
1

Gotham Testbed: a Reproducible IoT Testbed for
Security Experiments and Dataset Generation

Xabier Sáez-de-Cámara, Jose Luis Flores, Cristóbal Arellano, Aitor Urbieta, and Urko Zurutuza

Abstract—The growing adoption of the Internet of Things (IoT) has brought a significant increase in attacks targeting those devices.
Machine learning (ML) methods have shown promising results for intrusion detection; however, the scarcity of IoT datasets remains a
limiting factor in developing ML-based security systems for IoT scenarios. Static datasets get outdated due to evolving IoT
architectures and threat landscape; meanwhile, the testbeds used to generate them are rarely published. This paper presents the
Gotham testbed, a reproducible and flexible security testbed extendable to accommodate new emulated devices, services or attackers.
Gotham is used to build an IoT scenario composed of 100 emulated devices communicating via MQTT, CoAP and RTSP protocols,
among others, in a topology composed of 30 switches and 10 routers. The scenario presents three threat actors, including the entire
Mirai botnet lifecycle and additional red-teaming tools performing DoS, scanning, and attacks targeting IoT protocols. The testbed has
many purposes, including a cyber range, testing security solutions, and capturing network and application data to generate datasets.
We hope that researchers can leverage and adapt Gotham to include other devices, state-of-the-art attacks and topologies to share
scenarios and datasets that reflect the current IoT settings and threat landscape.

Index Terms—Botnet, emulation, Internet of Things, machine learning, network security, testbed.

✦

1 INTRODUCTION

THE Internet of Things (IoT) and Machine to Machine
(M2M) communication protocols are rapidly develop-

ing technologies of great interest to the industrial sector.
They have the potential to improve the efficiency and
reliability of manufacturing operations and processes, as
well as foster the creation of new products, applications
and business models [1]. Due to the pervasiveness of IoT,
security and privacy guarantees should be one of the main
concerns to be addressed. Unfortunately, multiple sources
of vulnerabilities such as deficient physical security, in-
adequate authentication, improper encryption, unnecessary
open ports, insufficient access control, improper patch man-
agement, weak programming practices and insufficient au-
dit mechanisms are the main reasons why many of these
types of devices are currently susceptible to attacks [2]. This
situation has led to the development of malware specifically
designed to target and exploit IoT devices [3], [4], typically
incorporating the compromised machines into a botnet to
launch multiple campaigns such as Distributed Denial of
Service (DDoS) attacks, spamming, cryptocurrency mining
or advertisement click fraud [5]. Exposed Industrial IoT
(IIoT) systems, which are often part of critical infrastruc-
tures, are also the targets of many attacks, including ran-
somware [6], intellectual property theft or sabotage [7].

To defend against these types of cybersecurity threats,
in addition to the use of traditional rule-based intrusion
detection and prevention systems (IDS/IPS), there has been
a vast body of research on statistical modeling, machine

• X. Sáez-de-Cámara, J.L. Flores, C. Arellano and A. Urbieta are with
Ikerlan Technology Research Centre, Basque Research and Technology
Alliance (BRTA), Arrasate-Mondragón, Spain.
E-mail: {xsaezdecamara, jlflores, carellano, aurbieta}@ikerlan.es

• U. Zurutuza and X. Sáez-de-Cámara are with Mondragon Unibertsi-
tatea, Arrasate-Mondragón, Spain. E-mail: uzurutuza@mondragon.edu,
xabier.saezdecamara@alumni.mondragon.edu

learning (ML) and deep learning (DL) methods over the last
three decades. However, despite the promising results of
ML in cybersecurity [8], the deployment of these systems is
still limited in practice, creating a gap between the academic
settings and operational environments [9], [10].

One of the main reasons for this gap is the lack of
representative public datasets that include up-to-date traffic
and attacking patterns to develop ML-based systems [8],
[9], [11]. This issue is particularly relevant for IoT and M2M
environments, where the number of special-purpose public
datasets is currently insufficient [12], and the attacking be-
haviors included in the datasets are outdated or underrepre-
sented due to the rapidly evolving IoT threat landscape [4],
[13].

Using real IoT hardware on operational networks is one
of the preferred methods to generate an accurate and repre-
sentative dataset. Nevertheless, testing on real networks is
not always feasible. Network traffic data can include confi-
dential and personally identifiable information, making it
difficult to publish. Experimentation in real deployments
can also be challenging, time-consuming and expensive.
Furthermore, using real malware samples or attacking tools
to generate representative threats can potentially harm the
devices and raise ethical considerations [9], [10], [14], [15].

An alternative to real settings is the use of emulation-
based systems [14]. Emulation software enables researchers
to create network testbeds composed of multiple emulated
devices that can be used for various purposes, including
evaluating security solutions, testing network topologies,
personnel training exercises or other research. The activ-
ities performed within the testbed generate traces (such
as network packets, system logs, and syscalls) that can
be captured and used, for instance, to create datasets to
develop or evaluate ML models for the detection of at-
tacks or malicious behavior performed in the testbed. While

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

many of the datasets created from emulated testbeds are
openly available to the community, the testbeds themselves
are rarely published. This prevents other researchers from
adapting the testbed, and the generated data, to their par-
ticular use cases. Moreover, there is a generalized lack of
documentation about the configuration used in the testbeds
to generate the datasets [12]. The scarcity of details on
the devices, software versions, and configuration files or
command-line arguments used in attacking tools hinders
the reproducibility of the datasets. This issue was recently
raised in [16] when analyzing the popular CICIDS2017 [17]
dataset.

We argue that sharing datasets alone for ML model
training is not enough to reduce the gap between the ex-
perimental and deployment environments. Especially con-
sidering that in some cases, ML models learned from public
datasets may not generalize well to other network set-
tings [18]. Sharing a reproducible and extendable testbed
allows researchers and practitioners to leverage and adapt
the platform to be as close as possible to the network setting
of interest. To that end, we present a testbed for IoT security
research that allows performing security experiments and
the extraction of real network traffic datasets. The contribu-
tions can be summarized as follows:

• An IoT network security testbed implemented as a
middleware over the GNS3 network emulator [19]. It
allows the deployment of different network topolo-
gies and is flexible enough to incorporate any type of
physical, virtualized or containerized clients, servers
and applications, as well as generate real network
traffic data. The source code to reproduce the testbed
is available at [20].

• A ready-to-use scenario composed of 100 emulated
IoT and IIoT devices, servers and attackers. The
devices are connected in a realistic topology with
30 network switches and 10 routers. Particularly,
the emulated IoT nodes communicate primarily via
the MQTT and CoAP M2M protocols and the RTSP
streaming protocol.

• A threat model that includes 3 different threat ac-
tors executing real botnet malware and other red-
teaming attack tools. The testbed includes the (i) Mi-
rai worm [3] and all its required command and con-
trol (C&C) infrastructure; (ii) a second botnet based
on the Merlin C&C server [21] and (iii) network
scans and attacks specifically targeting the MQTT
and CoAP services.

• We provide a set of properties based on the literature
that an emulation platform should meet, and validate
the proposed platform based on those properties.

The rest of this paper is structured as follows. Section 2
discusses the related work. Section 3 details the general
properties to be met by network security testbeds. The
testbed architecture is presented in Section 4, and the IoT
use-case scenario is detailed in Section 5. Section 6 shows
experimental results related to the properties of the testbed.
Finally, the paper is concluded in Section 7.

2 RELATED WORK

In this section, several publications about IoT testbeds and
datasets for network security are described and discussed.

2.1 Testbeds and datasets for IoT security
Many IoT datasets are usually generated using a testbed
composed of real or emulated devices. Meidan et al. [22]
present N-BaIoT, a dataset generated using a small labo-
ratory setup composed of 9 real commercial IoT devices.
They deploy Mirai and BASHLITE botnets to capture traffic
in both normal and compromised states. However, they do
not consider the whole botnet lifecycle and only focus on
the DoS attacking stages; the botnet propagation, infection
and communication with the command and control server
stages are not included. The deployment does not represent
a realistic network topology because all the IoT devices and
servers needed for the botnet infrastructure are located in
the same LAN connected to a single switch. Raw network
traces in pcap format are not available; only processed
features are included.

Koroniotis et al. [23] design a testbed composed of em-
ulated IoT devices as well as emulated PCs and servers,
which is used to extract the Bot-IoT network traffic dataset.
They include a total of 8 Windows and Linux virtual ma-
chines (VM) to implement the normal and attacking nodes,
all of them connected to the same LAN. Node-red is used to
emulate the traffic of 5 IoT sensors that send messages via
the MQTT protocol to a public AWS broker in addition to the
Ostinato traffic generator to simulate normal network activ-
ity. They use several Kali Linux VMs to perform the attacks.
As an evolution from the previous work, Moustafa [24]
builds an emulated testbed architecture including a mix of
IoT devices and regular IT clients to generate the TON IoT
dataset. The dataset includes network traffic, application
and OS logs. The testbed is composed of 17 VMs and
includes a single VM simulating 7 different IoT sensors, a
smart TV, 2 smartphones and several client systems based
on Windows, Linux and purposefully vulnerable VMs. As
in the previous version, they use Node-red to generate the
MQTT IoT traffic to a public broker and the Ostinato traffic
generator for the rest of the normal traces. The previous
datasets lack attack heterogeneity, real botnet malware is
not included, and while they contain a diverse set of attacks,
they do not include attacks targeted against the MQTT IoT
protocol.

Hindy et al. [25] publish the MQTT-IoT-IDS2020 dataset
to evaluate the effectiveness of ML techniques to detect
MQTT-based attacks. The dataset is generated using a VM-
based emulated testbed composed of 12 simulated MQTT
sensors publishing random messages of varying length to
a single broker, two machines simulating a UDP stream
and one attacker. All the sensors are located at the same
LAN, while the broker, stream server and the attacker are
in another network separated by a single router. The attacks
are limited to generic network scans and an MQTT brute
force attack.

IoT-Flock [26] is a traffic generator to simulate MQTT
and CoAP-based IoT devices and attacks. Vaccari et al. [27]
present MQTTset; they use IoT-Flock to simulate 8 simple
sensors publishing data to an MQTT broker and a single

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

malicious node that can launch DoS attacks, malformed
data and brute force attacks. All the emulated devices are
directly connected to the same LAN. The deployment does
not represent a realistic network topology, and the attacks
only target the broker. Similarly, Hussain et al. [28] use IoT-
Flock to create a dataset consisting of MQTT and CoAP
network traces. They create a testbed mimicking an IoT-
based healthcare system with 9 emulated simple sensors, an
MQTT broker and a CoAP server. The attacks include MQTT
packet floods, packet crafting and CoAP replay attacks.

Guerra-Manzanares et al. [29] design a testbed composed
of real and emulated devices to generate the MedBioT
dataset. They use 3 real commercial IoT devices and 4
emulated MQTT-based IoT sensor templates, of which they
instantiate 20 of each using containerization technologies for
a total of 83 devices. Three real botnet malware samples
(Mirai, BASHLITE and Torii) are included to generate the
attacks. The larger scale of this testbed enables a more
realistic botnet propagation pattern compared to smaller
ones. However, all the IoT devices and the botnet infras-
tructure are directly connected to a single switch in the
same LAN, which does not reflect a realistic IoT topology.
Additionally, they only focus on the first stages of the botnet
lifecycle (infection, propagation and command and control
communication), but they neither include attacking stages
nor IoT-specific attacks. They do not provide details about
the source code modifications and command and control
infrastructure configuration needed to run real malware in
the testbed.

