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Abstract: A large amount of health and well-being data is collected daily, but little of it reaches its
research potential because personal data privacy needs to be protected as an individual’s right, as
reflected in the data protection regulations. Moreover, the data that do reach the public domain
will typically have under-gone anonymization, a process that can result in a loss of information
and, consequently, research potential. Lately, synthetic data generation, which mimics the statistics
and patterns of the original, real data on which it is based, has been presented as an alternative
to data anonymization. As the data collected from health and well-being activities often have a
temporal nature, these data tend to be time series data. The synthetic generation of this type of data
has already been analyzed in different studies. However, in the healthcare context, time series data
have reduced research potential without the subjects’ metadata, which are essential to explain the
temporal data. Therefore, in this work, the option to generate synthetic subjects using both time series
data and subject metadata has been analyzed. Two approaches for generating synthetic subjects are
proposed. Real time series data are used in the first approach, while in the second approach, time
series data are synthetically generated. Furthermore, the first proposed approach is implemented
and evaluated. The generation of synthetic subjects with real time series data has been demonstrated
to be functional, whilst the generation of synthetic subjects with synthetic time series data requires
further improvements to demonstrate its viability.

Keywords: time series; synthetic data; shareable data; privacy

1. Introduction

Time series data are defined as a class of temporal data objects, a collection of chrono-
logical observations [1]. Time series data tend to be large in size and with high dimension-
ality. Time series data are characterized by their numerical and continuous nature, always
considered as a whole, instead of a numerical field.

The motivation to investigate synthetic time series generation (STSG) is born from the
VITALISE H2020 project [2]. One of the main objectives of this project is to provide virtual
transnational access to data generated from several living labs (LLs) throughout Europe and
beyond. To provide this transnational access, synthetic data generation (SDG) techniques
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have been incorporated into the controlled data processing workflow to generate shareable
data for external researchers in compliance with the General Data Protection Regulation
(GDPR) [3]. LLs are research infrastructures that enable research studies to take place in
real-life environments. Those research studies generate data that are potentially interesting
for the research community. However, given that these data contain human personal
or sensitive information, they are stored internally in LL infrastructures and cannot be
externally shared outside the original research context.

Traditionally, anonymization techniques have been used to allow sensitive data to
be made publicly available whilst preserving privacy, but traditional anonymization tech-
niques tend to suppress useful data because many of them add noise to the real data
or delete attributes from them. In this scenario, SDG is presented as a game-changing
anonymization technique, as it has the potential to create data without erasing potentially
interesting data.

In this context, a workflow to make LL data accessible for external researchers by
generating synthetic data (SD) has been proposed by Hernandez et al. [4]. As explained in
the proposed workflow, SD is created with a clear purpose, enabling researchers to develop
algorithms and analyses locally using it. Subsequently, the locally developed algorithms
and analyses are remotely executed with the real data stored in LL infrastructures. This
approach enables external researchers to conduct and validate experiments with GDPR
compliance.

When evaluating SD quality, the following three dimensions are most commonly
considered: privacy, utility, and resemblance. The main aim of the use case mentioned
above is to remotely develop algorithms with SD to test them with real data later. Therefore,
the utility dimension will be more relevant than resemblance when generating SD. Once
the privacy of SD is ensured, in the context described above, more importance should be
given to the utility dimension of the SD in contrast to its resemblance with real data.

2. Related Work

SDG has been gaining importance for privacy-preserving data publishing. It enables
the creation of artificial data with a high statistical resemblance to real data without con-
taining potentially private data [5]. In this context, Hernandez et al. reviewed the SDG
approaches proposed as an alternative to anonymization techniques for health domain
applications [6]. Furthermore, there are also studies in which STSG has been researched
and used [7–14].

In 2018, Norgaard et al. [7] proposed the use of a supervised generative adversarial
network (GAN), which is a variation in the originally proposed GAN approach [15]. In 2019,
Yoon et al. [8] presented a time series specific GAN model, named Time-GAN, whose focus
was on preserving the temporal dynamics of data. TimeGAN has later been used in the
medical time series context by Dash et al. [9]. In 2020, Wang et al. [10] proposed a privacy-
preserving augmentation and releasing scheme for time series data via a GAN (PART-GAN).
This approach added differential privacy to the conditional temporal GAN (CT-GAN) [16],
an approach that was proposed for generating videos. In addition, in 2020, an update
on the Synthetic Data Vault (SDV) [11], a Python package used for generating synthetic
data, added a specific model for generating time series data. This model is a probabilistic
autoregressive (PAR) model, but its mathematical principles are still unpublished. In 2021,
Hyun et al. [13] proposed NeuralProphet, a neural network variation in the forecasting
tool Prophet [17], as a method for STSG to create synthetic diabetic foot patients. In 2022,
Li et al. [14] presented the transformer-based time-series GAN (TTS-GAN) based on a
transformer-encoder architecture.

