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Abstract

Autonomous vehicles’ presence is becoming a reality in everyday life, with au-
tonomous driving cars on the road, GOA3-GOA4 trains in the railway domain, or
automated guided vehicles in the industrial domain. These autonomous systems
must execute complex tasks to perceive the environment and make decisions with
limited human interaction or even without human interaction. In that way, local-
ization and motion estimation are critical tasks for the operations an autonomous
vehicle must accomplish. Position information is essential to identify the vehicle
context and surroundings and move or act accordingly. Computer Vision-based
approaches have shown promising results in mobile robotics, drones, or autonomous
cars. However, the application and evaluation of CV-based solutions are more limited
in the railway domain, especially in challenging environments. In this research, a
state of the art of Visual Odometry (VO) and Visual SLAM (vSLAM) algorithms is
carried out. In the SOTA, the analyzed VO/vSLAM algorithms are usually evaluated
in outdoor street scenarios and do not consider the challenging perception condi-
tions that can be found in urban underground railway scenarios, with low lighting
conditions and texture-less areas in tunnels and significant lighting changes between
tunnels and railway platforms.

Moreover, there is no reference dataset in the VO/vSLAM community with such
characteristics, raising the need to generate a proprietary dataset. Considering the
lack of GPS signals in underground scenarios, a method is proposed to generate a
ground truth of images and poses in underground railway scenarios. The generation
process is based on synchronizing geodetic coordinates, train ATP data recorded from
the radar and encoder sensors, and a railway gradient map provided by the railway
infrastructure manager. Two state-of-the-art and recently proposed VO/vSLAM
approaches (ORB-SLAM2 and DF-VO) have been tested in the generated proprietary
datasets. These algorithms have achieved good performance in standard benchmarks
such as KITTI and represent two distinct VO/vSLAM algorithm types: geometric and
learning-based. However, the results show that the scenario lighting characteristics
significantly affect the VO/vSLAM algorithms’ performance.

In order to afford the challenging lighting conditions of the underground railway
domain, the application of a data enhancement technique has been considered
(EnlightenGAN). As calibration is critical for geometric VO/vSLAM algorithms, the



impact of EnlightenGAN on the camera calibration parameters is also analyzed.
The results demonstrate that EnlightenGAN does not considerably affect those
parameters. Besides, it improves the performance of both VO/vSLAM approaches in
challenging scenarios.



Resumen

La presencia de vehículos autónomos se está convirtiendo en una realidad en la vida
cotidiana, con coches de conducción autónoma en la carretera, trenes GOA3-GOA4
en el ámbito ferroviario o vehículos guiados automatizados en el ámbito industrial.
Estos sistemas autónomos deben ejecutar tareas complejas para percibir el entorno y
tomar decisiones con una interacción humana limitada o incluso sin ella. Siendo
esto así, la localización y la estimación del movimiento son tareas críticas para
las operaciones que debe realizar un vehículo autónomo. La información sobre la
posición es esencial para identificar el contexto del vehículo y su entorno y moverse
o actuar en consecuencia. Los enfoques basados en la visión artificial (CV) han
mostrado resultados prometedores en la robótica móvil, los drones o los coches
autónomos. Sin embargo, la aplicación y evaluación de las soluciones basadas en CV
son más limitadas en el ámbito ferroviario, especialmente en entornos desafiantes
en cuanto a características visuales. En esta investigación, se realiza un estado del
arte (SOTA) de los algoritmos de Odometría Visual (VO) y SLAM Visual (vSLAM).
En el SOTA, los algoritmos VO/vSLAM analizados suelen evaluarse en escenarios
exteriores y no consideran las retadoras características perceptuales que pueden
encontrarse en los escenarios ferroviarios subterráneos urbanos, con condiciones
de baja iluminación y zonas sin texturas en los túneles y cambios de iluminación
significativos entre los túneles y las estaciones ferroviarias.

Además, no existe ningún dataset de referencia en la comunidad VO/vSLAM con
estas características, lo que ha planteado la necesidad de generar un conjunto de
datos propio. Teniendo en cuenta la falta de señales GPS en escenarios subterráneos,
se propone un método para generar un dataset de imágenes con datos verificados
sobre el terreno de posiciones en escenarios ferroviarios subterráneos urbanos. El
proceso de generación se basa en la sincronización de coordenadas geodésicas, los
datos de ATP del tren registrados desde los sensores de radar y codificadores, y un
mapa de gradiente ferroviario proporcionado por el administrador de la infraestruc-
tura ferroviaria. Se han probado dos algoritmos VO/vSLAM de última generación y
recientemente propuestos (ORB-SLAM2 y DF-VO) en los dataset generados. Estos
algoritmos han logrado un buen rendimiento en datasets estándar como KITTI y
representan dos tipos de algoritmos VO/vSLAM distintos: geométricos y basados en
el aprendizaje automático. Sin embargo, los resultados muestran que las caracterís-



ticas de iluminación del escenario afectan significativamente al rendimiento de los
algoritmos VO/vSLAM.

Para afrontar las difíciles condiciones de iluminación del ámbito ferroviario sub-
terráneo, se ha considerado la aplicación de una técnica de mejora de datos (En-
lightenGAN). Como la calibración es fundamental para los algoritmos geométricos
VO/vSLAM, también se ha analizado el impacto de EnlightenGAN en los parámetros
de calibración de la cámara. Los resultados demuestran que EnlightenGAN no afecta
considerablemente a esos parámetros. Además, mejora el rendimiento de ambos
enfoques VO/vSLAM en escenarios difíciles.



Laburpena

Ibilgailu autonomoen presentzia errealitate bihurtzen ari da egunerokoan, errepi-
dean gidatze autonomoko autoak, trenbideko GOA3-GOA4 trenak edo industria-
eremuko ibilgailu automatizatuak direla eta. Sistema autonomo horiek, ataza kon-
plexuak burutu behar dituzte ingurunea hautemateko eta erabakiak hartzeko (giza
elkarreragin mugatuarekin edo interakziorik gabe). Hori horrela izanik, lokalizazioa
eta mugimenduaren estimazioa eginkizun kritikoak dira ibilgailu autonomo batek
egin beharreko eragiketetarako. Posizioari buruzko informazioa funtsezkoa da, ibil-
gailuaren testuingurua eta ingurunea identifikatzeko, eta horren arabera mugitzeko
edo jarduteko. Ikusmen Artifizialean (IA) oinarritutako ikuspuntuek emaitza oparoak
erakutsi dituzte robotika mugikorrean, droneetan edo auto autonomoetan. Hala
ere, IAean oinarritutako irtenbideen aplikazioa eta ebaluazioa mugatuagoak dira
trenbide-eremuan, batez ere, erronka bisual bat aurkezten duten inguruneetan.
Ikerketa honetan, Visual Odometry (VO) eta Visual SLAM (vSLAM) algoritmoen
uneko egoera (SOTA) egiten da. SOTAn, aztertutako VO/vSLAM algoritmoak, kan-
poko agertokietan ebaluatu ohi dira, eta ez dituzte kontuan hartzen hiriko lurpeko
trenbide-agertokietan aurki daitezkeen erronka bereizgarriak. Hala nola, tunele-
tan aurkitzen diren argiztapen baxuko baldintzak, testurarik gabeko eremuak eta
tunel-geltokien arteko argiztapen aldaketa nabarmenaktuneletan argiztapen baxuko
baldintzekin eta testurarik gabeko eremuekin eta tunelen eta trenbide-geltokien
arteko argiztapen-aldaketa nabarmenekin.