Amine Ferrag et al. [30] present Edge-IIoTset, an
IoT/IIoT dataset that includes MQTT and Modbus traffic
generated using a testbed composed of real low-cost sen-
sors and emulated devices. For the IoT and IIoT devices,
they wire 11 sensors to an Arduino Uno board; they de-
ploy MQTT brokers and Modbus master/slave nodes using
the Node-red Modbus extension on various Raspberry Pi
boards. They also emulate multiple vulnerable services,
applications and attackers using VMs. There are no precise
details about the total number of nodes, configuration op-
tions and network topology; however, all the attackers and
victims seem to be connected to the same wireless router,
which does not reflect a realistic IoT topology. They perform
a varied set of attacks, yet, most attacks target the services in
the vulnerable VMs instead of the IoT devices. The attacks
targeting the IoT nodes include generic flooding, scanning
and spoofing attacks, but attacks against IoT protocols are
lacking.

The literature presents some works that share some
similarities to our proposed testbed. Antonioli et al. [31]
present MiniCPS, an extensible and reproducible testbed to
emulate communication in CPSs such as PLCs and HMIs
using the Ethernet/IP and Modbus TCP/IP protocols. They
use Mininet for the network emulation layer. The purpose
of the testbed is to perform attacks on CPS systems and
develop defenses; they provide an example of ARP spoofing
and man-in-the-middle (MITM) traffic manipulation attacks
and develop a detection method using a custom software-
defined network controller. Eckhart et al. [32] present CPS
Twinning, a Mininet-based testbed for creating digital twins
used to test or monitor security/safety rules and data cap-
turing purposes. CPS Twinning includes a generator module

that can automatically create the virtual testbed in a re-
producible way based on parsing specification files defined
in the AutomationML data format. The prototype includes
PLCs and HMIs running native code and communicating
with Modbus TCP/IP protocol. The threat scenario presents
an ARP spoofing and MITM attack and shows successful
detection by monitoring various states of the digital twin.

Our testbed differs from both cited testbeds in [31]
and [32] in several ways. In [31], creating a new type of
emulated host or adding support for another communi-
cation protocol requires modifications to the testbed code
and porting the code to Python, limiting its extensibility
to add heterogeneous nodes communicating with diverse
protocols. CPS Twinning [32] assumes that the organization
already uses the AutomationML language to define its phys-
ical infrastructure and is only focused on Modbus TCP/IP.
Each emulated host in our approach is intended to run arbi-
trary programs and communicate using arbitrary protocols
over TCP/IP. The created scenarios in both testbeds lack
attack diversity and do not include real malware samples. In
contrast, we provide an extensive threat model that includes
real malware samples to generate various attacks. From the
implementation point of view, we use GNS3 to manage the
network layer, and we use Docker-based containers (and
VMs) to provide a reproducible specification and emulation
for each host. Mininet-based testbeds use a lighter container-
ization model where each host is a group of processes in a
network namespace, but all share the same filesystem by de-
fault. However, due to the use of real malware samples, we
use Docker-based virtualization for a more comprehensive
isolation at the expense of greater virtualization overhead.
Additionally, while Mininet can impose CPU resource con-
straints in the emulated hosts, currently, memory constraints
are not supported, which limits the fidelity to emulate each
host’s hardware resources compared to Docker-based hosts.

2.2 General IoT simulators and testbeds
Multiple IoT simulators and testbeds are currently avail-
able for general IoT network research and development
purposes [33]. Most of those simulators, such as ns-3,
OMNeT++ and CupCarbon, are discrete-event simulators
specialized in the physical and media access layer proto-
col simulations. However, those simulators still lack the
support for many application layer IoT protocols out of
the box, and are not specifically designed for cybersecurity
applications [33]. Some recent versions of those simulators
support protocols such as MQTT [34], but the integration of
arbitrary application protocols is still lacking. In contrast, in
this work, we are interested in emulating devices, servers
and network equipment that run real production libraries,
network switching software and routing operating systems,
as well as real malware samples and attack tools.

2.3 Discussion
In general, the presented cybersecurity datasets lack het-
erogeneity in terms of attacks; most do not include real
botnet malware samples, one of the most prominent threats
to current IoT devices [4], and the ones that do include
them [22], [29] are limited to some botnet stages instead
of the whole lifecycle. Additionally, only a few include

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

attacks targeting IoT protocols such as MQTT and CoAP.
Furthermore, the scalability of the testbeds is small (in the
order of 10 devices, usually less than 20) due to the use
of real devices or VMs, except for the work at [29], which
uses containerization technology. Moreover, most testbeds
represent only simplified topologies where all the devices
and attackers are connected to the same LAN, which can
lead to unrealistic threat models. Testbeds need to include
multiple networks and routing layers to represent a realistic
botnet propagation and attacking scenario.

There is also a general lack of documentation regard-
ing IoT node behavior, server configuration options (e.g.,
MQTT broker configuration) and the exact implementation
or parameters used to perform the attacks. This informa-
tion is crucial because many attacks can behave differently
depending on the configuration of both the victim and
attacker. For example, some MQTT broker implementations
and versions are not affected by the MQTT authentication
bypass and packet crafting attacks included in [28], ren-
dering those attacks irrelevant. Similarly, real botnet source
code needs certain modifications to make them work in a
testbed or limit some potential threats to external networks;
however, those patches are not provided in the datasets that
include real botnets.

To the best of our knowledge, the cybersecurity testbeds
used to generate the cited datasets are not published, except
for the testbeds in [31] and [32]. This limits extendibility and
reproducibility because it prevents other researchers from
building upon, reusing or adapting the testbed to generate
specialized datasets that best suit their needs.

3 TESTBED REQUIREMENTS AND PLATFORM FEA-
TURES

This section details the main requirements that have been
defined in the literature for the creation and evaluation of
testbeds and datasets to provide a rigorous experimenta-
tion platform. We classify and group those requirements to
provide a list of the features to be fulfilled by the Gotham
testbed.

3.1 General testbed and dataset requirements

Over the last years, the community has defined a set of
requirements for network testbeds and datasets that should
be met to provide accurate and reliable results. According
to Siaterlis et al. [14], [35], the basic testbed requirements
include fidelity to reproduce a real system to the sufficient
level of detail needed for the current experiment, a con-
trolled environment to allow the reproducibility of the sce-
narios, and being able to correctly measure and monitor the
experiment. Additionally, the testbeds should be comprised
of heterogeneous elements, be extendable to include new
protocols or devices and be scalable to support networks
with many nodes [33], [36].

For testbeds designed to run security experiments, addi-
tional requirements have been defined given the presence
of malware and attack tools. These requirements include
the safe execution of malicious software without interfering
with the testbed [35], containment to prevent the transmis-
sion of attacks to an external operational network [37] and

Measurability
Node (M2) Application-level logs

Link (M1) Raw packet captures

Reproducibility
Topology (R3) Reproducible topology

Node
(R2) Reproducible attack scripts

(R1) Reproducible device configuration

Scalability Topology (S1) Node resource utilization

Heterogeneity
Topology (H3) Service diversity

Node
(H2) Attack behavior diversity

(H1) Protocol diversity

Fidelity

Topology (F5) Complex topology emulation

Link (F4) Communication link emulation

Node

(F3) Attacker behavior emulation

(F2) Device behavior emulation

(F1) Hardware resource emulation

PROPERTY CATEGORY FEATURE NAME

Fig. 1. Required testbed features grouped under different properties and
categories.

the ability to emulate scenarios with complex topologies to
properly study the whole botnet lifecycle [15].

Many of the defined requirements for testbeds also over-
lap with the criteria that network security datasets should
meet [12], [16], [17]. The criteria can be summarized as
follows: the dataset provides real and complete network
traces; the traffic is generated using a valid network topol-
ogy that includes clients, servers and network equipment;
the dataset is labeled to distinguish between benign and
malicious traces; highly heterogeneous regarding included
services, network protocols, normal and attack behaviors;
easily extendable; reproducible; shareable and documented.

3.2 Required testbed features
Considering the requirements from the literature summa-
rized in the previous subsection, we classify and group them
into five main properties: fidelity, heterogeneity, scalability,
reproducibility and measurability.

Broadly, fidelity refers to the ability to reproduce the
hardware and software of all the components to a sufficient
level of detail and being able to do it without the need
for external resources for increased isolation when dealing
with malware. Heterogeneity refers to the diversity of behav-
iors, especially if the data is used for ML model training.
Scalability refers to the ability to create networks with a
large number of nodes. Reproducibility is needed to enable
replication of the results and building upon them to keep
improving the platform. Measurability refers to the ability
and easiness of extracting relevant data from the testbed.

For each property, we derive a set of desired features
that should be met to create a comprehensive testbed plat-
form, as shown in Fig. 1. In the following, we describe the
rationale for each feature:

3.2.1 Fidelity
This property is further divided in terms of three different
categories describing the basic elements of a networked

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

system: nodes (devices, servers, switches, routers, etc.), links
(network links between the nodes) and network topology
(the arrangement of nodes and links).

F1: Fidelity in terms of node hardware resource em-
ulation. To allow the emulation of devices with different
computational capabilities, the testbed should be able to
adjust the memory and CPU resources assigned to each
node.

F2: Fidelity in terms of node behavior emulation. All
IoT nodes, as well as servers, switches and routers, should
support running real production applications, libraries and
operating systems to generate real network traffic and logs.

F3: Fidelity in terms of attacker behavior emulation.
The testbed should support and provide nodes running
real malware samples found in the wild and popular red
teaming tools.

F4: Fidelity in terms of communication link emulation.
Many nodes, especially IoT devices, can be connected to the
internet using links of different quality. The testbed should
allow the modification of network link QoS properties such
as bandwidth limits, delay, jitter and packet loss to emulate
different network link types.

F5: Fidelity to emulate complex topologies. The ability
to represent real-world network deployments with many
clients, servers, switches and routers is necessary to cor-
rectly represent several attacks, including botnet propaga-
tion, network-wide scans and DDoS attacks. The testbed
should also provide all the necessary services and infras-
tructure (command and control, name resolution, databases,
etc.) for the actual malware samples in a contained and
isolated manner to avoid leaking traffic or attacks into the
Internet.

3.2.2 Heterogeneity
This property is described in terms of node and topology
category levels.

H1: Heterogeneity in terms of node protocols. The
testbed should include nodes that communicate using a
diverse set of network protocols. The diversity includes IoT
nodes sending telemetry using different protocols, routers
communicating with each other topology information using
routing protocols and network services such as name reso-
lution.

H2: Heterogeneity in terms of attacks. Besides offering
different types of attacks, diversity within the same attack
type should also be provided. This procedure includes com-
bining different attack tools that perform similar actions and
using multiple options and flags for each attack [16].

H3: Heterogeneity in terms of services in the topology.
Devices and attackers behave differently depending on the
configuration of the service; hence protocol heterogeneity
(H1) might not be enough for a realistic emulation. The
testbed should also provide multiple equivalent services
configured in different ways. For instance, services with or
without authentication, communicating in plain text or over
an encrypted channel.

3.2.3 Scalability
It is defined at the topology level.

S1: Scalability to support topologies with many nodes.
IoT networks are usually large scale; the ability to include

many nodes can increase the realism of the emulated net-
work.

3.2.4 Reproducibility
Defined at the node and topology level, the following
features should be included and documented to enable a
reproducible scenario.

R1: Reproducibility in terms of node configuration. De-
scription of the behavior of each node, including all the
programs executing in the node and their configuration.

R2: Reproducibility in terms of attack scripts. Descrip-
tion of the performed attacks, including software, configu-
ration and command-line options.

R3: Reproducibility in terms of topology description.
The way in which all the nodes are connected to form the
network topology, including the network link properties,
should be detailed.

3.2.5 Measurability
Defined in terms of link and node categories.

M1: Ability to measure raw network packets from any
node. Different experiments might need to capture network
traffic at many locations. The testbed should provide packet
capturing from arbitrary links in the topology.

M2: Ability to measure application-level logs. Some
security solutions work with application-level logs; the
testbed should provide this type of data to create datasets
of heterogeneous sources. Other additional measurements
could include node CPU and memory resource usage met-
rics.