Although the number of proposed STSG approaches is considerable, most of them do
not consider the metadata of the subjects, as they are focused on generating highly realistic
sequences of data. Furthermore, some of the approaches mentioned above transform time
series data into the latent space, without analyzing the option to transform the generated
synthetic time series back to the data format of the real data.
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3. Proposed Approaches

This section presents two approaches for generating synthetic subjects containing
temporal data. The first approach assumes that time series data do not require further
transformations to ensure patient privacy. The second approach requires time series data
to be synthesized. Thus, well-performing STSG techniques that consider the metadata
of subjects are required. On this section, both approaches are presented on a general
theoretical basis and the specific data generation models that have been used are specified
in Section 4.

3.1. Synthetic Subjects with Real Time Series Data

This approach, as depicted in Figure 1, has been proposed to generate useful partially
synthetic multi-subject datasets containing time series data. The approach of adding time
series data to synthetically generated patients, by using synthetic tabular data generation
techniques, was inspired by Schiff et al. [18], who proposed to enrich synthetic patients’
data with real time series data. In their approach, tabular data of synthetic patients are
generated from a dataset, creating patients that have their illnesses labelled with diagnostic
codes. Then, time series data, which are also labelled with diagnostic codes and do not
have any relationship with the first dataset, are added to enrich patients’ information. This
process is carried out by comparing the diagnostic codes of both datasets. Our approach
improves Schiff et al.’s proposed approach, by linking (with a meaningful relationship)
time series data with synthetically generated tabular subject metadata, starting from real
cohort data containing such links.
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The first and obvious step in this approach is to perform a basic exploratory data anal-
ysis. Then, data preprocessing is performed to remove missing values and inconsistencies,
such as negative age values. The next step is to extract meaningful statistics from each time
series and append them in a table to each subject’s metadata.

Once the multi-subject tabular data, including subject metadata and basic time series
statistics, have been created, synthetic tabular data generation (STDG) techniques [6] are
applied to generate a synthetic patient table with synthetic metadata and synthetic time
series statistics. The last step is to couple the synthetic statistics with the statistics of real
time series. This process matches each synthetic patient with the fitting time series.

3.2. Synthetic Subjects with Synthetic Time Series Data

The second approach depicted in Figure 2 could be considered the ideal approach, as
its outcome is a fully synthetic dataset. This approach can be understood as an evolution of
the approach introduced in Section 3.1, since it incorporates STSG techniques.
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The process of generating synthetic subjects and synthetic statistics is the same as
the previously explained approach. However, in this approach, time series data are syn-
thetically generated instead of using the real time series. Once STSG techniques have
been applied, the same basic statistics computed from the real time series are extracted.
Considering the statistics generated with the synthetic patients and the statistics obtained
from the synthetic time series data, the best fitting synthetic time series is selected for each
synthetic subject, using a distance-based metric.

4. Implementation

Attempts have been made to implement the approaches presented in Section 3, but the
quality of synthetic time series generated for the approach presented in Section 3.2 are not
yet suitable for the target use. Thus, the approach introduced in Section 3.1, the approach
that generates synthetic patient datasets and then couples them with the real time series
data, has been implemented. In this section, the steps followed for the implementation of
this approach are explained.

4.1. Dataset Selection

To implement the proposed approach, a dataset with a high patient volume, simple
metadata, and manageable time series data that is not extremely long has been chosen. The
treadmill maximal exercise tests (TMET) database [19,20] was selected from PhysioNet [21]
as it fulfills the aforementioned requirements.

The TMET database is an ensemble of cardiorespiratory measurements acquired dur-
ing 992 treadmill maximal graded exercise tests (GET) performed in the Exercise Physiology
and Human Performance Lab of the University of Malaga. During maximal effort tests,
heart rate (HR), oxygen uptake (VO2), carbon dioxide elimination (VCO2), respiration
rate (RR), and pulmonary ventilation (VE) were measured on a breath-to-breath premise
alongside the treadmill speed. All these measures are measured and time-stamped (Time)
every 2–5 s.