Gainera, VO/vSLAM komunitatean ez dago ezaugarri horiek dituen erreferentziazko
datu baserik, eta horrek berezko datu base bat egiteko beharra sortu du. Lurpeko
agertokietan GPS seinalerik ez dagoela kontuan hartuta, irudi eta posizio datu
base bat sortzeko metodo bat proposatzen da, lurpeko hiri-trenbide-ingurunean
egiaztatutako datuekin. Sortze-prozesua, koordenatu geodesikoen sinkronizazioan,
radar-sentsoreetatik eta kodifikatzaileetatik erregistratutako trenaren ATP datue-
tan, eta tren-azpiegituraren administratzaileak hornitutako trenbide-gradientearen
mapan oinarritzen da. Punta-puntako bi VO/vSLAM algoritmo probatu dira (ORB-
SLAM2 eta DF-VO) sortutako datu baseetan. Algoritmo horiek, errendimendu ona
lortu dute KITTI bezalako dataset estandarretan, eta bi algoritmo mota ordezkatzen
dituzte: geometrikoak eta ikaskuntzan oinarritutakoak. Hala ere, emaitzek erakutsi



dute ingurunearen argiztapen-ezaugarriek nabarmen eragiten diotela VO/vSLAM
algoritmoen errendimenduari.

Lurpeko trenbidearen argiztapen-baldintza zailei aurre egiteko, datuak hobetzeko
teknika bat (EnlightenGAN) aplikatzea erabaki da. Kalibrazioa VO/vSLAM algo-
ritmo geometrikoetarako funtsezkoa denez, EnlightenGAN-ek kameraren kalibrazio-
parametroetan duen eragina ere aztertu da. Emaitzek erakusten dute EnlightenGAN-
ek ez diela nabarmen eragiten parametro horiei. Gainera, bi VO/vSLAM algoritmoen
errendimendua hobetzen du argiztapen egoera zailetan.
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Introduction 1
One of the most promising research fields in the last years is the Computer Vision
(CV). CV is the field of science and engineering that covers the camera-based system
development to acquire, process, analyze and understand real-world scenes [1].
Following this, CV has several open problems that have been targeted by the research
community in the last years. Some of these problems include the object detection,
the image reconstruction, scene instance segmentation and localization.

Precisely, localization is one of the primary input data of many functions in au-
tonomous robotics. A robot must understand its surrounding environment to keep
knowledge of its position throughout time and achieve autonomous operations, espe-
cially navigation. Robot localization is a well-known task that continues generating
new approaches and research works in the research community.

From researched robot localization techniques, the ones that include CV give the
robot the capacity to localize itself using cameras as sensors. The motion of a
moving camera from a sequence of images is also defined as ego-motion [2]. The
autonomous localization research community started from the robotics domain to,
later, focus on the localization in other sub-domains. In this context, different types
of vehicles from distinct sub-domains and diverse characteristics have been studied,
such as, cars [3], [4], trains [5], or lately UAVs [6].

The railway domain is also moving towards the Intelligent Transportation Systems
(ITS) and the Advanced Driving Assistance Systems (ADAS) industry. This thesis
targets this domain, focusing on autonomous trains driving through urban under-
ground scenarios. A train that implements autonomous operations requires accurate
localization estimation to carry out operations as precise stop operation or coupling
successfully. Precise localization systems can reach a higher grade of automation
[7]. Therefore, it becomes essential to implement precise and dependable train
localization subsystems.

Communication-Based Train Control (CBTC) is a standard defined by the IEEE (IEEE
1474 [8]), which defines a set of performance and functional requirements for track
and onboard equipment in order to enhance performance, availability, operations,
and the protection of the involved systems. A CBTC system could be defined as
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an automatic train control system where the track and onboard subsystems are
continuously communicated. Current CBTC systems, according to the standard
IEC 62290-1, can be divided into pre-established Grades of Autonomy (GOA). The
GOA of a train implementing any autonomous operation will have a value between
2 and 4: GOA2 for a semi-automated Train Operation, GOA3 for a driverless
Train Operation, and GOA4 for an unattended Train Operation. The main two
functionalities covered by those subsystems are the Automatic Train Protection (ATP)
and Automatic Train Operation (ATO). ATP subsystems monitor the train speed and
position to guarantee a safe train operation. On the other hand, ATO subsystems are
dedicated to the operations devoted to reaching a more autonomous and efficient
train driving experience, such as driving assistance tasks or automatic control of
train brake and traction commands that aim to ensure that train speed is lower than
the limit established by the ATP system [9].

The ERTMS/ETCS ATP train speed estimation process is based on a redundant wheel
encoder and radar sensors. Using these sensors, the ATP subsystem embedded in
the train estimates the train position on the track, i.e. the distance traveled from
a station or a beacon of the track. Track beacon position or inter-beacon distance
is predefined and known by railway infrastructure managers, even by the ATP
subsystem, and therefore, the ATP train position is re-adjusted when a beacon signal
is received, obtaining a precise estimation. However, the beacon system’s cost must
be considered, as the infrastructure cost is very high, and the deployment is slowed
down [10]. However, some autonomous operations require higher localization
accuracy than the one estimated by the ATP system as they are based on the driver’s
experience.

CV-based algorithms for ego-motion estimation are usually applied in standard
datasets such as KITTI [11] and EuRoC-MAV [12]. These datasets are recorded
in scenarios with enough illumination and no big light changes. Furthermore,
scenarios are composed of images containing relatively sufficient textures and
Lambertian surfaces. However, the application of CV algorithms in scenarios with
more challenging characteristics is a less researched topic.

For instance, one of the latest benchmark challenges in visually challenging odometry
is the Subterranean Challenge (SubT), organized by the Defense Advanced Research
Projects Agency (DARPA). Perceptually challenging scenarios and tasks were stated
in this challenge, such as navigation through tunnel systems, cave networks, or urban
underground environments. The participating teams presented several approaches
[13]–[16] to study the robotics autonomy in underground scenarios exploration and
navigation. These works emphasize the complexity of localization and navigation
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in underground environments due to perceptually-degraded conditions. They also
emphasize the importance of field testing.

Algorithms applied in urban underground railway scenarios must deal with signif-
icant light changes from tunnel areas to platforms, with insufficient illumination
and low textures in tunnels. Therefore, considering the cost and the availability
of localization systems based on other sensors, the exploration of vision-based
localization systems’ limitations for an urban underground railway scenario has
been pursued. The use of cameras could replace the driver’s experience in some
autonomous operations.

For that, firstly, a state of the art (SoTA) of ego-motion estimation applied to the
railway environment has been made. As the research in the urban underground
railway domain is very limited, approaches from other domains such as general
robotics and automation have been considered.

However, using ego-motion estimation algorithms in an urban underground railway
scenario requires a dataset from this domain. After an analysis of most referenced
datasets for ego-motion estimation in the CV community (datasets labeled with
6-DoF pose), no standard dataset from the railway domain was found; hence, a
proprietary dataset generation was pursued.

