for the RB strategies is to develop a controller based on Fuzzy Logic
(FL) theory. A first introduction to FL based controllers was made in Chapter 1. As
highlighted there, FL is an attractive option to control complex systems, especially in the
cases were linguistic knowledge can be efficiently implemented together with numerical
data. The main advantage of these controllers is that they avoid the mathematical stiffness
of the rules defined in the typical deterministic RB strategies.

The process carried out by the controller is called the Fuzzy Inference System (FIS).
In this Ph.D. Thesis, a Sugeno FIS is proposed, as this methodology requires less compu-
tational time and becomes more appropriate for dynamic non-linear systems [186, 187].
The block diagram of the Sugeno FIS is depicted in Figure 3.8. The objective of the
controller is to define the genset operation point for the current time step (PGS). This is
made based on the current SOC of the BT (SOC), the current power demand (PDem),
and the previous time step genset operation point (PGS_k). The input variables have been
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selected based on the FL controller proposed by Lopez-Ibarra et al. in [186]. To obtain
the output value, the FIS is composed of three main steps, as it was already introduced
in Figure 1.20: fuzzification, inference (use of linguistic rules), and defuzzification.
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Figure 3.8: Block diagram of Sugeno fuzzy inference system.

In the first step, different fuzzy sets are defined for each input variable in order to
derive the degree of membership of each variable (defined as µSOC [−], µP Dem [−] and
µP GSk [−]). The membership functions and fuzzy sets defined for each input variable are
presented in Figure 3.9. As depicted, trapezoidal shapes have been used. The definitions
of the fuzzy sets and membership functions for each variable are given as follows:

• BT state of charge (SOC). This first input is considered to evaluate if the BT
needs to be charged or it is able to provide energy. For this approach, 4 fuzzy sets
are proposed: Very Low (VL), Low (L), Medium (M) and High (H). As depicted
in Figure 3.9a, the transitions from one fuzzy set to another have been defined
around the thresholds kF L1 [%], kF L2 [%] and kF L3 [%]. Besides, the ramps of the
trapezoidal shapes have a width defined by variable kF L4 [%].

• Vehicle power demand (PDem). The aim of this variable is to define a different re-
sponse depending on the power required for traction. This becomes crucial due to
the high power peaks occurring in heavy-duty applications such as the one being
analysed. As depicted in Figure 3.9b, 5 fuzzy sets are defined: Negative (N), Very
Low (VL), Low (L), Medium (M) and High (H). N is intended for negative power
demands (i.e., for regenerative braking), VL for power demands around the auxil-
iaries consumption (defined by threshold kF L5 [%]), L for a demand lower than 1/3
of the typical power peak (Ppeak [W ]), M for a demand lower than 2/3 of Ppeak, and
H for a demand around Ppeak. kF L5 is also defined as the percentage in relation to
Ppeak. The ramps of the trapezoidal shapes have a width of just 1 kW in the case of
the transitions from N to VL and from VL to L. As seen in the figure, this means
that a fast transition is made between these fuzzy sets. For the rest of cases, the
ramps of the trapezoidal shapes have a width of 300 kW.

• Genset operation point of previous time step (PGS_k). This variable is used as an
input in order to smooth the transitions of the genset operation point. As depicted
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Figure 3.9: Membership functions of Fuzzy Logic based controller.

in Figure 3.9c, 5 fuzzy sets are defined: Very Low (VL), Low (L), Medium (M), High
(H), and Very High (VH). L, M and H are designed to refer to the low, medium and
high efficiency regions of Figure 3.2, respectively. Besides, VL refers to the genset
idle operation point, and VH to the maximum load operation point. As Figure
3.2 depicted, the limit between the medium and the high efficiency zone is quite
smooth, as the efficiency does not differ much from one zone to the next one. Due
to this reason, the transition between M and H is wider. Specifically, the ramp of
the trapezoidal shape has a width that is defined as the 20% of the genset maximum
load. In the other two cases, that width is defined as the 5% of the maximum load.

Apart from the input variables, it is also necessary to define the fuzzy sets and mem-
bership functions for the output variable PGS . As PGS coincides with the input variable
PGS_k (the only difference between them is the shift of one time step), the same fuzzy
sets are defined for PGS_k: Very Low (VL), Low (L), Medium (M), High (H) and Very
High (VH). However, the PGS membership functions do not coincide with the PGS_k ones
(which were defined in Figure 3.9c), since in the case of Sugeno type FIS the output
membership functions are defined as linear or constant functions. Indeed, in the current
approach the use of constant functions is proposed. Specifically, the following values have
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been defined for each fuzzy set: VL refers to an idle genset operation, L to an operation
in PGS1, M to an operation in the middle point of the medium efficiency region, H to an
operation in PGS−eff , and VH to an operation in PGS−max

Once the membership function degrees are obtained, the next step consists on applying
the if/then rules that relate the input variables (SOC, PDem and PGS_k) and output
variable (PGS). The tables depicted in Figure 3.10 summarize all the relations between
the input and output variables.
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Figure 3.10: Rules of fuzzy logic controller.

The processing of the rules is performed by a series of statistic functions. In the current
Ph.D. Thesis, the approach based on the error propagation function is proposed [186]. This
function is computed to obtain the weigth (wGS_i) that defines the contribution of the FL
rules (wrule_n) to each genset output power value (GSi):

wGS_i =
√

w2
rule_1 + w2

rule_1 + ... + w2
rule_N (3.1)

Finally, the defuzzification approach derives the value of the output variable (PGS)
from all the weights (wGS_i) obtained in the previous step. For this approach, the use
of the weighted arighmetic mean statistic function is proposed, as Equation (3.2) shows.
The calculated value is the output value of the EMS.

PGS =
∑N

i=1(wGS_i · GSi)∑N
i=1 wGS_i

(3.2)

As it can be deduced, parameters kF L1, kF L2, kF L3, kF L4 and kF L5 may affect the
effectiveness of the FL-based controller. As in the case of RB-SM, in a first approach these
values have been defined based on the conclusions of some first tests. Precisely, values
30%, 42.5%, 67.5%, 5% and 10% have been selected for each parameter, respectively.
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However, this parametrization does not ensure an optimal operation. Therefore, in a
second approach these values are optimized by means of a GA-based optimization method,
as in the case of the SM-based controller. Further detail regarding how is this optimization
approach coupled with the powertrain design optimization is given in Section 3.3.

In order to differentiate between both parametrizations, the strategy with the hand-
tuned values will be denoted as the Rule Based Fuzzy Logic (RB-FL), and the strategy
with the optimized values as the Optimized Fuzzy Logic (GA-FL).

3.2.1.6 OB - Dynamic Programming (DP)

As it was already introduced in Chapter 1, the DP approach consists on an algorithm
that, based on Bellman’s optimality principle, returns the optimal control trajectory that
minimizes a certain cost function. In order to run the DP algorithm, it is necessary to
define the control variable(s) Φ, the state variable(s) ι, the cost function(s) J , and the
optimization constraint(s).

First of all, the control variable Φ is the optimized variable, which in the current
approach is also the output of the DP-based EMS: the genset operation point, PGS .
Therefore, Φ is defined as follows:

Φ(k) = PGS(k) (3.3)

The state variable ι is the variable that represents the dynamic state of the system,
which is affected by the control actions taken so far. In the current case, this dynamic
state is represented by the SOC of the BT. Therefore, ι is defined as follows:

ι(k) = SOC(k) (3.4)

The cost function J is the function to be minimized by the DP approach. In the
current approach, J is defined as the amount of fuel that the H-DEMU consumes during
a certain driving cycle. In other words, DP aims the definition of control actions that
minimize the diesel consumption. J is defined as follows:

J =
K−1∑
k=0

ṁf

(
Φ(k)

)
· ∆t (3.5)

where K [−] is the total number of time steps of the simulation. As determined, the cost
function considers the cost (ṁf (k)) of performing a certain control action (Φ(k)).

Finally, the optimization problem also requires the specification of some constraints,
which are related to Φ and ι. First, in order to be initialized, DP requires the definition
of the initial and final states of the system, that is to say, the initial and final SOC values.
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Besides, a feasible space of state variables has to be also defined. In the current approach,
the SOC is constrained by the maximum and minimum allowable values (90% and 20%,
respectively). Apart from the constraints related to the state variable, a feasible space
of control variables has to be also defined. In this case, PGS is allowed to vary between
the idle load point and the full load point. The following equation resumes the defined
optimization constraints:

ι(0) = SOC0

ι(K) = SOCK

20 ≤ ι(k) ≤ 90
0 ≤ Φ(k) ≤ PGS−max

(3.6)

being SOCK [%] the BT SOC at the last time step K.

It is worth to mention that in the current case study a compromise has to be reach
to define the most suitable SOCK value. Indeed, a low SOCK is understood to reduce
more the fuel consumption, but increase the BT degradation (due to the high DOD).
However, a high SOCK is understood to reduce the BT degradation, but increase the fuel
consumption. In order to overcome this issue and find a compromise, variable SOCK is
optimized. Further detail regarding how is this optimization approach coupled with the
powertrain design optimization is given in Section 3.3.

In conclusion, DP returns the optimal sequence of PGS values that minimizes the diesel
consumed by the H-DEMU. However, this sequence of the control variable is only valid
for the specific context (i.e., specific drive cycle) for which the optimization is deployed.
This makes the on-line implementation of DP practically unfeasible. Due to this reason,
DP results are commonly used just as baseline for benchmarking other strategies. It is
worth to mention that the DP algorithm integrated in the current Ph.D. Thesis is based
on the function and scripts developed in [188] and available in [189].

3.2.1.7 LB - Neuro-Fuzzy Learning based Controller (ANFIS)

In order to overcome the main disadvantage of DP optimization, in this Ph.D. Thesis
the use of a LB strategy is proposed. The selected LB approach is the Adaptive Neuro
Fuzzy Inference System (ANFIS), which has been proposed for similar applications in
previous research works [27, 190, 191]. The objective of the ANFIS approach is to train
a FL-based controller with data obtained from DP optimizations, so the controller is able
to replicate in real-time the operation proposed by DP. Figure 3.11 shows the general
overview of the ANFIS based learning technique.

As in any learning approach, the first step consists on generating the data required for
the training process. The trained ANFIS controller should be robust to different contexts,
i.e., to different drive cycles. Therefore, the DP data generated for the training step is
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Figure 3.11: Overview of ANFIS based learning technique [27].

obtained optimizing the H-DEMU operation under different drive cycles. These drive
cycles are generated varying the number of passengers and the auxiliaries consumption set
in the nominal scenario, which will be presented in Section 3.2.4. Specifically, the number
of passengers will be varied in a ±7%, and the auxiliaries in a ±30%, leading to a 3x3
matrix of 9 driving cycles.

Once the DP optimizations are completed, the second step consists on processing the
data required by the ANFIS training step. The training process requires a set of inputs
and outputs, which will be the inputs and outputs required by the controller during real
operation. Specifically, the BT SOC, length-ratio, and PDem profiles are set as the inputs,
and the PGS profile as the output. The inputs and outputs are normalized within the
range [0,1].

The next step consists on the generation of the initial FL design, which is developed
based on the subtractive-clustering technique of the datasets. This FL structure includes
the initial designs for the membership functions and rules. However, this initial FL struc-
ture is not trained yet, and therefore it can not be used as EMS.

Once the initial FL design is obtained, the next step consists on the ANFIS training.
The training step aims tuning the membership functions and refining the rules originally
proposed by the data sub-clustering. For this approach, the 80% of the original DP data
is used, as the remainder 20% is used to test the effectiveness of the learning approach.
Figure 3.12 shows the architecture used for the ANFIS learning step. As it is depicted,
the tuning stage is a hybrid learning algorithm in conformity with back-propagation and
least-squares methods [27]. The architecture is composed of 5 layers. Nodes x, y and z in
layer 1 represent the system inputs (SOC, length-ratio, and Pdem), while the node in layer
5 refers to the system output PGS . The output of each layer is represented as shown in
Equation 3.7.

Layer 1 O1
i = µAi is an adaptive layer that represents the fuzzification process, which is

performed according to Gaussian membership functions. In the example given in Equation
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Figure 3.12: ANFIS architecture [27].

3.7, x represents one of the input varibles, and the Gaussian shape is defined by parameters
{a, b}. The same equation should be applied to relate input variables y and z with their
Gaussian membership functions (B and C). Layer 2 O2

i = ωi and Layer 3 O3
i = ω̄i are fixed

layers that represent the FL inference or evaluation of rules. In Layer 2 each rule weight
is determined multiplying each node by the input signals, and in Layer 3 each rule weight
is normalized. Layer 4 O4

i = ω̄i · Fi is an adaptive layer where {p, q, r, m} parameters
define the fuzzy set designs for the defuzzification. As Equation 3.7 shows, {p, q, r, m}
parameters represent a linear membership function. Finally, Layer 5 O5 = F performs the
defuzzification.



O1
i = µAi = e−

(
x−a

b

)2

, i = 1, 2, 3
O2

i = ωi = µAi(x) · µBi(y) · µCi(z), i = 1, 2, 3
O3

i = ω̄i = ωi∑i

j=1 ωi

, i = 1, 2, 3

O4
i = ω̄i · Fi = ωi · (pi · x + qi · y + ri · z + mi), i = 1, 2, 3

O5 = F =
∑3

j=1 ω̄j · fj =
∑3

j=1 ωj ·fj∑3
j=1 ωj

(3.7)

Eventually, once the training step is finalized, the FL-based controller is obtained,
which can be implemented online in the H-DEMU. In order to ease the understanding
and differentiate this FL-based controller from the RB-FL and GA-FL strategies, the
current EMS will be denoted as ANFIS.

3.2.2 Battery Chemistries

Once all the proposed EMSs have been presented, this subsection deals with the BT
chemistries that will be evaluated in this case study. As already reviewed in Chapter 1,
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different BT chemistries exist depending on the deployed anode and cathode material. In
this case study, the analysis of the following BT chemistries is proposed: LTO, NMC and
LFP. Table 3.2 shows the parameters related to the characterization of each BT chemistry.
These values are required by the BT simulation model (Section 2.3.1.7), and refer to the
parametrization at cell level and at BOL. Voc and Rint curves have been obtained from
characterization tests carried out in collaboration between Ikerlan and CAF Power and
Automation.

Table 3.2: Characterization of BT cells.

Parameter LFP NMC LTO
QBT _0 28 Ah 46 Ah 23 Ah
VBT _nom 3.2 V 3.7 V 2.3 V
Rnom 1.8 mΩ 1.9 mΩ 1.2 mΩ
VBT _max 3.6 V 4.2 V 2.7 V
VBT _min 2.5 V 3 V 1.7 V
Cmax_ch 4 C 3 C 4 C
Cmax_dch 6.5 C 5 C 4.5 C
SOCmax 90 % 90 % 90 %
SOCmin 20 % 20 % 20 %

BT cells are arranged in series and parallel to build BT modules. In the LCC opti-
mization step the number of BT modules is optimized (variable nBT ). In order to obtain
a fair comparison between the different BT capacities, modules with the same nominal
energy (20 kWh) are built with the cells introduced in Table 3.2.

Table 3.3 shows the characteristics of the obtained BT modules. As it was specified,
ncell refers to the number of cells connected in series, while mcell refers to the number of
cells connected in parallel. Key parameters of the built modules are the volumetric and
energetic densities, defined as ρBT _L [Wh/L] and ρBT _E [Wh/kg], respectively. These
values limit the maximum amount of BT nominal energy that can be integrated in the
vehicle, which is a constraint of the optimization problem that will be detailed in Sec-
tion 3.3. Both values have been estimated from commercial BT packs of the considered
chemistries [192–194].

Table 3.3: Characterization of BT modules.

Parameter LFP NMC LTO
EBT 20 kWh 20 kWh 20 kWh
ncell 112 118 189
mcell 2 1 2
ρBT _L 81.1 Wh/L 112.2 Wh/L 52.8 Wh/L
ρBT _E 47.9 Wh/kg 86.9 Wh/kg 53.3 Wh/kg

Regarding the lifetime estimation of each BT chemistry, the degradation model intro-
duced in Section 2.3.5 and the parametrizations given in Table 2.6 are used.
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3.2.3 Economic Model Parametrizations

After the control strategies and BT chemistries, in this subsection the parameters of
the economic model used in the different sensitivity analyses are introduced. Two different
parametrizations are defined depending on the sensitivity analysis being performed. On
the one hand, a nominal parametrization is defined. This parametrization is used in the
sensitivity to the powertrain design and in the sensitivity to the drive cycle. On the other
hand, some of these parameters are selected and their sensitivity is also analysed in the
sensitivity to the parameters of the economic model (see Figure 2.2 for the general chart
of sensitivity analyses).

3.2.3.1 Nominal Parametrization

Table 3.4 presents the values defined for the nominal parametrization. These values
have been selected based on the proposals made in similar literature works [11, 27, 48, 195,
196]. The parameters without a reference are own assumptions. These assumptions have
been defined together with CAF Power & Automation, based on the typical characteristics
of H-DEMU applications.

Table 3.4: Nominal parameters for economic evaluation.

Parameter Value Reference

General Parameters

Y 30 years -
I 2.5 % -
top 320 days/year -
tday 14 h/day -

Acquisition Costs

Ctrain 8,000,000 € -
cBT - LTO 1500 €/kWh [27, 195]
cBT - NMC 800 €/kWh [27, 195]
cBT - LFP 1040 €/kWh [48]
cGS 500 €/kW [48]

Operation Costs cf 1.1 €/L [196]
ccat 0.06 €/kWh [11]

Maintenance costs cmaint 200,000 €/year -

3.2.3.2 Scenarios for Sensitivity Analysis to Economic Model

Some of the parameters defined in the nominal parametrization are identified as un-
steady, or as probable to vary from context to context. Specifically, the daily operation
hours (tday) may vary depending on the railway line or railway project, the BT price
(cBT ) may vary depending on the selected manufacturer, and the diesel price (cf ) may
vary depending on the country or even the socio-economic context.

In order to develop the sensitivity analysis, for each parameter a Low Scenario (LS), a
Medium Scenario (MS) and a High Scenario (HS) have been defined. The values at each
scenario have been defined based on the variability that each parameter may suffer. Table
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3.5 shows the values proposed for each parameter and scenario. In the following lines the
reasons behind these values are enumerated:

Table 3.5: Sensitivity to parameters of economic model.

Parameter Low Medium High
tday 7 h/day 10.5 h/day 14 h/day
cBT - LTO 1200 €/kWh 1500 €/kWh 1800 €/kWh
cBT - NMC 640 €/kWh 800 €/kWh 960 €/kWh
cBT - LFP 520 €/kWh 1040 €/kWh 1560 €/kWh
cf 0.65 €/L 1.1 €/L 1.55 €/L

• In the case of tday, it is understood that values higher than the one defined in
the nominal scenario (14 h/day) are less probable. Therefore, the nominal value is
defined at the HS. For the MS and LS, reductions of the 25% and 50% have been
defined, respectively, based on the typical working hours of a H-DEMU.

• In the case of cBT different variabilities have been defined for each BT chemistry.
Based on an analysis of prices from different manufacturers, it is concluded that the
prices can increase or decrease compared to the nominal parametrization. Therefore,
the nominal value has been defined in the MS. The values for the LS and HS have
been defined based on the mentioned market analysis: ±20% variability for LTO
and NMC, and ±50% variability for LFP.

• Finally, in the case of cf the nominal parametrization is also defined in the MS. Even
if the diesel price evolution in the last years shows an upwards trend, it is understood
that analysing low prices is also interesting. Therefore, a ±40% variability is set for
the definition of LS and HS.

3.2.4 Driving Cycles

After analysing the proposed EMSs, BT chemistries and parametrizations of the eco-
nomic model, the last subsection deals with the driving cycles to be used in the different
sensitivity analyses. As in the case of the economic model, first a nominal case is defined,
which is used when analysing the sensitivity to the powertrain design and the sensitivity
to the parameters of the economic model. Then, a series of driving profiles with different
characteristics are proposed to develop the sensitivity to the driving cycle.

3.2.4.1 Nominal Driving Cycle

The nominal case is based on an existing railway line, which is called “A Coruña - A
Coruña” line. Figure 3.13 shows the map of the circular line and Figure 3.14 depicts the
corresponding speed profile, which corresponds to the round trip route. In both cases the
locations of the stations are specified. The round trip route is composed of 768.5 km and
14 stations, and it is completed in 7 hours.
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Figure 3.13: Journey of “A Coruña - A Coruña” railway line.
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Figure 3.14: Speed profile of “A Coruña - A Coruña” railway line. Shadowed section
represents electrification.

As it was stated in Section 2.3.1, the input required for the simulation model is the
traction demand profile (PEM ). Figure 3.15 depicts the PDem profile provided by CAF
Power and Automation, which already considers the demand from the auxiliaries (PDem =
PEM +PAux). It is worth to mention that for the simulation the start of the route has been
defined at the beginning of the non-electrified section (station “Monforte”). The reason is
that in order to obtain a representative comparison of different SOC0 values, it is better
to start the simulation from the beginning of the non-electrified section. Therefore, Figure
3.15 shows the demand profile starting from the station of “Monforte”.
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Figure 3.15: Power demand profile of “A Coruña - A Coruña” railway line. Shadowed
section represents electrification.

3.2.4.2 Scenarios for Sensitivity Analysis to Driving Cycle

For the development of this sensitivity analysis, driving cycles of different character-
istics are required. Due to the difficulty of obtaining information from many real railway
lines, it has been decided to use synthetic cycles. That is to say, new driving cycles will
be generated from the routes already presented. An advantage of this approach is also the
possibility of generating driving cycles of pre-defined specific characteristics.

As the aim of this Ph.D. Thesis is the analysis of non-electrified sections, the objective
of the synthetic cycles will be obtaining driving profiles of different characteristics for
these sections. In the case of electrified sections, it is considered that it is not necessary
to analyse driving cycles with different characteristics, as they barely affect the optimal
design and operation of the powertrain. The only exception would be a case in which the
electrified section is so short that the BT cannot recover its initial SOC. However, it is
considered that this scenario is out of the scope of the current case study. Therefore, the
design of the synthetic cycles will be oriented to the non-electrified sections.

Two variables have been defined as the design criteria of the generated synthetic cycles,
as they are representative of the characteristics of the driving cycles: the average power
demand and the total energy demand. From a macroscopic view, the average power
demand is related to the average speed and size of the vehicle, and also to the cumulative
slope of the route. In short, this variable defines the demand level of each driving profile,
what affects in the optimal sizing and operation of the powertrain sources, particularly of
the genset. Regarding the total energy demand, it is related to the average power demand,
but also to the duration of the route. As in the current scenario the BT is expected to
deplete its charge during the non-electrified section, the running time in this section will
inevitably affect in the optimal operation and sizing of the powertrain sources, particularly
of the BT. As the average power demand and the total energy demand are correlated, the
duration of the route will be used as design criteria instead of the total energy demand.

In order to generate the synthetic cycles, the non-electrified sections of the already
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introduced “Madrid-Badajoz” (Figure 2.5 in Chapter 2) and “A Coruña - A Coruña”
(Figure 3.15 in the current chapter) routes have been used. These profiles are divided into
station to station sub-profiles. Then, the sub-profiles are combined so as to obtain driving
cycles of different durations and average power demands.

In order to obtain a sufficient disparate matrix of cases, 4 different average power
demands and 4 different running times are proposed, what has led to 16 cases. In the
case of the power demands, the following values have been proposed: 200 kW, 400 kW,
600 kW and 800 kW. Indeed, it is considered that values lower than 200 kW or higher
than 800 kW are not very likely for the analysed application, since only the auxiliaries
provide 135 kW, and very high demands are only possible in very mountainous routes. In
the case of the running times, values 0.5 h, 1.5 h, 2.5 h and 3.5 h have been proposed for
the non-electrified sections. For the electrified sections, equal running times are proposed,
and therefore the real durations of the routes are 1 h, 3 h, 5 h and 7 h, respectively.

As the number of potential combinations of the sub-profiles is limited, the exact pro-
posed values can not be obtained. Figure 3.16 depicts the real matrix of the generated
driving cycles. For each driving cycle, the total energy demand is also given. The obtained
approximation is understood to be appropriate, as the aim of this approach is not to anal-
yse the operation of the H-DEMU in drive cycles of exact characteristics. The graphs of
the generated synthetic profiles can be found in Appendix A.
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Figure 3.16: Matrix of generated synthetic driving cycles.

3.3 Definition of Optimization Problem

Once all the cases of the sensitivity analysis have been introduced, this new section
focuses on the optimization problem deployed as part of the holistic design methodology.
As it was explained in Chapter 2, the methodology of the current Ph.D. Thesis includes
the LCC optimization of each case being analysed in a certain sensitivity analysis. This
LCC optimization is focused on obtaining the cost-efficient powertrain sizing (nBT and
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nGS), initial BT SOC (SOC0), and in some cases also the optimal EMS parameters.

Generic methodologies to solve this optimization problem were introduced in Section
2.4. As it was specified, the optimization problem may differ depending on the strategy
being analysed. Therefore, in this section these generic optimization methodologies are
particularized to the EMSs introduced in this case study. Figure 3.16 shows the classifi-
cation of optimization problems according to the EMS, which is further detailed below:

ANFIS

DP

RB1
RB2
RB3

RB-SM
RB-FL

nGS

nBT

SOC0

nGS

nBT

SOC0

SOCk

nGS

nBT

SOC0

kFL1

kFL2

kFL3

kFL4

kFL5

nGS

nBT

SOC0

GA-SM GA-FLkSM1

kSM2

kSM3

kSM4

Exhaustive Search Genetic Algorithms

Figure 3.17: Distribution of Optimization approaches according to EMS.

(1) In the case of RB strategies (RB1, RB2, RB3, RB-SM and RB-FL), the EMS is
not optimized. Therefore, as the number of optimization variables is low (nBT , nGS

and SOC0), the exhaustive search based optimization introduced in Section 2.4.1 is
deployed. This generic problem will be particularized in the following Section 3.3.1.

(2) In the case of OB strategies, different design coordination concepts are deployed. On
the one hand, in the case of DP the optimization is realized in two levels. In the outer
level, the powertrain sizing (nBT and nGS) and initial and final SOC values (SOC0
and SOCK) are optimized. In the inner level, the DP optimization (presented in
Section 3.2.1.6) is deployed for the specific nBT , nGS , SOC0 and SOCK values being
evaluated in the outer level. Therefore, a nested optimization is deployed. Consid-
ering the number of optimization variables of the outer level, the exhaustive search
based optimization introduced in Section 2.4.1 is deployed. The generic problem
introduced in that section will be particularized in Section 3.3.2 for the DP case.

(3) On the other hand, in the case of GA-SM and GA-FL the optimization is realized in a
single level, as all the variables can be optimized together. Therefore, a simultaneous
optimization approach is deployed. Due to the increased number of optimization
variables, in this case the GA-based approach introduced in Section 2.4.2 is deployed.
The generic problem introduced in that section will be particularized in Section 3.3.3
for GA-SM and in Section 3.3.4 for GA-FL.

(4) Finally, the ANFIS strategy is understood to be the real-time implementation of
DP. Therefore, no optimization is deployed in this case, as the nBT , nGS , SOC0
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and SOCK values obtained in the case of DP are used to calculate the LCC.

The fitness function is the same in all the mentioned optimization problems, as it
consists on the LCC minimization. Therefore, the fitness function is defined as follows:

minimize LCC(X) | X ∈ Π (3.8)

where X represents the vector containing the optimization variables, and Π represents the
space of feasible solutions. X and Π vary depending on the specific optimization problem,
and therefore they are introduced in the following subsections.

It is worth to mention that in all the optimization problems, each nBT refers to a 20
kWh BT module, and each nGS to a 500 kW genset. The definition of the remainder vari-
ables depends on the specific optimization problem, and therefore they are independently
introduced in the following subsections.

3.3.1 Exhaustive Search Optimization

The exhaustive search optimization is deployed when analysing the RB1, RB2, RB3,
RB-SM and RB-FL strategies. The optimization variables vector XES and the space of
feasible solutions ΠES are defined as in Equations 3.9 and 3.10. Being this an exhaustive
search-based approach, ΠES has to be discretized into a feasible number of cases. This is
the reason to define SOC0 between 50% and 90% in steps of 10%. The limits have been
defined based on the conclusions obtained after some first tests. Regarding nGS and nBT ,
they are defined as natural numbers. nGS ranges between 0 and the maximum number
of gensets (NGS [−]), as in this way the BEMU is considered also as a possible option.
Besides, nBT ranges between 1 and the maximum number of BT modules (NBT [−]), since
the DEMU is not considered as a possible option.

XES =

 nBT

nGS

SOC0

 (3.9)

ΠES =


1 ≤ nBT ≤ NBT → nBT ∈ Z
0 ≤ nGS ≤ NGS → nGS ∈ Z
50 ≤ SOC0 ≤ 90 → SOC0 ∈ {50, 60, ... 90}

(3.10)

NGS and NBT are a key constraint for the optimization problem. In order to obtain
realistic values, it is assumed that there is a maximum available space and weight in the
vehicle for the integration of the gensets and BT modules, which is common for both
elements. From this assumption, it is concluded that NBT depends on nGS , or that NGS

depends on nBT (both dependencies rely on the same idea). That is to say, depending
on the number of gensets that are being analysed, the maximum number of BT modules
changes (and vice versa).
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The maximum volume and weight allowable for the powertrain elements, and the
volume and weight of a single genset have been provided by CAF Power and Automation.
From these values, it is concluded that the maximum number of gensets are 4 (NGS = 4),
in an scenario with no space for BTs (NBT = 0). Then, considering the energetic and
volumetric densities of each BT chemistry (see Table 3.3), the relation between NBT and
nGS is derived. Figure 3.18 depicts this relation. The same graph can be depicted to
represent the relation between NGS and nBT .
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Figure 3.18: Relation of maximum number of gensets and BT modules.

3.3.2 Exhaustive Search Optimization - Dynamic Programming

A variation of the exhaustive search optimization introduced in the previous subsection
is deployed when analysing the DP strategy, due to the fact that in this case SOCK is
also optimized. The optimization variables vector XDP and the space of feasible solutions
ΠDP are defined in Equations 3.11 and 3.12. The space of nGS , nBT and SOC0 is defined
as in the previous exhaustive search optimization problem. Regarding SOCK , it is also
defined in steps of 10%, and after some first tests it has been decided to be constrained
between 20% and 50%.

XDP =


nBT

nGS

SOC0
SOCK

 (3.11)

ΠDP =



1 ≤ nBT ≤ NBT → nBT ∈ Z
0 ≤ nGS ≤ NGS → nGS ∈ Z
50 ≤ SOC0 ≤ 90 → SOC0 ∈ {50, 60, ... 90}
20 ≤ SOCK ≤ 50 → SOCK ∈ {20, 30, ... 50}

(3.12)

3.3.3 GA-SM Optimization

The generic GA optimization introduced in Section 2.4.2 is particularized in this section
for the case of the GA-SM strategy. The optimization variables vector XGASM and the
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space of feasible solutions ΠGASM are defined in Equations (3.13) and (3.14). As in this
case ΠGASM does not affect the feasibility of the problem, a wider space is defined for
SOC0, which coincides with the maximum and minimum allowable SOC values. The
same constraints are defined for kSM1, kSM2, kSM3 and kSM4. Besides, some additional
constraints are defined in order to ensure a soft change from state to state (see Figure 3.6).
These constraints are introduced in Equation (3.15). It is considered that a 2% difference
between kSM1 and kSM2, kSM3 and kSM4, kSM1 and kSM3, and kSM2 and kSM4 ensures
the mentioned soft control.

XGASM =



nBT

nGS

SOC0
kSM1
kSM2
kSM3
kSM4


(3.13)

ΠGASM =



1 ≤ nBT ≤ NBT → nBT ∈ Z
0 ≤ nGS ≤ NGS → nGS ∈ Z
20 ≤ SOC0 ≤ 90 → SOC0 ∈ R
20 ≤ kSM1 ≤ 90 → kSM1 ∈ R
20 ≤ kSM2 ≤ 90 → kSM2 ∈ R
20 ≤ kSM3 ≤ 90 → kSM3 ∈ R
20 ≤ kSM4 ≤ 90 → kSM4 ∈ R

(3.14)

subject to :



kSM1 + 2 < kSM2

kSM3 + 2 < kSM4

kSM1 + 2 < kSM3

kSM2 + 2 < kSM4

(3.15)

Table 3.6 shows the relation of the parameters required by the GA. The population
size is defined as 10 times the number of optimization variables, and for the elite count and
crossover fraction the typically recommended values are defined [18]. In order to avoid a
long running time, a maximum number of generations, stall generations and optimization
time are set. The defined values are considered to provide an appropriate balance between
the required optimization time and the optimality of the obtained solution.

Table 3.6: Parameters for the Genetic Algorithm in GA-SM optimization.

Parameter Value Parameter Value
Population size 70 Max. generations 100
Elite count 5 % Max. stall generation 50
Crossover fraction 80 % Max. optimization time 24 h
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3.3.4 GA-FL Optimization

The generic GA optimization introduced in Section 2.4.2 is particularized in this section
for the case of the GA-FL strategy. The optimization variables vector XGAF L and the
space of feasible solutions ΠGAF L are defined in Equations (3.16) and (3.17), respectively.
kF L1, kF L2 and kF L3 follow the same constraints as SOC0, as they refer to specific SOC
values. kF L4 is restricted in a way that the trapezoidal shapes are not too wide or too
narrow, and the feasible space of kF L5 ensures the correct order of the fuzzy sets (see
Figure 3.9). Besides, as in the case of GA-SM, some additional constraints are defined.
These constraints ensure maintaining the trapezoidal shape of the fuzzy sets: the difference
between kF L1 and kF L2 is at least two times the width of the ramp defined by kF L4. The
same happens for kF L2 and kF L3.