The dataset is composed of two files. The first one contains all the subjects’ metadata
and environmental metadata (humidity and temperature) in a tabular format. It contains
data from 992 effort tests from 857 subjects, as there are subjects with several tests. These
metadata are organized as shown in Table 1. The second file contains the results obtained
from the treadmill experiments, i.e., the time series data. The mean length of these effort
tests is 580 data rows; being each row, a measurement taken every two seconds. The
time series data are organized as shown in Table 2. In this approach, each test has been
considered as a subject.
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Table 1. Subject metadata variables.

Age Weight Height Humidity Temperature Sex ID ID_test

Table 2. Time series variable organization.

Time Speed HR VO2 VCO2 RR VE ID_test ID

4.2. EDA and Data Preprocessing

Before applying the proposed approach to the selected dataset, an exploratory data
analysis (EDA) has been carried out to identify missing values and inconsistencies.

Once these undesired values have been identified, a criterion to decide how to treat
them has been established. If missing values are found in the time series data, a threshold
of 30 data points, a 5% of the mean length of time series data, has been established to
decide if the time series must be kept or rejected. Therefore, if a time series contains less
than 30 missing values, imputation is made by linear interpolation. However, if more
than 30 missing values are found, the time series, and the subjects they are related to, are
excluded. In case missing values are found in the metadata, the exclusion of the subject,
and its related time series, has been considered.

The exploratory analysis found that the environmental data were missing for 30 sub-
jects. Those subjects were excluded from the dataset. No unexpected values were found on
the metadata. The time series data analysis found that 942 HR datapoints and 4871 VO2 and
VCO2 datapoints had missing values. Following the criteria described above, 12 subjects
were excluded due to the amount of missing data in the time series.

Upon completing the preprocessing stage, 950 subjects remained in the dataset from
the original 992 subjects.

4.3. Time Series Feature Extraction

Before selecting the appropriate statistics that need to be extracted, it is important to
consider the nature of the tests from which the time series data were obtained. For the
selected dataset, the data were obtained from a treadmill test. The treadmill effort test
began at a speed of 5 km/h, a speed that increased 1 km/h per minute until the subject
went beyond exhaustion [21]. Once the subject’s maximal effort had been reached, the
treadmill speed was reduced to 5 km/h, and the recovery was recorded for 200 s.

Considering that each test has a different duration and maximal speed, the following
statistics have been selected: maximal speed, test duration (last time value), and maximal,
minimal, and mean values of the physiological variables (HR, VO2, VCO2, RR, and VE).
These statistics have been extracted for each time series, identified with the ID_test variable,
and appended to the corresponding subject in the metadata table.

4.4. Synthetic Subject Generation

The synthetic subject, and the synthetic time series statistics, have been generated
by applying a STDG technique. Specifically, the Synthetic Data Vault (SDV) [11] Python
package has been used. Using this approach, the generation of a cohort of synthetic subjects
with their metadata and the statistics that their effort test should have were enabled. SDV
contains several STDG models, from which the tabular variational auto encoder (TVAE)
model with default parameters has been used to generate SD.

4.5. Time Series Coupling with Synthetic Subject

Considering that the synthetically generated statistics and the statistics extracted from
the real time series do not have the same values, a strategy to couple the real effort test to
the synthetic subjects is proposed. The mean value of all Euclidean distances between each
synthetic time series statistics and all real time series statistics is computed. Then, the time
series that brings the lowest value is selected.
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Firstly, all the statistics are normalized to avoid some variables being more influential
than others when calculating the mean of the distances. Subsequently, distances between
each pair of statistics are calculated to compute the sum of all the distances. The ID_test of
the best fitting, lowest distance sum valued, time series data are appended to each synthetic
subject. Once all the synthetic subjects are assigned a time series, another dataset containing
those time series is created. Finally, new identifiers linking synthetic subjects with the time
series data are created. The pseudocode of this coupling can be observed in Algorithm 1.

Algorithm 1. Coupling method.

def coupler(synth_row):
i = ‘null’
Tid = ‘null’
for row in stats:

curr = stats(row)
temp = curr − synth_row
dst = sum(absolute(temp))
if dst < i or i == ‘null’:

i = dst
Tid = stats (‘ID_test’)

return Tid

assigned_ID = []
for row in synth_stats:

Test = coupler (synth_stats (row))
assigned_ID.append(Test)

synth_info [‘ID_test’] = assigned_ID

4.6. Validation of Subjects

To validate the metadata of the cohort of synthetic subjects, some standardized metrics
and methods proposed by Hernandez et al. [22] have been used.