In general, the ground truth of VO datasets is generated using a GPS sensor [11],
[17]–[20]. But, the GPS signal is unavailable in underground zones like the urban
underground railway domain. Thus, a method that computes the 6-DoF pose of each
frame from the train ERTMS/ETCS ATP data, geodetic map coordinates, and railway
infrastructure gradient profile was defined and implemented.

Then, an experimental setup was suggested to evaluate the performance of state-of-
the-art ego-motion estimation algorithms in the target domain. The validation of
the recording setup was done by generating a complementary dataset in an urban
driving car domain.

After evaluating the performance of the ego-motion estimation algorithms in the
urban underground railway domain and to afford the scenario limitations identified
that hinder the use of ego-motion estimation algorithms, the application of a data
enhancement technique was proposed. Data enhancement techniques are devoted
to dataset transforming to increase the data quality. In this research work, the data
enhancement process is dedicated to the lighting limitations of the target domain. It
aims to reduce the impact of the severe lighting conditions found in the underground
railway scenario.
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The main contributions of this thesis are summarized as follows:

• We introduce a ground truth generation method for an ego-motion estimation
dataset in the urban underground railway domain. This method is based on
the synchronization of camera frames, geodetic coordinates, ERTMS/ETCS
ATP train data, and a railway gradient profile. Using the proposed method, we
generate a proprietary VO dataset.

• Once having the proprietary dataset, we define an experimental setup for
ego-motion estimation evaluation in challenging environments, such as the
target scenario. Using standard evaluation metrics and analyzing the experi-
mental results, we measure the performance of the state-of-the-art ego-motion
estimation algorithms.

• We propose a GAN-based image enhancement approach to handle the chal-
lenges faced by the state-of-the-art ego-motion estimation algorithms in the
target scenario. We show that image enhancement improves the performance
of the selected algorithms.

This dissertation is organized as follows. Firstly, the SOTA of CV-based ego-motion
estimation approaches is carried out in Chapter 2, where the main advantages and
drawbacks of localization systems are analyzed. Then, the proposed proprietary
dataset generation method is explained. In Chapter 4, the experimental setup for
ego-motion estimation in the urban underground railway scenario is explained, and
the evaluation of state-of-the-art algorithms is accomplished. Finally, the benefits of
data enhancement effect on the state-of-the-art ego-motion estimation algorithms
are analyzed in Chapter 5, and the main conclusions of the research are drawn in
Chapter 6.
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VO/vSLAM: SOTA on
CV-based ego-motion
systems

2

The CV-based localization research works centered on the autonomous robotics
domain started in the late sixties with the Standford Research Institute’s work
[21]. Later, CV-based localization system development was also extended to new
domains, such as, drones or transport vehicles. The research carried out recently on
Intelligent Transportation Systems (ITS), Advanced Driving Assistance Systems (ADAS),
intelligent infrastructures, and autonomous driving have brought many benefits to
the transportation industry [22]. These technologies provide the vehicle with its
decision-making capacity and the ability to interpret its environment. Increasing
the perceptual vehicle capability through cameras, rather than relying only on the
road infrastructure, allows for increased autonomous vehicle context understanding
capabilities for localization.

The railway domain is also transforming towards the ITS and the ADAS industry.
However, CV-based autonomous train localization research is yet a starting research
field.

In this chapter, a SOTA of CV-based localization approaches has been developed.
First, as CV-based railway ego-motion systems are being focused on, the application
of different purpose CV systems in the target domain are analyzed. The ego-motion
can be relative or absolute, depending on the localization system used. Relative or
local localization answers to the computation of the position of a robot relative to its
start position [23]. Contrarily, absolute or global localization deals with obtaining
the absolute position concerning a global reference [24].

The SOTA of CV-based localization approaches starts with introducing the different
strategies designed for camera-based robot localization and autonomous navigation:
VO and vSLAM. Since only a few research works investigate the use of VO/vSLAM
systems in the underground railway, the localization systems developed in robotics
and autonomous vehicles applications are analyzed. As the target domain scenario
contains some visual or perceptual characteristics that can degrade the performance
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of the use of state-of-the-art VO/vSLAM algorithms, the literature review also
considers VO/vSLAM works in perceptually challenging environments.

2.1 CV systems in the railway domain

The development and evaluation of CV systems in the railway domain is a relatively
recent research field. The literature review evidences the limited amount of works
published in the railway domain compared to other domains such as robotics,
autonomous cars, or UAVs. Figure 2.1 represents a list of perception and decision-
making task afforded by the CV based systems with mono or stereo vision cameras
in the railway domain.

Perception

Localization 
Obstacle detection 

Track detection 
Signal detection and interpretation 

Platform monitoring

Decision making

Autonomous driving 
Track maintenance 

Track diagnosis 
Risk assessment

Figure 2.1.: Classification of the main perception and decision making tasks afforded in the
railway domain by the CV research community.

The first works, presented in 2010, primarily focused on extracting and presenting
information to the driver to assist in train driving and to the operator for infras-
tructure maintenance. Some of the works have focused on railway track detection
[25]–[28] or track anomaly detection [29]–[32] for diagnosis and maintenance
purposes.

Other works focused on providing driver support to facilitate driving and increase
safety can be found in the literature, such as early detection of intersections, curves,
and changes of direction [33], the detection of obstacles on the road as part of a
safety system [34]–[36], precise stop operation [37], [38], or the detection and
interpretation of signals located in the vicinity of the railway track [39]–[42]. In
[43], [44], an approach to estimating the distance to previously detected railway
signals is proposed.

Finally, CV systems have also been used for risk assessment [45], vanishing point
detection for camera calibration purposes [46], [47] or the monitoring and detection
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of dangerous situations on the platforms in order to detect objects and people falling
onto the tracks and increase safety on them [48].

However, this thesis focuses in the localization task. Concerning the research of
CV-based localization systems in the railway domain, the first work was presented
by Tschopp et al. in 2019 [5]. They presented a camera and IMU-based localization
system for rail vehicles. In the last years (2019-2021), train localization systems
based on fusing cameras with other sensors such as IMU, Dynamic Vision Sensors
(DVS), GNSS, or LIDAR [49]–[54] were published.

2.2 CV-based ego-motion and mapping

The task of retrieving the relative ego-motion and the three-dimensional (3-D)
structure of the environment (mapping) from a set of camera images is known in the
CV community as structure from motion (SfM) [55]. The most addressed strategies in
SfM are Visual Simultaneous Location and Mapping (vSLAM) and Visual Odometry
(VO).

SLAM was first introduced in [56] stating that the mapping and localization problems
are correlated [57], so they can be solved together. SLAM usually refers to a robot
equipped with a specific sensor, estimating its motion and reconstructing a model of
the surrounding environment [58]. Figure 2.2 represents the different dimensions
of mobile robot navigation, and where SLAM is located. When the sensor used in
SLAM is a camera, it is called Visual SLAM (vSLAM). It is commonly composed of a
VO step where the local trajectory is estimated through consecutive images, and a
loop closing and optimization step where a metrically global and consistent map is
acquired [55].