XGAF L =



nBT

nGS

SOC0
kF L1
kF L2
kF L3
kF L4
kF L5


(3.16)

ΠGAF L =



1 ≤ nBT ≤ NBT → nBT ∈ Z
0 ≤ nGS ≤ NGS → nGS ∈ Z
20 ≤ SOC0 ≤ 90 → SOC0 ∈ R
20 ≤ kF L1 ≤ 90 → kF L1 ∈ R
20 ≤ kF L2 ≤ 90 → kF L2 ∈ R
20 ≤ kF L3 ≤ 90 → kF L3 ∈ R
1 ≤ kF L4 ≤ 10 → kF L4 ∈ R
0 ≤ kF L5 ≤ 33 → kF L5 ∈ R

(3.17)

subject to :

kF L1 + 2 · kF L4 < kF L2

kF L2 + 2 · kF L4 < kF L3
(3.18)

Table 3.7 shows the relation of the parameters required by the GA. Compared to the
GA-FL optimization, the only variation comes in the population size, which is increased
due to the higher number of variables.

Table 3.7: Parameters for the Genetic Algorithm in GA-FL optimization.

Parameter Value Parameter Value
Population size 80 Max. generations 100
Elite count 5 % Max. stall generation 50
Crossover fraction 80 % Max. optimization time 24 h
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3.4 Results of Sensitivity Analysis to Powertrain Design

After providing all the details required to launch the different sensitivity analyses, this
section presents the results obtained in the sensitivity analysis to the powertrain design.
As it was specified in the methodology presented in Chapter 2, this sensitivity analysis is
focused on comparing the LCC of different control strategies and BT chemistries. Figure
3.19 shows where it is located this sensitivity analysis in the methodology proposed in this
Ph.D. Thesis. The results of this sensitivity analysis have been obtained for the nominal
parametrization of the economic model, and simulating the nominal driving cycle.
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Figure 3.19: Current step of holistic design methodology.

In order to improve the evaluation of the obtained results, the analysis is divided into
several subsections. First, the results of the LCC optimization will be presented in general
terms in Section 3.4.1. In Section 3.4.2, the analysis will be focused on comparing the
LCC values of the different EMS and BT chemistries. This analysis will give a general
idea regarding the most appropriate control strategies and BT chemistries. The reasons
behind the results obtained by each EMS and BT chemistry will be also addressed. Then,
the relation between the optimal values of the optimization variables and a lower LCC
value will be analysed in Section 3.4.3. The influence that the costs that can vary (CGS ,
CBT , Cf and CBT repl) have on the final LCC will be also addressed in Section 3.4.4. This
analysis will unveil which costs become crucial to reduce the overall LCC.

As it was highlighted in Chapter 1, it is important to consider different features when
evaluating an EMS. Besides the optimality in relation to the fuel use or the BT lifetime
(which in the proposed approach are gathered in the LCC), it is important to consider
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also the real time execution and the robustness to potential disturbances, as they limit
the efficiency of the EMS when implementing in a real application. Therefore, in Section
3.4.5 the robustness and real time execution of the proposed control strategies will be
analysed. Finally, in Section 3.4.6 the main conclusions of the first sensitivity analysis will
be reviewed.

3.4.1 Results of LCC Optimization

A review of the obtained optimization results is given in Table 3.8. Each row presents a
case of the sensitivity analysis, i.e., a combination of BT chemistry and EMS. Additionally,
in the first row the results of a conventional DEMU are given. The DEMU is sized with
a genset of 2000 kW, and it is used as reference to compare the results of the sensitivity
analysis. It is worth to mention that no results are given for RB3, due to the fact that no
feasible solution is obtained with this strategy.

At each column of the table a representative parameter is given. First, the obtained
fitness function value is introduced, i.e., the LCC value. The LCC of each case is given
in per units (p.u.) in relation to the LCC of the DEMU. In the next columns the
optimization variables shared in all the cases are given: nGS , nBT and SOC0. nGS and
nBT are given in kW and kWh, respectively, and SOC0 in percentage (%). Table 3.8 also
shows a breakdown of the LCC value into the costs that can vary between the different
cases: genset acquisition cost (CGS), BT acquisition cost (CBT ), fuel use cost (Cf ) and
BT replacement cost (CBT repl). The values of these variables are also given in p.u. in
relation to the LCC of the DEMU. Ctrain and Cmaint are not given, as they are the same
in all the cases. The cost related to the catenary use (Ccat) may vary between the different
cases due to variations in the use of electricity to charge the BT. However, as the obtained
differences are residual in comparison to the variations of the other costs, Ccat is left out of
this analysis. This is the reason why the sum of the cost terms given in the table does not
coincide with the overall LCC value. Finally, the last column gives the results returned
by the BT lifetime estimation model. The lifetime is provided in years.

Moreover, and as additional information, the specific optimization variables of strate-
gies GA-SM, GA-FL and DP are given in Table 3.9. In the case of GA-SM and GA-FL,
RB refers to the RB-SM and RB-FL parametrizations, which are the same for the different
BT chemistries.

In this subsection a qualitative analysis of the optimization results has been provided.
In the following subsections a quantitative analysis of the variables presented in this sub-
section will be developed.
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Table 3.8: Representative results of sensitivity analysis to the powertrain design.

LCC

(p.u.)
nGS

(kW )
nBT

(kW h)
SOC0

(%)
CGS

(p.u.)
CBT

(p.u.)
Cf

(p.u.)
CBT repl

(p.u.)
yBT

(years)
DEMU 1.000 2000 - - 0.038 - 0.369 - -

LTO

RB1 0.996 1000 280 90 0.019 0.016 0.356 0.022 10.3
RB2 0.965 1000 300 90 0.019 0.017 0.326 0.020 12.6
RB3 - - - - - - - - -

RB-SM 0.970 1000 360 90 0.019 0.021 0.325 0.023 13.2
GA-SM 0.960 1000 320 89.9 0.019 0.019 0.318 0.021 12.7
RB-FL 0.967 1000 360 90 0.019 0.021 0.320 0.025 12.1
GA-FL 0.966 1000 360 88.7 0.019 0.021 0.319 0.024 12.3

DP 0.953 1000 360 90 0.019 0.021 0.305 0.025 11.8
ANFIS 0.963 1000 360 90 0.019 0.021 0.314 0.026 11.5

NMC

RB1 1.016 1500 280 90 0.029 0.009 0.366 0.029 5.3
RB2 0.973 1000 480 90 0.019 0.015 0.326 0.030 7.9
RB3 - - - - - - - - -

RB-SM 0.971 1000 540 90 0.019 0.017 0.320 0.032 8.6
GA-SM 0.966 1000 580 89.3 0.019 0.018 0.313 0.033 8.8
RB-FL 0.976 1500 300 90 0.029 0.009 0.331 0.025 6.5
GA-FL 0.972 1000 600 86.8 0.019 0.019 0.316 0.035 8.6

DP 0.959 1000 600 90 0.019 0.019 0.282 0.052 6.1
ANFIS 0.977 1000 600 90 0.019 0.019 0.301 0.051 6.3

LFP

RB1 1.052 1500 200 90 0.029 0.008 0.365 0.067 2.4
RB2 1.009 1500 200 90 0.029 0.008 0.358 0.031 4.8
RB3 - - - - - - - - -

RB-SM 1.013 1500 200 90 0.029 0.008 0.344 0.049 3.3
GA-SM 1.003 1500 200 89.3 0.029 0.008 0.350 0.034 4.4
RB-FL 1.054 1000 400 90 0.019 0.016 0.314 0.122 2.6
GA-FL 1.021 1500 200 86.8 0.029 0.008 0.351 0.050 3.1

DP 1.048 1000 400 90 0.019 0.016 0.298 0.132 2.5
ANFIS 1.085 1000 400 90 0.019 0.016 0.313 0.153 2.1

Table 3.9: Additional optimization variables of GA-SM, GA-FL and DP.

Optimization variables

GA-SM

RB1 kSM1=50.0%, kSM2=60.0%, kSM3=70.0%, kSM4=80.0%
LTO kSM1=22.7%, kSM2=30.3%, kSM3=56.5%, kSM4=81.8%

NMC kSM1=22.7%, kSM2=48.7%, kSM3=58.8%, kSM4=78.1%
LFP kSM1=26.4%, kSM2=56.2%, kSM3=82.8%, kSM4=89.1%

GA-FL

RB2 kF L1=30.0%, kF L2=42.5%, kF L3=67.5%, kF L4=2.5%, kF L5=10.0%
LTO kF L1=23.9%, kF L2=42.1%, kF L3=85.7%, kF L4=3.5%, kF L5=11.4%

NMC kF L1=25.8%, kF L2=55.5%, kF L3=80.2%, kF L4=1.6%, kF L5=14.6%
LFP kF L1=48.1%, kF L2=82.4%, kF L3=87.4%, kF L4=2.4%, kF L5=30.1%

DP

LTO SOCK=25%
NMC SOCK=25%
LFP SOCK=25%

1 Refers to the parametrization of RB-SM
2 Refers to the parametrization of RB-FL
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3.4.2 Analysis of LCC Values

This subsection focuses on comparing the LCC values of the different BT chemistries
and EMSs. In order to ease the analysis, different graphs are depicted in Figures 3.20
and 3.21. On the one hand, Figure 3.20 plots the LCC values grouped according to the
BT chemistry, with the shapes and colours representing different control strategies. The
x-axis represents the LCC, and therefore the values located at the left refer to a better
solution. On the other hand, in Figure 3.21 the LCC value of each case of the sensitivity
analysis is divided into the key cost terms: CGS , CBT , Cf and CBT repl.

DEMU

Life Cycle Cost (p.u.)

Figure 3.20: LCC results for different EMSs and BT chemistries.
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Figure 3.21: LCC breakdown into key cost terms.

3.4.2.1 Comparison of BT Chemistries

The first observation when analysing the results of the different BT technologies is that
the LCC values of the vehicles integrating LFP chemistry are far from those of the other
two chemistries. The LCC of the best strategy with LFP is nearly 4% higher than the best
strategy with NMC, and 5% higher than the best strategy with LTO (see Figure 3.20). In
addition, none of the strategies with LFP obtain a cost-efficient solution compared to the
conventional DEMU (all the cases obtain a higher LCC). Looking to the graph depicted
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in Figure 3.21, it can be concluded that the main cause of this higher LCC is the high
CBT repl values obtained with this chemistry. In order to reduce the degradation of the
BT, a possible initiative is to minimize its use, e.g., by reducing the DOD that it performs.
However, a DOD reduction is normally translated into an increased diesel use. This is the
reason why the solutions with LFP chemistry obtain also a higher fuel use in comparison
to LTO or NMC options (compare cf values of Table 3.8).

Looking to Figure 3.20, it can be also noticed that the results with LTO are slightly
better than the results with NMC. Indeed, in all the strategies the LCC is always higher
in NMC, even if the difference is kept relatively low: in RB1 2% higher, in RB2 0.8%
higher, in RB-SM 0.1% higher, in RB-FL 1% higher, in GA-SM 0.6% higher, in GA-SL
0.6% higher, in DP 0.6% higher, and in ANFIS 1.4% higher. Therefore, the difference is
always lower than 2%, and in most of the cases lower than 1%.

In the case of LTO, all the strategies improve the result of the DEMU, and in the case
of NMC only RB1 obtains a LCC higher than the conventional diesel vehicle. It can be
noticed that in most of the cases the fuel use cost is lower in NMC compared to LTO
(see cf values of Table 3.8), thanks to the possibility of integrating bigger BT systems.
Indeed, as bigger is the BT size, less energy is required from the genset. However, LTO
compensates this disadvantage due to a lower CBT repl value. Even if the LTO acquisition
cost is higher, CBT repl is lower due to the fact that the lifetimes are much longer compared
to NMC. Therefore, it can be foreseen that in scenarios with different fuel prices or BT
acquisition costs, the chemistry with the best result could vary.

3.4.2.2 Comparison of Control Strategies

In order to add further information to the comparison of the different EMSs, in this
subsection the simulation results of all the cases of the sensitivity analysis are depicted
in Figures 3.22 to 3.25. The graphs represent the SOC evolution in the non-electrified
section of the simulated railway line, and correspond to the BOL simulation.

Starting from the simple RB strategies, the improvement of RB2 over RB1 is notorious
in the three chemistries: 3.1% LCC improvement in LTO, and 4.3% improvement in both
NMC and LFP (see Table 3.8). In the cases of LTO and NMC, the LCC reduction is
obtained due to the lower fuel use (8.4% and 10.9%, respectively). In the case of LFP,
the reduction is due to the increase of the BT life, which is doubled (see Figure 3.21 and
Table 3.8). Checking the simulation results depicted in Figure 3.22, the fuel use reduction
of LTO and NMC can be linked to the higher use of the BT. Indeed, in RB1 the SOC
is maintained around 85-90% at the end of the non-electrified section, while in RB2 that
value is reduced until 60-65%. In the case of LFP, the final SOC value is kept close to 90%
in both strategies, what explains the low difference in the diesel use. However, thanks to
a softer battery operation (reduction of peak power values and performed DOD), the BT
lifetime is doubled.
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Figure 3.22: Simulation results of RB1 and RB2 strategies.

As it was previously highlighted, RB3 does not obtain a feasible solution. The reason
is that in this case the genset reference might be lower compared to RB1 and RB2 (see
Figure 3.5), what makes the BT be faster discharged. In order to obtain a feasible solution,
a big BT is required. However, due to the space limitations for the integration of the BT,
that feasible solution cannot obtained. The main disadvantage of RB3 is compensated in
RB-SM/GA-SM thanks to the variation of the strategy when the SOC starts to deplete.

Continuing with RB-SM, it only improves RB2 in the case of NMC, with a LCC
reduction of just the 0.2%. In LTO, RB-SM is 0.5% behind RB2, and in LFP 0.4% behind
(see Table 3.8). This evidences that the first parametrization of SM strategy is not the
most appropriated one, as it was designed to improve the performance of RB2 and RB3.

When optimizing the parameters of the strategy (from RB-SM to GA-SM), the im-
provement is remarkable: 1% lower LCC in LTO and LFP, and 0.5% lower LCC in NMC.
In LTO and NMC the improvement comes due to the fuel use reduction (2.2% in both
cases), and in LFP due to the BT life improvement (which is increased a 33%). With these
results, GA-SM turns to be the second best strategy in NMC and LTO (0.7% behind DP
in both cases) and the best strategy in LFP. Therefore, this evidences that GA-SM is the
second option in terms of LCC, just after DP.

Figure 3.23 helps understanding how is this improvement achieved. In the case of
LTO, the lower diesel use is linked to the depletion of the BT charge (the difference in
the final SOC is around 20%). The higher BT depletion does not affect much in the BT
lifetime (it is just reduced a 3.8%), as LTO is not very sensitive to high DODs. On the
contrary, in the case of NMC the DOD is maintained (indeed, the SOC evolution profile
is very similar), but the diesel use reduction comes from an increase of the BT size (from
540 kWh to 580 kWh). Finally, in the case of LFP the improvement in the BT lifetime
is obtained thanks to a reduction of the performed highest DOD (from 25% in RB-SM to
15% in GA-SM). This is translated into an increase of the diesel use (around 1.7%), but
it is compensated due to the reduction of the BT replacement cost (around 30%).

Looking to the results of RB-FL and GA-FL, it can be checked that they are not able
to improve the results of the SM-based strategies. RB-FL obtains a lower LCC compared
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Figure 3.23: Simulation results of RB-SM and GA-SM strategies.

to RB-SM only in the case of LTO. However, when optimizing the parameters by the GA
approach, GA-SM turns to be a better option than GA-FL in every chemistry. There is no
case where the diesel use is lower in GA-FL compared to GA-SM, what inevitably penalises
the final LCC value. Looking to the simulation graphs in Figure 3.24, it can be checked
that the operation of these FL-based strategies is close to the charge depleting/charge
maintaining approach: the SOC is reduced fast in the first 2500 seconds, and then it is
nearly maintained until the end of the non-electrified section.

Regarding the LCC reductions obtained with the GA parametrization, a 0.1% im-
provement is obtained in LTO, a 0.4% improvement in NMC, and a 3.3% improvement in
LFP. In LTO the difference is almost non-existent, what means that the parametrization
of RB-FL was already appropriate. This issue can be also noticed in Figure 3.24, where
the BT operation is found to be very similar in RB-FL and GA-FL. In the case of NMC,
the improvement comes mainly thanks to a 4.5% reduction of the fuel use, which is caused
due to the reduction of the genset size (from 1500 kW in RB-FL to 1000 kW in GA-FL).
Consequently, the BT size is higher, what increases its replacement cost a 40%. However,
this increase is compensated by the mentioned fuel use reduction. Finally, in the case of
LFP the cost reduction comes due to the reduction of the BT replacement cost. Contrary
to the NMC case, the optimization recommends to increase the genset size and reduce
the BT size. This is translated into a 59% reduction of the BT replacement cost, which
eventually compensates the 11.8% fuel use increase.

20

40

60

80

100

B
T
 S

O
C
 (

%
)

LTO/RB-FL NMC/RB-FL
LTO/GA-FL NMC/GA-FL

LFP/RB-FL
LFP/GA-FL

0 0.5 1.5 2 2.5 3

Time (h)
1 3.5

Figure 3.24: Simulation results of RB-FL and GA-FL strategies.
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Regarding DP strategy, it is found to be the best option in both NMC and LTO cases,
which are the chemistries with the best results. In the three chemistries DP is the strategy
obtaining the lowest diesel use, what is a logical conclusion considering that minimizing
the diesel use is the objective of DP optimization. Indeed, compared to the DEMU, the
fuel use is reduced 17.4% in LTO, 23.6% in NMC, and 19.3% in LFP. As it can be
seen in the simulation results of Figure 3.25, in DP the BT is depleted more than in
the strategies previously analysed. This explains in part the obtained diesel consumption
values. As it has been already highlighted, enhancing the DOD that the BT performs can
negatively affect its lifetime. In the case of LTO, it barely affects the BT degradation:
compared to the next best strategy (GA-SM), the BT lifetime is just reduced a 7.1%. In
the case of NMC, the BT lifetime is affected more (31% reduction compared to GA-SM),
but the fuel use reduction compensates this higher cost. Finally, in the case of LFP the
BT replacement cost is increased overmuch (compared to GA-SM, this cost is almost 4
times higher), what inevitably increases the LCC. This makes DP be far from the best
strategies in the case of LFP (4.5% higher than the best strategy, GA-SM). Therefore, it
can be concluded that DP is the best option as long as a chemistry with a relatively long
BT lifetime is integrated.

As DP is hardly implementable in the real vehicle, the ANFIS learning technique is
proposed to replicate its results. Looking to the graphs of Figure 3.25, it can be observed
that the BT operation profiles are similar in DP and ANFIS. However, the small variations
(which are inevitable, as a 0% training error is not possible) are translated into higher
LCC values compared to DP: in LTO a 1% higher, in NMC a 1.9% higher, and in LFP
a 3.5% higher. In the cases of LTO and NMC, the higher LCC value comes due to the
increased diesel use (2.9% and 6.7% higher, respectively), as the BT lifetimes barely vary
compared to the DP case. Besides, in the case of LFP both the diesel use (5.0% higher)
and BT replacement cost (16% higher) are increased. Compared to the rest of strategies,
the result of ANFIS is only good in the case of LTO, where it is just behind DP and
GA-SM. In the case of NMC, the replication of DP is worse, what makes ANFIS obtain
higher LCC than DP, GA-SM, RB-SM, GA-FL, RB2 and RB-FL strategies. Finally, in
the case of LFP, ANFIS obtains the worst result. This evidences that a better replication
of DP results is necessary, as even a relatively small training error can be translated into
an increased diesel use and BT degradation.
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Figure 3.25: Simulation results of DP and ANFIS strategies.
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In short, the comparison of the different control strategies with different BT chemistries
has shown that DP is the best option in most of the cases, at least when long BT lifetimes
are obtained (such as in LTO or NMC). The replication of DP with ANFIS has not
shown good results, as it is not able to improve the performance of GA-SM strategy at
any case. GA-SM has obtained the best result in LFP, and in LTO and NMC it is just a
0.7% behind DP, being the second best strategy. Therefore, it is also concluded that GA-
SM is an appropriate strategy. The comparison of the different strategies will be further
extended in Section 3.4.5 with the analysis of the robustness and real time execution.

3.4.3 Analysis of Optimization Variables

In this subsection an analysis of the optimization variables returned by the LCC op-
timization approach is developed. In order to help in this analysis, Figure 3.26 depicts
the relation between the three optimization variables (nGS , nBT and SOC0) and the fi-
nal LCC of each case of the sensitivity analysis. The colours represent the different BT
chemistries, as the constraints for nBT vary depending on the chemistry. Some tendencies
are highlighted by the dotted rectangles.

Regarding the genset size, Figure 3.26a shows that the solutions with a lower LCC
propose a genset of 1000 kW. The main reason is that a higher genset leads to a higher
diesel consumption, what penalises the final LCC. As gensets lower than 1000 kW do not
comply the minimum traction requirements, this size turns to be the best option. It can
be also observed that in the case of LFP chemistry most of the solutions propose a genset
of 1500 kW. As it was previously analysed, the main disadvantage of this chemistry is its
short lifetime compared to LTO and NMC. In order to reduce the costs derived from the
BT replacements, the optimal solutions for LFP propose small BT systems, which require
of bigger gensets in order to comply with the traction requirements.

Figure 3.26b shows that the solutions with a lower LCC tend to propose bigger BT
sizes. Considering that in NMC and LTO the optimal genset size is 1000 kW, the max-
imum allowable BT sizes turn to be 600 kWh and 360 kWh, respectively. The solutions
with a lower LCC are close to these values, as it is highlighted in the mentioned graph.
Considering the importance of reducing the fuel use to obtain a low LCC, the option of a
big BT is reasonable, as it can help more in traction and reduce the contribution of the
genset (and consequently, the diesel use). In the case of LFP, the proposed sizes are also
the biggest possible ones, both when the optimal genset size is 1500 kW and 1000 kW.

Eventually, Figure 3.26c shows that the optimal initial SOC values are close to 90%.
Depending on the optimization approach, SOC0 is a discrete or continuous variable. Any-
way, even in the cases when it is a continuous variable, the optimal values are between
86-90%. Therefore, the optimal values coincide with the most conservative option, which
consists of starting the non-electrified section with the BT totally charged.
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Figure 3.26: Influence of optimization variables on LCC.

3.4.4 Influence of Key Cost Terms on Overall LCC

Once the optimization results and the LCC values of the different EMS and BT
chemistries have been analysed, in this subsection a detailed analysis of the cost terms of
the LCC model is developed. The aim of this approach is to identify the most influential
terms of the cost model. That is to say, to identify which are the cost terms with a higher
correlation with the LCC, as they are the ones that have to be minimized in order to
reduce the overall LCC. Figure 3.27 depicts for each case of the sensitivity analysis the
relation between the final LCC value and the previously mentioned cost terms (CGS , CBT ,
Cf and CBT repl). All figures respect the same scale in the y-axis, since in this way it is
easier to identify which is the cost term with the highest correlation with the LCC. As in
the previous figure, the different colours represent the analysed BT chemistries, and the
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dotted lines highlight some of the identified trends.
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Figure 3.27: Relation between LCC and LCC terms.
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First of all, it can be observed that the genset and BT acquisition costs represent a
small fraction of the LCC, and that they show small variability. Indeed, the CGS and
CBT values depicted in Figures 3.27a and 3.27b do not represent more than the 3% of the
referential DEMU cost. Moreover, there is not noteworthy relation between these variables
and the LCC, what unveils that their influence is limited. In the case of Figure 3.27a the
best options have a lower CGS value. However, as it was discussed before, this is more
related to the fact that a smaller genset leads to a smaller diesel consumption.

As it was already highlighted in the bar plots of Figure 3.21, the diesel cost represents
the major proportion of the LCC variable terms (between 28-37% of the DEMU referential
cost). As it is seen in Figure 3.27c, there are clear trends that relate a lower Cf with a
lower LCC in both NMC and LTO results. Compared to the other terms, it can be stated
that Cf is the most influential factor for the cases of NMC and LTO chemistries. This
enforces the idea that an EMS has to be designed aiming a fuel use reduction.

Regarding the BT replacement costs, Figure 3.27d shows that it is the most influential
factor in the case of LFP. This trend was already noticed in the analysis of Section 3.4.2.
The main disadvantage of LFP is that the reduction of CBT repl is made at the expense of
increasing the diesel use, what inevitably limits the obtention of a competitive LCC. In the
case of LTO the cost of the BT replacements is always below 3% of the referential DEMU
cost. Even if the raw cost of LTO technology (cBT ) is the highest one, the long lifetimes
(always above 10 years) compensate this disadvantage. Regarding NMC chemistry, it is
noticed that the solutions with a lower LCC tend to increase CBT repl. As it was previously
highlighted, this can be related to the fact that it is necessary to deplete more the BT
in order to reduce the diesel consumption. This leads to a higher DOD, what inevitably
affects the lifetime of NMC.

In short, it can be concluded that in the cases when an strategy successes in limiting
the BT degradation (as in the cases of NMC and LTO), the potential reduction of the
diesel use becomes the most important parameter of the LCC model. In these cases, if an
EMS is able to reduce the diesel use, it will success in obtaining a competitive LCC. The
effect of CGS and CBT on the final LCC has been found to be low. However, this does not
mean that the genset and BT sizes do not affect in the LCC, as they indirectly influence
in the other costs (Cf and CBT repl).

3.4.5 Analysis of EMS Robustness and Real Time Execution

As it was previously mentioned, in this subsection the evaluation of the different EMSs
is extended. In this case, the analysis is focused on the robustness and real time execution
possibilities of the proposed strategies. Besides the LCC analysis, the current evaluation
becomes also crucial to define which control strategy turns to be the most appropriate,
as the mentioned features could limit the efficiency of an EMS when integrating in a real
application.
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3.4.5.1 EMS Robustness

In a first step, the analysis is focused on the robustness evaluation. Indeed, each of the
cases of the sensitivity analysis has been optimized for a specific driving cycle. However,
this driving cycle is prone to vary while in real operation, so the EMS must be able to give
a feasible solution also under these circumstances, and not only under the scenario used
for the design. In this context, it is considered that DP is not robust, as even the smallest
variation in the driving cycle requires the deployment of a new optimization. Therefore,
DP is kept out of the robustness analysis.

For the proposed analysis, the 24 optimal solutions obtained in the sensitivity analysis
(see Table 3.8) have been simulated again under new driving cycles. The new driving
cycles are variations of the nominal scenario (presented in Figure 3.15), as they aim at
representing potential disturbances that may occur in real operation. In order to vary the
nominal scenario, the number of passengers and the auxiliaries consumption are altered
a ±7% and ±30%, respectively, what leads to 8 additional driving cycles. These driving
cycles coincide with the scenarios used to train the ANFIS controller.

In a first row of simulations, it was identified that some cases turned to be unfeasible
due to the fact that the BT charge dropped below the minimum allowable value (20%).
However, it is important to point out that the BT is able to provide energy even below
that value. Therefore, it is reasonable to use a higher SOCmin value for the design step (to
be more conservative), but allow a lower value during real operation. Indeed, in a second
row of simulations the SOC has been allowed to drop until 15%. The results introduced
in this section refer to these second case. For a first evaluation of the obtained results,
Figure 3.28 shows for each of the analysed control strategies how many of the deployed
simulations returned an unfeasible solution. For each EMS, 27 simulations were deployed,
which correspond to the combination of 9 driving cycles and 3 chemistries.
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Figure 3.28: Analysis of EMS feasibility in different scenarios.

The results show that only RB-SM and RB-FL are able to provide a feasible solution
in all the proposed scenarios. However, in both cases the strategy turns to be less robust
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when optimizing by the GA. This demonstrates that the rules are pushed to the limits of
the feasibility in order to optimize the EMS. An example of this can be appreciated in
GA-SM, as kSM1 tends to be reduced compared to the RB case (see Table 3.9). A low
kSM1 may be valid for the nominal scenario, but in more demanding driving cycles the BT
might be overdischarged. A similar conclusion is obtained in GA-FL with the parameter
kF L1. In both cases it would be necessary to adapt in real time the values of the internal
parameters in order to improve the feasibility of the strategy.

In the case of RB1 and RB2, they are not able to provide a feasible solution in all the
scenarios. The rules specified in these strategies were not designed aiming to be adaptive
to the scenario (e.g., adaptive to the SOC), hence the low robustness is reasonable. Finally,
the results show that ANFIS also obtains some unfeasible solutions. In this case, the main
cause is the error obtained when trying to replicate the DP result. As seen in Figure 3.25,
there is a route section where the SOC nearly drops to the 20%. Therefore, when trying
to replicate the DP result, even a small error in the SOC tracking makes the BT energy
drop bellow the allowable value.

In addition, it is also interesting to analyse how is the LCC altered under the new
driving cycles. Indeed, if the strategy provides a feasible solution but increases overmuch
the LCC, it can be considered that it is not very robust. Figure 3.29 depicts for each case
of the sensitivity analysis (excluding DP) the distribution of the LCC values under the
proposed driving cycles. In order to make a reasonable comparison, the LCC under each
new scenario is normalized in relation to the best case of the sensitivity analysis (DP with
LTO) under that same scenario. In addition, the ’x’ marks represent the LCC values of
the nominal case. In short, the figure allows evaluating if the majority of the cases stay
close to the results obtained in the original optimization, and how close do they stay.

The figure shows that the strategies with the lowest variability are RB-FL, GA-FL and
ANFIS, specially in the case of LTO. In the case of NMC and LFP, there is sometimes a
slightly higher LCC variability, due to the fact that the number of BT replacements differs
in relation to the original scenario. This demonstrates that these strategies are able to
provide an appropriate genset operation also under different driving scenarios, what does
not lead to an increased diesel use.

Besides, RB-SM and GA-SM show a higher variability than previous cases, what
demonstrates again that they are less robust than the FL-based strategies. Moreover, in
the majority of cases the results are worsened compared to the original case. This means
that RB-SM and GA-SM tend to increase the diesel use and/or the BT degradation under
the new scenarios.

Finally, RB1 and RB2 are the strategies showing the highest LCC variability. This
demonstrates again the importance of designing control strategies that try to recover the
BT SOC, as it is done in the cases of RB-SM, GA-SM, RB-FL, GA-FL and ANFIS (in
this last EMS, indirectly while trying to follow the DP operation).
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Figure 3.29: Box plot representing the LCC variability under different scenarios.

3.4.5.2 EMS Real Time Execution

As a second step of this subsection, the time required for the execution of the sim-
ulations has been analysed. The objective of this analysis is to evaluate the real time
performance of the different EMSs. Logically, the simulation execution time can not be
considered as an exact approximation to the real time performance, but it helps under-
stand which strategies will require higher or lower execution times and computational
burden. Therefore, their feasibility can be estimated. Anyway, it has to be considered
that the analysis of this section is a bare approximation.

Specifically, the time required for the simulations of the EMS robustness analysis have
been considered (27 simulations per each strategy). Figure 3.30 shows a box plot of the
obtained execution times. The values are represented in p.u. in relation to the time
required to execute the DEMU simulation, which does not have EMS.

The results show that RB1, RB2 and both SM-based strategies require simulation times
near to the DEMU. Therefore, it can be concluded that their real time execution will not
derive additional problems. RB-FL and GA-FL require nearly 20% more execution time
compared to the previous strategies, as they are based on much more rules and calculations.
Anyway, it can be considered that their execution times are reasonable. In the case of
ANFIS, it is also based on FL, but as the number of membership functions and rules is
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Figure 3.30: Box Plot representing the execution time of each EMS.

much higher, the required simulation time is between 40-50% higher than in the simple
RB strategies. Finally, DP is the strategy that requires the highest simulation time (more
than two times compared to the DEMU), due to the long time required for solving the
optimization.

Therefore, from this analysis it can be concluded that DP and ANFIS are not optimal
options from the computational point of view due their high execution time requirements.

3.4.6 Review of Sensitivity Analysis to Powertrain Design

In this subsection the main conclusions obtained in the sensitivity analysis to the
powertrain design are reviewed. This analysis has been focused on evaluating the proposed
EMSs and BT chemistries. In a first step, the LCC values obtained by each solution have
been compared, and the reasons behind the results of each EMS and BT chemistry have
been investigated and discussed in detail. In the case of the control strategies, their
analysis has been extended by addressing their robustness and execution time. Then, the
analysis has been focused on the obtained optimal values for the optimization variables
and their relation with better LCC values. Additionally, the influence of the key cost
terms (CGS , CBT , Cf and CBT repl) on the obtained LCC has also been analysed.

Regarding the analysis of BT chemistries, Table 3.10 reviews the capabilities of LTO,
NMC and LFP in order to: (1) reduce the LCC, (2) minimize the diesel use, and (3) reduce
the cost related to the BT replacements. More filled bullets refer to a better capability.

The main conclusions are reviewed as follows:

• LTO is the chemistry that obtains the best results, even if the LCC difference with
NMC is most of the times below the 1%.

• LTO is not able to improve NMC in terms of diesel use, but this is compensated
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Table 3.10: Main capabilities of analysed BT chemistries.

LCC Diesel use BT lifetime
LTO          G#      

NMC     G#          #

LFP  ####    ##  ####

thanks to the lower BT replacement costs of LTO.

• The results of LFP are the worst ones, as its LCC turns to be always around 4-5%
higher than NMC and LTO. The main disadvantage of this chemistry is its higher
degradation compared to the other chemistries.

Besides, Table 3.11 resumes the main characteristics of the proposed and analysed
strategies. The table follows the same format as Table 3.10, and the characteristics related
to the robustness and execution time have also been included. To estimate the capability
to reduce the LCC, only the results of NMC and LTO have been considered, as they are
more representative of the potential that each strategy has to improve that value.

Table 3.11: Main capabilities of analysed EMSs.