With the ability to emulate complex topologies (F5) that
include all the necessary services and devices, the platform
can be entirely isolated from the network and thus prevent
the possible propagation of attacks from the testbed to the
outside network. Extensibility is also achieved thanks to the
reproducibility of all the nodes (R1) (R2). The reproducibil-
ity allows other researchers to adapt existing nodes or create
new ones to suit their needs. In addition, (R2) also allows
labeling of the datasets generated by the testbed.

3.3 Comparison with related work
To expand on the discussion presented in Section 2, Ta-
ble 1 compares the cited testbeds/datasets according to the
testbed property taxonomy outlined in this section (Fig. 1).
When a proposal does not meet a particular feature, it does
not imply a fault in the testbed; however, it is insufficient
for our needs to create a reproducible and flexible testbed.
For instance, many testbeds are only focused on specific
protocols [25], [27], [28] and, thus, lack heterogeneity. While
others include a wide variety of attacks, they lack fidelity
because real malware activities are not included [23], [24],
[30] or vice versa [22], [29]. Regarding M1, while all can
capture network data, most only do it at specific choke
points (port mirroring in a switch or router) instead of
an arbitrary node. More importantly, most testbeds are
unavailable and cannot be reproduced even if the main
parts are mostly virtualized or containerized (the datasets
created with them are available). Two of them [31], [32] are
reproducible and available; however, they are focused on
PLC and HMI emulation, which differs from our proposal.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

TABLE 1
Comparison With Related Work Based on the Required Testbed Features (Fig. 1)

Reference Type F1 F2 F3 F4 F5 H1 H2 H3 S1 R1 R2 R3 M1 M2 Testbed
available

physical
layer IoT
protocols

N-BaIoT [22] real ✓ ✓ ✓ - x - x - x x x x ∼ x x x
Bot-IoT [23] VM - ✓ x - x x ∼ - x x ✓ x ∼ x x x
TON IoT [24] VM - ✓ x - x x ✓ - x x ✓ x ∼ ✓ x x
Hindy [25] VM - ✓ x ∼ x x x x x x x x ∼ x x x
MQTTset [27] IoT-Flock - ✓ x - x x x x x x ✓ x ∼ x x x
Hussain [28] IoT-Flock - ✓ x - x x x x x x ✓ x ∼ x x x
MedBIoT [29] real, container ✓ ✓ ✓ x x - x x ✓ x x x ∼ x x x
Edge-IIoTset [30] real, VM ✓ ✓ x - x ✓ ✓ x x x x x ✓ ✓ x x
MiniCPS [31] mininet - ✓ x - ✓ x x x ✓ ✓ ✓ ✓ ✓ ✓ ✓ x
CPS Twinning [32] mininet - ✓ x - ✓ x x x ✓ ✓ ✓ ✓ ✓ ✓ ✓ x
Gotham (Ours) container, VM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x
ns-3, CupCarbon, . . . [33] discrete event sim x x x ✓ x x x x ✓ ✓ - ✓ ✓ x - ✓

’✓’: yes. ’∼’: partially. ’-’: information not discussed or available or not applicable. ’x’: no.

The physical lower-layer IoT communication protocols
(e.g., Bluetooth, Zigbee, LoRa) are currently outside the
scope of the testbed. This is further discussed in sections 5
and 7.

4 TESTBED ARCHITECTURE

The developed IoT network security testbed is based on
the GNS3 network emulator [19]. GNS3 allows the creation
of complex topologies composed of VMs, containerized
images and real devices. It is actively developed and widely
used in the industry and as a teaching tool for academia;
the familiarity of this platform can ease the adoption of the
proposed testbed. GNS3 is free software under the GNU
GPLv3 license.

Fig. 2 illustrates the proposed architecture, which in-
cludes the GNS3 components and the middleware built on
top of it to implement the Gotham testbed. The central GNS3
component is the Controller server, which is responsible
for managing all the projects, and it serves as an interface
between the Clients and the Compute servers. The Clients
allow the user to build the emulated network topology
and interact with it by sending API requests to the Con-
troller. The Compute servers are the software components
that manage the different emulation engines supported
by GNS3, such as Docker [38] containers, VMs based on
QEMU [39] or other hypervisors and Dynamips to emulate
Cisco hardware. GNS3 allows running nodes in multiple
compute server instances to achieve higher scalability [40].

4.1 Gotham middleware components
Gotham is implemented as a GNS3 client and a set of
programs that communicate with the GNS3 Controller via
the public REST API. In the following, we describe the four
components of the Gotham middleware shown in Fig. 2.

4.1.1 IoT testbed orchestrator
A set of functions that wrap around the GNS3 REST API [40]
to automate and simplify various tasks such as node cre-
ation, node configuration (network interfaces, environment
variables, executing configuration scripts, etc.), link creation,

GNS3 Controller server

GNS3 Compute server 1 GNS3 Compute server n

Private REST API Private REST API

GNS3 Web
GUI client

Public REST APIWebsockets

GNS3 multiplatform
GUI client

Public REST APIWebsockets

D
oc

ke
r

Q
E

M
U

V
ir

tu
al

B
ox

V
M

w
ar

e

D
yn

am
ip

s

D
oc

ke
r

Q
E

M
U

V
ir

tu
al

B
ox

V
M

w
ar

e

D
yn

am
ip

s

GNS3

Public REST API

IoT testbed orchestrator

- Dockerfiles
- GNS3 appliances
- ISO images

- Router and device
 configuration - Attack scripts

Gotham middleware

Topology builder Scenario generatorTemplate creation engine

Fig. 2. Gotham testbed architecture.

starting and stopping packet capturing in links and more.
The rest of the components rely on these functions to build
the topology and run the scenarios. They are executed in the
following order: template creation engine, topology builder
and scenario generator.

4.1.2 Template creation engine

Gotham uses QEMU VMs to emulate routers and Docker
containers to emulate all the IoT nodes, attackers, servers
and switches. The template creation engine builds all the
Dockerfiles, sets up the ISO images of the VMs and gen-
erates GNS3 appliance templates representing those nodes.
A template is a device model used to instantiate a node in
the topology; GNS3 can create many nodes from a single
template. GNS3 allows emulating networking equipment
from multiple vendors; however, those images are usually
proprietary and under licensing restrictions. We only in-
clude nodes based on free and open source software to
ease reproducibility. Docker-based node templates include

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

settings such as Docker image name, additional environ-
ment variables, start command and Docker volumes. The
QEMU-based templates include settings like disk image
files, RAM and CPU limits and other QEMU command-
line parameters. After the template creation, the topology
builder is executed.

4.1.3 Topology builder
The topology builder module describes the full topology of
the scenario being emulated. After execution, it automati-
cally instantiates all the nodes (based on the previously cre-
ated templates), configures them and creates the necessary
links to define the topology. The Docker-based images are
configured by editing the /etc/network/interfaces
file and setting the appropriate environment variables for
each of them. In Gotham, the QEMU routers are configured
from scratch by first installing the router operating system
into the disk image and then configuring all interfaces
and routing protocols for each VM. Once the topology has
been defined, the scenario generator is executed to start the
experiment.

4.1.4 Scenario generator
The scenario generator module starts all the nodes in a
specific order and sets runtime options such as limiting
the amount of memory and CPU quota a Docker container
can use, setting bandwidth limits to network interfaces or
starting and stopping packet capturing. Then, the scenario
generator can schedule the launch of some attacks, or any
other type of behavior, by running arbitrary scripts on the
testbed nodes.

Regarding link and hardware resource emulation, cur-
rently, GNS3 has many features but also some limitations.
Gotham addresses them in the following ways:

4.1.4.1 Link emulation: GNS3 allows modifying
network link behavior by applying filters to packets in both
directions, including packet dropping by frequency, packet
loss percentage, delays, packet corruption percentage and
filtering packets that match a Berkeley Packet Filter expres-
sion. However, applying bandwidth limits is not currently
supported. To circumvent this limitation, we rely on tc
(Linux Traffic Control) [41] to provide a more realistic link
emulation. In addition, GNS3 includes link status detection
for QEMU-based nodes. When a link in the topology is
suspended or removed, GNS3 will inform the node that the
link status has changed, allowing a better router and routing
protocol behavior emulation.

4.1.4.2 Hardware resource emulation: GNS3 only
supports memory and CPU limits for nodes running in
a hypervisor such as QEMU. Docker containers are not
limited and can use all the available resources. However,
to overcome this limitation, Gotham integrates the Docker
API to apply memory and CPU constraints for resource
emulation in containers.

5 IOT SCENARIO USE CASE

To illustrate the capabilities of the testbed, we have de-
signed, implemented and validated the Gotham city sce-
nario. An IoT use case scenario that contains multiple
network segments, including building monitoring devices,

domotics for a small neighborhood, industrial companies
and malicious actors.

First, we outline the general network diagram of the
scenario in terms of three layers: edge, network and cloud.
Then, we detail the technical implementation regarding all
the different emulated devices that run at each layer. Next,
we describe the three threat models included in the scenario
and the various attacks each can perform. Finally, we show
the entire network topology of the scenario.

5.1 Scenario diagram
The network diagram for the scenario, including IP ad-
dresses and subnet masks for all interfaces, is shown in
Fig. 3. For the purposes of the scenario, the 192.168.0.0/16
range is considered a publicly addressable range. The dia-
gram only shows a partial view; the entire topology, includ-
ing all the devices, servers and attackers, will be shown later
in this section. The emulated scenario is divided into three
main layers: edge, network and cloud layers.

5.1.1 Edge layer
The edge layer is composed of the emulated IoT/IIoT
devices and attacker nodes. As shown in Fig. 3, the edge
layer devices are located across two main zones: the city
and the threat zones. The city zone devices include all the
IoT and IIoT devices under the routers labeled RC1 to RC4.
They communicate with the corresponding services at the
cloud layer using different protocols and communication
patterns. All the edge layer devices are addressable from
any other node. These devices represent the publicly acces-
sible devices located, for example, at the DMZ or outside
the firewall of different industrial or residential networks of
Gotham. The city zone is further divided into four segments.
Each segment represents a different establishment generat-
ing traffic patterns based on realistic use cases:

• Natural history museum: A big building with many
monitoring sensors and surveillance IP camera
streams sending data to the cloud.

• Bristol neighborhood: A group of houses that transmit
data related to domotic systems, air quality measure-
ments and IP camera streams.

• Rennington steel: An industrial network sending
telemetry data to the cloud for predictive mainte-
nance purposes such as motor or tool failure event
monitoring.

• Gotham Light and Power: Another industrial network
with IIoT nodes sending condition monitoring data
from power generation plants and hydraulic test rigs.

The threat zone devices are located under the RT1, RT2
and RT3 router segments, each corresponding to a different
threat actor, namely, the Maroni, Falcone and Calabrese crime
families:

• Maroni crime family: Portrays a threat model where
external attackers scan and compromise IoT devices
to turn them into bots. Includes a C&C server and
the supporting infrastructure for botnet propagation
and launching attacks.

• Falcone crime family: Depicts a threat model where
legitimate IoT devices (in the city zone) have been

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

RCLOUD

RTHREATRCITY

RC1 RC2 RC3 RC4 RT1 RT2 RT3

SCLOUD

SCITY STHREAT

192.168.0.1/20

192.168.32.1/20eth0192.168.16.1/20

eth1

eth0

eth0

eth0

eth1

eth2

eth2

eth1

eth1 eth2

10.0.0.0/31

10.0.0.1/31

10.0.0.2/31

10.0.0.3/31

10.0.0.4/31

10.0.0.5/31

eth1 eth1 eth1 eth1 eth1 eth1

eth0 eth0 eth0 eth0 eth0 eth0

192.168.16.10/20 192.168.16.11/20 192.168.16.12/20 192.168.16.13/20

192.168.17.1/24 192.168.18.1/24 192.168.19.1/24 192.168.20.1/24

192.168.32.10/20 192.168.32.11/20 192.168.32.12/20

192.168.33.1/24 192.168.34.1/24 192.168.35.1/24

N
et

w
or

k
la

ye
r

E
dg

e
la

ye
r

C
lo

ud
 la

ye
r

Natural history
museum
network

Bristol
neighborhood

network

Rennington steel
network

Gotham Light and
Power network

Maroni crime
family

Falcone crime
family

Calabrese crime
family

Fig. 3. Network diagram for the emulated scenario.

previously compromised and maintain a connection
with a C&C server for remote control.