Mapping LocalizationSL
A

M

Figure 2.2.: SLAM representation among the different dimensions of mobile robot naviga-
tion.
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Odometry is a relative localization technique that estimates the robot position change
over time starting from an initial point [59], [60]. A robot position is more usually
defined as a pose that includes the motion translation and the orientation [61],
[62].

VO is a particular case of odometry where the position information is acquired
through camera images [63]. The term VO was first introduced by Niester et
al. [64], proposing a method for estimating camera motion using RANSAC [65]
outlier refinement method and tracking extracted features across all frames. Before
that, feature matching was done just in consecutive frames. Later research works
have shown that VO methods might perform as well as wheel odometry while the
cost of cameras is much lower compared to more accurate INS- and LiDAR-based
systems [63]. Furthermore, VO is one of the most robust techniques used for vehicle
localization [60].

VO algorithms usually follow a standard pipeline structure composed of camera
calibration, feature extraction and matching, motion estimation, data association,
and local optimization. One of the essential steps from this pipeline is feature
extraction, which refers to taking relevant data out of an image. Depending on
the task, relevant data can represent different features: corners, edges, or even
more complex objects. Feature matching is the process of finding a correspondence
between the extracted features across different frames.

The relation between SfM, VO, and vSLAM is shown in figure 2.3. SfM is a broader
concept than vSLAM and VO, as it focuses on 3-D reconstruction of the environment
and is usually performed in unordered and distinct image sequences. VO can be
considered the primary process of vSLAM; however, vSLAM includes other processes
such as loop closure or global optimization. While VO focuses on estimating the
relative motion from a moving camera, vSLAM comprises other components for 3-D
reconstruction of the environment for global and consistent motion estimation.

The selection of VO and vSLAM algorithms depends on the trade-off between
performance and consistency. VO algorithms are faster and simpler to implement,
while vSLAM achieves potentially more precise results but trades off performance.
VO algorithms accumulate a drift in the trajectory estimation as they compute the
motion incrementally, and the errors introduced by each new measure are combined
over time. However, this drift can be corrected through local optimization or a
combination with other sensors [55], [66]–[70].

Depending on the selected camera, VO/vSLAM algorithms can be considered monoc-
ular (one lens) or stereo (two or more lenses). Usually, all the VO/vSLAM algorithms
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VO focuses on estimating local motion

from a moving camera.

V-SLAM focuses on estimating global and consistent motion from a

moving camera. Includes 3-D reconstruction of the environment.

SfM focuses on 3-D reconstruction of environment and pose from ordered

or unordered image sequences. Requires an offline optimization.

Figure 2.3.: Relation of different CV-based localization strategies: SfM, vSLAM and VO.

are classified in one or the other category. However, some algorithms can be
configured for both camera modes. Additionally, some algorithms are considered
monocular even if they include some preprocessing steps with stereo images (e.g.,
training deep networks) if they run with monocular images (e.g., [71],[72] or [73]).
Most VO/vSLAM research works have focused on monocular algorithms where
the aim is to estimate the motion information from consecutive images. However,
lately, the interest in stereo approaches has increased in the VO/vSLAM community,
primarily by including stereo information into monocular pipelines.

Depending on the strategy used to estimate ego-motion, VO/vSLAM algorithms can
be classified as learning-based and geometry-based [74]. Figure 2.4 shows the general
classification of VO/vSLAM algorithms. First, geometry-based VO/vSLAM algorithms
appeared, aiming to estimate the motion through the geometric characteristics of
images. Later, learning-based VO/vSLAM algorithms were targeted as they showed
great potential in other research fields. The learning-based algorithms research
increased considerably with the advances of Deep Learning and their application to
this research domain.

Geometry-based VO/vSLAM approaches rely on image geometric characteristics
and camera model to reconstruct the ego-motion between consecutive frames.
Learning-based VO/vSLAM algorithms can estimate the pose directly from an input
image without feature extraction or feature matching processes. Compared with
geometry-based algorithms, learning-based algorithms are more robust to changing
environments with specific conditions as they can learn more effective feature
representations [75].
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2.2.1 Geometry-based VO/vSLAM

Geometry-based VO/vSLAM is usually divided into feature-based VO/vSLAM and
direct VO/vSLAM (also known as appearance-based). Table 2.1 resumes the most
relevant geometry-based VO/vSLAM algorithms. The feature-based algorithms
rely on image features that were first studied by Harris et al., in the late 1980s, by
exploring corner and edge detectors [134]. Based on Harris’ work, feature-based ego-
motion estimation algorithms arose. The first feature-based VO/vSLAM algorithms
utilized artificial landmarks as visual patterns for localization [135]. In the early
2000s, approaches that use natural visual landmarks appeared with the advances in
CV application. The first feature-based algorithms with natural landmarks aimed the
robot relocalization in unknown environments. Later, feature-based works started to
focus on SLAM and 3D reconstruction. At the same time, direct methods appeared
aiming to use all the dense data in an image to estimate the ego-motion of a moving
robot.

Feature-based VO/vSLAM

Feature-based methods rely on image feature detection and matching. They have
good accuracy, are robust in dynamic scenes, and deal with viewpoints variances
[136]. However, unlike direct methods, feature-based techniques can be inadequate
in low texture areas. They are optimized for execution speed rather than pose
estimation precision [79]. Usually, feature-based methods follow a standard pipeline:
first, image features are extracted, and then the features are matched in successive
frames to recover the camera motion and environment structure. Finally, the
obtained pose estimation and structure are refined and optimized by minimizing the
re-projection error.

Several feature extraction and matching methods can be found in the literature, and
usually, they are combined. The feature extraction and matching strategies were first
designed to detect specific image key-points (e.g., SIFT [137] or FAST [138]), and
with the advances in Machine Learning, strategies for learning feature extraction
and matching approaches appeared.

The first relevant feature-based VO/vSLAM algorithm appeared in 2002; Se et al.
[84] described a vision-based mobile robot localization and mapping algorithm
that uses SIFT features as natural visual landmarks for a feature matching process
in dynamic environments. Davison et al. [85] presented MonoSLAM in 2007, a
localization and mapping algorithm that creates a feature map based on a probability

2.2 CV-based ego-motion and mapping 11



Algorithm Year Mode Characteristics
Fe

at
ur

e-
ba

se
d

Se et al. [84] 2002 S
Robot relocalization,
SIFT features as land-
marks

MonoSLAM [85] 2007 M
SLAM, probability
framework-based
features

PTAM [86] 2007 S
Tracking and mapping,
Separate threads for
tracking and mapping

StereoScan [87] 2011 S
3-D reconstruction,
sparse feature matching
into a VO pipeline

Badino et al. [88] 2013 S

VO, multi-frame features
and optical flow and
stereo disparity for re-
projection error mini-
mization

Stenborg et al. [89] 2020 M
Long-term localization,
image-sequence based

ORB-SLAM [90]–[92] 2015-2017-2021 M+S
SLAM, ORB features,
loop closure and Bundle
Adjustment

D
ir

ec
t

DTAM [76] 2011 M
Ego-motion estimation,
dense 3-D surface model

Engel et al. [77] 2013 M Semi-dense map

LSD-SLAM [78] 2014 M
SLAM, large-scale map
estimation

SVO [79] 2014 M
Ego-motion estimation,
probabilistic mapping
method

Alismail et al. [80] 2016 S
Feature descriptor align-
ment for VO

DSO [81] 2016 M

Stereo DSO [82] 2017 S

Ego-motion estimation,
probabilistic model for
photometric error min-
imization, stereo con-
straints

TANDEM [83] 2022 M
SLAM, deep multi-view
stereo

* M=Monocular, S=Stereo, M+S=Monocular and Stereo, M(S)=Monocular with

Stereo training
Table 2.1.: Geometry-based VO/vSLAM algorithms.
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framework and combines it with a general camera motion model and feature
initialization. However, localization and mapping are done in a single thread,
and, therefore, a limited number of features can be handled. To increase the
number of features, Klein et al. proposed Parallel tracking and mapping (PTAM)
[86], with separate tracking and mapping threads to use more computationally
expensive operations. This algorithm showed successful results in a small indoor
environment.