LCC Diesel use BT lifetime Robustness Execution time
RB1  ####  ####     #    G##      

RB2     #    ##     #   ###      

RB-SM     #    ##     #     G#      

GA-SM     G#    G##     G#    ##      

RB-FL    G##    ##     #     G#     G#

GA-FL     #    ##     G#     #     G#

DP             ### #####  ####

ANFIS     #     #   ###     #    ##

The main conclusions are reviewed as follows:

• The best strategy in terms of LCC is DP. However, the long execution time and
null robustness prevent its integration in a real application.

• The replication of DP by means of the ANFIS approach obtains satisfactory results in
terms of LCC and diesel use, and makes it possible to integrate it in a real application
(even if the robustness and computational requirements should be improved).

• Overall, the SM-based strategies obtain a better result compared to the FL-based
strategies in terms of LCC and diesel use. The optimization by means of the GA
turned to be effective to improve the LCC. The case of GA-SM can be highlighted,
as it is the strategy closest to DP in terms of LCC. However, special attention must
be given to the possibility of obtaining a non-robust controller in the cases optimized
by the GA approach.
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• RB2 obtains a good result in terms of LCC, however its main problem consists on the
robustness. This strategy is not designed to be adapted to possible disruptions in the
SOC, so it easily leads to non-feasible solutions when the route demand increases.

• A similar conclusion is derived when analysing the results RB1, and in this case even
worst LCC and diesel use results are obtained.

After concluding with the analysis of the BT chemistries and EMSs, some other con-
clusions can be highlighted regarding the analysis of the optimization results:

• The solutions with a lower LCC propose a genset of 1000 kW, which coincides with
the lowest feasible size. The main reason is that a smaller genset allows to integrate
a bigger BT, and therefore the potential diesel reduction is higher.

• Regarding the BT size, the solutions with a lower LCC propose to integrate the
maximum allowable energy with the genset of 1000 kW (600 kWh in the case of
NMC and 360 kWh in the case of LTO). The reason is again linked to the capability
of reducing the diesel use, as long as the BT lifetime is maintained.

• The optimal initial SOC coincides with the most conservative option: starting a new
trip with the BT totally charged.

Finally, the analysis of the influence of CGS , CBT , Cf and CBT repl terms in the overall
LCC has unveiled some additional conclusions:

• When an strategy successes in limiting the BT degradation (as in the cases of NMC
and LTO), the potential reduction of Cf becomes the most important parameter of
the LCC model. In these cases, if an EMS is able to reduce the diesel use, it will
success in obtaining a competitive LCC.

• In the case of LFP, the reduction of CBT repl becomes the most important param-
eter of the LCC model. This unveils that in the case of a chemistry with a fast
degradation, trying to improve its lifetime becomes essential.

• There is not a noteworthy relation between CGS and CBT costs and the overall LCC,
as their effect is relatively low.

3.5 Results of Sensitivity Analysis to Economic Model

This section presents and evaluates the results of the sensitivity analysis to some of
the parameters of the economic model. As it was specified in the methodology presented
in Chapter 2, this second sensitivity analysis is focused on evaluating how do the results
and conclusions of the H-DEMU powertrain design (Section 3.4) differ when varying some
parameters of the economic model. Figure 3.31 shows where it is located this sensitiv-
ity analysis in the methodology proposed in this Ph.D. Thesis. As defined in Section
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3.2.3, the variability of the operation hours (tday), BT price (cBT , independently for the
3 chemistries) and diesel price (cf ) will be analysed in this case study. The results are
obtained for the nominal drive cycle also used in the previous sensitivity analysis.
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Figure 3.31: Current step of holistic design methodology.

In order to simplify the analysis of the results, the number of considered EMSs has been
reduced. Firstly, the effectiveness of the GA-based strategies to improve the performance
of RB strategies has been already demonstrated. Therefore, RB-SM and RB-FL strategies
are kept out of the analysis of this section. Secondly, the effectiveness of ANFIS operation
has also been evaluated. However, as deploying this strategy in many scenarios requires a
long training step, it is kept out of the analysis of this section. It is understood that the
results of DP are enough to estimate the potential performance of ANFIS in the proposed
new contexts.

The analysis of the economic parameters is divided into different subsections, according
to the parameter whose sensitivity is analysed: operation hours, diesel price and BT price.

3.5.1 Sensitivity to Operation Hours

In a first step, the sensitivity analysis is focused on the operation hours that the rail
vehicle is driving each day (tday). As previously specified, in the High Scenario (HS)
the vehicle operates 14 h/day, in the Medium Scenario (MS) 10.5 h/day, and in the
Low Scenario (LS) 7 h/day. The analysis of the obtined results will be divided into three
independent sections, as it was done in the case of the sensitivity analysis to the powertrain
design. First, the LCC values obtained at the different cases are analysed. Then, the
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analysis focuses on the variables returned by the different optimization approaches. And
finally, the analysis focuses on the how do the cost terms of the economic model vary.

3.5.1.1 Analysis of LCC Values

The LCC values obtained at each scenario are depicted in Figure 3.32. Logically, a
change in tday means that the LCC varies considerably from one scenario to another. As
the main objective of the current analysis is not to compare the LCC in absolute terms,
the values of each scenario are normalized in relation to the result of DP strategy with
LTO chemistry (which in the nominal scenario of Section 3.4 turned to be the best option).
Then, the results are grouped by each chemistry, as it is easier to see the effect of varying
tday. As the legend shows, each marker refers to a different EMS. The results will be
analysed from two points of view: focusing on the comparison of the EMSs, and focusing
on the comparison of the BT chemistries.

14 h/day

10.5 h/day

7 h/day

1 1.02 1.04 1.06 1.08 1.1 1.12

Life Cycle Cost (p.u.)
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GA-FL
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LTO

NMC

14 h/day
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14 h/day

10.5 h/day

7 h/day

Figure 3.32: Sensitivity of LCC values when varying tday.

Regarding the results obtained by the different EMSs, it can be checked that in general
the relative differences between them are reduced as the operation hours are reduced. For
instance, in HS/LTO the difference between DP and RB1 is 5.1%, while in LS/LTO the
difference is reduced up to the 3.8%. Anyway, in general this reduction is similar in all the
strategies. That is to say, with a few exceptions, the order of the EMSs is barely changed
from scenario to scenario: DP continues being the best option with LTO and NMC, and
GA-SM is the best option with LFP (and the second best option with LTO and NMC).

Regarding the results of the different BT chemistries, similar conclusions can be ob-
tained. The relative difference between the results of the chemistries is reduced when
reducing tday. However, this reduction does not affect in the general conclusions obtained
in the previous section. The difference between LTO and NMC continues being low, but
with LTO always ahead. In the case of LFP, it continues being far from the results of the
other two chemistries: even in LS, the difference of the best LFP strategy (GA-SM) and
the best LTO strategy (DP) is higher than the 4%.
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3.5.1.2 Analysis of Optimization Variables

Besides the LCC values, more variations can be observed when analysing the optimiza-
tion variables obtained in the different scenarios. Figure 3.33 depicts the relation between
the optimization variables and the LCC for each scenario. The upper graphs represent
the results of HS, the middle graphs represent the results of MS, and the lower graphs
represent the results of LS. The left-side graphs show the relation of the optimal genset
sizes, while the right-side graphs present the results of the optimal BT sizes. The LCC
values of each graph are normalized in relation to the best option of each scenario, as
the objective of these figures is not to analyse how do the exact LCC values vary from
one scenario to another. The SOC0 values returned by the optimization are not depicted,
as in all the scenarios the same conclusion obtained in Section 3.4 is maintained (SOC0
values around 90% are the optimal option).
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Figure 3.33: Sensitivity of optimal sizing values to tday.

A first general observation shows that the biggest variation in the optimal sizing values
is made when changing from MS to LS, rather than from HS to MS. Anyway, some general
tendencies can be derived from these results. Regarding the optimal genset, it can be seen
that when reducing tday, the cases with a better LCC continue proposing the genset size
of 1000 kW. In the LS there are more options that propose the genset of 1500 kW, however
these are always the options with a higher LCC.

Besides, the tendency on the BT sizes shows that when reducing the operation hours,
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the solutions with a better LCC start proposing optimal BT sizes with lower values. In
the nominal scenario (HS), the best results (those of LTO and NMC) proposed BT sizes
near the maximum allowable values (360 kWh and 600 kWh, respectively, considering that
the optimal genset size was 1000 kW). However, it can be observed than when reducing
the daily operation hours to 7 h (LS), the optimal BT sizes start being closer to 300 kWh
in the case of LTO and to 500 kWh in the case of NMC. On the contrary, the results of
LFP stay on their own when reducing the daily operation hours (200 kWh).

3.5.1.3 Influence of Key Cost Terms on Overall LCC

Finally, the analysis of this subsection focuses on how does the influence of the key
cost terms (CGS , CBT , Cf and CBT repl) change when varying the daily operation hours.
This analysis also helps understanding the LCC and optimal sizing values obtained in
the analysis of this subsection. Figure 3.34 shows the relation between the LCC and the
mentioned cost terms, following a similar format as Figure 3.27: each colour refers to a BT
chemistry, and all graphs use the same scale in the y-axis to better identify the correlations
between the cost terms and the overall LCC. The different subplots have been arranged
so it is easier to compare the results in HS, MS and LS individually for each cost term:
subplots a, c and e show the three scenarios to evaluate the genset acquisition cost (CGS),
subplots b, d and f the three scenarios to evaluate the BT acquisition cost (CBT ), subplots
g, i and k the three scenarios to evaluate the diesel use cost (Cf ), and finally subplots h, j
and l the three scenarios to evaluate the BT replacement cost (CBT repl). At each graph,
both variables are normalized in relation to the LCC value of the best case.

In the following lines, each of the variable cost terms are analysed in detail. First of
all, it can be stated that when reducing tday, the relative contribution of the acquisition
costs (both CGS and CBT ) increases a little. This is a logical conclusion, since when
reducing tday the operation costs decrease, while the acquisition costs are kept constant.
However, this contribution continues being low compared to the rest of terms, as they do
not represent more than the 5% of the referential LCC in any case. Besides, there is not
noteworthy relation between CGS , CBT and the LCC.

Regarding the diesel use cost (Cf ), its relative contribution inevitably decreases when
reducing the daily operation hours, as less diesel is consumed during the useful life of the
vehicle: from accounting around 30-40% of the referential LCC in HS to around 20-25%
in LS. Anyway, it can be stated that reducing the diesel use continues being the key to
obtain a good LCC: as more is Cf reduced, a lower LCC is obtained, even in LS.

Regarding the variation of the BT replacement costs (CBT repl), it can be checked that
their relative contribution is also reduced. With a lower tday, longer BT lifetimes can
be achieved, what inevitably reduces the importance of CBT repl. Anyway, this decrease
is lower than in the case of Cf , as the BT life does not increase proportionally to the
reduction of tday. Besides, it can be checked that even in the LS, in order to obtain a good
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Figure 3.34: Sensitivity of the key cost terms to tday.

LCC it is important to reduce the BT degradation.
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The reduction in the importance of the diesel use is the cause behind the lower BT
sizes proposed when reducing tday. Indeed, in the nominal scenario (HS) the reason be-
hind integrating big BT systems was that they could reduce more the diesel use, what
compensates the higher BT acquisition and replacement costs of these systems. However,
when the importance of Cf is reduced (in this case, a little more than the importance of
CBT repl), the benefits of integrating big BT systems disappear, as the higher CBT and
CBT repl costs are not compensated. In addition, the reduction of the importance of both
Cf and CBT repl is the cause of the LCC results previously analysed in Figure 3.32. As
the importance of both cost terms is reduced similarly (even if in the case of Cf is more
notorious), there is not EMS or BT chemistry that improves its performance compared to
the rest of cases (similar results were obtained in the three cost scenarios).

In short, it can be concluded that when reducing tday, it continues being crucial to
reduce Cf , but always keeping a reasonable CBT repl value.

3.5.2 Sensitivity to Diesel Price

In this subsection, the sensitivity of the powertrain design to the diesel price (cf ) is
analysed. As previously specified, in HS this price is kept at 1.55 €/L, in MS at 1.10 €/L,
and in LS at 0.65 €/L. As with previous results, the analysis is divided into different steps.
First, the LCC values of the different cases are analysed. Then, the analysis focuses on
the optimization results, and finally, on the influence of the cost terms.

3.5.2.1 Analysis of LCC Values

First of all, Figure 3.35 depicts the LCC obtained by each EMS and BT chemistry at
the three cost scenarios. The figure follows the same format as Figure 3.32: the LCC values
are normalized in relation to DP/LTO, the results are grouped by each BT chemistry, and
each marker refers to an EMS. The results are analysed from two points of view: focusing
on the comparison of control strategies and focusing on the comparison of BT chemistries.
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Figure 3.35: Sensitivity of LCC values when varying cf .
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Regarding the results of the different EMSs, it can be checked that as lower cf is, the
relative differences between the strategies are reduced. That is to say, all the strategies get
closer in terms of LCC when reducing cf . For instance, in the case of LTO, the difference
between the best and worst strategies is 6.6% in HS, but 2.8% in LS. Similar conclusions
are obtained focusing on the results of NMC and LFP.

Besides, it can be also checked that when cf is reduced, DP worsens its results compared
to the remainder EMSs. This is specially notorious in the case of LFP and NMC: when
reducing cf , DP is the only strategy that increases the relative LCC, that is to say, it is
the only strategy that goes to the right in the graph. In the case of LTO, this is more
difficult to identify because the result of DP is used as baseline to calculate the relative
LCC. However, it can be seen that the rest of the strategies get much closer to DP when
cf is reduced.

Finally, it can be also noticed that RB2 tends to improve its result with low cf values,
specially in LTO and NMC. Indeed, with these chemistries, RB2 outperforms GA-FL in
the lower price scenarios. The remainder strategies obtain similar performances in all the
proposed scenarios.

Regarding the BT chemistries, it is checked that with a higher cf , NMC is able to get
closer to the results of LTO. In HS, NMC improves LTO in the case of DP (0.6% lower
LCC), and in the remainder strategies it stays close to the results of LTO (closer than in
MS). Anyway, a further cf increase than the one proposed in HS is necessary for NMC to
become clearly the best option. On the contrary, in LS the difference between LTO and
NMC is clearly beneficial for LTO. Finally, regarding LFP chemistry, there is no notorious
difference compared to the nominal scenario. As the main disadvantage of this chemistry
is its high degradation, it is barely affected by the variation of cf .

3.5.2.2 Analysis of Optimization Results

As it was checked in the previous subsection, the results of the optimization variables
can also vary when increasing or decreasing cf . Figure 3.36 depicts the relation between
the optimal genset and BT sizes and the LCC values of each case. The figure follows the
same arrangement of graphs defined for Figure 3.33, and the LCC is normalized in relation
to the best option of each scenario. The optimal SOC0 values are not depicted as there
are not changes in relation to the nominal scenario already analysed in Section 3.4.

On the one hand, the results of the optimal genset size (left-side graphs) show that
when increasing cf , most of the options propose a genset of 1000 kW (even when integrating
LFP). Besides, when reducing cf , there are more options that propose the genset of 1500
kW. Anyway, even in LS, the cases with the best LCC values continue proposing the
genset of 1000 kW. As it will be analysed afterwards, the reason is that in the cases with
a low cf , the importance of obtaining low CBT repl values increases, what can be obtained
integrating lower BT sizes (and consequently, higher genset sizes).
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Figure 3.36: Sensitivity of optimal sizing values to cf .

On the other hand, when analysing the results of the optimal BT sizes (right-side
graphs), it can be derived that as higher cf is, higher sizes are proposed. In HS, most of
the NMC cases propose a BT size of 600 kWh, most of the LTO cases a BT size of 360
kWh, and most of the LFP cases a BT size of 400 kWh (all are the maximum allowable
sizes with the genset of 1000 kW). However, when reducing cf , the optimal BT sizes are
lower. In the case of LFP they are maintained around the maximum allowable values, but
in the case of NMC and LTO they are hardly around these values. As previously stated,
this is due to the increase of CBT repl importance when reducing cf : in order to reduce the
costs related to the replacement of BT systems, the optimizations decide to reduce the
BT sizes. This is analysed in detail in the following subsection.

3.5.2.3 Influence of Key Cost Terms on Overall LCC

In a last step to analyse the sensitivity to cf , Figure 3.37 depicts the relations between
the obtained LCC values and the key cost terms of the economic model (CGS , CBT , Cf

and CBT repl) in the different cost scenarios. These graphs help evaluating how do the
influence of these terms change when varying the diesel price. The figure and suplots
follow the same arrangement as Figure 3.34. As in that figure, all the graphs share the
same scale in the y-axis, as in this way it is easier to identify correlations. At each graph,
both variables are normalized (p.u.) in relation to the case with the lowest LCC.
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Figure 3.37: Sensitivity of key cost terms to cf .

Regarding the influence of the acquisition costs, it can be checked that neither CBT or
CGS start to be more influential when varying the diesel price. Besides, in any of the cases
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the contribution of these terms is higher than the 5% of the referential LCC. In the case
of CGS , a small increase is denoted in LS, but it is more related to the fact that higher
gensets are proposed in that scenario.

Logically, Cf is the term that it is most affected by the change in the diesel price. In
HS it accounts to the 35-50% of the referential LCC, but in LS these values are reduced
to the 20-30%. This reduction has two effects. On the one hand, the influence of Cf is
reduced a little, but does not disappear, as seen in Figure 3.37k. Indeed, there is still a
relation between a lower Cf and a lower LCC. On the other hand, the influence of CBT repl

is increased. The contribution of CBT repl to the final LCC barely changes when reducing
cf . However, as the contribution of Cf is reduced, the proportion of CBT repl in relation
to Cf is increased. Consequently, the influence of CBT repl increases when reducing the
diesel price. This can be checked in Figure 3.37l. That is to say, compared to the nominal
scenario (MS), in LS it becomes more important to reduce the BT degradation.

This increase in the CBT repl importance has some side effects, which were already
identify during this subsection. As DP tends to increase the degradation of the BT (the
BT makes a higher DOD with this strategy), it obtains worse results when reducing cf .
Besides, LTO generally obtains lower CBT repl values compared to NMC. Therefore, LTO
improves over NMC in terms of LCC.

On the contrary, in HS the importance of reducing the diesel use is even higher. This
inevitably makes the importance of CBT repl be reduced, contrary to the case of LS. Conse-
quently, the BT chemistries and EMSs that most reduce Cf (even if that goes against BT
degradation) turn to obtain better results than in the lower scenarios. The good results
of NMC chemistry and DP strategy in HS are a clear example of this trend.

3.5.3 Sensitivity to BT Price

The last parameter to be analysed in the sensitivity analysis to the economic model is
the price of the BT technology (cBT ). Each BT chemistry has a different cBT , therefore
the sensitivity to the prices of each chemistry has to be analysed individually. As it was
previously specified, in the case of LTO 1200-1500-1800 €/kWh prices are proposed for each
scenario (LS-MS-HS, respectively), in the case of NMC 640-800-960 €/kWh, and in the
case of LFP 520-1040-1560 €/kWh. As with previous sensitivity analysis, the evaluation
of the results will be divided into three steps. First, the analysis will focus on the LCC
values, then on the optimization results, and finally on the influence of the cost terms.

3.5.3.1 Analysis of LCC Values

Figure 3.38 depicts the LCC values of the scenarios proposed in this analysis. Varying
cBT for one chemistry does not affect in the results of the other chemistries. However, in
order to better understand what happens when varying the price of a single chemistry,
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one graph is depicted for the variation of each chemistry price: Figure 3.38a shows the
obtained results when varying LTO price, Figure 3.38b the results when varying NMC
price, and Figure 3.38c the results when varying LFP price. In order to better identify the
chemistry that is being analysed, the chemistries with no variation have a grey background.
Following the format of the previously introduced Figures 3.32 and 3.35, in all the cases
the LCC values are normalized in relation to the DP/LTO result. This is the reason
why in the case of Figure 3.38a the values of LFP and NMC change from one scenario to
another: the absolute LCC values do not change, but as the reference LCC has changed,
the normalized LCC values are different.
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Figure 3.38: Sensitivity of LCC values to cBT of each chemistry.

Firstly, the results can be analysed focusing on the comparison of the different EMSs.
In the case of the LTO price variation, it can be checked that the same trend is maintained
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in all the scenarios. That is to say, there is no EMS that performs better/worse when
increasing/decreasing LTO price. However, in the case of NMC and LFP price variation,
some changes can be perceived. Specifically, in these two chemistries it can be noticed
that DP improves its result as lower is the BT price. In the case of NMC, DP increases
the difference with GA-SM, and in the case of LFP, it becomes the best strategy. The
reason is that when the BT price is reduced, the importance of CBT repl is also reduced.
Consequently, the strategies that degrade more the BT (DP is a clear example) improve
their results. In the case of LTO this is not noticed, mainly because the BT degradation
does not change much from one strategy to another, contrary to the cases of NMC/LTO.

Secondly, the results can be analysed focusing on the comparison of the different BT
chemistries. For this evaluation, each BT chemistry is analysed only in the case when its
cost is altered, as this variation does not affect the performance of the other chemistries.
Regarding LTO (Figure 3.38a), it can be checked that when reducing its price (LS), it
improves its performance in relation to the remainder chemistries. It increases its distance
with NMC up to the 1.5% in the case of the best strategy, and with LFP this distance is
increased up to the 4.8%. On the other side, when increasing the price (HS), NMC starts
to be the best option in some of the strategies (with DP a 0.5% lower LCC, with GA-SM
a 0.3% lower LCC, and with GA-FL a 0.5% lower LCC). Therefore, it is demonstrated
that LTO price has to be increased more than in the proposed HS so NMC can become
clearly the most appropriate option.

Regarding NMC chemistry (Figure 3.38b), it can be checked that reducing its price
has a similar impact as increasing LTO price. In LS, NMC becomes the main chemistry
option in most of the strategies (with DP a 1% lower LCC, with GA-SM a 0.5% lower
LCC, and with GA-FL a 0.8% lower LCC). In addition, increasing NMC price has a
similar impact as reducing LTO price: LTO becomes clearly the best option, as in almost
all the strategies the options with LTO reduce the LCC more than a 1% in relation to
their counterparts.

In the case of LFP (Figure 3.38c), increasing its price logically enlarges its distance with
the other chemistries. However, when reducing its price (in this case the price reduction
is higher than in NMC and LTO) it gets much closer to the other chemistries, specially
to NMC. However, it only success in obtaining a better result than NMC in the cases
of RB1 (0.4% lower LCC) and RB2 (0.2% lower LCC), which are indeed the strategies
with the worst result. Therefore, it is demonstrated that besides a LFP price decrease, a
scenario in which NMC or LTO prices are also increased is necessary for LFP to become
a reasonable option.

3.5.3.2 Analysis of Optimization Variables

After evaluating the obtained LCC values, the next analysis focuses on the optimization
variables returned by the optimization at each cost scenario. Figure 3.39 shows the relation
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between the optimal genset and BT sizes and the LCC values of each cost scenario. The
subplots are arranged as in the previously introduced Figure 3.33 and Figure 3.36.

The objective of this figure is to evaluate the variations of the optimal sizing values,
rather than the comparison of the LCC values. Due to this reason and in the sake of
simplicity, at each cost scenario (HS, MS and LS) the results of each chemistry refer to
the results obtained when solely varying their price. That is to say, in Figure 3.39a the
results refer to the case when all the BT prices are in the HS: the results of LTO refer to
the increase of its cost to 1800 €/kWh, the results of NMC to the increase of its cost to
960 €/kWh, and the results of LFP to the increase of its cost to 1560 €/kWh.
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Figure 3.39: Sensitivity of optimal sizing values to cBT .

Regarding the variation in the results of LTO, it can be noticed that they are not very
sensible to the change of cBT . In the case of the optimal genset size, there is just one
option in HS that proposes the 1500 kW size, and it turns to be the strategy with the
worst result. Besides, in the case of the optimal BT size, just some minor changes are
noticed: while the price goes down, slightly higher BT sizes are proposed, even if in the
original scenario (MS) they were already near the maximum allowable sizes.

In the case of NMC, the results of the optimal genset size are maintained (1000 kW), as
in comparison to the original scenario (MS) just one change is noticed. Besides, regarding
the optimal BT results, some minor changes are found, similar to the case of LTO: when
reducing the BT price, the proposed sizes tend to be slightly bigger, but the difference is
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minimum. A higher cBT increase or decrease is required to vary the sizing results to a
considerable extent.

Finally, in the case of LFP, the major differences are found in the proposed genset
sizes. As lower cBT is, the optimal options tend to propose the genset of 1000 kW. The
reason behind this variation will be further analysed afterwards, but it is related to the
fact that when reducing the BT price, the effect of the BT replacement cost is reduced.
This increases the importance of reducing the diesel use, and therefore, of reducing the
genset size. Besides, the BT sizes are only affected by the genset size. Indeed, in all the
cases the proposition is to integrate the maximum allowable BT size: 200 kWh with the
genset of 1500 kW, and 400 kWh with the genset of 1000 kW.

3.5.3.3 Influence of Key Cost Terms on Overall LCC

In order to complete the analysis of the BT price sensitivity, Figure 3.40 shows a series
of graphs that relate the obtained LCC values and the key cost terms (CGS , CBT , Cf

and CBT repl) for the different cost scenarios. The figure and subplots follow the same
arrangement as the previously introduced Figure 3.34 and Figure 3.37. Moreover, as in
the last analysis, the results of each chemistry refer only to the variation of their price.
That is to say, the depicted LCC values are not convenient to compare the performance of
the different BT chemistries or EMSs, as the aim is to identify the correlations between a
certain cost term and the overall LCC. All the graphs share the same scale in the y-axis,
as in this way it is easier to identify the mentioned correlations.

Regarding the variation of LTO price, it can be checked that it barely affects in the
values of the different cost terms. Even if cBT is increased or reduced, CBT and CBT repl

are barely affected, and therefore their influence is not increased. Consequently, the im-
portance of Cf is unchanged. This is the reason why only minor changes have been found
in the results of the LCC and optimal variables of LTO during this subsection.

Besides, the results of NMC unveil some minor changes in the effect of the cost terms.
When cBT is increased, the major change is found in CBT repl. However, the best EMSs
continue being the ones that reduce more the diesel use (DP), what demonstrates that the
importance of reducing Cf (and thus, the importance of CBT repl) is not varied.

Eventually, the results of LFP are the ones that show more variability from one scenario
to another. This is also a reasonable conclusion, as the price of LFP is varied more than
the price of the other two chemistries. As in the case of NMC, CBT repl is the most affected
cost factor when varying cBT : when reducing the BT price, the contribution of CBT repl is
also reduced. Consequently, Cf starts having more influence: in LS, the strategies with
lowest diesel consumption end up being the best ones (e.g., DP). On the contrary, when
increasing cBT , the contribution and importance of CBT repl are enhanced even more than
in the original scenario (MS).
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Figure 3.40: Sensitivity of key cost terms to cBT .

3.5.4 Review of Sensitivity Analysis to Economic Model

In this section the effect of varying the daily operation hours (tday), the diesel price (cf ),
and the BT price (cBT ) has been evaluated. The analysis has been focused on identifying
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how is the optimal powertrain design affected when varying the mentioned parameters of
the economic model. Specifically, the variations in the LCC value of the different EMSs
and BT chemistries, the variations in the returned optimization variables (BT size, genset
size and SOC0), and the variations in the influence of the economic model terms (CGS ,
CBT , Cf and CBT repl) have been evaluated.

Table 3.12 reviews the main conclusions obtained in this section. At each column,
the effect of the different parameters of the economic model are listed; and at each row,
the analysed design decisions. In short, the value of each cell refers to how much the
specific design decision has changed when varying the specific parameter of the economic
model (e.g., how much have changed the results of the optimal BT size when varying the
operation hours). At each cell, the superscript number refers to the comment at which
each conclusion is further discussed. The comments and conclusions are listed below.

Table 3.12: How much does the variation of each parameter influence the optimal design
of the H-DEMU powertrain.

Operation hours Diesel price BT price
Optimality of EMSs  ##(01)  ##(02)  ##(03)

Optimality of BT chemistries ###(04)  ##(05)    (06)

Optimal genset size  ##(07)   #(08)   #(09)

Optimal BT size    (10)    (11)  ##(12)

Optimal SOC0 ###(13) ###(13) ###(13)

Influence of cost terms    (14)   #(15)  ##(16)

(1) The LCC distances between the different EMS are reduced when reducing tday, but
there is no EMS that overtakes another one compared to the nominal scenario.

(2) The relative performance of DP in comparison with the rest of EMSs is improved
when increasing cf , and it is reduced when decreasing cf . In all the cases it remains the
best strategy, and the order between the remainder EMSs is barely varied.

(3) Changes are noticed in the cases that integrate NMC and LFP: as lower cBT is,
the performance of DP is enhanced, as the relative influence of CBT repl is reduced (it is
the main drawback of DP). No notable changes are noticed in the remainder strategies.

(4) LTO remains the best chemistry. No noticeable changes have been identified when
varying the operation hours.

(5) As the importance of reducing the diesel use is increased when increasing cf , NMC
improves its results (it can integrate higher BT sizes, which allow a higher diesel use
reduction). However, NMC does not outperform LTO in the defined LS. In the opposite
scenarios, LTO gains more distance against NMC and LFP.

(6) When slightly increasing LTO price or slightly reducing NMC price, NMC becomes
the best option in most of the strategies. However, it does not become clearly the best
option, as LTO stays always close. In the opposite scenario, LTO gains more distance
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3.6 Results of Sensitivity Analysis to Driving Cycle

against NMC. Even if LFP price is reduced much, it does not become competitive.

(7) The general tendency is maintained when reducing tday. Some slight changes unveil
that at lower operation hours, the genset of 1500 kW starts being the optimal option in
some cases. Anyway, the options with lowest LCC continue proposing the 1000 kW genset.

(8) When reducing cf , the importance of reducing the diesel use is reduced, and con-
sequently many options propose the genset of 1500 kW. Anyway, the options with lowest
LCC continue proposing the 1000 kW genset.

(9) In NMC and LTO there are not nearly changes in the optimal genset size. In LFP,
when reducing much cBT , the option of 1000 kW becomes clearly the optimal one.

(10) When reducing tday, minimizing the fuel use losses importance. Therefore, inte-
grating big BT systems is no longer cost-efficient: the optimal BT sizes are reduced.

(11) The same conclusion as in point (10) is obtained: when reducing cf , minimizing the
fuel use losses importance. Consequently, lower BT sizes are proposed. On the contrary,
when increasing cf , the optimal sizes are even closer to the maximum allowable values
with the genset of 1000 kW.

(12) In LTO there are not changes, and in NMC and LFP just slight variations: the size
of NMC is slightly reduced when increasing cBT , and in the case of LFP the changes are
influenced by the optimal genset size (the maximum allowable BT size is always proposed).

(13) The optimal initial SOC is always 90%, even when varying the H-DEMU operation
hours, the diesel price and the BT price.

(14) Cf losses influence when reducing tday, and a slight increase in the importance of
CBT repl is noticed. It is worth to mention that with a tday reduction both the diesel use
and the BT degradation are reduced.

(15) When reducing cf , a compromise between Cf and CBT repl is required to obtain a
low LCC, as the reduction of diesel use losses influence. On the contrary, when increasing
cf , the reduction of the fuel use gains even more importance (except in the case of LFP).

(16) Only some minor changes are noticed in the case of LFP: when reducing much
cBT , minimizing Cf turns to be more important that minimizing CBT repl.

3.6 Results of Sensitivity Analysis to Driving Cycle

This section presents and evaluates the results obtained in the sensitivity analysis to
the driving cycle. As it was specified in the methodology presented in Chapter 2, this
last sensitivity analysis focuses on evaluating how do the results and conclusions of the
powertrain design (Section 3.4) differ when varying the characteristics of the route that
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the H-DEMU completes (i.e., the driving cycle). Figure 3.41 shows where it is located
the current sensitivity analysis in the holistic design methodology proposed in this Ph.D.
Thesis. Specifically, 16 driving cycles of different lengths and average demands have been
used in this analysis, as it was detailed in Section 3.2.4. The results have been obtained
for the nominal parametrization of the economic model.
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Figure 3.41: Current step of holistic design methodology.

Considering the conclusions obtained in the previous sensitivity analyses, and with
the aim of reducing the number of cases to be simulated and evaluated, the number of
considered EMSs and BT chemistries has been reduced. Regarding the control strategies,
RB1 and GA-FL are not evaluated. Indeed, in the contexts analysed so far it has been
demonstrated that RB1 and GA-FL do not outperform RB2 and GA-SM, respectively.
Therefore, they are excluded from the analysis of this section, as it is expected that they
will not improve their performance in the new scenarios. Regarding the BT chemistries,
the same decision has been made with LFP: as it has been demonstrated that in the
contexts analysed so far it is not a competitive option compared to NMC or LTO, it is
excluded from the current analysis.

In order to improve the evaluation of the obtained results, the analysis is divided into
different sections. First, in Section 3.6.1 the variation of the LCC results when simulating
different driving cycles is analysed. Then, Section 3.6.2 focuses on how do the optimal
values of the optimization variables (nGS , nBT and SOC0) vary at the different proposed
scenarios. A similar analysis is developed in Section 3.6.3, but in this case the analysis
focuses on the key cost terms of the LCC model (CGS , CBT , Cf and CBT repl). Finally,
the main conclusions are reviewed in Section 3.6.4.
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3.6 Results of Sensitivity Analysis to Driving Cycle

3.6.1 Analysis of LCC Values

In order to analyse the variation of the LCC values in the different scenarios, the graph
depicted in Figure 3.42 is proposed. For each of the 16 driving cycles, the results of NMC
and LTO chemistries and RB2, GA-SM and DP strategies are given. The results are
grouped in rows by each chemistry, and the markers represent the different EMSs. For
the results of each driving cycle, the LCC is normalized in relation to the result of DP
with LTO, as it was found to be the optimal case in the first analysis (Section 3.4). The
number inside the square in the right of the graph represents the ID of the driving cycle,
which will be useful afterwards in Sections 3.6.2 and 3.6.3. Besides, the numbers depicted
in the left define the approximate characteristics of each driving cycle: the length of the
non-electrified section (h) and the average demand power (kW), respectively. In order to
better differentiate the cases, a different background colour is used for each section length.