• Calabrese crime family: Represents threats that exter-
nally scan IoT devices and launch attacks specifically
targeting weaknesses in MQTT and CoAP protocols.

The details about the malicious activities and attacks are
going to be described later in this section.

5.1.2 Network layer
The network layer devices are the switches and routers
shown in Fig. 3 that provide connectivity between the edge
and cloud layers. Routers RCLOUD, RTHREAT and RCITY
are the backbone routers of the testbed. They are configured
with the OSPF routing protocol to update their routing
tables dynamically. The edge layer routers from the city and
threat zones are configured with static routing tables.

5.1.3 Cloud layer
The cloud layer includes the infrastructure that provides
services to the edge layer devices. It includes additional
services such as DNS and NTP. The cloud layer devices are
connected to the RCLOUD router network.

5.2 Emulated devices
Here we provide the technical details referring to the im-
plementation of the IoT/IIoT devices, attackers, network
equipment and cloud infrastructure included in the sce-
nario. Each node’s implementation source code and artifacts
are publicly available at [20]. The description is structured
again in terms of edge, network and cloud layer devices.

5.2.1 Edge layer devices
Edge layer devices are responsible for generating the major-
ity of the testbed’s workload, including both legitimate and
malicious network traffic. All the edge layer nodes are im-
plemented as Docker containers and are fully reproducible
thanks to Dockerfiles and the included dependencies, such
as the programs implementing the node’s behavior and the
configuration files. The developed edge layer device tem-
plates, including IoT and attack nodes, can be instantiated

multiple times in the testbed, and each instance can be
configured differently to emulate distinct behavior patterns.
The three main protocols used for IoT communication are
MQTT, CoAP and RTSP.

The included IoT nodes represent devices located in ur-
ban or residential zones as well as IIoT devices for industrial
equipment. The devices emulate IoT hubs or gateways, i.e.,
devices that connect to and gather data from various sen-
sors, actuators or lower-level IoT devices and then commu-
nicate the collected data to the cloud or accept connections
from external devices to query data or control the device.
These types of IoT hubs and gateways that provide network
layer connectivity are an integral part of IoT systems [42].
The low-level connection between the emulated IoT hubs
and the sensors (e.g., Bluetooth, Zigbee, etc.) is currently
outside the scope of the testbed and not included; however,
the data collection process is simulated in each IoT device
by reading data obtained from multiple publicly available
datasets related to specific IoT use cases. The data is used to
generate a realistic-looking payload in terms of data volume
and variety. The generated network traffic depends on how
the emulated IoT devices transmit their payload, including
the transmission protocol, periodicity, network conditions
and interactions with other emulated devices defined in the
scenario.

Regarding the data transmission behavior, we differen-
tiate two modes: Open-close and Always-open. In Open-
close, each time the device needs to send telemetry data,
it opens a new connection to the cloud, sends the data
and then closes the connection. In Always-open mode, the
device opens a single connection with the cloud at the
beginning and keeps it alive by periodically sending data
and keep alive messages. Regarding the periodicity profiles,
we also differentiate two modes: Continuous and Intermit-
tent. In Continuous mode, the device is always actively
sending telemetry data periodically. In Intermittent mode,
the device has both active and inactivity time ranges. Active
ranges work like the Continuous mode, but during inac-
tivity ranges, no telemetry is transmitted, only background
traffic.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

5.2.1.1 MQTT-based edge devices: Each MQTT-
based device behavior is implemented in a Python program
that uses the Eclipse Paho [43] MQTT Python client library.
The program’s main thread periodically reads each line of
the dataset, processes the data, builds the telemetry payload
formatting it as a JSON, XML or Base64 encoded string and
sends it to a broker using one or more topics in plain text
or using TLS encryption. Furthermore, to increase the de-
vices’ heterogeneity and fidelity, the program includes other
threads executing in parallel to create background traffic
such as DNS, NTP requests and sending ICMP messages.
The following lists the six MQTT-based edge layer device
templates:

Air quality: Emulates an air quality chemical multisen-
sor device based on the [44] dataset. It includes 15 sensor
readings such as temperature, humidity and gas concen-
tration sensors. The sensor data is transmitted as an XML
payload of ≈ 1190 bytes/record using a single MQTT topic
in Continuous and Open-close mode.

Building monitor: Emulates a building condition mon-
itoring based on the [45] dataset. It includes 27 humidity,
temperature and energy consumption sensors located in
different rooms. The sensor data is transmitted as a JSON
payload of ≈ 100 bytes/record using 11 MQTT topics in
Continuous and Open-close mode.

Cooler motor: Emulates a device to monitor the vibra-
tion patterns of a fan based on the [46] dataset. It includes
5 sensors, such as acceleration and rotational speed sensors.
The sensor data is transmitted as a Base64 encoded binary
payload of ≈ 56 bytes/record using a single MQTT topic
in Intermittent and Always-open mode.

Domotic monitor: Emulates a monitoring system
mounted in a domotic house based on the [47] dataset.
It includes 24 sensors, such as wind, precipitation, CO2
concentration, and lighting. The sensor data is transmitted
as an XML payload of ≈ 1743 bytes/record using a single
MQTT topic in Continuous and Open-close mode.

Hydraulic system: Emulates a device measuring process
values from a hydraulic test rig based on the [48] dataset. It
includes 17 sensors measuring quantities such as pressure,
power, flow, temperature and vibration. The sensor data is
transmitted as a JSON payload with Base64 encoded values
of ≈ 7678 bytes/record using a single MQTT topic in
Continuous and Always-open mode.

Predictive maintenance: Emulates a predictive main-
tenance system based on the [49] dataset. It includes 14
sensors such as temperature, speed and torque for different
product variants. The sensor data is transmitted as a JSON
payload of ≈ 632 bytes/record using 3 MQTT topics in
Continuous and Open-close mode.

5.2.1.2 CoAP-based edge devices: Each CoAP-
based device implements a CoAP server using the libcoap
C library [50]. The device creates a CoAP resource for each
variable in the dataset, and it is served to clients at the cloud
layer in plain text or using DTLS encryption. The clients
periodically request data from the edge CoAP devices and
perform other actions like resource discovery or sending
ICMP messages. The following lists the two CoAP-based
edge layer device templates:

City power: Emulates a city power consumption meter
based on the [51] dataset. It includes 9 sensors, such as

power consumption in three city zones and weather infor-
mation. Each sensor data size is ≈ 10 bytes and serves 9
CoAP resources.

Combined cycle: Emulates the monitoring of a com-
bined cycle power plant based on the [52] dataset. It
includes 5 sensors: temperature, pressure, humidity, ex-
haust vacuum and energy output. Each sensor data size is
≈ 10 bytes and serves 5 CoAP resources.

5.2.1.3 RTSP-based edge devices: The devices based
on RTSP are the IP cameras and IP camera stream con-
sumers. The IP cameras send a looped video file through the
network using FFmpeg [53] to an RTSP server at the cloud
layer. The stream consumers read the video feed from the
server also using FFmpeg. They use a variety of protocols,
including RTP, RTCP, RTSP, ICMP and DNS. The following
lists the three camera edge layer device templates:

IP camera (x2): Includes 2 templates using different
video files and settings: Video 1, adapted from [54], sends
1280x720 resolution, 15 fps, color, no audio, libx265 codec,
40s looped stream. Video 2, adapted from [55], sends
1280x720 resolution, 25 fps, grayscale, no audio, libx264
codec, 16s looped stream. On average, the Video 1 stream
generates ≈ 1.2 Mbit/s traffic, and Video 2 generates
≈ 1.8 Mbit/s traffic. They write to the stream server in
Continuous mode.

IP camera consumer: Emulates a system reading from
a video stream generated by an IP camera. Each stream
generates ≈ 1.8 Mbit/s traffic. It reads from the stream
server in Intermittent mode.

For comparison with real IoT IP cameras, in [56], the
authors show a table with specifications and statistics of
some real IoT IP cameras used in their experiments. The
specifications are close to our emulated camera nodes. They
communicate with RTSP/RTP protocol, use the same image
resolution, H.264 codec and 15 fps framerate. They generate
around 1.4 – 1.8 Mbit/s traffic on average, similar to our
emulated cameras.

5.2.1.4 Attacker or malicious edge devices: Regard-
ing the attacker or malicious nodes, the scenario includes
the following ten templates:

Mirai bot: This device includes the Mirai bot binary
adapted and compiled from [57]. After execution, the bot
can perform several steps: network scanning, brute force
authentication, reporting gathered credentials to the scan
listener server and performing multiple DoS attacks.

Mirai C&C: This device is composed of a MySQL
database, and the Mirai Command & Control server
adapted and compiled from [57]. With the appropriate
username and password, clients can connect to the C&C
to schedule DDoS attacks. The database holds credentials,
client information and attack records.

Mirai scan listener: This is the Mirai scan listener binary
compiled from [57]. The server listens to the bot scanning
results when a successful Telnet username and password
have been found.

Mirai loader: This device includes the main Mirai loader
binary adapted and compiled from [57] and Mirai down-
loader binaries for 9 architectures. The loader program takes
the scanning reports from the scan listener server and logs
into each device to download and execute the Mirai bot.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

TABLE 2
Network Layer Device Templates.

Device Description

Switches Docker image with Open vSwitch [65]
version 2.12.3. Each switch has 16 net-
work interfaces.

Backbone
routers:
RCLOUD,
RTHREAT, RCITY

QEMU VM with VyOS [66] version
1.3.0-rc6. OSPF protocol is used to con-
figure the routing tables dynamically.

Edge routers:
RC1–5, RT1–3

QEMU VM with VyOS [66] version
1.3.0-rc6. The routers are configured us-
ing static routing tables and Proxy ARP
is enabled.

Mirai download server: It is an HTTP server hosting the
Mirai bot binary.

Merlin C&C: This device includes the Merlin cross-
platform post-exploitation Command & Control server [21].
All the devices compromised with the Merlin agent report
to the Merlin C&C. Users can connect to this node to control
each bot.

Scanner: The scanner node contains the Nmap [58] and
Masscan [59] network scanners. Additionally, Nmap can
probe MQTT brokers.

MQTT attacks: The node includes the SlowTT [60] and
MQTTSA [61] tools to perform attacks against MQTT.

CoAP attacks: The node includes the AMP-Research [62]
tool to perform amplification attacks against CoAP devices.

Metasploit: It includes the Metasploit Framework [63]
for executing exploit codes against remote targets.

5.2.1.5 Edge device configuration: Each device in-
stance created from the described templates can be con-
figured by setting environment variables for the Docker
containers. These variables are set in the topology creation
program. The configuration options include the MQTT
broker address or domain name, CoAP server address,
MQTT topic, MQTT username and password authentica-
tion, MQTT QoS values, enabling TLS for MQTT or DTLS
for CoAP, sleep times (mean value and random standard
deviation) for each thread or setting the active and inactive
time periods to enable and disable the telemetry thread
temporarily. Additionally, all the IoT devices include the
BusyBox [64] binary. To make some devices vulnerable
to Mirai, the scenario generator program configures some
nodes with a username and password combination found
in Mirai’s brute forcing table, running the BusyBox Telnet
server and setting the login shell to the BusyBox shell.