Later, in 2011, Geiger et al. presented StereoScan [87]. This 3-D reconstruction
algorithm is based on an efficient and robust VO pipeline with a sparse feature
matching process. In 2013, Badino et al. [88] proposed a VO approach that
computes optical flow and stereo disparity to minimize the reprojection error of the
tracked features using a multi-frame feature integration strategy. In [139], Vakhitov
et al. presented a stereo relative pose estimation algorithm using a minimal set of
line and point features.

In 2015, ORB-SLAM was presented by Mur-Artal et al. [90]. ORB-SLAM is an
efficient and accurate geometric localization approach that has become the state-of-
the-art comparison for all the later methods. It is based on the ORB [140] feature
matching approach, a bundle adjustment algorithm, and a loop closure strategy.
Later, in 2017, it was extended as ORB-SLAM2 [91], including stereo and RGB-D
cameras, and, in 2021, as ORB-SLAM3 [92] by incorporating inertial sensors and
multimap SLAM. Figure 2.5 depicts the ORB-SLAM2 architecture.

Figure 2.5.: ORB-SLAM2 [91] architecture. It is based on feature tracking and mapping
processes based on ORB features. Then a loop closure and Bundle Adjustment
strategies are used for global optimization.
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One of the research lines in the feature-based algorithm usage is the investigation of
robust feature detectors and descriptors, allowing feature-based algorithms in several
scenarios and domains. Aiming to increase the robustness of feature detectors and
descriptors, many research works dedicated to improving these feature extraction
techniques have been published: by introducing learning methods (explained in
Section 2.2.2) or exploiting spatial matching criteria. One of the most referenced
methods is the ORB feature extractor [140]. ORB is based on pixel brightness to
extract FAST keypoints and then compute BRIEF features.

Direct VO/vSLAM

On the contrary, direct VO/vSLAM techniques operate directly on intensity values
estimating ego-motion by minimizing photometric error. One of the first relevant
VO/vSLAM algorithms is Dense Tracking and Mapping (DTAM), presented by New-
combe et al. [76] in 2011. A direct VO/vSLAM ego-estimation method that creates
a dense 3-D surface model using the whole image instead of extracting features.
However, an external depth map initialization is required. Later, in 2014, Engel et
al. [78] proposed a semi-dense Large-Scale Direct monocular SLAM (LSD-SLAM)
method, which tracks the camera motion and creates a large-scale map of the en-
vironment. This approach was based on their previous work on semi-dense depth
estimation [77], where semi-dense refers to the map being dense just in image
regions that carry information.

Semi-direct visual odometry (SVO) [79] is one of the most predominant approaches
among direct VO/vSLAM algorithms. It uses a probabilistic mapping method to
estimate ego-motion and explicitly models outlier measurements. In 2017, Wang
et al. presented Stereo Direct Sparse Odometry (Stereo DSO) [82], a method for
VO estimation from stereo cameras based on the previously proposed monocular
DSO algorithm [81]. It is based on a probabilistic model for photometric error
minimization and an optimization process for pose estimation. They also introduced
constraints from stereo cameras to the bundle adjustment pipeline. Lately, Koestler
et al. presented TANDEM [83], a SLAM system that estimates ego-motion based on
a direct VO pipeline and deep multi-view stereo.

However, the performance of direct VO/vSLAM algorithms degrades if the dataset is
not photometrically calibrated. In addition, it is sensitive to geometric distortions
such as those induced by the camera speed [82]. Furthermore, as mentioned in
[80], direct methods require a constant irradiation appearance between matched
pixels.
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In general, geometry-based approaches are efficient when there is enough illumi-
nation and texture to match features among different frames, sufficient overlap
between frames and scene is static [5]. However, geometric VO/vSLAM works
suffer from scale drift issues where scale is inconsistent and expensive global bundle
adjustment algorithms are applied to minimize the problem. Furthermore, they do
not have the adaptive capabilities to readjust to scenarios in peculiar circumstances.
Monocular VO/vSLAM algorithms have a depth-translation scale ambiguity issue
[141] that makes the estimations up to scale. When using more than one camera, the
translation magnitude can be extracted from triangulation and depth information
[142]. However, one dimension is missing using only one camera, and the scale
cannot be directly measured.

2.2.2 Learning-based VO/vSLAM

With the increase of computational resources, efficiency, and Deep Learning algo-
rithms improvement, the use of Machine Learning approaches in Computer Vision
problems has grown, becoming the dominant approach nowadays. This situation
also comes from the promising results obtained by the application of deep learning
techniques in other computer vision tasks, specifically with the use of Convolutional
Neural Networks (CNN) on large-scale image classification (Krizhevsky et al. [143])
and the development of Recurrent Neural Networks (RNN) on Natural Language
Processing research. As learning-based VO/vSLAM approaches are based on Machine
Learning, and mainly on deep learning techniques, the research on learning-based
VO/vSLAM algorithms has also grown in the last few years. Learning-based ap-
proaches can solve the scale-ambiguity issue in some VO/vSLAM algorithms as their
predictions are associated with a real-world scale.

The first learning-based methods used optical flow information for ego-motion
estimation through different traditional strategies, such as K Nearest Neighbor
(KNN) in a moving robot (Roberts et al. [93]), multiple-output Gaussian process
(MOGP) (Guizilini et al. [94]), or Support Vector Machines (SVM) (Ciarfuglia
et al. [95]). Later research works have tried to adapt traditional non-learning
approaches in Deep Learning pipelines. In this context, RANSAC algorithm has been
improved by several works, such as in [96], [97]. More specifically, Brachmann
et al. proposed Differentiable Sample Consensus (DSAC) [96] algorithm based on
RANSAC [65]. They applied DSAC for a camera localization problem, learning
an end-to-end camera localization pipeline. Barath et al. presented Graph-Cut
RANSAC (GC-RANSAC) [97], which improves local optimization using a graph-cut
algorithm.
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Learning-based VO/vSLAM algorithms rely on learning parts of a standard VO/vS-
LAM pipeline or designing end-to-end trainable algorithms for ego-motion estimation.
As in the case of geometric algorithms, a local optimization step can be added to
learning-based algorithms.

The learning-based algorithms studied in this research work can be considered super-
vised or self/unsupervised, depending on the network learning approach. Supervised
algorithms learn by induction from known examples, usually named ground truth.
These known examples are compared to the networks’ estimations obtaining an error
usually characterized by a loss function [144]. The learning process minimizes this
error by updating the networks’ weights in training. However, supervised learning
requires a considerable amount of labeled data for the training process, which can
be costly in terms of time or resources.