As it can be noticed, in some driving cycles the BEMU is the optimal option (i.e., the
option with no gensets, only powered by BTs). Therefore, in these cases only a single
EMS is depicted, as the comparison of the control strategies does not make sense. When
this happens, the LCC is normalized in relation to the result of the BEMU with LTO.
Specifically, the BEMU is the optimal option in the scenarios with the lowest demands,
what demonstrates that this topology is only valid for scenarios where the demand of the
non-electrified sections is lower than 150-200 kWh (energy demand of scenario 2).
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Figure 3.42: Sensitivity of LCC values to different driving cycles.
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The results are evaluated from two points of view: focusing on the comparison of the
different chemistries, and focusing on the comparison of the different EMSs.

Regarding the different chemistries, the results show that in general LTO continues
being the chemistry with the lowest LCC. In the case of GA-SM and RB2, LTO obtains
always better results, and in the case of DP only in three driving cycles (IDs 7, 10 and
14) is NMC the chemistry with the best result. Besides, in the cases when NMC obtains a
better result, the LCC difference between both chemistries is never higher than the 0.8%.
Therefore, these results demonstrate that the conclusions obtained in the nominal scenario
do not differ much from the ones obtained in the new driving cycles.

The distance between LTO and NMC seems to be higher in the driving cycles with
lowest demand: in driving cycles 1 to 6, the LCC difference between the best result of
both chemistries is always higher than the 3.7%. On the contrary, in the scenarios with
a higher demand that distance is reduced. For instance, in the scenarios with a non-
electrified section of 3.5 h, the distances between LTO and NMC are generally around 1%.
This trend suggests that NMC obtains better results in the scenarios with a higher demand,
due to the fact that it can integrate higher BT sizes compared with LTO. In shorter and
less demanding scenarios, however, there is no need to integrate big BT systems, what
brings no benefit for NMC.

Regarding the comparison of the different strategies, a first look to the results demon-
strates that DP continues being the best option also when varying the driving cycle.
Excluding the scenarios where the optimal option is the BEMU, there are only two cases
where GA-SM obtains a better result compared to DP: ID 16 and ID 4, in both cases
with NMC chemistry. Moreover, in ID 16 the LCC difference is just 0.4%. Therefore, this
enforces the idea that under any new scenario, probably DP will obtain the lowest LCC.

The results also show that the LCC difference between DP and the other two EMSs
is increased in the scenarios with a lower demand, and that it is reduced in the scenarios
with a higher demand. The reason behind this trend may be that in the shorter or less
demanding driving cycles (e.g., IDs 3, 4, 5 and 6) DP forces the battery to be more
discharged, what inevitably saves more diesel and improves the LCC. On the contrary,
GA-SM and RB2 cannot provide that operation in the scenarios with a lower demand, as
in the case of these strategies, the BT discharge speed depends on the difference between
the demand and the genset operation point (which is fixed regardless the demand level of
the route, see Section 3.2.1). That is to say, they do not force the BT to be discharged.

Comparing the results of the other two strategies, it can be noticed that GA-SM obtains
better results than RB2, specially in the most demanding scenarios. In the scenarios with
a low demand (e.g., IDs 3, 4, 5 and 6) there are some cases where both strategies obtain
nearly the same result. The reason is that in the scenarios with a low demand, the BT is
not discharged much. Therefore, in the case of GA-SM the strategy always works in the
high SOC state, which indeed replicates the operation of RB2. However, in most of the
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3.6 Results of Sensitivity Analysis to Driving Cycle

scenarios with a high demand, GA-SM improves the LCC of RB2, what demonstrates that
it is better designed. Moreover, there are several scenarios (IDs 7, 8, 10, 11, 12, 15 and
16) where RB2 cannot provide a feasible solution, what proves also its lower robustness.

3.6.2 Analysis of Optimization Variables

This subsection analyses the variation of the optimization variables in the proposed
driving cycles. The analysed optimization variables are the genset size, BT size and initial
SOC. Figure 3.43 depicts a series of graphs that relate the demand level of each scenario
(in the x-axis, measured by the traction energy required during the non-electrified section)
and the values of the optimization variables (in the y-axis). The upper graphs show the
optimal genset sizes, the middle graphs the optimal BT sizes, and the lower graphs the
optimal SOC0 values. Besides, the left-side graphs present the results of LTO chemistry,
and the right-side graphs the results of NMC.

At each graph, different marker shapes are used for the EMSs. In addition, two
different background colours are used for the markers: the darker colours refer to the best
solution of each scenario, and the lighter colours are used for the remainder strategies. The
objective of this differentiation in the colour is to highlight at each driving cycle which is
the value proposed by the case with the best LCC.

Focusing on the results of the optimal sizing, logical results are obtained. It has been
already demonstrated that in nominal conditions integrating big BT systems and small
gensets becomes the optimal option, as it allows reducing more the diesel use. However,
the demand level of the route constraints this conclusion, as the biggest possible BT system
would not be enough for providing traction energy during all the route. In this cases, it
is necessary to increase the size of the genset. This is what Figures 3.43a and 3.43b show:
as higher is the overall energy required for traction, bigger gensets are required, as this is
the only option for obtaining a feasible solution.

In the case of LTO, the BEMU (nGS=0) is the optimal option in the scenarios with
demands lower than 250 kWh, the genset of 500 kW is the optimal option with demands
between 250 kWh and 80 kWh, and the genset of 1000 kW is the optimal option with
demands higher than 800 kWh (at least until nearly 3000 kWh).

Besides, in the case of NMC similar conclusions are obtained, but with different ranges:
the BEMU is the optimal option in scenarios with demands lower than 250 kWh, the genset
of 500 kW is the optimal option with demands between 250 kWh and 1400 kWh, and the
genset of 1000 kW is the optimal option with demands between 1400 kWh and 2000 kWh.
The scenario with the highest demand (2851 kWh) proposes the genset of 1500 kW, what
demonstrates that in scenarios with high demands the option of that genset may become
the optimal option. There are also two scenarios (IDs 3 and 4) which do not follow the
mentioned trend: even if they have a low overall demand, the optimal genset size is 1000
kW. The reason is that these driving cycles have short sections with high peak demands,
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Figure 3.43: Sensitivity of optimization variables to different driving cycles.

which cannot be provided by the combination of a 500 kW genset and the maximum
allowable NMC size. This proves that the conclusions enumerated before may not be
transversal for all the cases. The specific characteristics (e.g., maximum peaks) of the
driving cycles may also be checked in some cases.

Regarding the results of the optimal BT sizing, it can be noticed that in general the best
option is to integrate the maximum size that the optimal genset allows. This conclusion
is transversal to both chemistries. The exceptions are the scenarios with lowest demand:
IDs 1, 2 and 5. Figures 3.43c and 3.43d show that in these scenarios lower sizings are
proposed, which are found to be near the lowest sizing that provides a feasible solution.

Different reasons are found for these lower sizings. ID 1 and ID 2 are the cases where
the BEMU is the optimal option. In the case of the BEMU, bigger BTs tend to increase
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the BT lifetime, because for the same energy demand they made a lower DOD. However,
bigger sizes will only be cost-efficient if the reduction of the BT replacements compensates
the higher cost that bigger BT systems require. For the analysed case, it has been found
that it does not compensate, and consequently lower BT sizes become the optimal option.

In the case of scenario ID 3, another reason is found. In a H-DEMU with bigger BT
sizes, typically the diesel use is reduced, as the contribution of the genset can be minimized.
In most of the cases analysed so far, the saved diesel compensates the higher cost of a
bigger BT. However, in the case of ID 3, as the demand is lower, less diesel can be saved
when deploying a bigger BT. Consequently, the cost of the bigger BT is not compensated,
and the optimal option is a smaller size.

Finally, the results of the optimal initial SOC demonstrate that in general the conclu-
sions obtained in previous analyses are maintained. In the case of LTO, the option of the
90% is the optimal one in all the proposed driving cycles. Therefore, it is demonstrated
that when integrating LTO, starting the non-electrified section in the highest possible SOC
is always the optimal option. In the case of NMC, the option of 90% is also the optimal
one in most of the scenarios. However, in the driving cycles with lower demand (e.g., IDs
1, 2 and 4) the optional option is to start the non-electrified section with a charge around
the 80%. The reason may be that in the case of NMC, when a low DOD is made, a lower
middle SOC increases notably the BT lifetime.

3.6.3 Influence of Key Cost Terms on Overall LCC

After analysing the LCC values and the results of the optimization variables, this
subsection focuses on how does the influence of the key cost terms of the economic model
(CGS , CBT , Cf and CBT repl) vary when modifying the driving scenario.

For this analysis, Figure 3.44 depicts a series of graphs that relate each of the cost
terms (in the y-axis) and the demand level of each scenario (in the x-axis, measured by
the traction energy required during the non-electrified section). Subfigures a-b depict
the values of CGS , subfigures c-d the values of CBT , subfigures e-f the values of Cf , and
subfigures g-h the values of CBT repl. At each row, the left side graph shows the results for
LTO, and the right side graph the results for NMC. The graphs follow a similar format as
the previously presented Figure 3.43: the values are normalized in relation to the best case
of each driving cycle and chemistry, different marker shapes are used to represent each
EMS, and the EMS with the best result at each case is represented by a darker colour.
Besides, all the graphs respect the same scale for the y-axis (from 0 to 0.4), as in this way
it is easier to find correlations between the depicted variables.

First of all, it can be checked that the contribution of CGS and CBT on the overall LCC
remains low even if the driving cycle is varied. There is no case where CGS contributes
more than the 3% or where CBT contributes more than the 5% of the referential LCC.
CGS tends to be increased and CBT tends to be decreased when the traction energy of the
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(g) CBT repl, LTO
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Figure 3.44: Sensitivity of key cost terms to different driving cycles.

driving cycle is increased. This is a logical trend, as the acquisition cost of both traction
sources is affected by its optimal size (this was analysed in the previous subsection). In
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short, it is noticed that neither CGS or CBT have an important influence on the LCC even
when varying the driving cycle.

Regarding Cf , it can be checked that it is the variable whose value varies more from
one scenario to another. In driving cycles with a higher demand, the genset has to be used
more, as the energy that the BT can provide is limited due to the restrictions on its size.
Therefore, in scenarios with a higher energy demand, the diesel use is inevitably increased.
However, the importance of reducing the diesel use is maintained practically unchanged,
as in most of the scenarios the best strategy continues being the one that reduces more
the fuel use (i.e., DP), as seen in Figures 3.44e and 3.44f.

The reason to this fact is that even if the value of Cf varies notably from the scenarios
with lower demand to the ones with higher demand, the rest of cost terms do not vary
their values in the same range. The value of CBT repl is increased in the scenarios with
lower demand, but it is never higher than the 8% in the case of LTO or higher than the
12% in the case of NMC. This makes the influence of Cf unchanged. Moreover, Figures
3.44g and 3.44h show that in most of the cases the strategies that propose a higher CBT repl

value are the ones with a better LCC. Therefore, it can be concluded that CBT repl has
not much influence even when changing the driving scenario.

Logically, the only exceptions are the cases where the optimal option is the BEMU. In
these cases, a compromise between CBT and CBT repl has to be reached. As it was already
highlighted in the previous subsection, bigger BT sizes tend to increase the BT lifetime,
but it may not be enough to reduce the replacement costs.

3.6.4 Review of Sensitivity Analysis to Driving Cycle

In this section the effect of varying the driving cycle has been analysed. The analysis
has been focused on how the optimal powertrain design is affected when varying the
driving cycle. Specifically, the variations in the LCC value of the different EMSs and BT
chemistries, the variations in the returned optimization variables (nGS , nBT and SOC0),
and the variations in the influence of the cost terms (CGS , CBT , Cf and CBT repl) have been
evaluated. Table 3.13 reviews the main conclusions obtained in this sensitivity analysis.
In short, the table defines how much does the variation of the driving cycle affect in the
main points analysed through this section. The superscript numbers refer to the comment
at which each conclusion is further discussed. The comments and conclusions are listed
below.

(1) The order of the different control strategies is kept unchanged, except in some minor
exceptions. That is to say, DP continues being the optimal option even when varying the
driving cycle. The distances between the EMSs are reduced in the scenarios where the
overall traction energy demand is higher.

(2) The same conclusion is obtained regarding the optimality of the different BT
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Table 3.13: How much does the variation of the scenario influence the optimal design of
the H-DEMU powertrain.

Variation of Driving Cycle
Optimality of EMSs  ##(1)

Optimality of BT chemistries  ##(2)

Optimal genset size    (3)

Optimal BT size   #(4)

Optimal SOC0 G###(5)

Influence of cost terms G###(6)

chemistries: except in some minor exceptions, LTO obtains always a LCC lower than
NMC. The distances between both chemistries are reduced in scenarios with a higher
demand, and they are increased in scenarios with a lower demand.

(3) The optimal genset size is affected by the characteristics of the driving cycle: as
higher is the traction energy demand, a higher genset size is required. The reason is that
even if bigger BT sizes tend to reduce the LCC, in scenarios with high demand they cannot
provide a feasible solution. Therefore, bigger genset sizes and lower BT sizes are required.

(4) The optimal BT size is constrained by the optimal genset size. Anyway, generally
the optimal option is the maximum BT size that the optimal genset size allows. The
exceptions are the scenarios with low demand (traction energy requirement bellow 250
kWh), where the optimal size is near the lowest one that provides a feasible solution.

(5) The optimal initial SOC remains being 90% regardless the driving scenario. The
exceptions are the cases that integrate NMC and have a low demand (energy requirement
bellow 200-250 kWh). In these cases, the optimal SOC0 value is reduced to nearly 80%.

(6) Even if its contribution to the overall LCC can widely vary from one scenario
to another, Cf continues being the variable with the major influence. Logically, the
only exception are the cases where the optimal option is the BEMU. In these cases, a
compromise between CBT and CBT repl has to be reached.

3.7 Conclusions

This chapter has presented the first case study of the current Ph.D. Thesis, which is
focused on the implementation of the holistic design methodology with the rail vehicle
topology denoted as the Bi-mode H-DEMU. The Bi-mode H-DEMU can drive powered
by the genset, BT or catenary.

In the first sections of this chapter (Sections 3.1, 3.2 and 3.3), the methodology previ-
ously introduced in Chapter 2 has been particularized to the vehicle being analysed in the
current case study. Section 3.1 has detailed the general characteristics of the H-DEMU
vehicle considered for the development of the analysis, which is based on the CIVITY
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vehicle manufactured by CAF.

Section 3.2 has introduced all the cases of the different sensitivity analyses, including
the different control strategies, BT chemistries, parametrizations of the economic model,
and driving cycles. Regarding the EMSs, rule-based (RB1, RB2, RB3, RB-SM and RB-
FL), optimization-based (GA-SM, GA-FL and DP) and learning-based (ANFIS) strategies
have been considered. For the BT chemistries, LTO, NMC and LFP technologies have
been modelled. Regarding the economic model, first a nominal parametrization has been
set. Then, the parameters with the highest probability to suffer variations have been
selected (tday, cf and cBT ), and three scenarios have been defined for each of them: low,
medium and high (LS, MS and HS, respectively). Finally, different driving scenarios have
been introduced. As in the case of the economic model, first a nominal case has been
set, which is based on the real railway line “A Coruña - A Coruña”. Then, additional 16
synthetic driving cycles have been created. These driving cycles have been designed with
the aim of representing scenarios with different mean traction demands and route lengths.

In Section 3.3, the LCC optimization problems have been particularized for each EMS.
Indeed, depending on the control strategy being optimized, the optimization variables
and optimization methodology have been varied. In the case of RB strategies, a simple
exhaustive search has been defined. In the case of DP, the same exhaustive search method
has been defined, but with an additional optimization variable (SOCK). Finally, in the
case of GA-SM and GA-FL, two different GA-based optimization approaches have been
set, as in this case the internal parameters of both strategies are also optimized.

The results obtained when deploying the holistic design methodology have been pre-
sented in Sections 3.4, 3.5 and 3.6. First, in Section 3.4 the analysis has focused on
evaluating the performance of the different control strategies and BT chemistries with the
nominal economic scenario and driving cycle. Specifically, the following points have been
analysed: the LCC values of the different EMSs and BT chemistries, the optimal values of
the optimization variables (genset size, BT size and initial SOC), and the influence that
the key cost terms of the economic model (CGS , CBT , Cf and CBT repl) have on the overall
LCC. The obtained main conclusions are listed below:

• Comparison of EMSs. DP is overally the strategy with the best result when appro-
priate BT chemistries are integrated (i.e., LTO or NMC). However, its real time
implementation is barely possible. GA-SM has been found to be close to DP results,
as it is just a 0.7% behind in terms of LCC. The replication of DP results has been
explored with the implementation of ANFIS. The results are promising (1-1.9%
behind of DP), but further development of the LB strategy is required in order to
improve the results of GA-SM.

• Comparison of BT chemistries. In all the analysed cases, LTO is the chemistry with
the lowest LCC. NMC is close to LTO, as in most of the cases the LCC difference
is lower than 1%. LFP is found to be far from the results of the other chemistries.
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• Optimal genset size. The genset of 1000 kW has been found to be the optimal option.

• Optimal BT size. The solutions with a lower LCC propose to integrate the maximum
allowable energy with the genset of 1000 kW: 600 kWh in the case of NMC and 360
kWh in the case of LTO.

• Optimal initial SOC. Starting the non-electrified section with the BT totally charged
is found to be the optimal option.

• Influence of cost terms. When an EMS successes in limiting the BT degradation
(as in NMC and LTO), the potential reduction of Cf (diesel use) becomes the most
important parameter of the LCC model. In these cases, if an EMS is able to reduce
the diesel use, it will success in obtaining a competitive LCC.

Then, the analysis of Sections 3.5 and 3.6 has been focused on evaluating how do
these conclusions vary when modifying the parametrization of the economic model and
the driving cycle, respectively. These analyses have unveiled in which conditions the
conclusions obtained in the first sensitivity analysis may not be completely true. In the
following lines these conditions are listed:

• Comparison of EMSs. DP is the optimal option in all the proposed scenarios, even
if the distance between the different EMSs tends to be reduced. Specifically, DP
tends to worsen its result in the following conditions: (1) when reducing tday, (2)
when reducing cf , (3) when increasing cBT , and (4) in driving cycles with low energy
demands.

• Comparison of BT chemistries. NMC can improve the results of LTO when the
price of NMC is reduced, or when the price of LTO is increased. Anyway, in these
conditions LTO stays close to NMC. NMC can also get closer to LTO, but without
improving it, when cf is increased or in driving cycles with a high energy demand.

• Optimal genset size. The optimal nGS value is mostly affected by the characteristics
of the driving cycle: as higher is the energy demand, a higher genset is required.

• Optimal BT size. In the following conditions becomes cost-efficient to integrate
lower BT sizes than the ones proposed in the nominal analysis (i.e., lower than the
maximum allowable size): (1) when reducing tday, (2) when reducing cf , (3) in the
case of NMC, when reducing its price cBT , and (4) in driving cycles with low energy
demand (below 250 kWh). In the rest of cases the optimal BT size only changes
when the optimal genset size also does.

• Optimal initial SOC. The optimal SOC0 value is also reduced from the 90% in the
case of driving scenarios with low energy demands (below 200-250 kWh) and when
NMC batteries are integrated.

• Influence of cost terms. When reducing tday or cf , the influence of CBT repl is in-
creased, and normally a compromise between Cf and CBT repl has to be reached to
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obtain an optimal LCC. Additionally, in scenarios with very low demand, Cf losses
its influence since the BEMU becomes the optimal option. In that case a compromise
between CBT and CBT repl has to be also reached.
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4
Case Study B: Hydrogen Electric

Multiple Unit

Summary
In this fourth chapter the second case study of this Ph.D. Thesis is developed. The

holistic design methodology described in Chapter 2 is implemented with the vehicle topol-
ogy denoted as the Hydrogen Electric Multiple Unit. As a first step, the methodology is
particularized for the current case study: the different cases of the sensitivity analysis are
presented, and the details of the deployed optimization problems are given. Then, the re-
sults of the different sensitivity analyses are explained successively: the sensitivity analysis
to the powertrain design, the sensitivity analysis to the economic parameters, and the sen-
sitivity analysis to the driving cycle.
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4.1 Introduction

This fourth chapter introduces the second case study of the current Ph.D. Thesis. In
this case, the holistic design methodology proposed in Chapter 2 is implemented with
the vehicle topology denoted as the H2EMU, which drives powered by a FC as primary
source and a BT as secondary source. Contrary to the vehicle analysed in Chapter 3, the
proposed H2EMU only drives through non-electrified sections, what becomes important
for the design and analysis of the control strategies.

The architecture of the vehicle analysed in the current chapter is depicted in Figure
4.1. The models of the main powertrain elements were introduced in Chapter 2. As it
was specified, the FC and BT characteristics are proportionally scaled when analysing
different sizings, and the BT parameters are defined depending on the chemistry being
analysed (this will be further detailed in Section 4.2.2).
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Figure 4.1: Considered H2EMU vehicle architecture.

Additionally, Table 4.1 shows the general characteristics of the simulated vehicle, which
is based on the CIVIA vehicle family manufactured by CAF [197].

Table 4.1: General information of modelled H2EMU vehicle.

Parameter Value
Length 62 m
Weight 120 t
Number of traction motors 4
Maximum speed 120 km/h
Maximum traction power at wheel 4.4 MW
DC Bus voltage 3,000 V
Auxiliaries consumption 100 kW

The remainder of the chapter is organized as follows. Section 4.2 introduces all the
cases of the sensitivity analyses to be developed as part of the holistic design methodology.
That is to say, in this section all the EMSs, BT chemistries, parameters of the economic
model, and driving cycles analysed in this chapter are introduced. Then, Section 4.3
particularises the generic optimization problems presented in Section 2.4 to the specific
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case study analysed in the current chapter. The results obtained when deploying the
holistic design methodology are presented step by step in Sections 4.4 to 4.6. In a first
stage, the sensitivity analysis focuses on the powertrain design (different BT chemistries
and EMSs are compared, Section 4.4), then on the parameters of the economic model
(Section 4.5), and eventually on the driving cycle (Section 4.6). At each section, the
obtained results are evaluated in order to obtain the main conclusions related to the
design of H2EMU vehicles.

4.2 Overview of Sensitivity Analyses

Once this chapter has been introduced and the main aspects of the considered vehicle
have been described, this section presents all the cases of the sensitivity analyses that are
considered in the development of the current case study. The proposed control strategies,
BT chemistries, parameters of the economic model and driving cycles are described in the
following subsections.

4.2.1 Energy Management Strategies

The analysis of the State of the Art in Chapter 1 concluded that in this Ph.D. Thesis
Rule-Based (RB), Optimization-Based (OB) and Learning-Based (LB) strategies would be
developed and evaluated. In the current case study concerning the H2EMU, 4 strategies
will be based on rules, 3 strategies will be based on an off-line optimization, and an
additional strategy will be based on a learning approach.

In all the cases, the EMS is in charge of defining the operation point of the FC
(PF C−ref ) for each time step. Therefore, the description of each EMS will be focused
on how the strategy defines PF C−ref . Due to the response time of the FC, PF C−ref and
the real operation point (PF C) may not match in all time steps. For further detail see
Equations (2.11) and (2.12). Anyway, at any time step the BT will give or absorb the
power difference between PF C and the power demand (PDem). If the BT cannot absorb
all the defined power, the braking resistors will be activated.

In contrast to the case study related to the Bi-mode H-DEMU, in this case there are
some particularities that affect the way the EMSs have been designed:

(1) The control strategy should ensure a relatively low degradation of the FC, for in-
stance avoiding fast transients and keeping PF C in a steady value as long as possible.

(2) As it has been already highlighted, the H2EMU will only drive on non-electrified
tracks. Consequently, the EMS should also ensure that the SOC at the end of the
trip stays near (or at least not much lower than) its initial value, so as not to run
out of BT energy in the following trips.

In the following subsections, each of the proposed control strategies is described.
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4.2.1.1 RB - Baseline Control (RB1-A and RB1-B)

The first strategy is called the Baseline Control, and as the strategy with the same
name proposed for the H-DEMU case study, it consists on setting a constant operation
point for the FC. The strategy will be denoted as RB1 in order to ease the classification
of the different EMSs. In this case, the operation point is set at the nominal power of the
FC, so it can provide the maximum possible energy for traction.

When working at a constant operation point, it may happen that the BT cannot be
further charged, either because it is at its maximum SOC or because it exceeds the max-
imum charging C-rate. In the case of the genset, it was proposed to reduce its operation
point under these circumstances, so as not to waste fuel unnecessarily. However, in the
case of the FC this solution may accelerate its degradation. In order to overcome this
issue, in the current case study two variations of RB1 are analysed: RB1-A and RB1-B.

Figure 4.2 shows an example of the difference in the working principle of both varia-
tions, which are further explained below.
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Figure 4.2: Example of RB1-A and RB1-B operation differences.

• In the case of RB1-A, the FC operation point is not varied if the BT cannot be
charged. Therefore, there will be an exceed of generated power in the powertrain,
which will be burned in the braking resistors.

• In the case of RB1-B, the FC operation point is reduced if the BT cannot be charged.
PF C−ref is defined as PDem, that is to say, the FC tries to follow the demand.
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As it can be seen in the figure, the SOC profile is nearly the same with both variations,
since the difference happens just in the FC operation when the BT is totally charged.
RB1-A is supposed to consume more hydrogen but save the FC lifetime, while RB1-B is
supposed to consume less hydrogen but enhance the FC degradation. The analysis of this
chapter will unveil which is the best approach.

4.2.1.2 RB - SOC Adaptive Controller (RB2) and OB - Optimized SOC Adap-
tive Controller (GA-RB2)

The second EMS is aimed to overcome the disadvantages of the two RB1 variants. In
this case, the FC reference PF C−ref is reduced at high SOC values in order to avoid an
overcharging of the BT, for instance in route sections with a low demand.

Figure 4.3 shows the working principle of this strategy, which is called the SOC Adap-
tive Controller and will be denoted as RB2 in order to ease the classification of the EMSs.
The figure also highlights the difference between RB2 and RB1, in which the FC works
constantly at the same operation point. As it can be seen, the controller curve is defined
by 3 points: y1 [kW ], y2 [kW ] and x1 [%]. From SOCmin until x1, the FC works con-
stantly at y2. Then, from x1 on, the FC reference point is reduced linearly until y1, which
is defined as the FC reference when the SOC is at SOCmax. This linear decrease in the
operation point allows a soft operation for the FC, what may help reduce its degradation.
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Figure 4.3: Working principle of RB2.

A challenging step of RB strategies consists on tuning the internal parameters of the
EMS. From Figure 4.3 it can be deduced that values y1, y2 and x1 may influence the
performance of this EMS. In a first approach, the three points of the curve have been
defined following a reasonable parametrization: y1 is defined as the FC idle power (y1 =
PF C−min), y2 as the FC maximum power (y2 = PF C−max), and x1 as the initial SOC
(x1 = SOC0). However, this parametrization does not ensure an optimal operation of
the controller. Therefore, in a second approach these values are optimized by means of a
GA-based optimization method. Further information regarding how is this optimization
coupled with the powertrain design optimization is given in Section 4.3.

In order to differentiate between both parametrizations, the strategy with the straight-
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forward parametrization will be denoted just as the SOC Adaptive Controller (RB2), and
the strategy with the optimized values will be denoted as the Optimized SOC Adaptive
Controller (GA-RB2).

4.2.1.3 RB - Demand Adaptive Controller (RB3) and OB - Optimized De-
mand Adaptive Controller (GA-RB3)

The last RB strategy proposed in this case study is called the Demand Adaptive
Controller, and will be denoted as RB3. The objective of this EMS is to reduce the BT
DOD, so as its lifetime can be improved. For this approach, the FC operation point is
adjusted to the average demand of each route section. Each section is defined as s, and
the average demand in that section as PDem−avg(s) [kW ]. As longer the section is, the
DOD that the BT completes might probably be higher (in case there are segments inside
the section with a demand much lower/higher than the average). However, as shorter the
section is, more changes in the FC operation point will be set during the same round trip.
Therefore, with the aim of reaching a compromise, in the approach of the current Ph.D.
Thesis the sections are defined as station-to-station route segments. Figure 4.4 shows an
example of the route division for the same PDem profile used in Figure 4.2.
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Figure 4.4: Example of route division by station inter-sections with different PDem−avg.

The main problem of this strategy may come at its real-time implementation, as the
real PDem profile may not coincide with the profile used in the EMS design step. Therefore,
in order to prevent issues related to an underestimation or overestimation of the required
PF C values, the use of a controller to adjust PF C−ref is proposed. If the BT SOC is
lower than the initial value when reaching the end of a specific section, it means that
the PF C−ref value has not been properly adjusted to the real mean demand of the route.
Therefore, the value has to be increased in the next section in order to recover the original
SOC. The opposite should be made in case the SOC value is higher than the expected
one. Therefore, the controller depicted in Figure 4.5 is proposed for the implementation
of RB3: depending on the SOC error (eSOC [%]) the controller adjusts the KRB3 [−] gain,
which is used to vary the original FC reference point set at PDem−avg(s).

The controller acts just at the beginning of each section. Therefore, it is assumed
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Figure 4.5: Working principle of the controller proposed for RB3.

that a simple proportional controller is enough to obtain an appropriate system response.
In order to improve the effectiveness of the EMS, the use of two different proportional
gains is proposed, one for a positive error (kpp [−]) and one for a negative error (kpn [−]).
Besides, a constant gain is also used (kc [−]), so as the value KRB3 is always positive.
Consequently, KRB3 is calculated as follows:

KRB3 =

kc + kpp · eSOC for eSOC ≥ 0
kc + kpn · eSOC for eSOC < 0

(4.1)

As it can be deduced, the proportional controller gains kpp and kpn and kc may affect
the EMS effectiveness. In a first approach, these values have been defined based on the
conclusions obtained after some first tests. Specifically, values 0.0625, 0.05 and 1 have
been defined for kpp, kpn and kc, respectively. Besides, the SOCref value used to calculate
the SOC error is fixed at SOC0. However, this parametrization does not ensure an optimal
operation. Therefore, in a second approach these values are optimized by means of a GA-
based optimization method. Section 4.3 will give further information regarding how is this
optimization approach coupled with the powertrain design optimization.

In order to differentiate between both parametrizations, the strategy with the manually
tuned values will be denoted just as the Demand Adaptive Controller (RB3), and the
strategy with the optimized values will be denoted as the Optimized Demand Adaptive
Controller (GA-RB3).

4.2.1.4 OB - Dynamic Programming (DP)

DP consists on an algorithm that, based on Bellman’s optimality principle, returns
the optimal control trajectory that minimizes a certain cost function. DP strategy was
already introduced and evaluated in the H-DEMU case study (Section 3.2.1.6), therefore
in this section just the differences compared to that case study will be highlighted.

In the case of the H2EMU case study, the same state variable (ι) will be maintained:
ι = SOC. However, the control variable (Φ) and cost function (J) are varied. Logically,
Φ is changed to the FC reference PF C−ref , being this the primary power source. And
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for the cost function, J includes an additional term apart from the reduction of fuel use.
The objective of this addition is to reduce the changes in the FC working point, what
may ensure a longer FC lifetime. The following equations review the definitions of these
variables and functions:

Φ(k) = PF C−ref (k) (4.2)
ι(k) = SOC(k) (4.3)

J =
K−1∑
k=0

(
γ · ṁH2

(
Φ(k)

)
+ λ · ∆PF C

(
Φ(k)

))
· ∆t (4.4)

where γ [−] and λ [−] are the weight factors that give more importance to the reduction of
hydrogen use (ṁH2) or to the reduction of deviations in the FC operation point (∆PF C).
γ [−] and λ [−] have been tuned so that the maximum allowable ∆PF C is respected.

As in the previous case study, the optimization problem also requires the specification
of some constraints, which are defined as in Equation 4.5. As in this case study there are
not electrified sections, the state variable (SOC) in the end of the simulation is defined
to be at the same value as in the beginning of the simulation. Besides, the SOC is also
constrained by the maximum and minimum allowable values. Finally, the control variable
(PF C−ref ) is allowed to vary between the idle load point and the full load point.

ι(0) = SOC0

ι(K) = SOC0

20 ≤ ι(k) ≤ 90
PF C−min ≤ Φ(k) ≤ PF C−max

(4.5)

In short, DP returns the optimal sequence of Φ that minimizes the defined cost func-
tion. As already highlighted in previous chapters, this sequence is only valid for the specific
context (i.e., the specific drive cycle) for which the optimization is deployed. This makes
the on-line implementation of DP practically unfeasible. Due to this reason, DP results are
commonly used just as baseline for benchmarking other strategies. It is worth to mention
that the DP algorithm integrated in the current Ph.D. Thesis is based on the function and
scripts developed in [188] and available in [189].

4.2.1.5 LB - Neuro-Fuzzy Learning Based Controller (ANFIS)

In order to overcome the main disadvantage of DP optimization, in this Ph.D. Thesis
the use of a LB strategy is proposed. The selected LB approach is the ANFIS, which was
already introduced for the H-DEMU case study. Therefore, in this section just a brief
review of the development and implementation of this strategy is given. The reader is
referred to Section 3.2.1.7 for further detail.
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In short, the objective of the ANFIS approach is to train a FL-based controller with
data obtained from DP optimizations, so the controller is able to replicate in real-time the
operation proposed by DP. Figure 4.6 shows the general overview of the ANFIS based
learning technique, which is reviewed in the following paragraphs:
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Figure 4.6: Overview of ANFIS based learning technique [27].

(1) In the first step, the data required for the training step is generated. The ANFIS
controller should be robust to different contexts. Therefore, the DP data generated
for the ANFIS training step is obtained optimizing the H2EMU operation under
different drive cycles. These drive cycles are generated varying the number of pas-
sengers (±7%) and the auxiliaries consumption (±30%) set in the nominal scenario,
which will be presented in Section 4.2.4.