5.2.2 Network layer devices

The information about the switches and routers used in the
testbed is summarized in Table 2. The configuration of all
the routers is performed automatically by the topology cre-
ation program. After completing the image installation, each
router is configured by executing a Bash script with all the
necessary VyOS CLI commands. All routers are provided
with 512MB RAM, 1 virtual CPU, KVM acceleration and
the virtio para-virtualized network adapter to increase the
performance of the network adapters.

TABLE 3
Cloud Layer Device Templates.

Device tem-
plate

Description

MQTT
broker plain
text

Docker with Eclipse Mosquitto [67] 1.6 in its
default configuration.

MQTT
broker plain
text with au-
thentication

Docker with Eclipse Mosquitto [67] 1.6 con-
figured with 2 username/password combi-
nations to only accept authenticated clients.

MQTT
broker TLS
encryption

Docker with Eclipse Mosquitto [67] 2.0 con-
figured with X.509 certificates to enable en-
cryption.

Combined
cycle CoAP
client

Ubuntu Docker image with a libcoap [50]
client requesting services provided by the
Combined cycle IoT servers from the edge
layer. Can communicate in plain text or en-
crypted using DTLS with pre-shared keys.

City power
CoAP client

Ubuntu Docker image with a libcoap [50]
client requesting services provided by the
City power IoT servers from the edge layer.
Can communicate in plain text or encrypted
using DTLS with pre-shared keys.

IP camera
stream
server

Alpine docker image. RTSP-simple-
server [68] is installed and configured.

DNS Ubuntu Docker image. Dnsmasq [69] is in-
stalled and configured to provide DNS ser-
vices.

NTP Alpine Docker image. Chrony [70] is in-
stalled and configured to provide NTP ser-
vices.

5.2.3 Cloud layer devices
The cloud layer comprises multiple MQTT brokers run-
ning differently configured instances of the Eclipse
Mosquitto [67] broker, CoAP clients based on the libcoap
library and IP camera streaming servers running the RTSP-
simple-server [68] that allows clients to publish and read
audio and video streams. Additionally, it includes DNS and
NTP services used by most edge layer devices. The topol-
ogy creation program automatically configures the testbed-
specific configuration parameters, such as device addresses
or DNS hosts and names. A description of the cloud layer
device templates is shown in Table 3.

5.3 Threat model and attacks
Here we detail the three threat actors included in the sce-
nario, portrayed by three crime families in Gotham: Maroni,
Falcone and Calabrese. Each threat actor models different
malicious activities, which in conjunction, represent a com-
prehensive threat model to the IoT.

First, Maroni represents external attackers that perform
automated actions to scan, exploit and control IoT devices.
Then, Falcone represents previously compromised IoT de-
vices by an unknown method (e.g., by insiders, manufactur-
ers or supply chain attacks) that connect to an external net-
work controlled by the attacker. Finally, Calabrese represents
attacks specifically targeting some IoT protocol weaknesses.

While we include a diverse set of activities in this
particular scenario, the testbed scenario can be extended

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

to include even more attacks depending on the interest of
researchers or to test new attacks as they are discovered.

5.3.1 Maroni Crime Family
This threat actor represents an attacker-controlled network
that remotely scans, attacks and compromises other devices
to incorporate them into a botnet. The devices in this threat
actor include the four Mirai nodes in the RT1 network and
the single bot located at the cloud layer. All the nodes are
based on binaries compiled from the published Mirai source
code [57].

To adapt the malware to the closed testbed environment,
several modifications had to be made to the Mirai source
code. All the modifications and details are available in
the testbed repository [20]. Briefly, the changes include: (i)
replacing the hardcoded DNS address (8.8.8.8) with the
address of the DNS server in the lab, (ii) replacing the
hardcoded loader address with the one used in the lab, (iii)
removing C preprocessor directives to enable port scanning
and launching attacks when compiling in debug mode (to
be able to see Mirai log messages), (iv) patching the function
to generate random IP addresses to include the ranges used
in the testbed and other minor changes such as (v) using
Unix sockets instead of TCP to open the database locally
and (vi) fixing some errors in the database creation scripts.
The following is a list of the included malicious behavior:

• Periodic C&C communication: Mirai bots perform
periodic communication with both the C&C server
and the loader server.

• Network scanning: Each Mirai bot scans the network
in a pseudorandom order sending TCP SYN packets
to the 23 and 2323 ports.

• Brute forcing: When a potential victim is found
during the network scanning phase, the bot tries to
brute force the victim’s Telnet credentials using a
hardcoded list of username and password combina-
tions.

• Reporting: After a successful brute forcing, the Mirai
bot sends the victim’s IP address, port, username
and password combination to the Mirai scan listener
server.

• Ingress tool transfer: For each vulnerable device
listed in the listener server, the loader program logs
in and downloads the malware into each device.

• Remote command execution: The Mirai C&C server
can instruct the bots to launch various attacks against
the victims.

• Denial of service attacks: Mirai includes 10 DoS at-
tack types, including network and application layer
attacks: generic UDP flood, UDP flood optimized for
higher speeds, flood against game servers running
the Valve Source engine, DNS flood, TCP SYN, TCP
ACK attacks, TCP stomp flood, GRE IP flood, GRE
Ethernet flood and HTTP flood.

For a more detailed description of Mirai’s behavior,
operation, lifecycle and attacks, please refer to [3], [71].

5.3.2 Falcone Crime Family
This threat actor represents a set of devices that have been
previously compromised but are still running by legitimate

users inside the city zone network. The infection vector is
not relevant in this case; this could represent, for instance,
supply chain attacks, malware installed by the manufacturer
or insider attacks. The attacker-controlled node is a single
Docker container running the Merlin [21] multi-platform
post-exploitation Command and Control (C&C) server, and
the compromised devices run the Merlin agent. The Mer-
lin server supports multiple protocols for C&C (HTTP/1.1
clear-text, HTTP/1.1 over TLS, HTTP/2, HTTP/2 clear-text,
HTTP/2 over QUIC) and can remotely execute arbitrary
code on the bots under its control. To generate attacks
against the victims, the node also includes the hping3 [72]
TCP/IP packet assembler and analyzer.

To increase the variety within the same attack categories,
the currently implemented attacks for this threat actor are
DoS-based attacks similar to Mirai’s attacking behavior as
described in its source code [57] but implemented using
hping3. However, since the Merlin C&C allows the execu-
tion of arbitrary commands in the controlled machines, it
can be used as a generic tool to perform various attacks.
The following is a list of the currently performed malicious
behavior and attacks:

• Periodic C&C communication: The Merlin C&C
server is initialized and starts listening for incoming
connections. All the compromised nodes execute the
Merlin agent and connect to the server. The clients
periodically communicate with the server to keep
alive the C&C channel.

• Ingress tool transfer: The C&C server transfers the
hping3 binary into each of the compromised devices.
The tool is used to perform subsequent DoS attacks
against other targets in the network.

• Remote code execution: The server remotely exe-
cutes commands into the compromised machines to
prepare the environment for the previously uploaded
hping3 binary.

• Denial of service attacks: The Merlin C&C server
commands the compromised devices to send various
flooding attacks against a selected target. The attacks
include sending ICMP echo requests, UDP generic
flood to different random ports, TCP SYN and TCP
ACK attacks.

5.3.3 Calabrese Crime Family

This threat actor first performs network-wide scanning ac-
tivities to identify all the IoT devices in the testbed as a
precursor to launching targeted attacks against the devices
that use the MQTT and CoAP protocols. The scanning is per-
formed by the Scanner node, which includes two different
tools: Nmap [58] and Masscan [59]. Nmap can additionally
be used to establish a connection to an MQTT broker to lis-
ten and read all the messages being published by the clients.
Attacks against the MQTT broker are implemented using
the MQTT attacks node, which includes the MQTTSA [61]
and SlowTT-Attack [60] tools, and the Metasploit node,
which includes the Metasploit Framework [63]. The attack
against CoAP nodes is implemented using code provided
by AMP-Research [62]. The malicious behavior performed
by this threat actor includes:

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

• Network scans: Performs network-wide scans to
identify and collect information about all the avail-
able hosts in the testbed and the different services
they are running. It uses Nmap and Masscan.

• MQTT sniffing attack: Intercepts MQTT connect
packets and searches for credentials to connect to the
MQTT broker. It uses the MQTTSA tool.

• MQTT brute force: Uses multiple wordlists con-
taining common usernames and passwords to brute
force login credentials to the broker. It uses MQTTSA
and Metasploit for the attack, with wordlists also
provided by Metasploit.

• MQTT information disclosure: For unauthenticated
brokers, or after discovering the credentials by sniff-
ing or brute forcing, it reads all the messages being
published to an MQTT broker by subscribing to all
data topics (#), control topics ($SYS) or only some
specific topics. It uses Nmap and MQTTSA tools.

• MQTT malformed data: Sends malformed packets
to the broker in order to trigger exceptions caused
by errors in the server’s input validation methods. It
uses the MQTTSA tool.

• MQTT denial of service: First, it includes a slow
DoS attack by creating a high number of parallel
connections to the broker and keeping them alive in-
definitely. Then, it saturates the broker by publishing
large payloads with many clients. It uses MQTTSA
and SlowTT-Attack tools.

• CoAP amplification attack: The attacker sends a
small request to a CoAP server that generates a
response payload larger than the request. The at-
tacker can abuse this by spoofing the source address,
causing the response to be directed to a victim. If this
attack is rapidly repeated, it can cause a denial of
service on the victim, and since the traffic is reflected
using legitimate servers, it can be challenging to
block by using simple blocklists. It uses the AMP-
Research tool.

The increase in threats that specifically target exposed
MQTT and CoAP devices has been raised in an industry
report in which they scan and find numerous exposed and
vulnerable production systems and show how those attacks
operate [73].

5.4 Full network topology

The complete topology of the emulated scenario, including
all instances of edge, network and cloud devices, is shown
in Fig. 4. There are 100 edge and cloud devices, 30 switches
and 10 routers.

The devices at the cloud layer include: 1 DNS, 1 NTP, 1
Mirai bot, 5 MQTT brokers (3 plain text, 1 with authentica-
tion and 1 with TLS), 2 stream servers, 1 City power CoAP
client and 2 Combined cycle CoAP clients (plain text and
with DTLS encryption).

Regarding the threat zone, the devices connected to RT1
include the Mirai-related nodes except for the Mirai bot
(located at the cloud layer), for a total of 4 devices. RT2
includes 1 Merlin C&C server, and RT3 includes 1 Scanner,
1 MQTT attacker, 1 CoAP attacker and 1 Metasploit node.

R
R

R

S

S

S

S

S
S
S

S

R

S
R

S

R

S

R

S

R S
R

SR
S

S

S
S

S

S

S

S

S

SSSS

S

S
S

RCLOUD

RTHREAT

RCITY

RT1

RT2
RT3

RC1
RC2

RC3

RC4

Fig. 4. The full network topology of the scenario as an undirected graph.
® and Ⓢ represent routers and switches, respectively, and the colored
circles represent different instances of edge and cloud layer devices.

The city zone includes most of the devices. The natu-
ral history museum network (RC1) comprises 5 Building
monitors communicating in plain text and without authen-
tication, 2 IP cameras and 2 IP camera consumers. Bristol
neighborhood (RC2) contains 5 Domotic monitors transmit-
ting in plain text and without authentication, 2 IP cameras, 1
Air quality and 1 City power. The Rennington steel network
(RC3) is composed of 15 Cooler motor nodes (10 commu-
nicating in plain text but with authentication and 5 using
TLS), 15 Predictive maintenance nodes (10 in plain text
with authentication and 5 encrypted with TLS). The Gotham
Light and Power network (RC4) includes 15 Combined cycle
nodes (10 communicating in plain text without authentica-
tion, 5 encrypted with DTLS), 15 Hydraulic system nodes
(10 in plain text and without authentication and 5 with TLS).