In contrast, self/unsupervised algorithms do not require known examples from which
to learn. The strategy of self/unsupervised algorithms is to discover the underlying
properties and patterns of the data. Usually, unsupervised algorithms are used in
clustering, association, and dimensionality reduction tasks, while self-supervised are
more focused on regression and classification tasks [145]. Self-supervised algorithms
operate in the same way as supervised algorithms. However, they do not require
labeled data. They can use their output as a supervision signal in the training
process.

Learning features

Some previously mentioned feature-based algorithms have been improved by learn-
ing feature extraction, description, and/or matching steps. GCNv2 was presented
by Tang et al. [146], a deep learning-based feature generation network that can
replace ORB-like feature extraction algorithms. Dusmanu et al. [147] proposed a
cross-descriptor SLAM approach that leverages the descriptor type, which increases
its effectiveness. Cavalli et al. introduced AdaLAM [148], an outlier detection filter
able to be introduced in any VO/vSLAM pipeline to make the algorithm more robust
to different domains. However, most of these methods cannot capture the global
context and require a substantial aggregation of hundreds of points to predict a pose
[62].

Some of the works have also tried to deal with scenario challenges, as Costante et al.
[98]. They presented a supervised learning approach to learning feature extraction
and Frame to Frame (F2F) motion estimation from CNNs in scenarios with blur,
luminance, and contrast anomalies. DeTone et al. [104] proposed a tracking
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system using two CNNs, one as a feature detector and the second to calculate the
homography between pairs of point images gathered from previous CNN. Later, they
presented a self-supervised learning framework [123] to compute image features
and use them in a VO pipeline. The results show that learning the best features for
the VO frontend improves VO backend results.

Yu et al. [131] presented BGNet, a hierarchical unsupervised visual localization
method to learn 2D-3D matching from a bipartite graph network. Lately, LM-Reloc
was presented by Sumberg et al. [113], a relocalization approach based on direct
image alignment that uses two deep networks to learn dense visual descriptors
(LM-Net) and initialize image alignment (CorrPoseNet). Feature learning can also
be improved through ego-motion data incorporation to feature learning algorithms,
such as in [149].

Learning depth and flow estimation

Camera-based VO/vSLAM algorithms are based on images where the environment
is captured in two dimensions. The third dimension is lost and, therefore, so does
the depth information of the environment. However, depth information is crucial
for the localization as it enables the inference of the scene geometry from 2D
images. Moreover, it allows scale recovery [150] and the distinction of foreground
and background points, allowing a better environment understanding. The depth
information is used by most recent learning-based VO/vSLAM algorithms in the pose
estimation process (e.g., [102], [111]).

Together with depth estimation, the optical flow estimation is also a critical com-
ponent of some VO/vSLAM algorithms (e.g., [106]). Flow estimation refers to the
computation of pixel-wise motions between consecutive images [151]. Usually, the
flow estimation describes a vector field where each pixel position gets a displacement
vector [152]. This information is used to model the motion between consecutive
images.

Some recent works, make use of both depth estimation and flow estimation in the
pose estimation process (e.g., [121], [133]). The research works from the literature
emphasize the importance of an accurate depth and flow estimation for VO/vSLAM.
Therefore, the study of learning depth and/or flow has become an essential research
direction for the VO/vSLAM research community.
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Supervised VO/vSLAM

One of the first and most relevant supervised learning algorithm is PoseNet, proposed
by Kendall et al. [61] in 2015, a robust and real-time monocular relocalization
system based on an end-to-end trained CNN. This approach was later improved
by adding a fundamental treatment of scene geometry introducing geometric loss
functions [62]. It is not the unique work focused on loss functions when trying to
improve ego-motion estimation. Valada et al. presented VLocNet [109], a CNN-
based algorithm for 6-DoF global pose regression from a sequence of monocular
images. It is a supervised deep learning approach, end-to-end trainable, and with an
auxiliary learning loss (geometric consistency loss) to correct relative poses.

Although most learning-based works rely on CNNs to extract features from images
and compute poses, the use of Recurrent Neural Networks (RNN) has increased
lately. RNNs introduce temporal modeling capabilities to the algorithms by using
internal memory. One of the most popular RNN networks introduced in the learning-
based VO/vSLAM algorithms is the Long Term Shot Memory (LSTM) [153]. The
combination of CNNs and RNNs is called RCNNs, and it benefits from the advantages
of both networks, the feature extraction capabilities of the CNN, and the sequential
modeling of the RCNN.

The first works that used RCNNs for pose estimation appeared around 2017. Wang
et al. presented DeepVO [100], an approach that infers camera poses directly on an
end-to-end manner from a sequence of RGB frames. They show that end-to-end Deep
Learning approaches can be a viable complement to the traditional VO algorithms.
After that, in 2018, they presented UnDeepVO [117], an updated version of their
previous algorithm where an unsupervised deep learning scheme does the 6-DoF
pose estimation, and the absolute scale can be recovered from stereo images.

Clark et al. [101] proposed VidLoc, a deep spatio-temporal model for global localiza-
tion from a monocular image sequence. They introduced RNNs to exploit temporal
dependencies and improve the monocular image sequence localization accuracy.
Walch et al. presented camera pose regression algorithms based on RCNNs to reduce
the dimensionality of deep learning module output [154].

In 2018, Jiao et al. presented MagicVO [107], a 6-DoF absolute-scale pose estimator
framework based on CNNs and Bi-directional LSTM (Bi-LSTM) trained in an end-to-
end manner from continuous monocular images. Richer features than with other
architectures are extracted increasing the number of filters in the CNN, while the
geometric relationship between image sequences is learned from Bi-LSTM.
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In most works, pose estimation is incremental, and therefore, the errors can increase
substantially in scenarios with long sequences. Some works are devoted to reducing
the estimation errors of VO/vSLAM algorithms in long-length scenarios. For example,
Lin et al. presented a deep end-to-end algorithm based on RCNNs for the long-
term 6-DoF VO task [110]. Global and relative sub-networks are implemented to
avoid scale drift issues and smooth the VO trajectory. Later, Zhai et al. proposed
PoseConvGRU [112]. This two-module Long-term RCNN algorithm estimates the
ego-motion of an image sequence through a feature encoding module and a memory
module.

Although most learning-based pose estimation networks have been based on CNNs
or RCNNs, other approaches have included Bayesian CNNs (BCNNs), such as
Peretroukhin et al. [105]. They presented Sun-BCNN, an approach to introduce
global orientation information from the sun into a VO pipeline from an image se-
quence based on BCNNs. They also estimate the uncertainty, a strategy that some
works have also pursued. Following this idea of estimating uncertainty and the pose
from a sequence of monocular images, Wang et al. proposed ESP-VO [108], which
uses RCNNs.

One of the latest approaches that follows this same direction is D3VO [71]. A self-
supervised framework that infers camera pose, depth, and uncertainty altogether.
The deep models are trained using stereo images and then are incorporated into a
direct VO pipeline.