(2) Once the DP optimizations are completed, the data required by the ANFIS training
is processed. The training requires a set of inputs and outputs, which will be the
inputs and outputs required by the controller during real operation. Specifically, the
BT SOC, length-ratio, and PDem profiles are set as the inputs, and the PF C−ref

profile as the output. The inputs and outputs are normalized within [0,1].

(3) The next step consists on the generation of the initial FL design, which is developed
based on the subtractive-clustering technique of the datasets. This FL structure
includes the initial designs for the membership functions and rules.

(4) Once the initial FL design is obtained, the next step consists on the ANFIS training.
The training aims tuning the membership functions and refining the rules originally
proposed by the data sub-clustering. For this approach, the 80% of the original DP
data is used, as the other 20% is used to test the effectiveness of the learning process.

Eventually, once the training step is finalized, the FL-based controller is obtained,
which can be implemented on-line in the H2EMU.
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4.2.2 Battery Chemistries

After explaining all the control strategies, this subsection focuses on the different BT
chemistries that will be analysed in this case study. As it was defined in the H-DEMU
case study, the following BT chemistries are analysed: LTO, NMC and LFP. The main
characteristics and parameters of these chemistries were already detailed in Section 3.2.2,
therefore the information given in the following tables is the same.

Table 4.2 shows the parameters related to the characterization of each BT chemistry.
This information refers to the parametrization at cell level and at BOL. Moreover, Table
4.3 shows the characteristics of the proposed BT modules. Indeed, in the LCC optimization
step the number of BT modules is optimized (variable nBT ). In order to obtain a fair
comparison between the different BT capacities, modules with the same nominal energy
(20 kWh) have been proposed for the 3 chemistries. Regarding the estimation of the
degradation suffered by each BT chemistry, the degradation model introduced in Section
2.3.5 and the parametrizations given in Table 2.6 have been implemented.

Table 4.2: Characterization of BT cells.

Parameter LFP NMC LTO
QBT _0 28 Ah 46 Ah 23 Ah
VBT _nom 3.2 V 3.7 V 2.3 V
Rnom 1.8 mΩ 1.9 mΩ 1.2 mΩ
VBT _max 3.6 V 4.2 V 2.7 V
VBT _min 2.5 V 3 V 1.7 V
Cmax_ch 4 C 3 C 4 C
Cmax_dch 6.5 C 5 C 4.5 C
SOCmax 90 % 90 % 90 %
SOCmin 20 % 20 % 20 %

Table 4.3: Characterization of BT modules.

Parameter LFP NMC LTO
EBT 20 kWh 20 kWh 20 kWh
ncell 112 118 189
mcell 2 1 2
ρBT _L 81.1 Wh/L 112.2 Wh/L 52.8 Wh/L
ρBT _E 47.9 Wh/kg 86.9 Wh/kg 53.3 Wh/kg

4.2.3 Economic Model Parametrization

Once the EMSs and BT chemistries have been described, this subsection focuses on the
parameters of the economic model that are used in the different sensitivity analyses. As in
the previous case study, first a nominal parametrization is defined. This parametrization
is used in the sensitivity to the powertrain design and in the sensitivity to the drive
cycle. Secondly, based on the nominal parametrization, some parameters are selected and
their sensitivity is analysed. This second parametrization is used in the sensitivity to the
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parameters of the economic model (see Figure 2.2).

4.2.3.1 Nominal Parametrization

The nominal parametrization is depicted in Table 4.4. These values have been defined
based on the parametrizations proposed in similar literature works [27, 48, 55, 195]. The
parameters without a reference are own assumptions, which have been defined together
with CAF Power & Automation.

Table 4.4: Nominal parameters for economic evaluation.

Parameter Value Reference

General Parameters

Y 30 years -
I 2.5 % -
top 320 days/year -
tday 15 h/day -

Acquisition Costs

Ctrain 8,000,000 € -
cBT - LTO 1500 €/kWh [27, 195]
cBT - NMC 800 €/kWh [27, 195]
cBT - LFP 1040 €/kWh [48]
cF C 1000 €/kW [48, 55]

Operation Costs cH2 11 €/kg [27]
Maintenance costs cmaint 200,000 €/year -

4.2.3.2 Scenarios for Sensitivity Analysis to Economic Model

Some of the parameters defined in the nominal scenario are understood to be unsteady,
that is to say, they can easily vary from one context to another. This is the reason why
these parameters are identified and their sensitivity is analysed. Specifically, the daily
operation hours (tday) may vary depending on the railway line or project, and the BT
price (cBT ) may vary depending on the selected manufacturer. In addition, FC technology
is regarded as an emerging technology, and therefore it is considered that both FC and
hydrogen prices (cF C and cH2) are subjected to big reductions in the near future [198].

For these parameters low, medium and high scenarios (LS, MS and HS, respectively)
have been defined, as in the H-DEMU case study. Table 4.5 shows the values proposed
for each variable. In the following lines the reasons behind these values are explained.

Table 4.5: Sensitivity to parameters of economic model.

Parameter Low Medium High
tday 5 h/day 10 h/day 15 h/day
cBT - LTO 1200 €/kWh 1500 €/kWh 1800 €/kWh
cBT - NMC 640 €/kWh 800 €/kWh 960 €/kWh
cBT - LFP 520 €/kWh 1040 €/kWh 1560 €/kWh
cF C 500 €/kW 800 €/kW 1000 €/kW
cH2 3 €/kg 7 €/kg 11 €/kg

163



Case Study B

• Regarding tday, it is considered that it is more probable to have operation hours
behind 15 h/day. Therefore, the nominal value is defined at the HS, and for the
other scenarios reductions of the 33% and 66% are defined.

• The scenarios for the BT prices have been defined as in Chapter 3, following an
analysis of the market prices. For further information, see Section 3.2.3.

• In the case of cF C , it is not clear until which extend could its price go down in the
future. Therefore, a high variability has been defined, in order to cover as many
scenarios as possible. The nominal scenario is defined in the HS, and for the MS
and LS a 20% and 50% reduction have been defined.

• Finally, in the case of cH2 , the nominal value is also defined in the HS. For the
MS and LS, the prices have been defined according to the scenarios given by the
International Energy Agency (IEA) in [198]: 7€/kg refers to a scenario in which the
hydrogen is generated from the grid electricity, and 3€/kg to a scenario in which the
hydrogen is generated from electricity fully produced by renewable sources.

4.2.4 Driving Cycles

The last concept whose sensitivity will be analysed is the driving cycle. In this sub-
section all the driving cycles used in the different sensitivity analyses are explained. As
in the case of the economic model, first a nominal case is defined. This case is used when
analysing the sensitivity to the powertrain design and the sensitivity to the parameters
of the economic model. Then, a series of driving profiles with different characteristics are
proposed to develop the sensitivity to the driving cycle.

4.2.4.1 Nominal Driving Cycle

The nominal case is based on an existing railway line, which is denominated “Tardi-
enta - Canfrac” line. Figure 4.7 shows the map of the line and Figure 4.8 depicts the
corresponding speed profile, which corresponds to the round trip route. In both cases the
locations of the stations are specified. The round trip route is composed of 313.2 km and
22 stations, and it is completed in 5 hours and 9 minutes.

The input required for the simulation model is the traction demand profile (PEM ),
as it was explained in Section 2.3.1. Figure 4.9 depicts the demand profile provided by
CAF Power and Automation. It is worth to mention that this profile already considers
the demand from the auxiliaries, and therefore it refers to PDem (PDem = PEM + PAux).

4.2.4.2 Scenarios for Sensitivity Analysis to Driving Cycle

For the development of the sensitivity analysis to the driving cycle, scenarios of different
characteristics are required. As in the H-DEMU case study, synthetic driving cycles are
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Figure 4.7: Journey of “Tardienta - Canfranc” railway line.
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Figure 4.8: Speed profile of “Tardienta - Canfranc” railway line.
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Figure 4.9: Power demand profile of “Tardienta - Canfranc” railway line.
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used for this approach, as it is difficult to obtain information from many real railway lines.
Two variables have been defined as the design criteria of the generated synthetic cycles,
since they are representative of the characteristics of the driving cycles: the average power
demand and the total energy demand. Anyway, as the average power demand and the
total energy demand are correlated, the duration of the route has been used as design
criteria instead of the total energy demand. These variables coincide with the ones used
in the previous case study.

In order to generate the synthetic cycles, the “Tardienta - Canfranc” profile has been
divided into station to station sub-profiles. Then, these sub-profiles have been combined
to obtain driving cycles of diverse durations and average power demands. In order to
obtain a sufficient dispare matrix of cases, 3 average power demands (100 kW, 300 kW,
and 500 kW) and 4 running times (1 h, 3 h, 5 h and 7 h) have been proposed.

As the number of potential combinations of the sub-profiles is limited, the exact pro-
posed values cannot be obtained. Figure 4.10 depicts the real matrix of the generated
driving cycles. For each driving cycle, the total energy demand is also given. The ob-
tained approximation is understood to be appropriate, as the aim of this approach is not
to analyse the operation of the H2EMU in drive cycles of exact characteristics. The graphs
of the generated synthetic cycles can be found in Appendix A.
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Figure 4.10: Matrix of generated synthetic driving cycles.

4.3 Definition of Optimization Problem

After presenting all the cases of the sensitivity analysis, this section focuses on the
optimization problem. As it was explained in Chapter 2, the holistic design methodology
proposed in the current Ph.D. Thesis includes the LCC optimization of each case of the
sensitivity analysis. In the current case study related to the H2EMU, this LCC optimiza-
tion is focused on obtaining the cost-efficient powertrain sizing (nBT and nF C), initial BT
SOC (SOC0), and in some cases also the optimal EMS parameters.
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4.3 Definition of Optimization Problem

In Section 2.4 generic methodologies to solve this optimization problem were intro-
duced. As explained there, the optimization problem may differ depending of the strategy
being analysed. Therefore, in this section these generic optimization methodologies are
particularized for the EMSs introduced in this case study. Figure 4.11 shows the classifica-
tion of optimization problems according to the EMS. The classification is further detailed
below:

ANFIS

RB1-A
RB1-B
RB2
RB3
DP

nFC

nBT

SOC0

GA-RB2 GA-RB3

nFC

nBT

SOC0

x1

y1

y2

Exhaustive Search Genetic Algorithms

nFC

nBT

SOC0

kpp

kpn

SOCref

Figure 4.11: Distribution of Optimization approaches according to EMS.

(1) In the case of RB strategies (RB1-A, RB1-B, RB2 and RB3), the EMS is not opti-
mized. Hence, as the number of optimization variables is low (nBT , nF C and SOC0),
the exhaustive search based optimization introduced in Section 2.4.1 is deployed.
This generic optimization problem is particularized in Section 4.3.1.

(2) In the case of OB strategies, different design coordination concepts are deployed.
On the one hand, in the case of DP the optimization is conducted in two levels. In
the outer level, the powertrain sizing (nBT and nF C) and initial SOC value (SOC0)
are optimized (remember that in the case of the H2EMU the initial and final SOC
values coincide). Then, in the inner level the DP optimization is deployed for the
specific nBT , nF C and SOC0 values being evaluated in the outer level. That is to
say, a nested optimization is deployed. The optimization variables of the outer level
coincide with the ones of the RB strategies. Therefore, the same exhaustive search
based optimization will be used for the outer level of DP.

(3) On the other hand, in the case of GA-RB2 and GA-RB3, the optimization is con-
ducted in a single level, as all the variables are optimized together. That is to
say, a simultaneous optimization approach is deployed. In this case, the GA-based
approach introduced in Section 2.4.2 is deployed, as the number of optimization
variables is higher. The generic problem introduced in that section is particularized
in Section 4.3.2 for GA-RB2 and in Section 4.3.3 for GA-RB3.

(4) Finally, the ANFIS strategy is understood to be the real-time implementation of
DP. Therefore, no optimization is deployed in this case, as the nBT , nF C and SOC0
values obtained in the case of DP are used to calculate the LCC.
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The fitness function is the same in all the mentioned optimization problems, as it
consists on the minimization of the LCC. The fitness function is defined as follows:

minimize LCC(X) | X ∈ Π (4.6)

where X represents the vector containing the optimization variables, and Π represents the
space of feasible solutions. X and Π vary depending on the specific optimization problem,
and therefore they are detailed in the following subsections.

It is worth to mention that in all the optimization problems, each nBT refers to a 20
kWh BT module (as in the H-DEMU case study), and each nF C to a 100 kW FC module.
The definition of the remainder variables depends on the specific optimization problem,
and therefore they are described in the following subsections.

4.3.1 Exhaustive Search Optimization

The exhaustive search optimization is deployed when analysing RB1-A, RB1-B, RB2,
RB3, and DP strategies. The optimization variables vector XES and the space of feasible
solutions ΠES are defined in Equations 4.7 and 4.8. ΠES has to be discretized into a
feasible number of cases, so the optimization time is not extended too much. In the case
of nF C and nBT , they are defined as natural numbers. nF C ranges between 0 and the
maximum number of FC modules (NF C [−]). The case without FC modules refers to
the BEMU. Besides, nBT ranges between 1 and the maximum number of BT modules
(NBT [−]). The option of not deploying batteries is not considered, as the FC has to
be always supported by a secondary power source. In the case of SOC0, it has been
discretized in steps of the 10%, and then just the minimum and maximum values (20%
and 90%) are not considered, as they hardly lead to a feasible solution.

XES =

 nBT

nF C

SOC0

 (4.7)

ΠES =


1 ≤ nBT ≤ NBT → nBT ∈ Z
0 ≤ nF C ≤ NF C → nF C ∈ Z
30 ≤ SOC0 ≤ 80 → SOC0 ∈ {30, 40, ... 80}

(4.8)

As it can be deduced, NF C and NBT are important constraints for the optimization
problem. In order to obtain a realistic solution, it has been assumed that there is a
maximum available space and weight in the vehicle for the integration of the FC and BT
modules. This space is common for both traction sources. Therefore, this means that
NBT depends on nF C , or that NF C depends on nBT (both dependencies rely on the same
idea). In other words, depending on the number of FC modules that are being analysed,
the maximum number of BT modules changes (and vice versa).
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4.3 Definition of Optimization Problem

As in the case of the H-DEMU, the maximum allowable volume and weight values for
the powertrain elements have been provided by CAF Power and Automation. This space is
divided into 4 compartments, and it is considered that each space can be only filled by FC
or BT modules, but not a combination of both. The volume and weight of each FC module
has been estimated from the characteristics of commercial systems [128, 199]. From these
values, it is calculated that the maximum number of FC modules at each compartment
is 3 (NF C = 3). Then, considering the density of each BT chemistry (see Table 4.3), the
relation between NBT and nF C is obtained. Figure 4.12 depicts this relation. The same
graph would be depicted to represent the relation between NF C and nBT .
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Figure 4.12: Relation of maximum number of FC and BT modules.

4.3.2 GA-RB2 Optimization

In this subsection, the generic Genetic Algorithm (GA) optimization presented in Sec-
tion 2.4.2 is particularized for the case of GA-RB2. The optimization variables vector
XGARB2 and the space of feasible solutions ΠGARB2 are defined in Equations (4.9) and
(4.10), respectively. In the case of the GA optimization, the defined space of feasible solu-
tions does not exponentially increase the number of solutions to be evaluated. Therefore,
a wider space is defined for the SOC, which ranges between SOCmin and SOCmax. The
same space is defined for x1. In the case of y1 and y2, they are constrained between the
minimum and maximum FC operation points. Additionally, another constraint for these
variables is defined in Equation (4.11). This makes y2 be higher than y1, what ensures that
the FC operation point is reduced as the SOC goes higher (which is indeed the objective
of RB2 strategy, see Figure 4.3).

XGARB2 =



nBT

nF C

SOC0
x1
y1
y2


(4.9)
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ΠGARB2 =



1 ≤ nBT ≤ NBT → nBT ∈ Z
0 ≤ nF C ≤ NF C → nF C ∈ Z
20 ≤ SOC0 ≤ 90 → SOC0 ∈ R
20 ≤ x1 ≤ 90 → x1 ∈ R
PF C−min ≤ y1 ≤ PF C−max → y1 ∈ R
PF C−min ≤ y2 ≤ PF C−max → y2 ∈ R

(4.10)

subject to : y1 < y2 (4.11)

Moreover, Table 4.6 shows the relation of the parameters required by the GA. The
population size is defined as 10 times the number of optimization variables. For the elite
count and crossover fraction, the typically recommended values are defined [18]. In order
to avoid a long running time, a maximum number of generations, a maximum number of
stall generations and a maximum optimization time are defined, as in the H-DEMU case
study. These values have been defined with the aim of obtaining a balance between the
required running time and the optimality of the obtained solution.

Table 4.6: Parameters for the Genetic Algorithm in GA-RB2 optimization.

Parameter Value Parameter Value
Population size 60 Max. generations 100
Elite count 5 % Max. stall generation 50
Crossover fraction 80 % Max. optimization time 24 h

4.3.3 GA-RB3 Optimization

As previously explained, in the case of GA-RB3 strategy another GA-based optimiza-
tion is deployed. In this subsection, the details of this optimization are given. First, the
equations below show the optimization variables vector XGARB3 and the space of feasible
solutions ΠGARB3. These include the specific variables being optimized in the case of
this strategy. SOC0 and SOCref variables are constrained by the allowable SOC window
(20-90%), as in the case of GA-RB2. For the positive and negative gains of the controller
(kpp and kpn, respectively), the feasible space has been defined based on the conclusions
obtained after same first tests.

XGARB3 =



nBT

nF C

SOC0
SOCref

kpp

kpn


(4.12)
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ΠGARB3 =



1 ≤ nBT ≤ NBT → nBT ∈ Z
0 ≤ nF C ≤ NF C → nF C ∈ Z
20 ≤ SOC0 ≤ 90 → SOC0 ∈ R
20 ≤ SOCref ≤ 90 → SOCref ∈ R
1 ≤ kpp ≤ 10 → kpp ∈ R
−5 ≤ kpn ≤ 1 → kpn ∈ R

(4.13)

In addition, Table 4.7 shows the relation of the parameters required by the GA, which
in this case coincide with the values proposed in the GA-RB2 optimization.

Table 4.7: Parameters for the Genetic Algorithm in GA-RB3 optimization.

Parameter Value Parameter Value
Population size 60 Max. generations 100
Elite count 5 % Max. stall generation 50
Crossover fraction 80 % Max. optimization time 24 h

4.4 Results of Sensitivity Analysis to Powertrain Design

Once all the information required to launch the proposed design methodology has
been provided, this section focuses on presenting the results of the sensitivity analysis to
the powertrain design, which is indeed the first step of the mentioned methodology. As
explained in Chapter 2, this first sensitivity analysis is focused on comparing the results
of different EMSs and BT chemistries. Figure 4.13 depicts where is the current sensitivity
analysis located in the overall design methodology. The nominal parametrization of the
economic model and the nominal driving cycle have been used to obtain these results.

This section is divided into several subsections to ease the evaluation of the obtained
results. In a first step, in Section 4.4.1 the raw results of the LCC optimization are pre-
sented. Then, the analysis of Section 4.4.2 focuses specifically on the LCC values obtained
by the different EMSs and BT chemistries. Besides, in Section 4.4.3 the correlations
between these LCC values and the variables returned by the optimization approach are
highlighted. Section 4.4.4 focuses on the key cost terms of the economic model, and on
how do they influence the overall LCC. Specifically, the cost terms that can vary between
the different solutions are analysed: CF C , CBT , CH2 , CF Crepl and CBT repl.

When evaluating different EMSs it is important to consider more features than just
the optimality in relation to the hydrogen use or the lifetime of the powertrain sources,
which in the proposed approach are gathered in the LCC. As highlighted in Chapter 1,
features such as the real time execution or the robustness to potential disturbances are
also important. Therefore, in Section 4.4.5 the robustness and real time execution of the
proposed control strategies are addressed. Finally, in Section 4.4.6 the main conclusions
of the first sensitivity analysis are reviewed.
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Figure 4.13: Current step of holistic design methodology.

4.4.1 Results of LCC Optimization

Table 4.8 presents a review of the results obtained when optimizing the LCC of each
case of the sensitivity analysis. Each row introduces the results for a combination of BT
chemistry and EMS, that is to say, the results for a case of the sensitivity analysis. In the
first row the results of a conventional DEMU are also given. The DEMU is sized with a
genset of 1500 kW (minimum value to provide the traction power peaks), and it is used as
reference to compare the results of the sensitivity analysis. The reason to use the DEMU
as a reference is that nowadays it is the most common vehicle for non-electrified lines.

In addition, at each column a representative parameter is given. First, the LCC value
is depicted, that is to say, the optimization fitness function. This value is given in p.u. in
relation to the LCC of the DEMU. In the following columns, the optimization variables
returned by the optimization approach are given: nF C (in kW), nBT (in kWh) and SOC0
(in %). After these values, a breakdown of the LCC into the key cost terms of the economic
model is given: FC acquisition cost (CF C), BT acquisition cost (CBT ), hydrogen use cost
(CH2), FC replacement cost (CF Crepl) and BT replacement cost (CBT repl). These values
are also given in p.u. in relation to the LCC of the DEMU. Ctrain and Cmaint are not given,
as they are the same in all the cases. This is the reason why the sum of the cost terms
given in the table does not coincide with the overall LCC. Eventually, the last columns
depict the results returned by the FC and BT lifetime estimation models, respectively.

It is worth to mention that in Table 4.8 only the optimization variables shared in all the
cases are shown, while the specific optimization variables of strategies GA-RB2 and GA-
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Table 4.8: Sensitivity analysis to the powertrain design: representative results.

LCC

(p.u.)
nF C

(kW )
nBT

(kW h)
SOC0

(%)
CF C

(p.u.)
CBT

(p.u.)
CH2

(p.u.)
CF Crepl

(p.u.)
CBT repl

(p.u.)
yF C

(y.)
yBT

(y.)
DEMU 1.000 15001 - - 0.0341 - 0.4141 - - - -

LT
O

RB1-A 1.918 400 220 80 0.018 0.015 1.211 0.101 0.021 3.4 10.2
RB1-B 2.095 400 220 80 0.018 0.015 1.428 0.061 0.021 5.5 10.2

RB2 1.681 600 280 70 0.027 0.019 0.964 0.095 0.025 5.1 10.9
GA-RB2 1.629 600 280 63.5 0.027 0.019 0.912 0.092 0.026 5.5 10.3

RB3 1.684 600 360 80 0.027 0.025 0.958 0.093 0.029 5.3 12.1
GA-RB3 1.651 600 260 76.2 0.027 0.018 0.938 0.093 0.024 5.3 10.4

DP 1.593 600 300 70 0.027 0.021 0.872 0.093 0.028 5.4 10.3
ANFIS 1.656 600 300 70 0.027 0.021 0.934 0.095 0.028 5.0 10.5

N
M

C

RB1-A 1.943 400 360 80 0.018 0.013 1.225 0.099 0.036 3.6 6.3
RB1-B 2.107 400 340 70 0.018 0.013 1.428 0.061 0.035 5.5 6.1

RB2 1.699 600 340 70 0.027 0.013 0.979 0.094 0.035 5.2 6.0
GA-RB2 1.641 600 440 65.4 0.027 0.016 0.922 0.092 0.032 5.5 8.0

RB3 1.690 600 460 80 0.027 0.017 0.966 0.093 0.035 5.3 7.6
GA-RB3 1.659 600 460 60.1 0.027 0.017 0.947 0.093 0.023 5.3 10.2

DP 1.589 600 560 60 0.027 0.021 0.869 0.092 0.028 5.4 10.2
ANFIS 1.647 600 560 60 0.027 0.021 0.926 0.094 0.028 5.2 10.4

L
F

P

RB1-A 1.962 400 280 80 0.018 0.013 1.212 0.101 0.066 3.4 3.8
RB1-B 2.138 400 320 80 0.018 0.015 1.428 0.061 0.064 5.5 4.4

RB2 1.725 600 360 70 0.027 0.017 0.963 0.094 0.072 5.2 4.4
GA-RB2 1.686 600 380 75.3 0.027 0.018 0.909 0.092 0.087 5.4 3.9

RB3 1.715 600 400 80 0.027 0.019 0.957 0.093 0.067 5.3 5.0
GA-RB3 1.696 600 360 77.4 0.027 0.017 0.934 0.093 0.072 5.4 4.3

DP 1.669 600 400 60 0.027 0.019 0.858 0.092 0.121 5.4 3.0
ANFIS 1.724 600 400 60 0.027 0.019 0.914 0.093 0.119 5.3 3.1

1 In the case of the DEMU, nF C value refers to nGS , CF C value to CGS , and CH2 value to Cf

Table 4.9: Additional optimization variables of GA-RB2 and GA-RB3.

Optimization variables

GA-RB2

RB1 x1=70.0%, y1=11.67%, y2=100.0%
LTO x1=57.2%, y1=16.06%, y2=61.95%

NMC x1=57.3%, y1=17.28%, y2=62.30%
LFP x1=70.3%, y1=17.74%, y2=65.72%

GA-RB3

RB1 SOCref =80.0%, kpp=0.0625, kpn=0.0500
LTO SOCref =79.5%, kpp=0.0264, kpn=0.0661

NMC SOCref =63.2%, kpp=0.0355, kpn=0.0896
LFP SOCref =82.8%, kpp=0.0210, kpn=0.0045

1 Refers to the RB parametrization

RB3 are given in Table 4.9. In both cases, RB refers to the rule-based parametrizations
(RB2 and RB3, specifically), which are the same for the different BT chemistries.

In short, in this subsection a qualitative analysis of the optimization results has been
provided. In the following subsections, a quantitative analysis of the variables presented
in this subsection is carried out.
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4.4.2 Analysis of LCC Values

This subsection is focused on comparing the LCC values of the different cases of the
sensitivity analysis. Figures 4.14 and 4.15 are depicted to ease this analysis. Figure 4.14
presents the LCC values clustered according to the BT chemistry. Besides, the varying
shapes and colours represent the different control strategies. The LCC values are given
in the x-axis, and hence the values located at the left refer to a better solution. Then, in
Figure 4.14 the LCC value of each case of the sensitivity analysis is divided into the key
cost terms of the economic model: CF C , CBT , CH2 , CF Crepl and CBT repl. In this way, the
difference in the cost terms can be also highlighted.
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Figure 4.14: LCC results for different EMSs and BT chemistries.
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Figure 4.15: LCC breakdown into key cost terms.

A first evaluation of the LCC results unveils that in economic terms, the H2EMU
is far from the traditional DEMU. Even in the best cases of the H2EMU, the LCC is
nearly a 59% higher compared to the DEMU case (e.g., DP strategy with LTO or NMC
chemistry). As it can be seen in Figure 4.15, the main reason comes due to the difference
between the costs related to the use of hydrogen and diesel. Even in the cases that reduce
most the CH2 value (e.g., DP strategy), it doubles the Cf value of the DEMU. Therefore,
a high reduction in the hydrogen price (cH2) is necessary for the H2EMU to become a
cost-effective solution compared to the DEMU. Indeed, in the best case of the sensitivity
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analysis (DP strategy with NMC), cH2 has to be reduced at least a 62%, what corresponds
to a hydrogen price around 3.5€/kg. This issue is further discussed in Section 4.5.

4.4.2.1 Comparison of BT Chemistries

When comparing the results obtained by the different BT chemistries, it can be checked
that LFP is behind the results obtained by the other two technologies. Comparing the
results of the best strategy (DP in the three cases), the LCC of LFP is a 4.8% higher than
LTO and a 5.0% higher than NMC. In the case of the remainder strategies, this difference
is reduced. However, there is no case where the option of LFP is better than the other
two chemistries. When looking to the more detailed results given in Figure 4.15, it can
be concluded that the main difference between LFP and the remainder strategies is the
higher cost related to the BT replacements. Indeed, LFP obtains similar results in the
remainder cost terms (in some strategies it obtains even a lower hydrogen consumption
than LTO), but the high CBT repl value inevitably penalises its results.

Regarding the results of LTO and NMC, it can be concluded that both chemistries are
close in terms of LCC. LTO obtains a better result in the case of RB1-A (1.3% lower),
RB1-B (0.6% lower), RB2 (1.1% lower), RB3 (0.4% lower), GA-RB1 (0.8% lower) and GA-
RB2 (0.4% lower). On the contrary, NMC obtains a better result in the case of ANFIS
(0.5% lower LCC) and DP (0.2% lower). Therefore, in most of the cases the difference is
lower than the 1%. If the cost terms are compared, it can be concluded that the biggest
difference is found in the BT acquisition and replacement costs: LTO requires a higher
CBT due to the higher price of the technology, but due to its much longer lifetime, it
reduces CBT repl compared to NMC. In the two strategies where NMC improves the result
of LTO, the improvement is obtained thanks to the hydrogen use reduction.

4.4.2.2 Comparison of Control Strategies

With the aim of adding further information to the comparison of the different EMSs,
in the following pages the simulation results of all the cases of the sensitivity analysis
are depicted in Figures 4.16 to 4.19. Each graph is composed of two subplots, which
represent the FC power evolution and the SOC evolution, respectively. Both graphs help
understanding the operation of the two H2EMU power sources.

Starting with the results of the RB strategies, Figure 4.14 demonstrates that both
variants RB1-A and RB1-B are far from the remainder strategies in terms of LCC. In the
case of RB1-A, it obtains a LCC 20.4% higher than the best strategy (DP) and 13.9%
higher than the closest strategy (RB3) when using LTO. In the case of the other two
chemistries, similar values are also obtained: 22.3% and 14.4% higher in the case of NMC,
and 17.6% and 13.7% higher in the case of LFP. Besides, the results of RB1-B are even
worse than the results of RB1-A, as it obtains a LCC between 8.4-9.2% higher, depending
on the chemistry.
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Looking to the more detailed Figure 4.15, it can be checked that the main disadvan-
tage of both strategies is their high hydrogen consumption. Compared to the strategy that
most minimizes this consumption, RB1-A consumes between 38.9-41.3% more hydrogen,
depending on the chemistry. In the case of RB1-B, these values are even higher: between
63.8-66.4% more hydrogen. Focusing on the differences between RB1-A and RB1-B, it is
demonstrated that RB1-A obtains a lower hydrogen consumption, while RB1-B reduces
the FC degradation (indeed, this was the objective when designing both strategies). The
results of RB1-B show that the savings obtained by increasing the FC lifetime (between
38.4-39.6%, depending on the chemistry) do not payback the increase of the hydrogen con-
sumption (between 16.6-18.0%). This demonstrates that in absolute numbers, reducing the
hydrogen consumption is more important than increasing the FC lifetime. Consequently,
RB1-A obtains by far a better result compared to RB1-B.

Focusing on the operation, the zoom into Figure 4.16a shows how in RB1-B the FC
works always constantly, while in RB1-A there are frequent changes in the FC working
point. This explains the differences in the hydrogen consumption and FC lifetime. Both
graphs demonstrate that the operation of both powertrain sources is similar even when
integrating different BT chemistries.
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Figure 4.16: Simulation results of RB1-A and RB1-B strategies.

Focusing on RB2, the results demonstrate that it improves the LCC of both RB1
variants. Therefore, it is concluded that reducing the FC operation point at high SOC
values is an appropriate control approach, as it is the main difference between RB1 and
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RB2. The main improvement compared to RB1 is obtained thanks to a reduction on the
hydrogen use (between 20.1-20.5% compared to RB1-A and between 31.4-33.6% compared
to RB1-B). Comparing the results of Figures 4.16 and 4.17, it can be checked that the
SOC that the BT performs is similar in RB1-A, RB1-B and RB2. However, in RB2 the
FC power, instead of being set at a constant value, fluctuates to avoid overcharging the
BT, what eventually allows obtaining a lower hydrogen use. Anyway, the results of RB2
are yet far from the best strategy, as compared to DP the LCC is 5.5% higher in the case
of LTO, 6.9% higher in the case of NMC, and 3.4% higher in the case of LFP.

The results also demonstrate that the LCC of RB2 can be improved by the proposed
GA optimization. Indeed, compared to the RB version, GA-RB2 obtains a LCC reduction
of the 3.1% (LTO), 3.4% (NMC), and 2.3% (LFP). With these results, GA-RB2 is found
to be the second best strategy. Analysing the detailed results depicted in Figure 4.15,
it can be stated that the main improvement is obtained thanks to the hydrogen use
reduction, which ranges between 5.3-5.8% depending on the BT chemistry. The FC lifetime
is also improved, but the difference is negligible compared to the hydrogen use reduction.
Figure 4.17 shows how GA-RB2 proposes to reduce the y2 value of the controller, which
corresponds to the FC operation point in low-medium SOC values (see Figure 4.3). This
allows maintaining the FC power at a constant value for half of the trip. When the SOC
increases, the FC changes its working point, but these changes are softer than in RB2. The
reason is that the difference between y2 and y1 is smaller in the cases of GA-RB2 compared
to the case of RB2. Altogether, this operation turns to improve the fuel efficiency of the
vehicle.
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Figure 4.17: Simulation results of RB2 and GA-RB2 strategies.
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Regarding RB3, the results show that it is close to RB2 in terms of LCC: 0.2% higher
with LTO, 0.5% lower with NMC, and 0.6% lower with LTO. However, the improvement
obtained by the GA optimization is not as high as in the case of RB2. Consequently,
GA-RB3 obtains a slightly worse result compared to GA-RB2 in terms of LCC: 1.4%
higher with LTO, 1.1% higher with NMC, and 0.6% higher with LFP. Even if there are
some minor changes in the remainder cost terms, the main reason to this higher LCC is
again the hydrogen consumption, which is between 2.7-2.9% higher in GA-RB3 compared
to GA-RB2. In short, it can be stated that in terms of cost-efficiency, the control approach
proposed by RB2 is better than the one proposed by RB3.