6 EVALUATION

This section presents the discussion to validate the features
from Fig. 1 based on the design of the testbed, the behavior
of the included nodes and various experiments.

6.1 Reproducibility
As mentioned in sections 4 and 5, the template creator
builds node templates using Dockerfiles that describe all
the dependencies, configuration variables and behavior in
a reproducible way (R1). To provide reproducible attack
scripts (R2), the scenario generator can launch attacks by
running programs in arbitrary nodes. The network topology
builder is a program that automatically reproduces the
scenario topology (R3) after its execution. The use of for-
mal languages to describe devices, behavior and topology
allows an automated and reproducible setup to replicate the
scenario.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

TABLE 4
Link Emulation Fidelity Using iPerf3 in TCP Mode.

Rate limit Measured Error (%) CV (%)

100 Mbit/s 93.739 6.261 0.695
75 Mbit/s 71.502 4.664 0.501
50 Mbit/s 47.757 4.486 0.755
25 Mbit/s 23.867 4.532 0.379
10 Mbit/s 9.551 4.490 0.296
1 Mbit/s 0.957 4.300 0.044

6.2 Communication link emulation
IoT devices may be connected to the network via links of
varying quality that should be emulated in the testbed.
Here we are evaluating the link emulation fidelity for TCP
and UDP traffic in terms of bandwidth shaping. We first
select two edge layer nodes connected through a network
switch from the testbed. The first experiment consists of
limiting the network rate of the first node and measuring
the maximum bitrate using the iPerf3 [74] TCP test. One of
the nodes runs iPerf3 in server mode, while the other runs
it in client mode. The client limits the link rate using tc to
1, 10, 25, 50, 75 and 100 Mbit/s 1. iPerf3 runs for 10 seconds
for each rate limit, and each measure is repeated 20 times.
The results are shown in Table 4 with the measured mean
bitrate, error and the coefficient of variation.

In the second experiment, iPerf3 UDP traffic perfor-
mance is tested by sending UDP data at fixed bandwidths
from the first node and measuring it at the receiver end.
The link rate from the sender node to the switch is limited
to 100 Mbit/s. The methodology is similar to the network
performance test done in [14]. The generated traffic ranges
from 1 Mbit/s up to 120 Mbit/s, and it is repeated for UDP
packet sizes from 512 bytes to 1448 bytes. The results are
shown in Fig. 5. For large packet sizes, the curve resembles
the ideal behavior: a line with a slope of one up to the
network link maximum rate limit and a horizontal line
for faster bitrates. There are significant packet losses for
smaller packet sizes before reaching the 100 Mbit/s link
limit; the saturation point for each packet size depends on
the hardware running the GNS3 emulator. However, the
traffic rates generated by the emulated edge layer nodes all
fall in the linear region of the curve.

Using the built-in GNS3 link emulation tools and in-
stalling tc into all the nodes to increase the link emulation
features in the proposed testbed, the (F4) feature is satisfied.

6.3 Hardware resource emulation
Due to hardware heterogeneity, IoT devices can vary greatly
in terms of computational capabilities. To evaluate the
fidelity of hardware resource emulation of Docker-based
nodes, we run the stress-ng [75] tool inside a container
while imposing CPU constraints using the Docker API.
The container is limited to a single core, and the available
CPU resources shared with the container are limited from
10% to 100% in 10% increments. For each CPU resource
limit, the stress-ng runs multiple CPU stressing methods

1. For example: tc qdisc add dev eth0 root netem rate
100mbit

0 20 40 60 80 100 120
Sender bitrate (Mbits/s)

0

50

100

R
ec

ei
ve

r b
itr

at
e

(M
bi

ts
/s

)

512 bytes
1024 bytes
1280 bytes
1448 bytes

Fig. 5. Link emulation fidelity using iperf3 sending udp data to a
100Mbits/s limited node.

0 1000 2000 3000
Time (s)

0
20
40
60
80

100

C
PU

 u
sa

ge
 (%

)

10 20 30 40 50 60 70 80 90 100
CPU limit (%)

2000

4000

6000

Sc
or

e
(a

rb
. u

ni
t)

Fig. 6. Hardware resource emulation fidelity. Top: actual CPU usage
for varying CPU constraints. Bottom: stress-ng CPU benchmark scores
under different CPU constraints.

for 30 seconds and repeated 11 times. Fig. 6 (top) shows the
total CPU usage of the core where the container is pinned for
the entire duration of the experiment. The staircase pattern
shows that the container does not use more CPU resources
than the imposed limit. The slight increment is due to
other processes outside the container running in the same
CPU core. Fig. 6 (bottom) depicts the obtained stress-ng
benchmarking scores for each CPU limit. The exact value of
the score is hardware dependent; however, it clearly shows
a linear relationship between the benchmarking scores and
CPU limits. The testbed can emulate different hardware
resources (F1) using the provided features by the Docker
engine.

6.4 Testbed scalability

The scalability is measured in terms of the memory con-
sumption required to instantiate all the scenario nodes from
Fig. 4. The additional memory usage as a function of the
number of running QEMU node instances (VyOS routers)
is shown in Fig. 7. To measure the memory usage for the
Docker-based nodes, a new node is started every 5 seconds,
beginning from the switches, followed by the nodes acting
as servers, and finally, the rest of the nodes (Fig. 8). The
jumps in memory are due to cached memory. Both figures
show a linear trend for memory usage, which allows es-
timating memory requirements depending on the desired

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

0 1 2 3 4 5 6 7 8 9 10
Number of QEMU nodes

0

2000

4000

6000

M
em

or
y

us
ag

e
(M

B
)

Fig. 7. Memory scalability for QEMU nodes.

0 25 50 75 100 125
Number of Docker nodes

0

2000

4000

M
em

or
y

us
ag

e
(M

B
)

run 1
run 2
run 3
run 4

Fig. 8. Memory scalability for Docker nodes.

scale of the scenario. In total, for the scale presented in the
scenario from Fig. 4, slightly more than 10Gb of memory is
required, allowing the emulation of medium to large-scale
deployments even on a single machine (S1).

The presented Gotham testbed scenario is currently
implemented using a single GNS3 instance running on a
single machine, which can be a limiting factor in emulating
scenarios with thousands of nodes based on the scalability
measures shown here. However, GNS3 is not restricted to
a single instance. Multiple GNS3 servers can be connected
to one another through a physical network that acts as one
large network to achieve higher scalability to create even
larger scenarios.

6.5 Measurability
GNS3 allows packet capturing on any link connected be-
tween nodes of any type (independent of the underlying
emulation engine) (M1). The user can also save artifacts (log
files, binaries, etc.) (M2) by connecting to any node, allowing
the creation of datasets that mix network and host-level data
sources. The following experiments about normal and attack
scenarios show examples of measurability.

To generate datasets from the testbed, the user can define
in the scenario generator module all the links where the
network traffic will be captured. To extract device log data,
the user can leverage the docker API to get arbitrary files
or command output inside any container, which can also
be automated at the scenario generator script. The data
capturing can be started and stopped at any time. All raw
network traces and logs generated by the testbed can then
be processed depending on the use case.

6.6 Normal IoT behavior scenario
This scenario allows us first to check the ability to deploy
and run multiple devices communicating with different pro-
tocols and, secondly, to capture and verify network traffic
data measurements. We start all the nodes included in the

TABLE 5
List of Identified Protocols After One Hour of Normal IoT Traffic Capture

(No Attacks) at the Link Between RCLOUD and SCLOUD.

Service Packets (%)

rtp 87.638
tcp 5.384
mqtt 2.581
tls 1.728
dns 1.533
ntp 0.278
rtcp 0.265

Service Packets (%)

dtls 0.180
icmp 0.139
coap 0.121
arp 0.120
rtsp 0.020
icmpv6 0.009
sdp 0.002

scenario (Fig. 4) except for the attackers. As explained in
Section 5, to ensure device behavior fidelity (F2), the nodes
run real production libraries to send the telemetry and also
create diverse background traffic, including ICMP, DNS
and NTP requests. The number of emulated devices and
networking equipment included in the scenario allows the
deployment of a sufficiently complex network topology that
meets the (F5) feature. Additionally, the inclusion of multi-
ple services with different configurations in the topology
complies with the (H3) feature.

To verify the generated protocol diversity, we capture
network traffic data for one hour at the link between
RCLOUD and SCLOUD, and use Wireshark’s [76] dissectors
to identify the list of protocols and packet volume, as shown
in Table 5. The traffic related to the IP cameras and stream
consumer devices generate the largest number of packets
due to the high volume of data transmitted compared to the
devices using lighter MQTT and CoAP protocols. The cur-
rently included devices generate a varied protocol diversity,
which satisfies (H1) for the purposes of the scenario.

6.7 Attack behavior scenario
Here we validate the ability to execute attacks from the
included threat models in the scenario, and measure the
generated network traffic and logs. The attack scenario is
prepared by making 24 edge layer nodes vulnerable to
Mirai (setting appropriate usernames and passwords, start-
ing BusyBox telnet server and changing the login shell to
BusyBox sh; all automatically performed by the scenario
generator module) and running the Mirai bot from the Ma-
roni threat actor. Another node is compromised by installing
the Merlin bot agent and running the Merlin C&C from the
Falcone threat actor. After executing the Mirai bot and the
Merlin agent programs, the periodic communications with
their respective C&C can be observed in Fig. 9 (top) for Mirai
and Fig. 9 (bottom) for Merlin. After the connection with
the C&C is established, the Mirai bot starts the scanning
phase. Fig. 10 shows some successful brute forcing attempts
reported to the Mirai scan listener node. Besides the network
traffic, indications of the Mirai bot activity can be found,
for instance, by inspecting the DNS logs inside the DNS
server node. At this stage, the user can interact (manually
or programmatically) with the corresponding C&C servers
to perform the attacks described in Section 5.3.

Regarding the Calabrese threat actor, Nmap and Masscan
are used to perform both horizontal and vertical scans
to any network in the testbed. Attacks can be launched

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15

0 50 100 150 200 250 300
Time (s)

67.5

70.0

72.5
Le

ng
th

 (b
yt

es
) Direction

bot -> cnc
cnc -> bot

0 50 100 150 200 250 300
Time (s)

0

500

1000

1500

Le
ng

th
 (b

yt
es

)

Fig. 9. Periodic network packet communication between a bot and its
C&C server. Top: Mirai. Bottom: Merlin.

Fig. 10. Mirai scan listener reports.

against the identified MQTT brokers using the MQTT at-
tacks, Metasploit and Scanner nodes. For instance, a suc-
cessful brute forcing attack can be performed against the
authenticated MQTT broker using the word lists provided
by the Metasploit node. The CoAP attack node can leverage
any CoAP server in the testbed to launch an amplification
attack against a victim. The CoAP amplification attack sends
a GET request to the .well-known/core resource with
a spoofed source address to the server, which generates a
response with a bigger payload directed to the victim. The
request generates a 21 bytes CoAP payload and response
of around 430 bytes (depending on the server), implying an
amplification factor of approximately 20.

The included real botnet and the red-teaming tools can
be launched against various targets in the testbed (F3).
Also, by including overlapping tools that perform similar
attacks using different implementations, the attack behavior
diversity (H2) is achieved.

7 DISCUSSION

In this work, we present the Gotham testbed, a security
testbed that builds upon the GNS3 network emulator to
provide a reproducible and flexible testbed that allows the
creation of security scenarios to test attacks, defenses or
extract datasets for ML model training. To generate real
network traffic, we are leveraging QEMU-based VMs and
Docker-based containerization technology to implement a
scenario composed of emulated IoT/IIoT devices, servers
and network equipment that run real production libraries,
network switching software and routing operating systems

as well as real malware samples. The implemented sce-
nario comprises more than 30 different emulated device
templates. The topology definition, creation and execution
consist of several scripts that automatically instantiate and
configure 140 nodes and set various runtime options, such
as hardware limits and network link shaping.