Firstly, the mean and standard deviation values for each variable of real data and SD
have been obtained. These values are collected in Table 3. From there, it can be observed
that the mean and standard deviation values of the attributes of SD are similar to those of
real data.

Table 3. Mean and standard deviation (mean ± std) values for real data and SD (where SD is
generated using SDV).

Variable Real Data SD

Age 28.95 ± 10.19 27.67 ± 9.94

Weight 73.14 ± 11.96 72.12 ± 11.56

Height 174.82 ± 7.99 174.39 ± 7.73

Humidity 48.14 ± 8.54 45.4 ± 6.86

Temperature 22.82 ± 2.79 23.92 ± 1.5

Sex Male (n = 806)
Female (n = 104)

Male (n = 810)
Female (n = 110)

A dimensionality reduction method, specifically principal component analysis (PCA),
has been used to analyze whether the dimensional properties of the real cohort are pre-
served in the synthetic one. Figure 3 indicates that the generated cohort of synthetic subjects
is quite similar in dimensionality. There are only a few points that differ from the cohort of
real subjects.
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Figure 4 shows the pairwise Pearson correlation (PPC) matrices for both the cohort of
real subjects and the cohort of synthetic subjects. From there, it can be observed that the
correlations between the attributes are very similar for both cohorts. A few correlations
in the cohort of synthetic subjects are weaker than the correlations from the cohort of
real subjects.
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A pairwise distance has been computed between each pair of real and synthetic
subjects to evaluate how private the cohort of synthetic subjects is. The Hamming distance
metric is used for this, which represents the proportion of attributes that are different
between the two sets of records. Therefore, the higher the pairwise distance is, the better
the privacy is preserved, since fewer attributes of the SD subjects are exactly equal to the
attributes of the real subjects.

After computing the Hamming distance for each pair of real data and SD subjects, the
distribution of those pairwise distances has been analyzed. As shown in Figure 5, most of
the pairwise distance values are higher than 0.9, which indicates that for most synthetic
subjects, the attributes are different from the real subject. This result indicates that privacy
has been quite well preserved in the cohort of synthetic subjects.
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5. Conclusions

The main conclusion derived from this work is that the proposed approach for the
generation of synthetic subjects with real time series data can be used to generate a synthetic,
thus shareable dataset. Hence, it can be demonstrated that with the selected dataset, the
proposed methodology can be used to generate synthetic patients and then combine them
with real time series data. Furthermore, the generated cohort of synthetic subjects preserves
the privacy of the cohort of real subjects, while maintaining correlations and dimensional
properties.

However, the developed work has a few limitations. Firstly, more evaluation with
other time series datasets should be performed to validate the generalizability of the
approach used. Secondly, despite some trials implementing the second proposed approach
described in Section 3.2 (using the SDV PAR for STSG), the results obtained with this model
and applied to the selected dataset did not meet the minimum similarity requirements
to present them. More favorable results may be obtained using this approach with other
datasets. Thirdly, the privacy of the generated subject cohort has not been extensively
analyzed, nor has the quality of the coupling. A more extensive evaluation of the generated
synthetic cohorts should be carried out to compare different STDG or STSG techniques to
select the ones that yield better results. Fourthly, this approach has been generated with
only one cohort of subjects and temporal data. More research with more cohorts of subjects
and time series data should be carried out to validate the generalizability and improve the
approach used and the other proposed approach.

The limitations mentioned above can be taken as guidelines for future work. Firstly,
other missing time series data imputation techniques, such as forecasting, will be incorpo-
rated into the data processing step. Secondly, a strategy to evaluate the coupling process
will be ideated, for example, using some forecasting analysis methods. Then, the approach
utilized will be evaluated with more datasets. In addition, the second approach, in which
synthetic time series data are generated, will be implemented and validated, together with
better performing STSG techniques and more datasets to generate multivariate time series.
Concerning this approach, a method to validate the temporal nature of synthetic time
series will be established, since the time series data will be fully synthetic. Furthermore,
a complete strategy to evaluate the subject’s resemblance and privacy will be defined.
For multivariate resemblance, the comparison of eigenvalues, the percentage of variance
explained by each component and coordinates of the PCA analysis will be considered. In
terms of privacy, the use of Wilcoxon signed-rank tests, the analysis of re-identification
risks and computation of similarity to real data will be considered. Finally, it is intended to
incorporate the proposed approaches in the VITALISE controlled data processing workflow
presented by Hernandez et al. [4]. This workflow enables researchers to develop algorithms
and perform analyses locally using SD and then request their execution remotely with the
real data.
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