Figure 4.18a shows that the operation of the FC does not differ much from RB3 to
GA-RB3. Indeed, this control strategy is found to be more limited when trying to be
optimized, as the controller cannot vary the FC operation point into a wide range. This is
the reason why the improvement obtained by the GA approach is lower in RB3. Besides,
Figure 4.18b shows how RB3 and GA-RB3 succeed in reducing the DOD performed by the
BT. Even if this approach allows to reduce the BT degradation, the obtained improvement
is not enough to overcome the slightly higher hydrogen consumption of GA-RB3 compared
to GA-RB2, as it was already highlighted.
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Figure 4.18: Simulation results of RB3 and GA-RB3 strategies.

With any of the chemistries, the strategy with the best result is found to be DP.
Indeed, it improves the LCC of GA-RB2 (the very next strategy) a 2.2% (LTO), 3.2%
(NMC) and 1.0% (LFP). The main reason to these results is that DP is the strategy that
obtains the lowest hydrogen consumption. Indeed, compared to GA-RB2, the hydrogen
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use is reduced a 4.4% (LTO), 6.7% (NMC) and 6.6% (LFP). In the case of LFP, the overall
LCC difference between DP and GA-RB2 is lower due to the fact that DP accelerates the
BT degradation (the lifetime is reduced a 23%). The simulation results depicted in Figure
4.19a demonstrate that thanks to the proposed cost function (see Equation (4.4)), the
FC achieves a soft operation, close to the one in previous strategies. Indeed, the strategy
maintains the FC lifetime around the values of RB2, GA-RB2, RB3 and GA-RB3 while
minimizing the hydrogen consumption, what it is translated into an optimal overall LCC.

As DP is hardly implementable in the real vehicle, ANFIS learning technique was
proposed to replicate its operation. As seen in Figure 4.19, the replication obtained by
ANFIS is not perfect. The main differences are found in the FC operation, which shows
some spikes that were not proposed by DP. Due to these errors in the replication, the
LCC of ANFIS is a 4.0% (LTO), 3.7% (NMC) and 3.3% (LFP) higher than DP. The
main differences are found in the hydrogen consumption, which are 7.0%, 6.6% and 6.5%
higher, respectively. Besides, due to the mentioned spikes in the FC operation, its lifetime
tends to be reduced compared to DP, even if the impact of this issue in the overall LCC
is low. Due to these results, it is found that ANFIS is not able to improve the LCC of
GA-RB2. In the cases of LTO and LFP, GA-RB3 also obtains a lower LCC compared to
ANFIS. Therefore, the obtained results evidence that a better replication of DP results is
necessary, as the training errors are translated into an increased hydrogen use.
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Figure 4.19: Simulation results of DP and ANFIS strategies.

In short, the comparison of the different EMSs has proved that DP is the best option
with all the chemistries. The replication of DP with the proposed ANFIS method has
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obtained promising results, but it has been found that it is not enough to improve the
LCC of other strategies, such as GA-RB2 or GA-RB3. Indeed, GA-RB2 has obtained
the second best result with all the chemistries, with a LCC that is between 1.0-3.3%
higher than the optimal DP solution. Therefore, it is concluded that GA-RB2 is also an
appropriate strategy. The comparison of the different strategies will be further extended
in Section 4.4.5 with the analysis of the robustness and real time execution.

4.4.3 Analysis of Optimization Variables

Once the LCC values have been analysed, this subsection focuses on the optimal values
of the optimization variables. The objective of this analysis is to search for the correlations
between these variables and a lower LCC value. To do so, Figure 4.20 depicts a series of
graphs where the relation between the three optimization variables (nF C , nBT and SOC0)
and the LCC is shown for each case of the sensitivity analysis. The colours represent the
values obtained by the different BT chemistries, as in the case of nBT the constraints vary
depending on the chemistry.
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Figure 4.20: Influence of optimization variables on LCC.
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First of all, it can be concluded that in all the cases of the sensitivity analysis the
optimal option for the sizing of the powertrain sources is to fill two compartments of the
available space with the FC system, and the remainder two compartments with the BT
system. The reasons are further discussed in the following paragraphs.

Regarding the FC size, Figure 4.20a shows that the strategies with a lower LCC propose
to integrate a FC of 600 kW (specifically, all the strategies except RB1-A and RB1-B).
Considering that in all the cases the average power that the FC provides through all the
journey should be similar (it may be around the average demand, 260 kW, as in this way
the BT maintains its energy through all the journey), bigger FCs tend to obtain lower
consumptions, since the overall system efficiency is higher at lower operation points (see
Figure 2.8). However, big FCs also increase the costs related to their acquisition and
replacements. For the case of the current scenario, the best compromise is found to be the
FC size of 600 kW. Anyway, it can be estimated that in scenarios where the importance of
reducing the hydrogen consumption minimization is lower (e.g., due to a lower hydrogen
cost), the optimal FC size may be reduced.

In the case of the BT size, the results of Figure 4.20b show that there is not a clear
trend between nBT and the obtained LCC. Excluding the non-optimal results of RB1-A
and RB1-B, the following optimal values are proposed: in the case of LTO, sizes around
280-360 kWh; in the case of NMC, sizes around 340-560 kWh; and in the case of LFP,
sizes around 360-400 kWh. Therefore, except in the case of LFP, the variation of the
optimal nBT value is considerable. It can be also noticed that the strategies with a lower
LCC, specially DP, propose the higher value from the mentioned range. However, only
in the case of LFP does this value coincide with the maximum allowable value (400 kWh
with the FC of 600 kW). Therefore, contrary to the case of the H-DEMU, in this case the
optimal BT sizes do not coincide with the maximum allowable values.

Finally, the graph in Figure 4.20c shows that there is not a clear trend regarding the
optimal SOC0. Regardless of the chemistry, the optimal values are around 60-80%. In the
case of LTO, the values are found to be closer to 70-80%, while in the case of NMC they
are closer to 60%. Contrary to the case of the H-DEMU, in this scenario the BT can not
be discharged through the journey. Therefore, the SOC0 value does not affect directly in
the hydrogen consumption, and its impact in the final LCC is limited. The main effects
of SOC0 are on the BT degradation, even if this effect is low. SOC0 can influence in the
middle SOC and in the maximum DOD that the BT preforms: indeed, if the SOC starts
in a high value, the BT cannot be much charged at the beginning of the journey, what
limits the DOD that it performs.

4.4.4 Influence of Key Cost Terms on Overall LCC

After focusing on the LCC values and on the values of the optimization variables, in
this subsection the variable terms of the LCC model are analysed in detail. The aim of this
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approach is to identify the most influential terms of the cost model, that is to say, which
are the cost terms that have to be reduced to minimize the overall LCC. For this approach,
Figure 4.21 depicts for each case of the sensitivity analysis the relation between the overall
LCC value and the cost terms that change from one possible solution to another: CF C ,
CBT , CH2 , CF Crepl and CBT repl. As in the previous figure, the different colours represent
the analysed BT chemistries. All figures respect the same scale in the y-axis, since in this
way it is easier to identify which is the cost term with the highest correlation with the
LCC. In the case of CF C and CBT , a zoom is made to this axis in order to better identify
the potential trends.

The results demonstrate that the most influential term of the LCC model is by far
the hydrogen use, CH2 . The difference with the remainder cost terms is notorious. As
the dotted line highlighted in Figure 4.21c shows, there is a nearly linear relation between
how much a combination of BT chemistry and EMS reduces the hydrogen use and how
much it reduces the overall LCC. As it was already discussed when analysing Figure 4.15,
CH2 is the cost term that contributes most to the overall LCC, as in the different cases of
the sensitivity analysis it ranges between the 51-68% of the total cost (what corresponds
to around 85-143% of the referential DEMU cost). Therefore, logically small variations of
CH2 can lead to important variations in the overall LCC.

Regarding the remainder cost terms, it can be first concluded that the contribution
of both acquisition costs CF C and CBT is very low. Indeed, CF C represents less than
the 3% of the referential DEMU cost, while CBT represents around the 2%. Looking into
the zooms made to Figure 4.21a and Figure 4.21b, it can be also noticed that there is
no clear relation between these variables and the overall LCC, what demonstrates that
they do not influence the optimality of an EMS and/or BT chemistry. In the case of the
FC acquisition cost, its value is increased in the cases with a lower LCC. However, as it
was previously highlighted, this is due to the fact that bigger FC systems can reduce the
hydrogen consumption, and consequently the overall LCC.

Finally, the replacement costs of both traction sources have a bigger contribution to
the overall LCC. In the case of CF Crepl, it is close to the 10% of the referential cost. It can
be noticed that all the strategies obtain similar FC replacement costs, what demonstrates
that generally the objective of limiting the FC degradation is achieved. Regarding the
case of CBT repl, its contribution depends on the BT chemistry: in the case of LTO it does
not exceed the 3% of the referential cost, in the case of NMC it does not exceed the 4%,
and in the case of LFP it reaches up to the 12%. This difference between LFP and the
remainder chemistries is what makes this technology obtain higher LCC values. Indeed,
this is also the cause to the fact that the trend of Figure 4.21c is not totally linear in the
case of LFP. Indeed, the cases with a lower LCC also increase CBT repl, and therefore the
high reduction of CH2 is not enough to obtain a solution as competitive as in the best
cases of NMC and LTO.
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Figure 4.21: Relation between LCC and LCC terms.
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4.4.5 Analysis of EMS Robustness and Real Time Execution

In this subsection the evaluation of the different control strategies is extended. Indeed,
this evaluation is focused on the robustness and real time execution capabilities of the
proposed EMSs. Considering that these features could limit the efficiency of a control
strategy when integrating in a real application, the evaluation of this subsection becomes
also crucial in order to define which EMS turns to be the most appropriate

4.4.5.1 EMS Robustness

In a first step, the analysis is focused on evaluating if the proposed control strategies
are robust. Indeed, each of the cases of the sensitivity analysis has been optimized for a
specific driving cycle. But during real operation, this driving cycle is prone to suffer slight
variations, and therefore the EMS must be able to give a feasible solution also under these
circumstances.

This analysis is based on simulating again the optimal solution of each case of the
sensitivity analysis, but varying the driving cycle. The new driving cycles are based on
the nominal scenario, and they aim at representing potential disturbances that may occur
while in real operation. Specifically, the variations are set in the number of passengers
and the auxiliaries consumption, which have been altered a ±7% and ±30%, respectively.
This has lead to 8 new driving cycles, which coincide with the scenarios used to train the
ANFIS controller (see Section 4.2.1.5).

It is worth to mention that for this analysis it is considered that DP is not robust.
Indeed, even a slight variation in the driving cycle requires the deployment of a new DP
optimization, as each optimization is only valid for a very specific driving cycle. Therefore,
DP is kept out of the robustness analysis. Anyway, as it will be explained afterwards, DP
results have been also obtained under the new scenarios. These results have been used as
reference when evaluating the variation of the LCC values of the remainder strategies.

Not all the simulations have lead to a feasible solution. Figure 4.22 shows a bar
graph where the relation of feasible and unfeasible solutions are given for each analysed
strategy. It is worth to mention that for each strategy 27 simulations have been deployed,
which correspond to the combination of 9 driving cycles (nominal case and the generated
driving cycles) and 3 chemistries. The results show that most of the strategies provide
a feasible solution even when the driving cycle is varied. Specifically, RB2, RB3, GA-
RB3 and ANFIS have provided a feasible solution in all the proposed scenarios. However,
both variations of RB1 and GA-RB2 are not able to provide always a feasible solution.
Specifically, RB1-A becomes unfeasible in a 3.7% of the cases, RB1-B in a 7.4% of the
cases, and GA-RB2 in a 33% of the cases.

In the case of both RB1 variants, the problem of the unfeasible solutions is that in the
case of LTO the proposed BT sizing is not enough for the most demanding scenarios, as
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Figure 4.22: Analysis of EMS feasibility in different scenarios.

the BT is overdischarged during the most demanding sections of the route. Therefore, the
problem comes from the proposed sizing, rather than from the strategy itself. Indeed, in
the cases of RB1-A and RB1-B it is not possible to increase the FC reference to avoid a
BT discharge, as it already works in the maximum operation point. An increase of the
proposed BT sizing is necessary in order to overcome this issue.

In the case of GA-RB2, the problem of the unfeasible solutions also consist of an
overdischarge of the BT during the most demanding route sections. As it was shown in
Figure 4.17a, the optimized options of GA-RB2 propose to operate the FC at a constant
fixed point for most of the route. This value, defined by parameter y2, is lower than the
maximum FC operation point, what compared to other control strategies allows obtaining
a more efficient overall operation. However, for the most demanding scenarios, that FC
operation point is not enough to prevent an overdischarge of the BT. Therefore, it is
identified that GA-RB2 might be improved for its real time implementation, e.g., by
modifying in real time the y2 value depending on the deviation of the SOC value from the
SOC profile obtained in simulation.

Besides analysing if the control strategies are able to give a feasible solution, it is
interesting to analyse also if the LCC is altered excessively when varying the driving cycle.
Indeed, if the strategy can provide a feasible solution, but increases overmuch the hydrogen
use, it can be considered that it is not very robust. For each combination of BT chemistry
and EMS (excluding DP), Figure 4.23 depicts the distribution of the LCC values under
the new driving cycles. In order to make a reasonable comparison, the LCC under each
new scenario has been normalized in relation to the best case of the sensitivity analysis
(DP with NMC) under that same new scenario. In addition, the ’x’ marks represent the
LCC values of the nominal case (Table 4.8). In short, the figure allows evaluating if the
majority of the cases stay close to the results obtained in the original optimization. When
they do not, the figure also allows evaluating if the result is improved or worsened.

First of all, the results show that RB2, GA-RB2, RB3 and GA-RB3 are able to maintain
similar performances when varying the driving cycle. This means that under different
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Figure 4.23: EMS robustness in different scenarios.

scenarios they are able to provide a FC and BT operation which does not lead to an
increased hydrogen consumption or degradation of the power sources. Therefore, these
strategies are robust from the LCC point of view, even if some of them are not able to
provide always a feasible solution (e.g., GA-RB2).

On the contrary, some other strategies show more variability in the LCC when varying
the scenario. In the case of ANFIS, there are some cases that increase overmuch the
relative LCC compared to the original case. That is to say, the LCC is further away from
the result of DP compared to the original scenario. Therefore, ANFIS can be considered
to be less robust than the previously mentioned strategies. The main problem of this
strategy comes in the most demanding scenarios, where the proposed operation leads to
an increased hydrogen consumption in order to provide a feasible solution.

Finally, the results also show that RB1-A and RB1-B are the strategies with the highest
LCC variability in the new scenarios. Actually, their operation does not differ depending
on the scenario, as the FC always operates in the same point. This makes the operation
be more appropriate for the more demanding scenarios, as the hydrogen consumption is
closer to the optimal value of DP. On the contrary, in the less demanding scenarios,
the hydrogen consumption is even further away from the optimal value, what makes the
relative LCC be higher compared to the nominal scenario. Therefore, it can be concluded
that RB1-A and RB1-B are not robust from the LCC point of view.
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4.4.5.2 EMS Real Time Execution

In a second step, the analysis focuses on the time required for the execution of the
simulations. The aim of this analysis is to evaluate the real time performance of the
different control strategies. The simulation execution time cannot be considered to be an
exact approximation of the real time performance. However, it can help understand which
strategies will require higher or lower execution times, and therefore, their feasibility can
be estimated. In any case, it has to be considered that the analysis of this section is just
an approximation.

Figure 4.24 shows a box plot that represents the distribution of the execution times
obtained by the simulations of each EMS. Specifically, the times required for executing the
simulations of the EMS robustness analysis have been used (what means 27 simulations
per strategy). These values are represented in p.u. in relation to the time required to
execute the DEMU simulation, which does not have an EMS.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Execution Time (p.u.)

ANFIS

DP

GA-RB3

RB3

GA-RB2

RB2

RB1-B

RB1-A

Figure 4.24: Box Plot representing the execution time of each EMS.

The results show that all the simulations of the RB strategies require similar times
compared to the simulation of the DEMU. Specifically, the simulation time medians of
these EMSs are between 6.2-11.1% higher than the DEMU. Therefore, it is demonstrated
that the execution times of the control strategies proposed by RB1-A, RB1-B, RB2, RB3,
GA-RB2 and GA-RB3 are low, and that their implementation in a real time application is
feasible. In some cases there are some simulations that have required much more time that
the median value (e.g., in GA-RB3). However, thay can be considered to be exceptions,
as some external disturbances may have increased the computation time.

Regarding the ANFIS strategy, it is also based on a set of rules. However, as the
FL-based structures are heavier and more complex, the execution time of this EMS is
found to be more than three times higher than the referential value. This can question the
real time implementation feasibility of the ANFIS strategy. A reduction of the complexity
and weight of these structures is recommended in order to ease this implementation.
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Finally, DP is the strategy that requires the highest simulation time (more than four times
compared to the DEMU), due to the long time required for solving the optimization.

4.4.6 Review of Sensitivity Analysis to Powertrain Design

This subsection reviews the main conclusions obtained during the development of the
sensitivity analysis to the powertrain design. This sensitivity analysis has been focused
on evaluating and comparing the proposed EMSs and BT chemistries. In a first step, the
LCC values obtained by each case of the sensitivity analysis have been compared, and the
reasons behind these results have also been attained. In the case of the control strategies,
their analysis has been extended by addressing their robustness and execution time. Then,
the analysis has focused on the variables returned by the optimization of each case of the
sensitivity analysis. Finally, the influence that the key cost terms of the economic model
(CF C , CBT , CH2 , CF Crepl and CBT repl) have on the obtained LCC has also been analysed
and discussed.

Regarding the comparison of the BT chemistries, Table 4.10 reviews the obtained con-
clusions. Specifically, the table shows the capabilities of LTO, NMC and LFP technologies
to: (1) reduce the LCC, (2) minimize the hydrogen use, and (3) reduce the cost related
to the BT replacements. More filled bullets refer to a better capability.

Table 4.10: Main capabilities of analysed BT chemistries.

LCC H2 use BT lifetime
LTO          G#      

NMC     G#     G#     G#

LFP    ##     G#   ###

The main conclusions are reviewed bellow:

• LTO and NMC are close in terms of LCC (in most of the cases the difference is
lower than the 1%), but generally LTO obtains a slightly lower LCC. The main
improvement of LTO against NMC is the reduction of the BT replacement costs,
what allows overcoming the higher acquisition cost of this technology.

• LFP obtains higher LCC values compared to LTO and NMC (4.8% and 5% in the
case of DP, respectively). The main disadvantage of this chemistry is found to be
its higher degradation.

• Contrary to the H-DEMU case study, all the chemistries lead to a similar hydrogen
consumption. The reason is that as the BT energy should be maintained through
all the journey, in this case study the size of the BT barely influences the fuel use.

In addition, Table 4.11 reviews the main capabilities of the proposed EMSs. The
table follows the same format as Table 4.10, and in this case the capabilities related to
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the robustness, execution time, and FC lifetime are also included. The values have been
defined considering the average results of the three chemistries.

Table 4.11: Main capabilities of analysed EMSs.

LCC H2 use FC lifetime BT lifetime Robustness Execution
time

RB1-A G#####  ####    ##     #   ###     G#

RB1-B G##### G#####          #   ###     G#

RB2   G###    ##     #     #          G#

GA-RB2     #     #     #     #    ##     G#

RB3   G###    ##     #     G#          G#

GA-RB3    G##    G##     #               G#

DP               #    G## #####  ####

ANFIS    G##     #    G##    G##     #   ###

The main conclusions are reviewed as follows:

• The best strategy in terms of LCC is DP. However, the long execution time and
null robustness prevent its integration in a real application.

• The replication of DP by means of the proposed ANFIS learning technique does
not obtain bad results in terms of LCC and hydrogen use, but there are some other
OB strategies that obtain better results. In addition, the execution time should be
reduced in order to improve its real time implementation possibilities.

• GA-RB2 stays just a 1.0-3.3% behind DP in terms of LCC, what means that it
obtains better results than ANFIS. The optimization by means of the GA approach
is found to be effective to improve the LCC. However, the robustness should be
improved in order to avoid overdischarging the BT during real operation.

• GA-RB3 obtains slightly higher LCC values compared to GA-RB2, but it shows a
better robustness. It is also the strategy that reduces most the BT degradation, even
if this is not so crucial due to the high impact of the hydrogen use in this scenario.
As in the GA-RB2 case, the GA optimization approach is also found to be effective
to reduce the LCC.

• Finally, both variants of RB1 strategy obtain too high LCC and hydrogen use values,
what demonstrates that they are not appropriate for the analysed scenario.

Once the analysis of the BT chemistries and strategies is finalized, some other conclu-
sions can be highlighted regarding the analysis of the optimization results:

• The optimal FC size is found to be around 600 kW. With a lower size a feasible
solution is also obtained, but the optimal option is found to be to oversize the FC.
Indeed, even if higher acquisition and replacement costs are required, the FC can be
operated more efficiently, what allows reducing the hydrogen consumption.
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• No clear trend is found regarding the optimal BT size. In the case of LTO values
around 280-360 kWh are proposed, in the case of NMC values around 340-560 kWh,
and in the case of LFP values around 360-400 kWh. None of these values is in the
maximum allowable sizes.

• There is neither a clear trend regarding the optimal initial SOC value. Regardless
of the BT chemistry, the optimal values are found to be around 60-80%.

Finally, the analysis of the influence that the key cost terms of the economic model
(CF C , CBT , CH2 , CF Crepl and CBT repl) have on the overall LCC has unveiled some addi-
tional conclusions:

• The most influential term is CH2 , as there is a practically linear relation between a
low hydrogen consumption and a low LCC. This is a logical conclusion considering
that due to the high hydrogen cost, CH2 is the term that contributes most to the
overall LCC (in the analysed cases it ranges between the 51-68% of the LCC).

• The replacement costs have also some contribution to the overall cost. In the case of
CF Crepl, it is close to the 10% of the LCC, but as there is not much difference from
one case to another, its influence is limited. Regarding CBT repl, it is an important
cost term in the case of LFP, where it ranges up to the 12% of the LCC. Anyway,
it is found that there is not a direct relation between CBT repl and the overall LCC.

• Finally, there is neither a noteworthy relation between CF C and CBT and the overall
LCC, as their contribution to the LCC is low.

4.5 Results of Sensitivity Analysis to Economic Model

Once the results of the first sensitivity analysis have been presented, this section fo-
cuses on the results of the sensitivity analysis to the parameters of the economic model.
The objective of this analysis is to evaluate how do the results and conclusions of the
H2EMU design (that is to say, of the previous sensitivity analysis) differ when varying the
parameters of the economic model. Figure 4.25 shows where is this sensitivity analysis lo-
cated in the methodology proposed in Chapter 2. In the current case study, the variability
of the operation hours (tday), hydrogen price (cH2), FC price (cF C) and BT price (cBT )
is analysed. In cBT , the price variation of the 3 chemistries is considered independently.
The results are obtained for the same drive cycle used in the previous sensitivity analysis.

For an easier development of this sensitivity analysis, the number of considered control
strategies has been reduced. On the one hand, RB2 and RB3 are kept out of the analysis
of this section, as in the previous section the effectiveness of the GA-based strategies to
improve the performance of the original rule-based strategies has been already demon-
strated. Therefore, in this section just GA-RB2 and GA-RB3 are considered. On the
other hand, ANFIS is also kept out of the analysis of this section. Indeed, this strategy
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Figure 4.25: Current step of holistic design methodology.

requires long learning processes to be evaluated in many scenarios. In addition, as it con-
sists on a replication of DP operation, it is considered that its potential performance can
be fairly estimated from the results obtained by DP.

The analysis of this section is divided into different subsections, according to the pa-
rameter whose sensitivity is being analysed: sensitivity to the operation hours, sensitivity
to the hydrogen price, sensitivity to the FC price, and sensitivity to the BT price.

4.5.1 Sensitivity to Operation Hours

In this first subsection, the sensitivity is focused on the operation hours that the
H2EMU drives per day (tday). As it was defined in Section 4.2.3, three scenarios are
proposed: in the Low Scenario (LS) the vehicle drives 5 h/day, in the Medium Scenario
(MS) 10 h/day, and in the High Scenario (HS) 15 h/day. The nominal scenario analysed
in the sensitivity analysis to the powertrain design corresponds to the HS. The analysis
will be focused on evaluating how do the LCC values, optimal optimization variables and
terms of the economic model vary within the different scenarios. For each analysis, an
independent section is defined.

4.5.1.1 Analysis of LCC Values

Figure 4.26 depicts the LCC values obtained at each scenario. As the LCC may vary
considerably from one scenario to another, the values of each scenario are normalized in
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relation to the result of DP strategy with NMC chemistry (which in the nominal scenario of
Section 4.4 was found to be the best option). The results are grouped by each chemistry, as
in this way it is easier to analyse the effect of varying tday. Each marker refers to a different
EMS. The results will be analysed from two points of view: focusing on the comparison
of the control strategies, and focusing on the comparison of the BT chemistries.
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Figure 4.26: Sensitivity of LCC values to tday.

Regarding the control strategies, the figure shows that as tday is reduced, the LCC
difference between the different EMSs is reduced. Anyway, in all the cases the same order
as in the original scenario (HS) is respected: DP strategy continues being the best option,
followed by GA-RB2, GA-RB3, RB1-A and RB1-B, respectively. In the cases of LTO and
NMC, in the LS the difference between DP and GA-RB2 is reduced to the 2%. Therefore,
the difference continues being remarkable. In the case of LFP, the difference is maintained
around the 1%, close to the value in the original scenario. It is also worth to mention that
the two variants of RB1 continue being far from the results of the remainder strategies
(even in the best case, the difference with DP is higher than the 9%).

In the case of the BT chemistries, the figure unveils that few changes happen when
varying tday. LFP reduces slightly the LCC difference with the remainder strategies, but
it stays far from LTO and NMC even in the LS (with DP strategy it obtains 4% and
4.4% higher LCC, respectively). The comparison of the results obtained by NMC and
LTO unveils that they continue being close in the different scenarios, with LTO obtaining
slightly better results (in the case of DP, GA-RB2 and GA-RB3 the difference between
them tends to be lower than the 1%). As it will be analysed afterwards, tday mainly affects
in the hydrogen consumption. As the BT chemistry barely affects in the hydrogen use
(see Table 4.10), this low variability between the different scenarios is reasonable.

4.5.1.2 Analysis of Optimization Variables

Apart from the LCC values, the optimization variables that the optimization returns
may also vary when reducing the value of tday. Figure 4.27 shows the relation between
the optimization variables (nF C , nBT and SOC0) and the LCC, following a similar format
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as Figure 4.20. In this case, the LCC is normalized in relation to the best option of each
scenario. Indeed, the objective is not analysing the exact LCC of each case, but focusing
on the correlations between a lower LCC and the values of the optimization variables.
At each column of graphs, a different optimization variable is presented, and each row of
graphs corresponds to a different scenario (HS, MS and LS, respectively).
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Figure 4.27: Sensitivity of optimization variables to tday.

Focusing on the optimal FC results, the figure shows that the best cases continue
proposing to integrate a 600 kW FC. When reducing the operation hours, the overall
hydrogen consumption is also reduced, what may diminish the advantage of bigger FC
systems (i.e., to reduce the hydrogen consumption due to a more efficient operation).
This is the reason why one of the options at LS proposes a FC of 500 kW. Anyway,
the results demonstrate that tday values lower than 5 h/day may be necessary to obtain
optimal FC values much lower than 600 kW.

Regarding the optimal BT results, Figure 4.27 shows that when tday is reduced, lower
BT sizes are proposed. Indeed, in the HS the optimal BT sizes are found to be between
260-580 kWh, in the MS between 220-480 kWh, and in the LS between 200-340 kWh.
As in the case of the FC, lower operation hours may diminish the advantage of big BT
systems. Indeed, bigger BT systems require of higher acquisition costs, but they tend to
improve their lifetime (as they reduce the FECs and the DODs), what compensates the
initial cost. However, in the LS all the BT sizes tend to obtain longer lifetimes (less FECs
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per day), and consequently, lower BT replacement costs. In this context, the advantage
of big BT systems is reduced, and lower sizes become the cost-efficient option.

In the case of the optimal SOC0, the results show that the general trend is not affected
by tday. Similarly to the original scenario, the optimal values are distributed between 60-
80%, what demonstrates that there is no benefit from defining a higher or lower value.

4.5.1.3 Influence of Key Cost Terms on Overall LCC

As a last step, this subsection analyses how does the influence of the key cost terms
(CF C , CBT , CH2 , CF Crepl and FCBT repl) change when varying the daily operation hours.
The aim of this analysis is also to understand the LCC and optimization variables values
obtained at each scenario, which were already analysed. Figure 4.28 shows the relation
between the mentioned costs and the overall LCC at the different scenarios, following a
similar format as Figure 4.21. At each column of graphs a different cost term is presented,
and each row corresponds to a different scenario (HS, MS and LS, respectively). At
each graph, both variables are normalized in relation to the LCC value of the best case.
Besides, all the graphs use the same scale in the y-axis, as in this way is easier to identify
the correlations between the cost terms and the overall LCC.

The results show that even when reducing the operation hours, CH2 continues being the
cost term that contributes most to the overall LCC. Its relative contribution is reduced,
as the best solutions in the HS contribute to around the 55% of the overall LCC, while in
the LS that value is reduced to the 30%. Anyway, the difference with the remainder cost
terms is still high. Due to this reason, CH2 continues being the cost term with the major
importance, as even in the LS a linear relation between a lower LCC value and a lower
CH2 value is found.

The contributions of both replacement costs CBT repl and CF Crepl are also slightly
reduced in the lower scenarios, specially in the case of CF Crepl. Indeed, with less operation
hours the lifetimes of the powertrain components tend to be increased. In the case of
CF Crepl, its contribution is reduced from around the 5% in the HS to around the 3% in
the LS (value for the cases with lower LCC). Regarding CBT repl, in the different scenarios
its contribution is maintained around the 1-2% with LTO and NMC chemistries, and
around the 4-8% in the case of LFP. The reason is that, as it was already highlighted,
lower BT sizes are proposed in MS and LS, which tend to obtain lower lifetimes than
the bigger systems proposed in the HS. Therefore, in the end the relative contribution is
maintained around the original values. In short, the results demonstrate that CBT repl and
CF Crepl do not become important cost terms when reducing tday, as they do not become
crucial to define which EMS or BT chemistry obtains a better result.

In the case of the acquisition costs, similar conclusions are obtained. First, it can be
checked that the contribution of CF C tends to be increased when reducing tday. Even if
the optimal sizing values are maintained, as the overall LCC is reduced (due to the lower
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operation costs), its relative contribution is increased. Anyway, even in the LS, CF C only
contributes to around the 2-4% of the overall LCC. Besides, the contribution of CBT is
maintained around the 1% in all the scenarios. As it was already explained for the case of
CBT repl, the main reason is that the BT sizes are reduced when reducing tday. In short,
it is concluded that neither CF C or CBT increase their importance when reducing tday,
mainly due to the fact that their contribution continues being residual.

4.5.2 Sensitivity to Hydrogen Price

In this subsection, the sensitivity focuses on varying the hydrogen price cH2 . As it was
specified in Section 4.2.3, the price is defined at 11€/kg in the HS (which corresponds to
the nominal scenario), at 7€/kg in the MS, and at 3€/kg in the LS. The analysis will be
focused on evaluating how do the LCC values, optimal optimization variables and terms
of the economic model vary. Each analysis is developed in an independent section.

4.5.2.1 Analysis of LCC Values

Figure 4.29 shows how does the LCC vary from one scenario to another. The figure
follows the same format as the previously introduced Figure 4.26: the LCC values are nor-
malized in relation to DP/NMC, the results are grouped by each BT chemistry, and each
marker refers to a different control strategy. The depicted results will be analysed focusing
on the comparison of the control strategies and the comparison of the BT chemistries.

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

Life Cycle Cost (p.u.)

DP/NMC

11 €/kg

7 €/kg

3 €/kg

LTO
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3 €/kg

LFP

11 €/kg

7 €/kg

3 €/kg

RB1-A
RB1-B
GA-RB2
GA-RB3
DP

Figure 4.29: Sensitivity of LCC values to cH2 .

The results suggest that when reducing cH2 , the LCC difference between the different
EMSs is slightly reduced. This reduction is similar for all the EMSs, except for DP,
which tends to worsen its results more than the remainder strategies. Consequently, in
the case of LFP chemistry, DP is not the best EMS in the MS and LS. In the cases of
LTO and NMC, however, it continues being the best one, as the difference between DP
and the remainder EMSs was high in the HS. As it will be explained afterwards, when
reducing cH2 the importance of minimizing the hydrogen consumption is also reduced. As
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the main advantage of DP against the other EMSs is the hydrogen use minimization (see
Table 4.11), this performance loss is reasonable. Regarding the remainder strategies, it is
noticed that GA-RB2 obtains better results than GA-RB3 also in the MS and LS, and
that both variants of RB1 continue being far from the best EMSs.

Focusing on the comparison of the BT chemistries, there is no notable change in
the results of LTO and NMC. When reducing cH2 , the LCC difference between both
chemistries continues being lower than the 1% in the cases of the best strategies, with
LTO obtaining a slightly lower LCC in most of the cases. In addition, both chemistries
increase the difference with LFP when reducing the hydrogen price. The reason behind
the performance decrease of LFP is that when reducing cH2, the importance of CBT repl is
increased (as it will be analysed afterwards). This becomes a disadvantage for LFP, as it
degrades faster than the remainder chemistries.

4.5.2.2 Analysis of Optimization Variables

Besides analysing the variation of the LCC values, in this subsection the variation of the
returned optimization variables is also analysed. For this approach, Figure 4.30 depicts the
relation between these variables and the LCC values at the different scenarios. The figure
follows the same format as the previously introduced Figure 4.27: the LCC is normalized
in relation to the best option of each scenario, each column of graphs presents the results
for one optimization variable, and each row of graphs corresponds to one scenario (HS,
MS and LS, respectively).