As stated previously, most VO/vSLAM networks utilize flow or/and depth estimation
for pose regression. Following this research line, Costante et al. presented Latent
Space VO (LS-VO) [106], a deep learning-based approach consisting of an autoen-
coder network to predict optical flow followed by a pose estimation network trained
in an end-to-end manner. In the same way, Ummenhofer et al. proposed DeMoN
[99], a learning-based VO approach that computes depth and camera motion at the
same time using encoder-decoder network-based architecture.

Tateno et al. [102] proposed CNN-SLAM, a method where CNN-predicted dense
depth maps are fused with depth measurements obtained from direct monocular
SLAM. This fusion improves localization in low-textured regions and scales recov-
ering where direct SLAM methods fail. Based on SVO [79], Loo et al. introduced
CNN-SVO [111], an improved VO approach that uses a depth prediction neural
network when initializing the map point.

Other research lines have also been proposed in addition to the previously mentioned
approaches. Sarlin et al. proposed PixLoc [114], a camera localization approach
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that estimates a 6-DoF pose from an image and a 3D model. Although it sows great
generalization ability, it requires a 3D scene representation, which is not always
available in some environments and scenarios.

Algorithm Year Mode Characteristics

Su
pe

rv
is

ed

PoseNet [61] 2015 M Relocalization, CNN, end-to-end

Costante et al. [98] 2015 S
Pose estimation, feature extraction,
F2F

Kendall et al. [62] 2017 M
Pose estimation, CNN, geometric loss
function

DeMoN [99] 2017 M
Pose estimation, depth and motion
through encoder-decoder

DeepVO [100] 2017 M
Pose estimation, RCNN, outdoor and
indoor

VidLoc [101] 2017 M Global localization, RCNN
Walch et al. [103] 2017 M Pose regression, RCNN
CNN-SLAM [102] 2017 M SLAM, CNN, depth
DeTone et al. [104] 2017 M Tracking, CNN, feature learning
Sun-BCNN [105] 2018 M Pose estimation, BCNN, uncertainty

LS-VO [106] 2018 M
Pose estimation, optical flow, autoen-
coder, end-to-end

MagicVO [107] 2018 M
Pose estimation, CNN, Bi-LSTM, end-
to-end

ESP-VO [108] 2018 M Pose estimation, RCNN, uncertainty

VLocNet [109] 2018 M
Pose regression, CNN, end-to-end, ge-
ometry consistency loss

Lin et al. [110] 2019 M
Pose estimation, RCNN, long-term,
end-to-end

CNN-SVO [111] 2019 M Pose estimation, CNN, depth
PoseConvGRU [112] 2020 M Pose estimation, RCNN

LM-Reloc [113] 2020 S
Relocalization, image alignment, de-
scriptor learning

PixLoc [114] 2021 M Relocalization, 3D representation
* M=Monocular, S=Stereo, M+S=Monocular and Stereo, M(S)=Monocular with

Stereo training
Table 2.2.: Supervised learning-based VO/vSLAM algorithms.

Unsupervised VO/vSLAM

Scene depth and flow estimation are crucial for most learning-based VO/vSLAM
algorithms, and many self/unsupervised approaches have tried to deal with them. In
2017, SfM-Net [115] was presented, a learning-based motion estimation approach
by estimating scene depth, camera motion, and 3D object rotations and translations.
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Later, UnDEMoN was presented by Babu et al. [118], an unsupervised learning VO
system for depth and pose estimation through an objective function and temporally
aligned image sequences.

One of the most important unsupervised VO/vSLAM works is SFMLearner [155], a
system for deep tracking the camera using CNNs in an end-to-end learning approach
and single-view depth estimation. Later, it has been improved by several works, as in
[120] by introducing depth estimation from multiple views, or in [125] by updating
the loss function introducing the Epipolar constraints.

As this last work, some of the self/unsupervised VO/vSLAM works have focused
on loss function that optimizes the depth, flow or pose estimation. In [119], Zhan
et al proposed Depth-VO-Feat with a feature reconstruction loss for depth and VO
estimation without scale ambiguity trained with stereo video sequences. However,
no occlusion assumption is made, and the scene must be rigid.

Other works proposed loss functions to handle challenging scenario characteristics.
Yin et al. proposed GeoNet [121], an unsupervised learning framework for depth,
optical flow, and ego-motion estimation from image sequences. They introduced
an adaptive geometric consistency loss to increase robustness towards outliers and
non-Lambertian surfaces.

However, GeoNet is not the only algorithm centered on the reflectivity of the
surfaces. Mahjourian et al. [122] proposed vid2dep, an unsupervised learning
algorithm to estimate depth and ego-motion from a monocular image sequence
considering the geometric constraints of the environment by introducing a 3D-based
loss. Also, in [128], Shen et al. presented DeepMatchVO, a self-supervised monocular
approach for VO. They introduced the matching loss that includes the photometric
and geometric losses to avoid significant systematic errors due to occlusions and
reflective surfaces.

As previously mentioned, monocular VO/vSLAM algorithms suffer from a scale
inconsistency due to the inability to estimate the real depth-translation scale from a
single-lens camera. Trying to handle this scale ambiguity, SC-SFMLearner [127] was
proposed. It is based on a geometric consistency loss to solve the scale ambiguity over
the frames and a self-discovered mask to handle moving objects and occlusions.

As with supervised algorithms, some of the unsupervised VO/vSLAM methods have
approached the ego-motion estimation by incorporating RCNNs. Liu et al. [126]
presented an unsupervised end-to-end trainable algorithm to estimate monocular
VO based on RCNNs and an absolute scale recovery method. In [130], Li et al.
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proposed an online self-supervised VO algorithm that estimates pose and adapts to
new environments using LSTMs.

Other approaches have also tried to design algorithms adaptable to dynamic envi-
ronments. Dong et al. [132] proposed a camera relocalization algorithm based on
outlier-aware neural trees for dynamic indoor environments.

Finally, some recent approaches have tried to handle ego-motion estimation by
incorporating geometric strategies into learning-based algorithms. Wang et al. [72]
proposed an unsupervised ego-motion estimation algorithm based on CNNs, the
Kalman filter introduction into the learning framework, and an encoder-decoder
architecture for depth estimation. In [129], Zhao et al. proposed TrianFlow, a
self-supervised depth and pose learning framework with a robust scale recovery
method based on fundamental matrix solving, triangulation, and depth reprojection
error estimation. Zhang et al. [73] presented an unsupervised method for depth
and stereo camera motion estimation through a depth consistency loss based on the
triangulation principle.

One of the of the most promising unsupervised works is DF-VO [133], presented
by Zhan et al.. It outperforms pure deep learning-based and geometry-based meth-
ods and solves the scale-drift issue by adding a scale consistent single-view depth
CNN. For that, first, it recovers high-quality correspondences from deep flows ob-
tained from LiteFlowNet [156]. The correspondence selection is computed through
forward-backwards flow consistency. Two alternative trackers do the pose estima-
tion depending on the previously found correspondences (E-tracker or PnP-tracker).
Finally, it handles the scale drift issue by comparing triangulated depths and deep
depths obtained by a depth network based on Monodepth2 [157]. Architecture of
DF-VO is depicted in Figure 2.6.