The presented testbed has some potential limitations and
considerations arising from the architectural design choices
and the way in which scenarios are created. Currently, GNS3
does not directly support the emulation of wireless physical
links and protocols, which can limit its use for low-power
wireless sensor network security research. Similarly, while
the simulation of IoT node mobility is not directly supported
in GNS3, the Gotham testbed can simulate network quality
that varies over time by periodically changing network
link properties for certain nodes using the scenario gener-
ator script. To overcome these limitations, future work can
explore the integration of the Gotham testbed with other
lower-level network simulators with wireless simulation
capabilities, such as ns-3.

Another consideration regarding the creation of different
scenarios is the number of configuration steps a user needs
to perform to integrate new IoT devices, servers, network
equipment or malware nodes. The configuration includes
steps such as configuring routers, modifying the source code
of legitimate or malware applications, recompiling them,
and creating Docker images. Most of the nodes included
in the scenario described in this paper are independent
and can be directly reused for different scenarios. However,
other nodes can show a higher coupling between the node’s
behavior and the scenario. For example, the Mirai binary in
the Mirai bot node includes some hardcoded values that are
scenario specific. Nevertheless, due to the reproducibility
property of the Gotham testbed, those nodes can be rebuilt
to adapt them to different scenarios with minimal config-
uration changes. However, for this to be possible, a user
creating new nodes must be careful and use good practices
to maintain the reproducibility property and create flexible
nodes that can run under different scenarios.

Regarding security considerations of the testbed itself,
the user should be aware that, by default, GNS3 runs Docker
containers in privileged mode. This detail could open the
way for Docker-aware malware to escape the container. In
such cases, or when unknown malware binaries are to be in-
tegrated into the scenario topology, the user should carefully
consider the emulation engine to run the node to properly
contain the malware, for example, using QEMU-based VMs
instead of Docker containers and additionally hardening or
isolating the machine(s) where the GNS3 cluster is running.

While the emulation of some scenarios and attacks might
also be achieved using a simpler topology and with fewer
nodes than in the scenario shown in this paper, the capa-
bility of the Gotham testbed to emulate complex scenarios
that represent real-world network deployments can have
multiple benefits. First, the fidelity to emulate complex
topologies and node behavior allows the creation of new
scenarios that act as digital twins that reflect real network
deployments. Organizations can build scenarios to evaluate
solutions before using them in production systems, use the
testbed as a cyber range and generate relevant network/log
datasets for model training instead of solely relying on pub-

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

16

licly available datasets to reduce the gap between the exper-
imental and deployment environments. Secondly, using a
complex scenario that includes heterogeneous nodes located
at multiple network segments opens up the possibility of
using the testbed to capture data at different network links
for testing new algorithms for distributed computation,
such as federated learning [77], which is gaining relevance
to train ML models in distributed IoT scenarios.

Gotham can be extended by increasing the included
library of devices, attackers, scenarios, and for sure, using it
as a platform to train, implement or validate superheroes that
react against the attacks from threat actors. We hope that
instead of only sharing static datasets for network security
that are difficult to adapt for different scenarios and might
get outdated, researchers and practitioners can use and
build upon the testbed to create and share other complex
scenarios for network security that allows the dynamic
creation of new datasets tailored to the network setting of
interest.

ACKNOWLEDGMENTS

The European commission financially supported this work
through Horizon Europe program under the IDUNN project
(grant agreement number 101021911). It was also par-
tially supported by the Ayudas Cervera para Centros Tec-
nológicos grant of the Spanish Centre for the Development
of Industrial Technology (CDTI) under the project EGIDA
(CER-20191012), and by the Basque Country Government
under the ELKARTEK program, project REMEDY - REal
tiME control and embeddeD securitY (KK-2021/00091).
Urko Zurutuza is part of the Intelligent Systems for Indus-
trial Systems research group of Mondragon Unibertsitatea
(IT1676-22), supported by the Department of Education,
Universities and Research of the Basque Government.

REFERENCES

[1] F. Wortmann and K. Flüchter, “Internet of things,” Business &
Information Systems Engineering, vol. 57, no. 3, pp. 221–224, 2015.
[Online]. Available: https://doi.org/10.1007/s12599-015-0383-3

[2] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and
N. Ghani, “Demystifying iot security: An exhaustive survey on
iot vulnerabilities and a first empirical look on internet-scale
iot exploitations,” IEEE Communications Surveys Tutorials, vol. 21,
no. 3, pp. 2702–2733, 2019.

[3] M. Antonakakis, T. April, M. Bailey, M. Bernhard,
E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman,
L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,
J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas,
and Y. Zhou, “Understanding the mirai botnet,” in
26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC: USENIX Association, Aug. 2017, pp. 1093–
1110. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

[4] P.-A. Vervier and Y. Shen, “Before Toasters Rise Up: A View
into the Emerging IoT Threat Landscape,” in Research in Attacks,
Intrusions, and Defenses, RAID 2018, ser. Lecture Notes in Computer
Science, Bailey, M and Holz, T and Stamatogiannakis, M and
Ioannidis, S, Ed., vol. 11050, 2018, pp. 556–576, 21st International
Symposium on Research in Attacks, Intrusions and Defenses
(RAID), Heraklion, GREECE, SEP 10-12, 2018.

[5] G. Kambourakis, M. Anagnostopoulos, W. Meng, and P. Zhou,
Botnets: Architectures, Countermeasures, and Challenges. CRC Press,
2019.

[6] Dragos ICS/OT ransomware analysis: Q4 2021. Dragos,
Inc. [Online]. Available: https://www.dragos.com/blog/
industry-news/dragos-ics-ot-ransomware-analysis-q4-2021/

[7] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and
Privacy Challenges in Industrial Internet of Things,” in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC), ser. Design
Automation Conference DAC, 2015, 52nd ACM/EDAC/IEEE De-
sign Automation Conference (DAC), New York, NY, JUN 08-12,
2015.

[8] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke,
“Deep learning for cyber security intrusion detection: Approaches,
datasets, and comparative study,” Journal of Information Security
and Applications, vol. 50, Feb. 2020.

[9] R. Sommer and V. Paxson, “Outside the closed world: On
using machine learning for network intrusion detection,” in 31st
IEEE Symposium on Security and Privacy, S&P 2010, 16-19 May
2010, Berleley/Oakland, California, USA. IEEE Computer Society,
2010, pp. 305–316. [Online]. Available: https://doi.org/10.1109/
SP.2010.25

[10] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi,
C. Wressnegger, L. Cavallaro, and K. Rieck, “Dos and don’ts
of machine learning in computer security,” in 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity22/presentation/arp

[11] D. S. Berman, A. L. Buczak, J. S. Chavis, and C. L. Corbett, “A
Survey of Deep Learning Methods for Cyber Security,” Information,
vol. 10, no. 4, Apr. 2019.

[12] H. Hindy, D. Brosset, E. Bayne, A. K. Seeam, C. Tachtatzis,
R. Atkinson, and X. Bellekens, “A taxonomy of network threats
and the effect of current datasets on intrusion detection systems,”
IEEE Access, vol. 8, pp. 104 650–104 675, 2020.

[13] A. Costin and J. Zaddach, “Iot malware: Comprehensive survey,
analysis framework and case studies,” BlackHat USA, 2018.

[14] C. Siaterlis, A. P. Garcia, and B. Genge, “On the use of emulab
testbeds for scientifically rigorous experiments,” IEEE Communica-
tions Surveys Tutorials, vol. 15, no. 2, pp. 929–942, 2013.

[15] M. H. ElSheikh, M. S. Gadelrab, M. A. Ghoneim, and M. Rashwan,
“Botgen: A new approach for in-lab generation of botnet datasets,”
in 2014 9th International Conference on Malicious and Unwanted
Software: The Americas (MALWARE), 2014, pp. 76–84.

[16] G. Engelen, V. Rimmer, and W. Joosen, “Troubleshooting an in-
trusion detection dataset: the cicids2017 case study,” in 2021 IEEE
Security and Privacy Workshops (SPW), 2021, pp. 7–12.

[17] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic
characterization.” 4th International Conference on Information Sys-
tems Security and Privacy (ICISSP), vol. 1, pp. 108–116, 2018.

[18] M. Catillo, A. Del Vecchio, A. Pecchia, and U. Villano,
“Transferability of machine learning models learned from
public intrusion detection datasets: the cicids2017 case study,”
Software Quality Journal, 2022. [Online]. Available: https:
//doi.org/10.1007/s11219-022-09587-0

[19] J. Grossmann et al. Graphical network simulator 3. [Online].
Available: https://www.gns3.com/

[20] X. Sáez-de-Cámara, “Gotham testbed repository.” https://github.
com/xsaga/gotham-iot-testbed.

[21] R. V. Tuyl. Merlin is a cross-platform post-exploitation http/2
command & control server and agent written in golang. [Online].
Available: https://github.com/Ne0nd0g/merlin

[22] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Bre-
itenbacher, and Y. Elovici, “N-BaIoT—network-based detection
of IoT botnet attacks using deep autoencoders,” IEEE Pervasive
Computing, vol. 17, no. 3, pp. 12–22, Jul. 2018.

[23] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull,
“Towards the development of realistic botnet dataset in
the internet of things for network forensic analytics: Bot-iot
dataset,” Future Generation Computer Systems, vol. 100, pp.
779–796, 2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167739X18327687

[24] N. Moustafa, “A new distributed architecture for evaluating
ai-based security systems at the edge: Network ton iot datasets,”
Sustainable Cities and Society, vol. 72, p. 102994, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S2210670721002808

[25] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and
X. Bellekens, “Machine learning based iot intrusion detection
system: An mqtt case study (mqtt-iot-ids2020 dataset),” in Selected
Papers from the 12th International Networking Conference, B. Ghita

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

17

and S. Shiaeles, Eds. Cham: Springer International Publishing,
2021, pp. 73–84.

[26] S. Ghazanfar, F. Hussain, A. U. Rehman, U. U. Fayyaz, F. Shahzad,
and G. A. Shah, “Iot-flock: An open-source framework for iot
traffic generation,” in 2020 International Conference on Emerging
Trends in Smart Technologies (ICETST), 2020, pp. 1–6.

[27] I. Vaccari, G. Chiola, M. Aiello, M. Mongelli, and E. Cambiaso,
“Mqttset, a new dataset for machine learning techniques on
mqtt,” Sensors, vol. 20, no. 22, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/22/6578

[28] F. Hussain, S. G. Abbas, G. A. Shah, I. M. Pires, U. U.
Fayyaz, F. Shahzad, N. M. Garcia, and E. Zdravevski, “A
framework for malicious traffic detection in iot healthcare
environment,” Sensors, vol. 21, no. 9, 2021. [Online]. Available:
https://www.mdpi.com/1424-8220/21/9/3025

[29] A. Guerra-Manzanares, J. Medina-Galindo, H. Bahsi, and
S. Nõmm, “Medbiot: Generation of an iot botnet dataset in a
medium-sized iot network.” in ICISSP, 2020, pp. 207–218.

[30] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Jan-
icke, “Edge-iiotset: A new comprehensive realistic cyber security
dataset of iot and iiot applications for centralized and federated
learning,” IEEE Access, vol. 10, pp. 40 281–40 306, 2022.