Regarding the FC sizes, the results unveil that the optimal values tend to be reduced
when reducing cH2 . Indeed, excluding the results of the RB1 variants, in the HS all the
cases propose the 600 kW FC, in the MS some cases propose the 500 kW FC, and in the
LS all the cases propose the 500 kW FC. As mentioned before, reducing the hydrogen
price reduces the importance of minimizing the hydrogen use. Consequently, the main
advantage of big FC systems disappears, similarly to the case when tday was reduced.
However, compared to the previous sensitivity analysis, in this case the reduction of the
optimal FC system is more notorious.

In the case of the optimal BT sizes, the results show that there are not important
changes when varying the hydrogen price. In the different scenarios, the sizes of the best
cases are maintained around 400-600 kWh for NMC, around 300-400 kWh for LFP, and
around 200-300 kWh for LTO. Therefore, it can be concluded that varying cH2 does not
affect the result of the optimal BT size.

Regarding the optimization variable SOC0, Figure 4.30 shows that some slight changes
happen when reducing the hydrogen price. This is specially notorious in the case of NMC,
as in some of the best cases the optimal SOC0 is lower than the 60% in the MS and LS.
Anyway, there is no clear trend between a specific SOC0 value and a lower LCC.
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Figure 4.30: Sensitivity of optimization variables to cH2 .

4.5.2.3 Influence of Key Cost Terms on Overall LCC

Finally, the analysis of this subsection focuses on how does the influence of CF C , CBT ,
CH2 , CF Crepl and FCBT repl change when varying the hydrogen price. Figure 4.31 shows
the relation between the mentioned costs and the overall LCC at the different scenarios.
The figure follows the same format as the previously depicted Figure 4.28: both related
variables are normalized in relation to the LCC of the best case, at each column of graphs
a different cost term is introduced, and each row corresponds to a different scenario.
Moreover, all the graphs share the same scale in the y-axis, as in this way it is easier to
identify which are the strongest correlations.

The results show that even when reducing the hydrogen price, CH2 continues being
the cost term that contributes most to the overall LCC. The contribution of CH2 in
the best cases is reduced from around the 55% in the HS to around the 35% in the LS.
Consequently, the importance of this term seems to be slightly reduced when reducing
cH2 . Indeed, in the HS the relation between the LCC and CH2 is completely linear, but
this linearity tends to be reduced in the lower scenarios. That is to say, the points in LS
are more dispersed than in HS. The lost in the linearity is specially noticeable in the case
of LFP, where the solutions with a lowest hydrogen consumption (DP and GA-RB2) are
not the ones with the lowest LCC. Therefore, it can be concluded that when reducing
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cH2 , the importance of minimizing the hydrogen consumption is slightly reduced.

As the in the MS and LS the value of CH2 is reduced, the contribution of the remainder
cost terms may be slightly increased, even if they are not directly affected by the hydrogen
cost reduction. This is specially notorious in the case of CBT repl when integrating LFP.
In the worst case of the LS, the contribution of CBT repl to the overall LCC is around
11%, which is quite high compared to the values when integrating LTO or NMC. Due
to this increase in the relative contribution of CBT repl, together with the reduction of
CH2 , reducing the BT degradation becomes important when integrating LFP chemistry.
Indeed, as Figure 4.31o shows, the solutions with a lower CBT repl are the ones with a lower
overall LCC.

In the case of CF Crepl, its overall contribution is maintained around the 6-8% through
the different scenarios, mainly due to the fact that when reducing the hydrogen price,
slightly lower FC sizes are proposed. Anyway, it does not become an important cost term.
A similar conclusion is obtained when analysing the values of CF C , as its contribution is
also maintained due to the reduction of the proposed FC sizes. In the case of the last
acquisition cost CBT , its contribution is slightly increased, but it is always maintained
below the 4%. Therefore, it does neither become an important cost term.

4.5.3 Sensitivity to Fuel Cell Price

In this subsection, the sensitivity focuses on varying cF C . As defined in Section 4.2.3,
the following scenarios are proposed: in the HS the cost is 1000 €/kW (this corresponds
to the nominal scenario), in the MS 800 €/kW, and in the LS 500 €/kW. The analysis
will be focused on evaluating how do the LCC values, optimal optimization variables and
terms of the economic model vary. For each analysis, an independent section is set.

4.5.3.1 Analysis of LCC Values

Figure 4.32 depicts the variation of the LCC values through the different scenarios.
The figure follows the same format as the previously introduced Figures 4.26 and 4.29: the
LCC values are normalized in relation to DP/NMC, the results are grouped by each BT
chemistry, and each marker refers to a different EMS. The results are analysed focusing
on the comparison of the control strategies and the comparison of the BT chemistries.

The comparison of the control strategies unveils that there are not important changes
when varying cF C . In general, the original order is maintained, as in the different scenarios
DP continues being the best strategy, followed by GA-RB2, GA-RB3, RB1-A and RB1-B.
The main changes are found in DP, which seems to slightly increase the LCC difference
with the remainder strategies. The reason is that when reducing cF C , the importance of
the remainder cost terms (including CH2) is slightly increased, as it will be analysed after-
wards. Therefore, as it is the strategy that most minimizes this cost term, DP improves
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Figure 4.32: Sensitivity of LCC values to cF C .

its performance. By contrast, RB1-B seems to worsen its performance when reducing cF C .
Indeed, the main benefit of this strategy is the lower FC degradation. Therefore, when
cF C is reduced, its main advantage is diminished.

In addition, the figure shows that there is not much difference between the results of
the different BT chemistries when varying the FC cost. Even in the LS, the LCC difference
between LTO and NMC is maintained bellow the 1% in the cases of the best strategies.
In addition, the difference of these two chemistries with LFP is also maintained around
the same values of the original scenario (HS) when reducing the FC price.

4.5.3.2 Analysis of Optimization Variables

After the analysis of the LCC variation, the following paragraphs focus on the variation
of the optimization variables. For this approach, Figure 4.33 depicts the relation between
these variables and the LCC values at the different scenarios. The figure follows the same
format as the previously introduced Figures 4.27 and 4.30: the LCC is normalized in
relation to the best option of each scenario, each column of graphs presents the results for
one optimization variable, and each row of graphs corresponds to one scenario (HS, MS
and LS, respectively).

Regarding the optimal FC size, the results show that there is no change when varying
cF C . In all the scenarios, the cases with a better LCC propose to integrate a 600 kW FC.
When reducing cF C , it would be possible that even bigger FC become the best option,
as their higher acquisition and replacement costs may be compensated by their higher
hydrogen use efficiency. However, a FC bigger than 600 kW requires a lower BT size,
what may not be optimal from a technical (required power peaks) or cost-efficiency (BT
degradation acceleration) perspective.

Focusing on the remainder optimization variables, the results unveil that there are
neither big changes when varying cF C . In the different scenarios, the optimal BT sizes
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Figure 4.33: Sensitivity of optimization variables to cF C .

of the best cases are maintained between 260-340 kWh when integrating LTO, between
360-560 kWh with NMC, and between 340-400 kWh with LFP. Regarding SOC0, the
optimal values are also maintained between the 60-80% through the different scenarios.

4.5.3.3 Influence of Key Cost Terms on Overall LCC

Finally, this subsection focuses on how does the influence of each of the variable cost
terms change when varying the FC price. Figure 4.31 shows the relation of the mentioned
costs and the overall LCC at the different scenarios. The figure follows the same format
as the previously depicted Figures 4.28 and 4.31: both related variables are normalized
in relation to the LCC of the best case, at each column of graphs a different cost term
is introduced, each row corresponds to a different scenario, and all the graphs share the
same scale in the y-axis.

The analysis of the LCC and optimization variables has shown that little changes
happen when varying cF C . Logically, the analysis of Figure 4.34 also unveils that the
importance of the different variable cost terms do not vary much when the FC cost is
reduced. This clearly demonstrates that cF C does not influence much the optimal design
of the H2EMU.
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The hydrogen use CH2 continues being the cost term with the major contribution to
the LCC. When reducing cF C , this contribution slightly increases. Indeed, in the cases
with a better LCC, the contribution of CH2 stays around the 53-60% in the HS, around
the 55-62% in the MS, and around the 56-63% in the HS. As it was already highlighted,
this increase in the contribution influences the performance of DP: as the importance of
CH2 is increased, DP increases the LCC difference with the remainder strategies.

The contributions of the BT related cost terms (CBT and CBT repl) are also slightly
increased when reducing the FC price. However, as these values were already low in the
HS, the increase is barely noticeable. In the case of CBT , the values are maintained below
the 1% also in the LS. Regarding CBT repl, the values are maintained below the 2% in the
LS in the case of LTO and NMC, and below the 9% in the case of LFP. Therefore, it is
concluded that CBT and CBT repl do not increase their influence when varying cF C .

The cause of the slightly increase in the contributions of CH2 , CBT and CBT repl is that
the contributions of the FC related cost terms (CF C and CF Crepl) are logically reduced
when reducing the FC price. In the case of the FC acquisition cost, this reduction is barely
noticeable, as in the original scenario (HS) the contribution to the overall LCC was lower
than the 1% in most of the cases. Regarding the FC replacement cost, the reduction is
more evident: in the best cases, the contribution stays around the 6% in the HS, around
the 5% in the MS, and around the 3% in the LS. Therefore, CF Crepl is the cost term
that reduces most its contribution to the overall LCC when reducing cF C . Anyway, as it
was already highlighted, this reduction in the contribution of both FC related cost terms
barely affects the influence of the remainder cost terms.

4.5.4 Sensitivity to BT Price

Finally, the sensitivity analysis to the economic model focuses on varying the price the
BT, cBT . Considering that each BT chemistry has a different cost also in the nominal
scenario, this analysis is developed individually for each chemistry. As previously defined,
in the case of LTO 1200-1500-1800 €/kWh prices are proposed for each scenario (LS-MS-
HS, respectively), in the case of NMC 640-800-960 €/kWh, and in the case of LFP 520-
1040-1560 €/kWh. In all the cases, the MS corresponds to the nominal scenario already
analysed in Section 4.4. The analysis of this subsection will be focused on evaluating how
do the LCC values, optimization variables and terms of the economic model vary when
varying cBT . An independent section is defined for each analysis.

4.5.4.1 Analysis of LCC Values

Figure 4.35 depicts three graphs that represent the LCC variations at the different
cBT scenarios. When cBT is varied for one chemistry, logically the results of the other
chemistries are not affected. However, in order to better evaluate what happens when
varying the price of a single chemistry, one independent graph is depicted for the variation
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of each chemistry price: Figure 4.35a shows what happens when changing LTO price,
Figure 4.35b when changing NMC price, and Figure 4.35c when changing LFP price.
At each graph, the results of the three BT chemistries are depicted. In order to easily
identify the chemistry that it is being analysed, the chemistries with no variation have
a grey background. The figures respect the same format as the previously introduced
Figures 4.26, 4.29 and 4.32, what means that NMC is the case used as a reference. This
is why in Figure 4.35b the values of LFP and LTO change from one scenario to another.
Indeed, even if their absolute values do not vary, as the reference values have changed,
their relative values are not the same in the different scenarios.
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Figure 4.35: Sensitivity of LCC values to cBT .

In a first step, the analysis is focused on comparing the performance of the control
strategies in the different scenarios. LTO and NMC price variation seem to have small
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effect on the performance of the different control strategies: when varying their price,
DP continues being the best strategy, followed by GA-RB2, GA-RB3, RB1-A and RB1-B.
Besides, there is no notable variation in the LCC difference between the different strategies.

However, in the case of LFP some changes in relation to the original case are identified,
specially regarding the performance of DP. As it will be analysed afterwards, when the BT
price is reduced, the importance of CBT repl is also reduced, what has a notorious impact
in the case of LFP. When integrating this chemistry, DP is the strategy that degrades
most the BT. Therefore, DP improves its performance when reducing cBT (in the LS
it increases the LCC difference with GA-RB2 and GA-RB3 to nearly the 3% and 4%,
respectively), and it worsens its performance when increasing cBT (in the HS it obtains
higher LCC than GA-RB2 and GA-RB3). On the contrary, GA-RB3 is the strategy that
reduces most the BT degradation. Therefore, it tends to improve its performance when
increasing LFP price, but even in the HS this is not enough to improve GA-RB2 result.

In a second step, the analysis is focused on the comparison of the different chemistries.
Regarding LTO, the results show that when increasing its price, the LCC values of LTO
and NMC become closer: 0.2% difference with DP and GA-RB2, and 0.1% difference with
GA-RB3 (RB1 results are excluded as they are not representative). On the contrary, when
reducing its price, LTO clearly becomes the best option, as the LCC difference with NMC
becomes notorious in the LS: 1.1% lower LCC in the case of DP, 1.3% lower in the case
of GA-RB2, and 1% lower in the case of GA-RB3. When varying NMC price, similar
conclusions are obtained. On the one hand, reducing NMC price has a similar impact as
increasing LTO price: LTO and NMC obtain similar LCC values. And on the other hand,
increasing NMC price has a similar impact as reducing LTO price: LTO becomes clearly
the best option. Therefore, it can be concluded that a higher LTO price increase or NMC
price decrease are necessary for NMC to become the best option against LTO.

Regarding LFP price variation, the results unveil that when reducing its price, it can
become a competitive option. Indeed, it can be checked that in the LS the LCC values
of this chemistry get close to the values of LTO and NMC: in the case of DP strategy, it
is just 0.1% and 0.3% behind LTO and NMC; in the case of GA-RB2, 0.7% behind LTO
and 0.1% ahead of NMC; and in the case of GA-RB3, 0.3% behind LTO and 0.1% ahead
of NMC. On the contrary, when increasing its price, the difference with the remainder
chemistries becomes even higher than in the original scenario (MS), what makes LFP be
an unfeasible option from the economic scope.

4.5.4.2 Analysis of Optimization Variables

Besides the analysis of the LCC variation, in this subsection the variation of the op-
timization variables is also analysed. For this approach, Figure 4.36 depicts the relation
between these variables and the LCC values at the different scenarios. The figure follows
the same format as the previously introduced Figures 4.27, 4.30 and 4.33. As it was al-
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ready mentioned, the aim of this figure is to evaluate the variations in the optimization
variables, instead of comparing the exact LCC values. Due to this reason and in the sake
of simplicity, at each cost scenario the results of each chemistry refer to the results when
solely varying their price. As an example, in Figure 4.36a the results refer to the case
when all the BT prices are in the HS: the results of LTO refer to the increase of its cost to
1800 €/kWh, the results of NMC to the increase of its cost to 960 €/kWh, and the results
of LFP to the increase of its cost to 1560 €/kWh.
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Figure 4.36: Sensitivity of optimization variables to cBT .

Regarding the optimal FC size (Figures 4.36a, 4.36d and 4.36g), the results show that
no variation happens when reducing or increasing cBT . Indeed, in all the scenarios the
cases with a lower LCC propose to integrate the FC of 600 kW.

Focusing on the optimal BT size, some slight changes are identified, but in general the
same tendencies as in the original scenario (MS) are maintained. In the case of LTO, when
increasing its costs the optimal values of the best cases are maintained around 260-300
kWh, which are the same values as in the MS. When reducing its price, some of the
best solutions propose higher sizes (up to 360 kWh), due to the fact that the influence
of CBT and CBT repl is reduced. In the case of NMC and LFP, no important changes are
identified, as in the different scenarios the optimal values are maintained around 420-560
kWh (NMC) and around 340-400 kWh (LFP).

Regarding the optimal initial SOC values, some slight changes are also identified. In
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the case of NMC, some values closer to the 50% are proposed when reducing its price.
In the remainder cases, the values are concentrated around the 60-80%, as in the original
scenario (MS). These results confirm that there is no remarkable SOC0 value that reduces
the LCC even when varying cBT .

4.5.4.3 Influence of Key Cost Terms on Overall LCC

After having analysed the LCC values and the returned optimization variables, this
last step focuses on the key cost terms of the economic model (CF C , CBT , CH2 , CF Crepl

and FCBT repl). Figure 4.37 depicts a series of graphs that relate the obtained LCC values
and these cost terms for the different BT cost scenarios. The figure and subplots follow the
same arrangement as the previously introduced Figures 4.28, 4.31 and 4.34. All the graphs
share the same scale in the y-axis in order to better identify the correlations. Moreover,
as in Figure 4.36, the results of each chemistry refer only to the variation of their price.
Therefore, these graphs are not convenient to compare the LCC values of the different BT
chemistries or EMSs.

The results show that in the different scenarios CH2 continues being the cost term with
the highest contribution to the overall LCC. Indeed, its contribution is barely increased or
decreased when varying cBT , as the best values are always around the 52%. However, its
influence is affected by the BT price variation: in the LS and MS the relation between the
LCC and CH2 is practically linear, but this linearity is slightly lost in the HS (specially in
the case of LFP).

The reason of this linearity loss is that when increasing cBT , the importance of the
BT replacements increases, specially in the case of LFP (as this chemistry shows the
shortest lifetimes). As it can be seen, the contribution of CBT repl is higher as the BT price
increases, and it reaches the 11% in the worst case of LFP. This reverses the tendency
between CBT repl and the LCC: in LS the solutions with a lower CBT repl obtain a worse
LCC, but in the HS the solutions with a lower CBT repl are the ones that obtain a better
LCC. This demonstrates that in the HS of LFP a compromise between the hydrogen use
and the battery degradation has to be reached.

The BT acquisition costs are also increased when increasing cBT . However, even in
the HS, most of the cases do not contribute more than the 1%. Therefore, the influence
of CBT continues being residual. Finally, regarding the FC related costs, no important
variations are found: in cases with a lowest LCC, the contribution of CF C is maintained
around the 1%, and the contribution of CF Crepl around the 6%.

4.5.5 Review of Sensitivity Analysis to Economic Model

In this section the effects of varying the daily operation hours (tday), the hydrogen
price (cH2), the FC price (cF C) and the BT price (cBT ) have been evaluated. The analysis
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has been focused on how is the H2EMU optimal powertrain design affected when varying
the mentioned parameters of the economic model. Specifically, the variations in the LCC
values of the different control strategies and BT chemistries, the variations in the returned
optimization variables, and the variations in the influence of the key cost terms of the
economic model (CF C , CBT , CH2 , CF Crepl and FCBT repl) have been evaluated.

Table 4.12 reviews the main conclusions obtained in this section. At each column,
the effect of the different parameters of the economic model are listed; and at each row,
the analysed design decisions. In short, the value of each cell refers to how much the
specific design decision has changed when varying the specific parameter of the economic
model (e.g., how much have changed the results of the optimal BT size when varying the
operation hours). At each cell, the superscript number refers to the comment at which
each conclusion is further discussed. The corresponding comments are listed below:

Table 4.12: How much does the variation of each parameter influence the optimal design
of the H2EMU powertrain.

Operation hours H2 price FC price BT price
Optimality of EMSs  ##(01)   #(02) G###(03) G###(04)

Optimality of BT chemistries G###(05)  ##(06) ###(07)    (08)

Optimal FC size G###(09)  G##(10) G###(11) ###(12)

Optimal BT size   #(13) G###(14) G###(15) G###(16)

Optimal SOC0 G###(17)  ##(18) G###(19)  ##(20)

Influence of cost terms  ##(21)   #(22) ###(23)  ##(24)

(1) When reducing tday, the LCC difference between the EMSs is reduced, but the
reduction is proportional in all cases (no EMS improves/worsens its results).

(2) When reducing cH2 , the LCC difference between the EMSs is reduced. Besides,
the performance of DP goes down as the importance of minimizing CH2 is reduced.

(3) When reducing cF C , DP slightly increases the LCC difference with the remainder
EMSs (the importance of minimizing CH2 increases), but the overall picture is maintained.

(4) Only in the case of LFP, when its price is increased, DP performs worse and
GA-RB3 obtains a slightly better result, as the importance of reducing CBT repl increases.

(5) When the operation hours are reduced, LFP reduces the LCC difference with the
remainder chemistries (as the BT lifes are increased), but it is still far from LTO and
NMC.

(6) When reducing cH2 , LFP obtains even worse results compared to NMC and LTO,
as the importance of CBT repl slightly increases.

(7) There are no notable changes when increasing or decreasing the FC price

(8) Several changes are found when varying cBT . When NMC price is increased or
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LTO price is reduced, the LCC difference between both chemistries is increased and LTO
obtains clearly better results (difference higher than 1%). On the contrary, when NMC
price is reduced or LTO price is increased, both chemistries obtain very similar LCC values
(difference is residual). Finally, when LFP price is reduced, it becomes a competitive
option, as it gets close to LTO and NMC in LCC terms (difference lower than 1%).

(9) When reducing tday in the proposed terms, slight changes are found. If tday is
further reduced, lower FC sizes are expected to become the optimal option (the advantage
of bigger sizes may be reduced).

(10) When reducing cH2 in the proposed terms, the FC of 500 kW becomes the optimal
option, as the advantage of bigger sizes is reduced.

(11) When reducing the FC price, even bigger FC sizes may become the optimal option,
but the size restrictions impedes this. Consequently, no changes are found.

(12) There are no notable changes when increasing or decreasing the BT price.

(13) When reducing tday, the optimal BT sizes are reduced, as the advantage of bigger
sizes disappears.

(14) The trend of the original case is maintained when reducing the hydrogen price,
even if slight changes are identified.

(15) Even if slight changes are identified, the trend of the original case is maintained
when reducing the FC price.

(16) The trend of the original case is maintained when varying the BT price, even if
slight changes are identified.

(17) When varying the operation hours, the optimal values are maintained around
60-80%, even if some changes are identified.

(18) When reducing cH2 , some optimal values are found to be lower than 60%, but no
different trend is found.

(19) When reducing the FC price, even if some changes are identified, the optimal
values are maintained around 60-80%.

(20) When varying cBT , in general the same trend is maintained, even if some optimal
values are found to be lower than 60%.

(21) When reducing tday, the contributions of CH2 and CBT repl are reduced, and there-
fore CH2 continues being the cost term with the major influence.

(22) When reducing cH2, the contribution of CH2 is logically reduced. Consequently,
the contribution of the remainder cost term is increased, and in the case of LFP, CBT repl
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becomes an important cost terms to reduce the overall LCC.

(23) No important changes are found when varying the FC price.

(24) When increasing the BT price, the contribution of CBT repl is increased, but the
contribution of CH2 is maintained. Consequently, CBT repl only becomes an important cost
term in the case of LFP.

4.6 Results of Sensitivity Analysis to Driving Cycle

After presenting the results of the first two sensitivity analyses, this section focuses on
the sensitivity analysis to the driving cycle. The objective of this section is to evaluate
how do the results and conclusions of the powertrain design (Section 4.4) change when
the H2EMU drives through routes with different characteristics. For this approach, the
sensitivity to the powertrain design is repeated in 12 routes of different lengths and average
demands (which were presented in Section 4.2.4). The results have been obtained for the
nominal parametrization of the economic model. Figure 4.38 shows the location of the
current sensitivity analysis in the methodology proposed in this Ph.D. Thesis.
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Figure 4.38: Current step of holistic design methodology.

As repeating the sensitivity analysis to the powertrain design in different scenarios is
a time consuming process, some of the initially proposed EMSs and BT chemistries are
kept out of the current analysis. This decision has been made considering the conclusions
obtained in previous sections. Regarding the control strategies, the results have demon-
strated that RB1-B is not able to outperform RB1-A. As it is estimated that due to its
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characteristics, RB1-B will not improve the result of RB1-A even when varying the driving
cycle, it is kept out of the current sensitivity analysis. In addition, a similar decision has
been taken with LFP. The contexts analysed so far have demonstrated that LFP is behind
NMC and LTO, and therefore it is excluded from the current sensitivity analysis.

The development of the sensitivity analysis is divided into different subsections, as it
has been done in the previous two sensitivity analyses. First, Section 4.6.1 focuses on
the LCC obtained by the different BT chemistries and control strategies when simulating
different driving cycles. Then, in Section 4.6.2 the optimal values of the optimization
variables are analysed. A similar analysis is developed in Section 4.6.3, but in this case
the analysis focuses on the key cost terms of the LCC model (CF C , CBT , CH2 , CF Crepl

and CBT repl). Finally, the main conclusions are reviewed in Section 4.6.4.

4.6.1 Analysis of LCC Values

Figure 4.39 helps in the analysis developed in this subsection, as it depicts the variation
of the LCC values of the different cases through the modified scenarios. The results are
grouped in rows by each BT chemistry, and the markers represent the different control
strategies. For the results of each driving cycle, the LCC is normalized in relation to
the result of DP with NMC, which corresponds to the optimal case of the first analysis
(Section 4.4). The numbers in the left define the approximate characteristics of each
driving cycle, i.e., the average demand power (kW) and the length of the route (h). To
better differentiate the cases, a different background colour is used for each average power
demand.
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Figure 4.39: Sensitivity of LCC values to different driving cycles.
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In the following paragraphs, the results will be analysed from two points of view:
focusing on the comparison of the different BT chemistries, and focusing on the comparison
of the different control strategies.

Regarding the BT chemistries, the results show that the conclusions obtained in the
sensitivity analysis to the powertrain design are essentially maintained even when varying
the driving cycle: the difference between both chemistries is low, but LTO tends to obtain
better results. If we consider the 48 cases where the result of both chemistries can be
fairly compared (12 driving cycles and 4 EMSs), LTO obtains a lower LCC in 40 cases,
while there are just 8 cases where the LCC is favourable for NMC. Anyway, in most of
the cases the difference between both chemistries is lower than the 1%: specifically, in 37
out of 48 cases. Moreover, most of the cases where the difference is higher than the 1%
correspond to the results of RB1-A, which is not a representative EMS, as its results are
far from the ones obtained by the other strategies. Therefore, it is demonstrated that the
small LCC difference between LTO and NMC is maintained when both the mean power
demand and the length of the route are varied.

Regarding the control strategies, the depicted results demonstrate that the perfor-
mance of the different EMSs is affected by the characteristics of the driving cycle. The
average demand of the route is found to affect this performance more than the length of
the route, as it is analysed in detail in the following lines:

• With a mean demand around 100 kW, the LCC difference between DP and the
remainder strategies is notorious: 5-7% difference with GA-RB3 and 6-8% difference
with GA-RB2. In the majority of cases, GA-RB3 improves the results of GA-RB2,
contrary to the conclusions obtained in previous sensitivity analyses. RB1-A stays
far from the results of the remainder strategies: the LCC difference with DP is
always higher than the 20%.

• When the mean demand is increased to 300 kW, the difference between the control
strategies is reduced, but DP continues being always the best strategy. Specifically, it
improves the LCC of GA-RB2 and GA-RB3 around 1-4% and around 3-6%, respec-
tively. In this case, GA-RB2 obtains always a better result compared to GA-RB3,
which coincides with the conclusions obtained in previous sensitivity analyses. Even
if the difference is reduced, RB1-A continues being far from the remainder strategies.

• Finally, in the highest analysed mean demand (around 500 kW), the three best
strategies obtain similar results. Indeed, the LCC difference between DP, GA-RB2
and GA-RB3 is always lower than the 2%, and in most of the cases lower than the
1%. Moreover, there is not a strategy that clearly obtains always the best result.
The difference of these strategies with RB1-A is always higher than the 10%.

As previously mentioned, no big differences in the obtained results are found when
varying the length of the route. As this variable is increased, GA-RB2 and RB1-A tend
to improve their results, while there is no notable effect in the results of DP or GA-RB3.
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4.6 Results of Sensitivity Analysis to Driving Cycle

Anyway, the effect of varying the route length is low, and never bigger than the effect of
varying the mean demand.

4.6.2 Analysis of Optimization Variables

In the next step, this subsection focuses on the values of the optimization variables
returned by the optimization approach in the different scenarios. As in previous cases, the
analysed variables are the FC size (nF C), the BT size (nBT ) and the initial SOC (SOC0).

In order to ease the development of this analysis, Figure 4.40 shows a series of graphs
that represent the variation of these variables (in the y-axis) with respect to the character-
istics of the route (in the x-axis). The upper graphs show the results for nF C , the graphs
in the middle the results for nBT , and the lower graphs the results for SOC0. Then, the
left side graphs present the results of LTO, and the right side graphs the results of NMC.
Each control strategy has a different marker shape, as defined in the legend. In addition,
different background colours are used: the darker colours refer to the best solution of each
scenario, and the lighter colours are used for the remainder strategies. The objective of
this differentiation in the colour is to highlight which is the value proposed by the case
with the best LCC at each driving cycle.

The results show that there is a linear relation between the mean demand of the route
and the optimal FC size. Indeed, in order to maintain the energy of the BT, the FC should
give approximately that average power. Therefore, a bigger FC will be required in driving
cycles with a higher mean power demand. With an average demand around 100 kW, the
optimal FC sizes are found to be around 200-300 kW; with an average demand around 300
kW, the optimal FC sizes are increased to 600 kW; and with an average demand around
500 kW, the optimal FC sizes are further increased to 900 kW (these values correspond
to the FC sizes obtained with the strategies that obtain the best results). Therefore, it
is found that the optimal option continues being to oversize the FC, as in the sensitivity
analysis to the powertrain design.

Regarding the route length, the graphs show that it roughly affects the definition of the
optimal FC size. Indeed, there are just few cases where this value changes when varying
the route length, and in some of this cases there is not even a linear relation between
both variables (i.e., the optimal FC size is not increased when increasing the length). The
optimal FC size is neither affected by the BT chemistry, as in both Figures 4.40a and
4.40b similar results are obtained.

Focusing on the optimal BT sizes, the results also show that this optimization variable
is more correlated with the average route demand than to the route length. Regarding
LTO chemistry, the strategies with the lowest LCC propose the following sizes: around
260 kWh when the average demand is nearly 100 kW; around 200 kWh when the average
demand is nearly 300 kW; and around 160-180 kWh when the average demand is nearly
500 kW. Regarding NMC, a higher variation is found when changing the route length,
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Figure 4.40: Sensitivity of optimization variables to different driving cycles.

but no clear correlation with this variable is obtained. The following optimal values are
obtained: around 260-360 kWh when the average demand is nearly 100 kW; around 380-
520 kWh when the average demand is nearly 300 kW; and around 300 kWh when the
average demand is nearly 500 kW.

These results are affected by the limitations in the amount of energy that can be
integrated in the vehicles (see Figure 4.12). As mentioned, the average demand limits the
optimal FC size: as higher is the demand, bigger FC sizes are required, what leaves less
available space for the BT system. In this context, different conclusions are obtained at
each of the analysed average mean demands:

• In the case of an average demand around 100 kW, the maximum allowable BT energy
is 540 kWh for LTO and 900 kWh for NMC. Therefore, the optimal BT sizes are far
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from these maximum values.

• In the case of an average demand around 300 kW, the maximum allowable BT energy
is 360 kWh for LTO and 600 kWh for NMC. Hence, the optimal BT sizes are closer
to these values, even if they do not exactly match.

• Finally, in the case of an average demand around 500 kW, the maximum allowable
BT energy is 180 kWh for LTO and 300 kWh for NMC. In this case, the optimal
BT sizes coincide with the maximum allowable values. This indicates that without
the specified space limitation, the optimal sizes may be bigger.

In short, it is demonstrated that as higher is the average route demand, the optimal
BT sizes get closer to the maximum allowable values. It is also found that the optimal
BT size is not affected by the route length.

The last analysed optimization variable is the initial SOC. As in previous sensitivity
analyses, there is no clear correlation between this variable and the characteristics that
are being analysed (in this case, the average demand and the route length). This may be
due to two reasons. On the one hand, due to the fact that there is a small LCC difference
when defining a different initial SOC. And on the other hand, due to the fact that there
may be other route characteristics that define which is the best initial SOC: for instance,
if the route starts with a downhill, it would be better to start the route at a low SOC; but
if the route starts in an uphill, it would be better to start the route at a high SOC.

4.6.3 Influence of Key Cost Terms on Overall LCC

The last step of this sensitivity analysis consists on analysing how does the influence
of the key cost terms of the economic model (CF C , CBT , CH2 , CF Crepl and CBT repl) vary
when varying the characteristics of the driving scenario.

For this approach, in Figure 4.41 a series of graphs are depicted, which relate the
mentioned cost terms and the route characteristics. As in Figure 4.40, in the x-axis of
each graph the different driving cycles are presented, grouped according to the mean
average demand. The values of the cost terms are presented in the y-axis, and they have
been normalized in relation to the best case of each driving cycle. At each graph, each
EMS is represented by a different shape. Besides, the markers that represent the cases
with the lowest LCC are depicted with a darker colour, while the rest of cases have a
lighter colour. In this way, it is easier to identify which is the best case of each driving
cycle. All the graphs respect the same scale in the y-axis (from 0 to 0.6), so it is easier to
find correlations between the depicted variables. Subfigures a-b depict the values of CF C ,
subfigures c-d the values of CBT , subfigures e-f the values of CH2 , subfigures g-h the values
of CF Crepl, and subfigures i-j the values of CBT repl. The left side graphs corresponds to
the results of LTO, and the right side graphs to NMC.

As in previous subsections, the graphs demonstrate that the results suffer more vari-
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Figure 4.41: Sensitivity of key cost terms to different driving cycles.
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ation when increasing the average route demand than when increasing the route length.
Therefore, it can be concluded that the route length barely affects in the powertrain design
of the analysed H2EMU.

The variable cost that it is most affected by the average route demand is the hydrogen
use, CH2 . Logically, as higher is the demand, the FC is required to work on a higher
power, what is translated into a higher hydrogen consumption. Even in the scenarios
with the lowest average demand, CH2 is the cost term that contributes most to the LCC.
Specifically, Figures 4.41e and 4.41f show that CH2 corresponds to around the 30-35%
of the overall cost when the average demand is close to 100 kW, to around the 55-60%
when the average demand is close to 300 kW, and to around the 65-70% when the average
demand is close to 500 kW. Therefore, the relation between CH2 and the average demand
is not completely linear.

These figures also show that CH2 influences the final LCC obtained by each strategy.
Indeed, it can be seen that when the strategies have a big difference in the hydrogen
consumption, they also have a big difference in the LCC. This can be checked focusing
on the results of RB1-A: in the majority of cases the difference in CH2 between RB1-A
and DP (Figures 4.41e and 4.41f) is similar to the difference in the LCC between both
strategies (Figure 4.39). The same happens when comparing the results of GA-RB2 and
GA-RB3 with DP: when the CH2 difference between them is high, the LCC difference
between them is high (e.g., the case when the average demand is around 100 kW); and
when the CH2 difference between them is low, the LCC difference between them is also
low (e.g., the case when the average demand is around 500 kW). Therefore, it can be
concluded that CH2 is both the cost term that contributes most to the overall LCC and
the cost term that influences most in the definition of the best control strategy.

Regarding the remainder cost terms, CF C and CF Crepl are slightly increased when the
average route demand is increased. This is due to the fact that higher optimal FC sizes
are proposed in these scenarios. Anyway, the contributions of CF C and CF Crepl to the
overall LCC are never higher than the 3% and the 10%, respectively. Besides, both values
barely differ with different control stategies or BT chemistries, what demonstrates that
they do not influence the definition of the best case at each scenario.

Finally, similar conclusions are obtained with CBT and CBT repl. The contribution of
both cost terms is affected by the optimal BT size, but the difference is very low. In
general terms, their contribution to the overall LCC is low, as their values barely exceed
the 3%. Consequently, their influence in the performance of the different control strategies
or BT chemistries is found to be low.

4.6.4 Review of Sensitivity Analysis to Driving Cycle

In this section the last sensitivity analysis of this chapter has been developed. The
analysis has been focused on how is the optimal H2EMU powertrain design affected when
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varying the characteristics of the driving cycle. The driving cycles have been modelled so
as to represent different route lengths and average demands. Specifically, the variations in
the LCC value of the different control strategies and BT chemistries, the variations in the
returned optimization variables, and the variations in the influence of the key cost terms
of the economic model (CF C , CBT , CH2 , CF Crepl and CBT repl) have been evaluated.

Table 4.13 reviews the main conclusions obtained in this section. In short, the table
defines how much does the variation of the route demand and length affect in the main
points analysed through this section. The superscript numbers refer to the comment at
which each conclusion is further discussed. The comments are listed below.

Table 4.13: How much does the variation of the scenario influence the optimal design of
the H2EMU powertrain.

Route demand Route length
Optimality of EMSs   #(01) G###(02)

Optimality of BT chemistries ###(03) ###(03)

Optimal FC size    (04) ###(05)

Optimal BT size   #(06) G###(07)

Optimal SOC0 G###(08)  ##(08)

Influence of cost terms  G##(09) ###(10)

(1) As the average demand of the route increases, the difference between DP and
the remainder strategies is reduced. In the highest mean demand (around 500 kW) DP,
GA-RB2 and GA-RB3 obtain nearly the same LCC.

(2) No important changes are identified when varying the route length. GA-RB2 tends
to improve its result when increasing the route length, but the variation is low.

(3) There are no notable changes in the optimality of the BT chemistries when varying
the characteristics of the driving cycle (both the demand and the length): in most of the
cases LTO is found to be the best option, but the difference with NMC tends to be lower
than the 1%.

(4) As higher is the average demand of the route, the optimal FC size is increased, as
this is the primary traction source of the H2EMU. The relation is nearly linear.

(5) No variation in the optimal FC size has been identified when increasing/decreasing
the route length.

(6) The optimal BT size varies when increasing/decreasing the average demand mainly
due to the variation of the optimal FC size, which restricts the available space for the
secondary power source. Besides, as the average demand is increased, the optimal BT size
gets closer to the maximum allowable energy.

(7) Some changes in the optimal BT size have been identified when varying the route
length, specially in the case of NMC. However, there is no clear correlation between both
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variables.

(8) Different SOC0 values are obtained when varying both the route demand and
the route length, but no clear correlation between these variables has been found. This
indicates that other reasons may be behind these variations.

(9) Varying the route demand specially affects in the contribution of CH2 (as higher
is the demand, higher is the contribution). However, in all the analysed scenarios the
hydrogen consumption continues being the cost term that influences most the definition of
the optimal control strategy. In the remainder cost terms just slight variations are found.

(10) No notable changes in the influence of the key cost terms of the economic model
have been found when increasing/decreasing the route length.

4.7 Conclusions

The fourth chapter of this Ph.D. Thesis has presented the second implementation of
the holistic design methodology proposed in Chapter 2. Specifically, the methodology has
been implemented with the rail vehicle topology denoted as the H2EMU. As it has been
explained, the H2EMU traction unit is composed of a FC as primary power source and a
BT as secondary power source.

In the first sections of this chapter (Sections 4.1, 4.2 and 4.3), the methodology pre-
viously introduced in Chapter 2 has been particularized to the vehicle being analysed in
the current case study. First, Section 4.1 has detailed the general characteristics of the
H2EMU vehicle considered during the development of this chapter. This vehicle is based
on the CIVIA vehicle family manufactured by CAF.

Then, in Section 4.2 a detailed description of the different sensitivity analyses has been
given. Specifically, all the cases considered in these analyses have been presented, including
the different control strategies, BT chemistries, parametrizations of the economic model,
and driving cycles. Regarding the EMSs, rule-based (RB1-A, RB1-B, RB2 and RB3),
optimization-based (GA-RB2, GA-RB3 and DP) and learning-based (ANFIS) strategies
have been proposed. For the BT chemistries, three technologies have been modelled: LTO,
NMC and LFP. Regarding the economic model, first a nominal parametrization has been
set. Then, the parameters with the highest probability to suffer variations have been
selected (tday, cH2 , cF C and cBT ), and three scenarios have been defined for each of them:
Low Scenario (LS), Medium Scenario (MS) and High Scenario (HS). Finally, different
driving scenarios have been introduced. As in the case of the economic model, first a
nominal case has been set, which is based on the real railway line “Tardienta - Canfranc”.
Then, additional 12 synthetic driving cycles have been created, which have been designed
with the aim of representing scenarios with different mean traction demands and route
lengths.
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In Section 4.3, the LCC optimization problems have been particularized for each EMS.
Indeed, depending on the control strategy being optimized, the optimization variables and
optimization methodology are varied. In the case of RB strategies, a simple exhaustive
search has been set to solve the optimization. The same methodology has been defined
for DP strategy. Besides, in the case of GA-RB2 and GA-RB2, two different GA-based
optimization approaches have been set, as in this case some of the internal parameters of
the strategies are also optimized.

After particularizing the holistic design methodology for the current case study, in the
next sections the results obtained when deploying the methodology have been presented.
First, in Section 4.4 the performance of the different EMSs and BT chemistries with
the nominal economic scenario and driving cycle has been evaluated. Specifically, the
analysis has focused on the following features: the LCC values obtained by each case of
the sensitivity analysis, the optimal values of the optimization variables proposed by each
case (FC size, BT size and initial SOC), and the evolution of the key cost terms influence
(CF C , CBT , CH2 , CF Crepl and CBT repl). The obtained main conclusions ar listed below:

• Comparison of EMSs. DP is the strategy that obtains the lowest LCC, but its real
time implementation is barely possible. GA-RB2 has been found to be the closest
strategy to DP in terms of LCC (1.0-3.3% higher LCC), but its robustness should
be improved (what may not be difficult). ANFIS has been tested to replicate the
results of DP, but as the replication is not perfect, it does not reduce the LCC of
GA-RB2. Besides, its execution time should be improved. Finally, GA-RB3 has
obtained slightly higher LCC values compared to GA-RB2 (0.6-1.3% higher), but it
shows a better robustness.

• Comparison of BT chemistries. LTO and NMC obtain similar results, as the LCC
difference between both chemistries tends to be lower than 1%. Anyway, in the
majority of cases LTO obtains a lower LCC. LFP is found to be far from the results
of the other chemistries.

• Optimal FC size. The optimal FC size is found to be around 600 kW. A smaller size
would also be a feasible solution, but oversizing the FC allows improving the effi-
ciency. Consequently, the higher acquisition and replacement costs are compensated
by a reduced hydrogen consumption.

• Optimal BT size. No clear trend is found regarding the optimal BT size. In the case
of LTO values around 280-360 kWh are proposed, in the case of NMC values around
340-560 kWh, and in the case of LFP values around 360-400 kWh. This means that
the benefit of higher or lower BT systems is limited.

• Optimal initial SOC. There is neither a clear trend regarding the optimal SOC0
value. Regardless the BT chemistry, the optimal values are found to be around 60-
80%. That is to say, values in the middle-high feasible SOC window are preferred.
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• Influence of cost terms. The cost term with the major influence is found to be
CH2 . Being the term with the highest contribution to the LCC (around the 51-
68% of the overall cost), this is a logical conclusion. CF Crepl has also a noteworthy
contribution (around 10%), but the difference from case to case is low. CBT repl has
some minor influence in the case of LFP chemistry. Finally, it is found that reducing
the acquisition costs (CF C and CBT ) is not directly related to a lower LCC value.

After this first sensitivity analysis, Sections 4.5 and 4.6 have focused on evaluating how
do the conclusions obtained in Section 4.4 vary when varying the parametrization of the
economic model and the characteristics of the driving cycle, respectively. These analyses
have unveiled in which conditions the conclusions obtained in the first sensitivity analysis
may not be completely true. These conditions are listed in the following lines:

• Comparison of EMSs. In the following circumstances, the distance between DP and
the remainder strategies is reduced: (1) when reducing the hydrogen price, (2) in
the case of LFP chemistry, when increasing its price, and (3) in routes with high
average demands. In the case of the high LFP price, and in some of the high demand
scenarios, GA-RB2 and GA-RB3 become the best strategies, but the difference with
DP is always low. Besides, when the FC price is decreased, the distance between
DP and the remainder strategies is increased.

• Comparison of BT chemistries. When NMC price is increased or LTO price is
reduced, LTO becomes clearly the best option. When LFP price is reduced, it can
become a competitive option, but the price reduction has to be high. Finally, when
the operation hours are reduced, LFP reduces the LCC difference with the other
chemistries, but it is still far from them.

• Optimal FC size. The optimal FC size is varied in the following circumstances: (1)
when reducing the hydrogen cost lower sizes are proposed, and (2) when increasing
or decreasing the average route demand, the FC size is also increased or decreased.
In the case of the operation hours and the FC price, higher variations than the ones
proposed in this analysis may be necessary to obtain a different optimal FC size.

• Optimal BT size. The optimal BT size is clearly varied in the following circum-
stances: (1) when reducing the operation hours lower sizes are proposed, and (2)
when the route demand is increased, the optimal BT size is affected by the change
in the optimal FC size, as this leaves less available space for the battery.

• Optimal initial SOC. In some cases, SOC0 values lower than the 60% have been
obtained (when reducing cH2 and cBT , or when varying the characteristics of the
driving cycle). However, no special correlation between the variations in these values
and the variations in the initial SOC values have been found.

• Influence of cost terms. Some changes are found in the case of LFP, as it is the
chemistry with the highest degradation: (1) CBT repl becomes an important cost
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term when reducing the hydrogen cost, as CH2 losses some importance, and (2)
CBT repl gains some importance also when incresing the LFP price. For the remainder
chemistries, no remarkable changes are found.
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Summary
In this final chapter the conclusions, main findings and key contributions of this Ph.D.

Thesis are reviewed. Besides, the main research lines to continue the topics developed in
the present work are also identified.
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5.1 Conclusions of Ph.D. Thesis

This Ph.D. Thesis has addressed the topic of the optimal powertrain design for inno-
vative railway vehicle topologies, which include the Hybrid Diesel-Electric Multiple Unit
(H-DEMU) and the Hydrogen Electric Multiple Unit (H2EMU). These topologies inte-
grate BT and FC systems, which have not been yet widely adapted in commercial rail-
way vehicles, but provide efficient solutions for the necessary transport decarbonization
path. In order to be competitive in the market, the integration of these power sources
has to be cost-competitive compared to traditional options. This is why this Ph.D. The-
sis has proposed and implemented a novel holistic design methodology to obtain
cost-efficient solutions when integrating BT and FC systems in H-DEMU and
H2EMU vehicle topologies.

The review of the state of the art developed in Chapter 1 unveiled that the design
methodology should focus on defining the following features: (i) the size of the power
sources, (ii) the BT technology, and (iii) the EMS or control strategy. In the case of the
BT technology, the analysis should focus on comparing different chemistries, which were
defined at LTO, NMC and LFP. Regarding the EMS, it was defined that different ap-
proaches should be compared, including rule-based, optimization-based and learning-based
strategies. Typically, the mentioned features are defined ad-hoc for a specific context, that
is to say, for a specific driving cycle or economic context. However, this requires to re-
peat the design analysis each time the context changes. Therefore, it was decided that
the methodology should also focus on finding the interrelations between the cost-optimal
powertrain design and the characteristics of the driving cycle and economic model.

In order to handle together all the mentioned features, it was decided to base the
holistic design methodology on an integral LCC analysis. Therefore, Chapter 2 presented
the different steps that compose the LCC analysis, together with all the methods and
models required to develop this analysis. As developing a sensitivity analysis that considers
together all the features identified above is an unviable approach, it was decided to divide
the LCC analysis into three steps:

(1) First, a sensitivity analysis focused on the powertrain design is set. In this step, the
cost-optimal EMS, BT chemistry and size of the powertrain sources are solved for a
specific context.

(2) In the second step, another sentivitiy analysis is developed, which is focused on
varying the parameters of the economic model. In this way, it is checked if the
conclusions obtained in the previous analysis are replicated in different scenarios.

(3) Finally, the characteristics of the driving cycle are modified in a last sensitivity
analysis. As in the previous case, the aim of these variations is to check if the
conclusions obtained in the first analysis are replicated.

For the development of the mentioned holistic design methodology, a vehicle simula-
tion model was set, which has been based on the ITINER tool previously developed by
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CAF I+D. The model was fed with data provided by CAF Power & Automation, what
has allowed deploying simulations based on real vehicle and routes data. Moreover, an
additional feature of the methodology is that it includes the use of FC and BT degradation
models to evaluate the amount of replacements required during the vehicle useful lifetime.
In the case of the BT, a novel chemistry-dependent empirical degradation model
was proposed as part of the Ph.D. Thesis developments. The model was defined and
parametrized based on a batch of 500 degradation tests collected from the literature, and
has already been published in a journal paper [36].

Once the holistic design methodology was set, it was implemented in two case studies.
The first case study, presented in Chapter 3, was focused on the bi-mode H-DEMU vehicle
topology. The second case study, presented in Chapter 4, was focused on the H2EMU. One
significant difference between both case studies is that the H-DEMU drives in partially
electrified lines, while the H2EMU drives all the time through non-electrified lines. This
fact affected in the conclusions related to the optimal design of the powertrain, as the
use of the BT differs depending on the availability of catenary sections. For each case
study, first all the cases of the different sensitivity analyses were presented, including the
control strategies, BT chemistries, parameters of the economic model and driving cycles.
Among the EMSs, the implementation of the learning-based ANFIS strategy
was defined as an additional contribution of the Ph.D. Thesis, as it had not been
previously proposed for rail applications.

Focusing on the outcomes of the case studies, several conclusions related to the H-DEMU
powertrain design were obtained when implementing the holistic design methodology. It
is worth to mention that some of these conclusions have also been published in a journal
paper [200]. The conclusions are classified according to the different features that were
analysed:

• Comparison of EMSs. In all the analysed scenarios, Dynamic Programming (DP)
is the best performing strategy in terms of LCC, at least when appropriate BT
chemistries are integrated (i.e., LTO or NMC). However, its real time implementa-
tion is barely possible, what forces to find other alternatives. The next strategy with
the best LCC result is found to be GA-SM, which is an optimization-based EMS.
In the nominal scenario, GA-SM stays just a 0.7% behind DP. It is also found
that this distance can be reduced when the train drives few hours per day, with low
diesel prices, with high battery prices, or when driving in routes with a low energy
demand. ANFIS strategy has also obtained promising results, as in the nominal
scenario it stays 1-2% behind DP. However, further developments of the ANFIS or
other learning-based strategy are required to improve the results of GA-SM.

• Comparison of BT chemistries. In most of the analysed scenarios, LTO is the best
performing chemistry, but with NMC close in terms of LCC (the difference between
them is lower than 1%). The only cases where NMC overcomes LTO are the ones in
which NMC price is reduced or LTO price is increased. Besides, when the fuel price
is increased or when driving in routes with a high demand, the difference between
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both chemistries is almost residual. Finally, LFP is found to be far from the results
of LTO and NMC in all the analysed cases, as generally the difference is higher than
the 4%. The main drawback of LFP is found to be the degradation that it suffers.

• Optimal size of power sources. This feature is found to be the least transversal to
a change in the scenario. The genset size is mainly affected by the characteristics
of the driving cycle. Besides, the BT size is constrained by the optimal genset size,
due to the limitations in the available space for both components. In routes with
an energy demand below 250 kWh, the optimal option consists of not deploying
any genset (i.e., the BEMU); in routes with a medium demand between 250-800
kWh (LTO) or 250-1400 kWh (NMC), the optimal option is the genset of 500 kW;
and in routes with a high demand, the optimal option is the genset of 1000 kW.
Generally, the optimal BT size is found to be close to the maximum allowable value
(considering the optimal genset size). That is to say, once the genset size is defined,
the optimal option is to integrate as much BT energy as possible. The only cases
when the optimal BT size is lower than the maximum allowable value are listed as
follows: (1) when the train drives few hours per day, (2) with a low fuel price, (3)
in the case of the BEMU, and (4) in the case of NMC, when its price is reduced.

The conclusions obtained in this extended analysis have allowed defining which are the
features most dependent and most transversal to the context or scenario characteristics.
Figure 5.1 reviews this context dependency for the H-DEMU case. The most transversal
features are the strategy (GA-SM) and the BT chemistry (LTO), while the powertrain
sizing and the optimal parameters of the strategy are more dependent to the context or the
scenario. These context-dependent solutions are influenced by the economic parameters
and the route energy demand.

Transversal to context 

Context-dependent

GA-SM strategy

GA-SM parameters

LTO/NMC

GS size

BT size

Economic
Parameters

Route energy
demand (kWh)

Context

Powertrain design:
components + EMS

H-DEMU

Figure 5.1: Context dependency of analysed concepts (H-DEMU case).

Regarding the second case study, some other conclusions were obtained. It is worth
to mention that some of these conclusions have also been published in a paper [201].
Specifically, the following conclusions were obtained when implementing the holistic design
methodology with the H2EMU topology:

• Comparison of EMSs. As in the case of the H-DEMU, the best performing strategy
is DP, but its real-time implementation is barely possible. The next best strategy is
found to be GA-RB2, which is an optimization-based EMS. In the nominal scenario,
its LCC is found to be between 1-3.3% higher compared to DP. There are some
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cases where GA-RB2 outperforms DP: when LFP price goes up, and in some of
the scenarios with a high demand. Besides, when reducing the hydrogen price, the
performance of GA-RB2 is also improved, but without overcoming DP. In this
case study, the result of ANFIS is neither enough to improve the result of the best
GA-based strategy. In the nominal scenario its LCC is 3.3-4% higher than in DP.

• Comparison of BT chemistries. In most of the scenarios the LCC difference between
LTO and NMC is lower than the 1%, but with LTO obtaining generally a better
result. NMC can outperform LTO when NMC price is reduced or when LTO price is
increased. In the case of LFP, it is far from the results of the other two chemistries in
most of the cases, but it can become a competitive option when its price is reduced.
As in the other case study, the main drawback of LFP is its degradation.

• Optimal size of power sources. As in the case of the H-DEMU, this feature is also
found to be the least transversal to the scenario. However, some differences are found
compared to the previous case study. These differences happen due to the fact that
in this case no catenary sections are available, and therefore the BT charge has to
be maintained through all the route. Regarding the FC, its optimal size is linked
to the route average power demand: with an average demand around 100 kW, the
optimal FC size is found to be around 300 kW, and with an average demand around
500 kW, the optimal size is found to be around 900 kW. These values show that
the tendency is to deploy a FC size higher than the average demand, as in this way
it can be operated more efficiently. This tendency is respected in all the analysed
scenarios, except when reducing the hydrogen price. In that case, lower sizes than
the mentioned ones become the optimal option. Besides, regarding the optimal BT
size, no clear trend is found, as during the development of the case study different
values were found depending on the scenario being analysed.

The obtained conclusions have allowed defining the features that are most dependent
and most transversal to the context or scenario characteristics. Figure 5.2 reviews this
context dependency for the H2EMU case. As in the previous case study, the strategy (GA-
RB2) and the BT chemistry (LTO) are the most transversal features, while the powertrain
sizing and the optimal parameters of the EMS are more dependent to the context. These
context-dependent solutions are influenced by the economic parameters and the route
average power demand.

Powertrain design:
components + EMS

H2EMU

Transversal to context 

Context-dependent

GA-RB2 strategy

GA-RB2
parameters

LTO/NMC

FC size

BT size

Economic
Parameters

Route average
power demand (kW)

Context

Figure 5.2: Context dependency of analysed concepts (H2EMU case).
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As general conclusion, this Ph.D. Thesis has made an important contribution in the
field of railway transportation, specially in the one concerning the integration of BT and
FC systems. The implementation of the proposed holistic design methodology
has provided valuable conclusions for the design of powertrain systems that
integrate BT and FC systems and combine them with traditional technologies. These
conclusions may specially help railway manufacturers to take faster decisions regarding
the powertrain design when preparing the tenders for new projects dealing with H-DEMU
and H2EMU vehicles.

5.2 Future Research Lines

After the development of the Ph.D. Thesis, some potential future research lines have
been identified. These research lines could not be addressed in this Ph.D. Thesis and may
help push the state of the art forward:

• To develop a tool for the optimal design of the powertrain of H-DEMU and
H2EMU vehicles. The aim of this tool would be to help with the features that were
found to be the least transversal in the conclusions of the Ph.D. Thesis: the size of
the traction sources and the parameters of the EMS. For this approach, the tool
would first learn from the results of all the simulations launched for the development
of the case studies of this Ph.D. Thesis. After this learning phase, the tool may
be able to provide an advice for the cost-optimal design of the powertrain based
on the characteristics of a route that was not used during the mentioned learning
process. The tool may be useful for railway manufacturers to speed up the powertrain
design of H-DEMU or H2EMU vehicles, specially when preparing the tender of a new
project.

• To couple the development and analysis of H2EMU control strategies with more de-
tailed FC simulation and degradation models. Indeed, models that represent
in a more reliable way the performance limitations and the causes of the degrada-
tion of FC systems may help understand the potential limitations of the proposed
EMSs when integrating them in a real vehicle. For this aim, the first step consists
on setting FC characterization and degradation tests in a laboratory environment.
The data obtained in these tests may be then post-processed to build more realistic
simulation and degradation models. These models could also be integrated in the
methodology proposed in this Ph.D. Thesis.

• To continue exploring the capacities, advantages and limitations of learning-
based control strategies with the aim of getting closer to the results obtained
by the global optimization (DP). The LCC results obtained by the learning-based
EMS proposed in this Ph.D. Thesis (ANFIS) are still far from DP, and even in some
cases there are optimization- and rule-based strategies that obtain better results.
Besides, the real-time performance of ANFIS was also found to be poor compared
to typical RB strategies. This demonstrates that there is still room to improve the
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overall performance of ANFIS. For this aim, the use of different learning approaches
is proposed, including reinforcement learning, deep learning or neural networks.

• To update the methodology proposed in this Ph.D. Thesis with the latest
advances in energy storage systems. Future generations of storage systems such
as solid-state and post-lithium batteries are not expected to be commercially ready
in the near future, but they may bring important advances in terms of specific energy
and energy density by the time they are ready. These improvements may increase
the BT sizing limits set in the optimization problems of the Ph.D. methodology,
enabling an increase in the hybridization level in favour of the BT.
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Appendix A. Supplementary Material for Case Study A

A.1 Introduction

This appendix presents additional information for the two case studies of this Ph.D.
Thesis. Specifically, the synthetic driving cycles generated for the sensitivity analysis to
the driving cycle are depicted in the following pages.

A.2 Synthetic Cycles for H-DEMU

Section 3.2.4 has presented the methodology followed for the generation of the H-DEMU
synthetic driving cycles. In this appendix these driving cycles are given. Figures A.1 to
A.4 present these profiles, with the average power demand and running time values high-
lighted.

A.3 Synthetic Cycles for H2EMU

Section 4.2.4 has presented the methodology followed for the generation of the H2EMU
synthetic driving cycles. In this appendix these driving cycles are given. Figures A.5 to A.7
present these profiles, with the average power demand and running time values highlighted.
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Figure A.1: H-DEMU synthetic drive cycles, non-electrified section around 0.5 h.
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Figure A.2: H-DEMU synthetic drive cycles, non-electrified section around 1.5 h.
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Figure A.3: H-DEMU synthetic drive cycles, non-electrified section around 2.5 h.
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Figure A.4: H-DEMU synthetic drive cycles, non-electrified section around 3.5 h.
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Figure A.5: H2EMU synthetic drive cycles, average demand around 100 kW.

239



Appendix A. Supplementary Material for Case Study A

0 500 1000 1500 2000 2500 3000 3500

Time (s)

-1500

-1000

-500

0

500

1000

1500

Po
w

er
 D

em
an

d
 (

kW
)

PDem profile Average PDem

(a) Route length around 1 h

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (s)

-1500

-1000

-500

0

500

1000

1500

Po
w

er
 D

em
an

d
 (

kW
)

(b) Route length around 3 h

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Time (s)

-1500

-1000

-500

0

500

1000

1500

Po
w

er
 D

em
an

d
 (

kW
)

(c) Route length around 5 h

-1500

-1000

-500

0

500

1000

1500

Po
w

er
 D

em
an

d
 (

kW
)

Time (s)
0 5000 10000 15000 20000 25000

(d) Route length around 7 h

Figure A.6: H2EMU synthetic drive cycles, average demand around 300 kW.
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Figure A.7: H2EMU synthetic drive cycles, average demand around 500 kW.
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ṁf Genset fuel mass consumption [g/s]

ṁ′
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Glossary of Terms

Adaptive Neuro-Fuzzy Inference System (ANFIS)

A kind of artificial neural network that is based on Takagi-Sugeno fuzzy inference system.
It integrates together both neural networks and fuzzy logic principles. In the scope of this
Ph.D. Thesis, it is used as a learning-based energy management strategy. The neuro-fuzzy
inference system is trained with results of optimal strategies, with the aim of replicating
these performances in real time.

Ageing

Process which affect electrochemical cells over time, causing a reduction in their capacity
to provide energy and power. This Ph.D. Thesis deals with the ageing of fuel cells and
batteries.

Battery (BT)

A device that converts chemical energy into electrical energy, and vice versa. Batteries
typically consist of several cells interconnected in modules, branches or racks to form a
whole battery pack.

Battery Chemistry

The anode, cathode and electrolyte of battery cells can be made up of different materials.
Depending on the combination of these materials, different battery chemistries exist. In
the approach of the current Ph.D. Thesis, different lithium-ion based battery chemistries
are analysed.

Beginning of Life (BOL)

The point in time at which battery or fuel cell use begins.

C-rate (C)

The discharge or charge battery current (in Amperes, A) expressed as a multiple of the
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rated device capacity (in Ampere-hours, Ah). For example, for a device having a capacity
of 1 Ah, when charging or discharging at 5 A, it would mean a 5 C rate. As the C-rate
is a measure relative to the battery capacity, it also serves to compare the performance of
devices with different nominal capacities.

Calendar Ageing

Degradation suffered by the battery when being at rest.

Capacity

The quantity of Ampere-hours (Ah) that can be withdrawn from a fully charged cell or
battery under specified conditions of discharge.

Cycling Ageing

Degradation suffered by the battery caused by working cycles.

Depth of Discharge (DOD)

It refers to the State of Charge (SOC) window during each battery charge or discharge
phase. That is to say, the DOD represents the absolute difference between the starting
and ending SOC for each charge or discharge applied to a battery. If a battery is cycled
between 60% and 80% SOC, this represents a 20% DOD.

Driving Cycle

A series of data points that represents the speed of a vehicle versus time. In the current
Ph.D. Thesis, driving cycle is used to refer both to the speed and the traction demand
profiles of a rail vehicle.

Dynamic Programming (DP)

An algorithmic technique for solving an optimization problem by breaking it down into
simpler subproblems, utilizing the fact that the optimal solution to the overall problem
depends upon the optimal solution to its subproblems. In the current Ph.D. Thesis,
Dynamic Programming is used to solve the problem for the optimal energy management
strategy.

End of Life (EOL)

A condition reached when a battery or fuel cell device is no longer capable of meeting the
applicable goals. In the current Ph.D., battery end of life is defined as a 20% capacity
loss, and fuel cell end of life as a 10% voltage loss, in both cases measured in relation to
the initial rated values.

Energy Management Strategy (EMS)
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The energy management is the control layer that organically coordinates the on-board
energy sources in order to satisfy the power demand of the vehicle. This management
is performed based on a strategy, which is denoted as the Energy Management Strategy.
The energy management plays a critical role in hybrid powertrain configurations, as it
directly affects in the fuel consumption of the vehicle, as well as on the lifetime of the
different powertrain elements. The EMS can be based on rules (rule-based EMS), on an
optimization approach (optimization-based EMS), or on a learning approach (learning-
based EMS).

Exhaustive Search Based Optimization

A very general problem-solving technique that consists of systematically enumerating all
possible candidates for the solution and checking whether each candidate satisfies the
problem statement. Once all the candidates are checked, the one that better fits the
fitness function is selected as the optimal solution.

Fuel Cell (FC)

An energy conversion device that converts chemical energy from a fuel and an oxidizing
agent into electric energy without a combustion. It consists of two electrodes and an elec-
trolyte separator. Different fuel cell types exist depending on the nature of the electrolyte
and the used fuel. In the current Ph.D. Thesis, the generic fuel cell term refers to the
Proton Exchange Membrane Fuel Cell (PEMFC), also known as hydrogen fuel cell. The
hydrogen fuel cell produces electricity from a reaction in which hydrogen and oxygen are
combined, with usable heat and water as the principal by-products.

Full Equivalent Cycle (FEC)

The number of complete cycles (100% DOD) that a battery has performed. One FEC
corresponds to charging and discharging Q Ah, being Q the battery capacity.

Fuzzy Logic

A form of soft computing method that operates with the imprecision of the real world. In
opposition to the traditional hard computing (or boolean logic), soft computing (or fuzzy
logic) exploits the tolerance for imprecision, uncertainty, and partial truth. In short, the
truth value of variables may be any real number between 0 and 1, instead of being integer
values 0 or 1. Fuzzy logic is based on the observation that people make decisions based on
imprecise and non-numerical information. In the approach of the current Ph.D. Thesis,
fuzzy logic is applied to solve the energy management problem.

Genetic Algorithms (GA)

A search heuristic that is inspired in the theory of natural evolution. It belongs to the
class of evolutionary algorithms. The algorithm reflects the process of natural selection
where the fittest individuals are selected for reproduction to produce offspring of the next
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generation. Genetic algorithms are commonly used to generate high-quality solutions to
optimization and search problems by relying on the mutation, crossover and selection op-
erators. In the current Ph.D. Thesis, Genetic Algorithms are applied to solve optimization
problems that cannot be solved by brute force.

Holistic Design Methodology

The methodology proposed in the current Ph.D. Thesis to derive a cost-optimal design
of the rail vehicle powertrain. The methodology considers holistically the effect of the
powertrain elements technology and size, energy management strategy, economic context,
and driving cycle.

Life Cycle Cost (LCC)

An approach that assesses the total cost of an asset over its life cycle, including initial
capital costs, maintenance costs and operating costs.

Middle State of Charge (mSOC)

When a battery performs a certain DOD, the middle SOC value of that DOD is denoted
as the Middle State of Charge. For instance, if a BT is cycled between 60% and 80% of
SOC, it has performed a 20% DOD with a mSOC of the 70%.

Multiple Unit

A rail vehicle in which the traction elements are spread through the different carriages.
Contrary to the locomotive, where all the traction elements are constituted in a single
carriage. This Ph.D. Thesis is focused on two Multiple Unit topologies: the Hybrid
Diesel-Electric Multiple Unit (powered by a genset and a battery) and the Hydrogen
Electric Multiple Unit (powered by a fuel cell and a battery). When adding the term
bi-mode, it means that the vehicle can also be powered by a catenary.

Nested Optimization

A special kind of optimization where one problem is embedded or nested within another.
It is also known as bi-level optimization.

Optimization problem

The problem that consists of finding the best solution from a set of feasible solutions. An
optimization problem is composed of a fitness function (the value or expression that has
to be maximized/minimized), a set of optimization variables (the varibles that are varied
to maximize/minimize the fitness function), a space of feasible solutions (the possible
combinations of optimization variables) and a set of constraints (limits to the combinations
of optimization variables).
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Sensitivity Analysis

The study of how the uncertainty in the output of a mathematical model or system can
be divided and allocated to different sources of uncertainty in its inputs. In short, it
consists of recalculating outcomes under alternative assumptions to determine the impact
of a variable. In the approach of this Ph.D. Thesis, a Life Cycle Cost Sensitivity Analysis
is developed, as the impact of different features on the cost of railway vehicles is analysed.

State of Charge (SOC)

It defines the ratio between the amount of lithium ions remaining in the negative electrode
and the total amount of active lithium ions in the battery cell. In practical applications,
the SOC is used to represent the amount of available capacity in a battery. In this Ph.D.
Thesis, the SOC is defined as the relation between the available capacity and the maximum
capacity of a battery cell.

State of Health (SOH)

The State of Health reflects the loss of battery or fuel cell performance capability in
relation to the initial conditions. In the case of the battery, and in the approach proposed
in the current Ph.D. Thesis, the SOH is related to the loss of capacity. In the case of the
fuel cell, the SOH is related to the loss of voltage.
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Vivió en un tren y lo llamó el Huracán,
Podía viajar sin tener que viajar,

Y cada día embarcaba su diario de sueños con él...

— La Raíz, «El Tren Huracán» (2012)

Mila esker! Muchas gracias! Thank you!
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