[31] D. Antonioli and N. O. Tippenhauer, “Minicps: A toolkit
for security research on cps networks,” in Proceedings of the
First ACM Workshop on Cyber-Physical Systems-Security and/or
PrivaCy, ser. CPS-SPC ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 91–100. [Online]. Available:
https://doi.org/10.1145/2808705.2808715

[32] M. Eckhart and A. Ekelhart, “Towards security-aware virtual
environments for digital twins,” in Proceedings of the 4th ACM
Workshop on Cyber-Physical System Security, ser. CPSS ’18. New
York, NY, USA: Association for Computing Machinery, 2018,
p. 61–72. [Online]. Available: https://doi.org/10.1145/3198458.
3198464

[33] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of
things (iot): Research, simulators, and testbeds,” IEEE Internet of
Things Journal, vol. 5, no. 3, pp. 1637–1647, 2018.

[34] K. Mehdi, M. Lounis, A. Bounceur, and T. Kechadi. CupCarbon
IoT 5.2. [Online]. Available: http://cupcarbon.com/

[35] C. Siaterlis, B. Genge, and M. Hohenadel, “Epic: A testbed for
scientifically rigorous cyber-physical security experimentation,”
IEEE Transactions on Emerging Topics in Computing, vol. 1, no. 2,
pp. 319–330, 2013.

[36] J. Lai, J. Tian, K. Zhang, Z. Yang, and D. Jiang, “Network
emulation as a service (neaas): Towards a cloud-based
network emulation platform,” Mobile Networks and Applications,
vol. 26, no. 2, pp. 766–780, 2021. [Online]. Available: https:
//doi.org/10.1007/s11036-019-01426-0

[37] Y.-L. Huang, B. Chen, M.-W. Shih, and C.-Y. Lai, “Security impacts
of virtualization on a network testbed,” in 2012 IEEE Sixth Interna-
tional Conference on Software Security and Reliability, 2012, pp. 71–77.

[38] D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux journal, vol. 2014, no. 239,
mar 2014.

[39] F. Bellard, “QEMU, a fast and portable dynamic translator,” in
Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC ’05. USA: USENIX Association, 2005, p. 41.

[40] J. Grossmann et al. GNS3 API documentation. GNS3 Technologies
Inc. [Online]. Available: https://gns3-server.readthedocs.io/en/
latest/

[41] F. Ludovici et al., tc-netem(8) from iproute2. [Online]. Avail-
able: https://manpages.debian.org/bullseye/iproute2/tc-netem.
8.en.html

[42] R. Minerva, A. Biru, and D. Rotondi, “Towards a definition of the
internet of things (iot),” IEEE Internet Initiative, vol. 1, no. 1, pp. 1–
86, 2015. [Online]. Available: https://iot.ieee.org/definition.html

[43] Eclipse Paho MQTT library. Eclipse Foundation. [Online].
Available: https://www.eclipse.org/paho/

[44] S. Vito. (2016) Air quality. UCI Machine Learning Repository.
[Online]. Available: https://archive.ics.uci.edu/ml/datasets/air+
quality

[45] L. Candanedo. (2017) Appliances energy prediction data set.
UCI Machine Learning Repository. [Online]. Available: https://
archive.ics.uci.edu/ml/datasets/appliances+energy+prediction

[46] G. S. Sampaio, A. R. de Aguiar Vallim Filho, L. S.
da Silva, and L. A. da Silva. (2021) Accelerometer data

set. UCI Machine Learning Repository. [Online]. Available:
https://archive.ics.uci.edu/ml/datasets/Accelerometer

[47] F. Zamora-Martı́nez, P. Romeu, P. Botella-Rocamora, and
J. Pardo. (2014) SML2010 data set. UCI Machine Learning
Repository. [Online]. Available: https://archive.ics.uci.edu/ml/
datasets/sml2010

[48] N. Helwig, E. Pignanelli, and A. Schütze. (2018) Condition
monitoring of hydraulic systems data set. UCI Machine Learning
Repository. [Online]. Available: https://archive.ics.uci.edu/ml/
datasets/condition+monitoring+of+hydraulic+systems

[49] S. Matzka. (2020) AI4I 2020 predictive maintenance
dataset. UCI Machine Learning Repository. [Online].
Available: https://archive.ics.uci.edu/ml/datasets/AI4I+2020+
Predictive+Maintenance+Dataset

[50] O. Bergmann. libcoap. C-implementation of CoAP. [Online].
Available: https://libcoap.net/

[51] A. Salam and A. E. Hibaoui. (2021) Power consumption of
Tetouan city data set. UCI Machine Learning Repository.
[Online]. Available: https://archive.ics.uci.edu/ml/datasets/
Power+consumption+of+Tetouan+city

[52] P. Tüfekci and H. Kaya. (2014) Combined cycle power
plant data set. UCI Machine Learning Repository. [Online].
Available: https://archive.ics.uci.edu/ml/datasets/combined+
cycle+power+plant

[53] F. Bellard. FFmpeg, the open source multimedia system. FFmpeg
project. [Online]. Available: https://www.ffmpeg.org/

[54] G. Morina. (2019) A street in London on a rainy
night. [Online]. Available: https://www.pexels.com/video/
a-street-in-london-on-a-rainy-night-3037295/

[55] H. Piglowski. (2019) A museum in Lebanon
exhibiting early human tools and artifacts.
[Online]. Available: https://www.pexels.com/video/
a-museum-in-lebanon-exhibiting-early-human-tools-and-artifacts-2943586/

[56] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune:
An ensemble of autoencoders for online network intrusion
detection,” in 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018. The Internet Society, 2018. [Online]. Avail-
able: http://wp.internetsociety.org/ndss/wp-content/uploads/
sites/25/2018/02/ndss2018\ 03A-3\ Mirsky\ paper.pdf

[57] J. Gamblin. Leaked mirai source code for research/ioc
development purposes. [Online]. Available: https://github.com/
jgamblin/Mirai-Source-Code

[58] G. Lyon. Nmap (”network mapper”). [Online]. Available:
https://nmap.org/

[59] R. Graham. MASSCAN: Mass ip port scanner. [Online]. Available:
https://github.com/robertdavidgraham/masscan

[60] SlowTT-Attack. [Online]. Available: https://github.com/
GenjiM1n4moto/SlowTT-Attack

[61] MQTTSA. [Online]. Available: https://github.com/stfbk/mqttsa.
git

[62] AMP-Research. Research on exotic UDP/TCP amplification
vectors, payloads and mitigations. [Online]. Available: https:
//github.com/Phenomite/AMP-Research

[63] Metasploit Framework. Rapid7, Inc. [Online]. Available: https:
//metasploit.com/

[64] BusyBox: The swiss army knife of embedded linux. [Online].
Available: https://busybox.net/

[65] Open vSwitch is a production quality, multilayer virtual switch
licensed under the open source Apache 2.0 license. [Online].
Available: https://www.openvswitch.org/

[66] VyOS is an open source network operating system based on
Debian GNU/Linux. [Online]. Available: https://vyos.io/

[67] R. A. Light, “Mosquitto: server and client implementation
of the MQTT protocol,” Journal of Open Source Software,
vol. 2, no. 13, p. 265, 2017. [Online]. Available: https:
//doi.org/10.21105/joss.00265

[68] A. Ros. rtsp-simple-server. [Online]. Available: https://github.
com/aler9/rtsp-simple-server

[69] S. Kelley. Dnsmasq. [Online]. Available: https://thekelleys.org.
uk/dnsmasq/doc.html

[70] R. Curnow and M. Lichvar. chrony is a versatile implementation
of the Network Time Protocol (NTP). [Online]. Available:
https://chrony.tuxfamily.org/

[71] G. Kambourakis, C. Kolias, and A. Stavrou, “The Mirai Botnet
and the IoT Zombie Armies,” in MILCOM 2017 - 2017 IEEE
Military Communications Conference (MILCOM), ser. IEEE Military

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

18

Communications Conference, 2017, pp. 267–272, IEEE Military
Communications Conference (MILCOM), Baltimore, MD, OCT 23-
25, 2017.

[72] S. Sanfilippo. hping network tool. [Online]. Available: https:
//github.com/antirez/hping

[73] F. Maggi, R. Vosseler, and D. Quarta, “The fragility of industrial
iot’s data backbone,” Trend Micro Inc, 2018. [Online]. Avail-
able: https://documents.trendmicro.com/assets/white papers/
wp-the-fragility-of-industrial-IoTs-data-backbone.pdf

[74] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, K. Prabhu et al. iperf3:
A TCP, UDP, and SCTP network bandwidth measurement tool.
[Online]. Available: https://iperf.fr/

[75] C. I. King. stress-ng. [Online]. Available: https://github.com/
ColinIanKing/stress-ng

[76] G. Combs et al. Wireshark. [Online]. Available: https://www.
wireshark.org/

[77] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving
communication efficiency,” CoRR, vol. abs/1610.05492, 2016.
[Online]. Available: http://arxiv.org/abs/1610.05492

Xabier Sáez-de-Cámara received his B.Sc. de-
gree in Physics and Electronic Engineering from
the Faculty of Science and Technology of the
Basque Country University in 2015 and 2016, re-
spectively. He holds an M.Sc. in Computational
Engineering and Intelligent Systems from the
University of the Basque Country. He is currently
a Ph.D. student at IKERLAN in the Cybersecurity
in Digital Platforms team and the Data Analysis
and Cybersecurity research area at Mondragon
Unibertsitatea, working on intrusion detection

methods in IoT networks.

Jose Luis Flores is a researcher at Ikerlan
Technology Research Center within the Cyber-
security in Embedded Systems team. He holds
a M.Sc. in Robotics and Advanced Control from
the University of the Basque Country. His main
interest is related to Artificial Intelligence and
Cybersecurity. As such, the main lines he works
on in each organization are Embedded System
security at Ikerlan, and Machine Learning and
Optimization at the university.

Dr. Cristóbal Arellano studied Computer Engi-
neering at the University of the Basque Coun-
try, where he obtained his Ph.D. degree (with
international mention) in Web Information Sys-
tems in 2013 (Cum Laude unanimously). He
has been with IKERLAN since 2015 as a re-
searcher and he currently is part of the Cy-
bersecurity in Digital Platforms team. His cur-
rent research interests include Cybersecurity in
Cloud Platforms, Device Identity Management,
DevSecOps, Federated Learning, Vulnerability

Monitoring and Threat Detection. He has participated as an author or
co-author in conferences such as WWW, ICWE, WISE, etc. He also has
participated and led multiple European funded projects such as FP7
MONDO, UTEST, H2020 QUALITY and H2020 IDUNN.

Dr. Aitor Urbieta studied Computer Engineering
at the University of Mondragon, where he ob-
tained his Ph.D. degree (with international men-
tion) in Computer Science in 2010 (Cum Laude
unanimously). He has been with IKERLAN since
2007 where he currently leads the Cybersecurity
in Digital Platforms research team. His current
research interests include Cybersecurity in Dig-
ital Platforms, Internet of Things (IoT), Cyber-
security in Communication Protocols, Federated
Learning, Blockchain, End-To-End Security, Vul-

nerability Monitoring, Threat Detection, Fog Computing, Edge Comput-
ing and IoT environment validation. He has participated as an author or
co-author in more than 30 scientific publications in the previously men-
tioned areas, some of them Q1, published in national and international
conferences and articles in JCR journals.

Dr. Urko Zurutuza is the principal investigator
of the Intelligent Systems for Industrial Systems
research group, and coordinator of the Data
Analysis and Cybersecurity research area. He
obtained his PhD in January 2008 at Mondragon
Unibertsitatea, in collaboration with the Zürich
IBM Research Lab. His research interests re-
volve around applications of Machine Learning
to real world problems, and specially Cyberse-
curity. He has published more than 20 articles in
high impact journals, more than 55 publications

in blind peer-reviewed conferences, edited 3 books (2 of them as con-
ference proceedings), and coauthored 7 book chapters. He is member
of the Board of Directors of RENIC (National Network of Excellence
in Cybersecurity Research), and serves in Steering Boards of leading
international conferences such as DIMVA or RAID.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2023.3247166

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