Apart from supervised and /self/unsupervised approaches, semi-supervised VO/vS-
LAM approaches can also be found in the literature. Semi-supervised learning-based
algorithms are trained through labeled and unlabeled data [158]. One of the most
referenced semi-supervised works is DVSO [124]. It leverages deep monocular depth
prediction to overcome the limitations of geometry-based VO.

2.3 VO/vSLAM in visually degraded environments

In general, VO/vSLAM algorithms have been intensely studied in the CV and robotics
communities; however, most research works have focused in the same standard
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Algorithm Year Mode Characteristics

Se
lf

/u
ns

up
er

vi
se

d

SfM-Net [115] 2017 M
Pose and depth estimation, 3D ob-
ject motion

SFMLearner [116] 2017 M Deep tracking, CNN, end-to-end

UnDeepVO [117] 2018 M
Pose estimation, scale recovery, end-
to-end

UnDEMoN [118] 2018 S
Pose and depth estimation, tempo-
ral alignment

Depth-VO-Feat [119] 2018 S
Pose and depth estimation, stereo,
reconstruction loss, rigid scene

Kathpal et al. [120] 2018 M
Pose and depth estimation, multiple
views, SSIM, data augmentation

GeoNet [121] 2018 M
Pose, depth and optical flow estima-
tion, adaptive geometry consistency
loss

Vid2dep [122] 2018 M
Pose and depth estimation, 3D-
based loss

DeTone et al. [123] 2018 M Feature learning for pose estimation
DVSO [124] 2018 S Pose and depth estimation, stereo

SFMlearner++ [125] 2019 M
Pose estimation, Epipolar con-
straints

Wang et al. [72] 2019 M(S)
Pose and depth estimation, CNN,
encoder-decoder architecture

Liu et al. [126] 2019 M
Pose estimation, RCNN, absolute
scale recovery

SC-SFMLearner [127] 2019 M
Pose estimation, mask for dynamic
environments, long sequences

DeepMatchVO [128] 2019 M Pose estimation, matching loss

D3VO [71] 2020 M(S)
Pose, depth and uncertainty estima-
tion, stereo

TrianFlow [129] 2020 M
Pose and depth estimation, triangu-
lation

Li et al. [130] 2020 M
Pose estimation, LSTM, adaptive to
new environments

Zhang et al. [73] 2020 M(S)
Pose and depth estimation, CNN,
stereo

BGNet [131] 2020 M
Pose estimation, 2D-3D matching
learning

Dong et al. [132] 2021 M
Pose estimation, neural trees, dy-
namic environments

DF-VO [133] 2021 M+S
Pose, depth and optical flow, estima-
tion, CNN, E-tracker, PnP

* M=Monocular, S=Stereo, M+S=Monocular and Stereo, M(S)=Monocular with

Stereo training
Table 2.3.: Self/unsupervised learning-based VO/vSLAM algorithms.
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Figure 2.6.: DF-VO [133] architecture. For the depth deep model it uses Monodepth2 [157]
algorithms and LiteFlowNet [156] for the flow estimation. Depending on
the flow consistency computed by LiteFlowNet, a tracker is selected that will
estimate a 6-DoF pose through the E-tracker (2D-2D correspondences) or the
PnP-tracker (3D-2D correspondences).

scenarios and more study on complex environments is needed [159]. VO/vSLAM
algorithms aiming to derive localization data through visual sensors are usually
evaluated and compared by reference standard datasets such as KITTI [11], [160]
(e.g., [71], [100], [116], [119], [124], [133]are evaluated in the KITTI dataset).
These datasets are mainly recorded in outdoor scenarios and are composed of
images containing relatively sufficient textures and Lambertian surfaces. However,
few algorithms, datasets, and benchmarks can be found in challenging scenarios
with varying light conditions, low illumination, low textures, or non-Lambertian
surfaces. E.g.,

Figure 2.7.: Sample image from the KITTI dataset where visual characteristics of the
recorded scenarios are shown. A lot of textures can be appreciated in all
the image regions and with good lighting conditions.

As mentioned in [60], literature VO solutions have limitations in challenging scenar-
ios that contain insufficient illumination and textures or variable lighting conditions.
Literature VO solutions require sufficient illumination and enough textured surfaces
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in the environment for correct feature matching. A good illumination allows mo-
tion extraction from images, as pixel displacement can be inaccurately estimated
otherwise.

For instance, one of the latest benchmark challenges in visually challenging odometry
is the Subterranean Challenge (SubT), organized by the Defense Advanced Research
Projects Agency (DARPA) in 2018. Perceptually challenging scenarios and tasks were
stated in this challenge, such as navigation through tunnel systems, cave networks,
or urban underground environments. The participating teams presented several
approaches [13]–[16] to study the robotics autonomy in underground scenarios
exploration and navigation. These works emphasize the complexity of localization
and navigation in underground environments due to their perceptually-degraded
conditions. They also emphasize the importance of field testing.

Other research works that have explored the difficulties derived from the environ-
ment characteristics for VO/vSLAM can also be found in literature: [89] focuses
on scenarios under day-night or seasonal changes; in [131] BGNet is proposed, an
algorithm that handles scenes with illumination changes or repetitive patterns; [121]
proposes GeoNet, a robust algorithm for non-Lambertian surfaces; or, low-textured
regions are explored in CNN-SLAM [102].

However, as stated before, VO/vSLAM application in challenging scenarios such as
the urban underground railway domain is a less researched topic. These scenarios
are characterized by some conditions that can hinder the use of state-of-the-art
VO algorithms. As Almalioglu et al. [161] point out, these techniques usually
rely on finding correspondences between consecutive frames, requiring certain
environmental conditions such as adequate lighting conditions (good illumination,
similar lighting conditions in subsequent frames), sufficient textures, and Lambertian
surfaces. Besides, cameras tuned to work in both lighting conditions give blurring
and noisy images.

2.4 Localization sensors for ego-motion estimation
through sensor fusion

CV-based localization systems have been shown to be robust, reliable, and provide
meaningful information [162]. However, image processing algorithms tend to be
computationally expensive and are deeply sensitive to circumstantial conditions like
lighting, shadows, textures, blurring, or surfaces characteristics.

2.4 Localization sensors for ego-motion estimation through sensor
fusion
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The research on VO/vSLAM works in those challenging environments has pushed the
exploration of sensor fusion for CV-based ego-motion estimation. The VO/vSLAM
robotics community has also pointed out this research direction lately [15], [16].
Some recent works show that the addition of data from non-visual sensors to the
information provided by the cameras can improve the robustness and/or accuracy of
CV-based localization algorithms [163]. This section contains a review of different
sensors used in robot localization research.

Various sensors for mobile robot positioning, such as wheel sensors, cameras,
laser sensors, Global Positioning System (GPS), Global Navigation Satellite Sys-
tem (GNSS), and Inertial Navigation System (INS), have been presented in the last
few years.

Wheel sensors are one of the most popular sensors used in mobile robot localization
systems [59] and are mainly based on wheel encoders that measure the rotation of
the wheels. However, wheel encoders suffer from drift issues due to wheel slippage
[164].

Triangulation and propagation time measurements derive the global location in
GNSS-based localization systems. The GPS is the most widely used localization
sensor because it provides absolute position without relative error accumulation.
Nevertheless, it cannot be used in indoor scenarios [59] as it is limited to satellite sig-
nal availability and suffers in constraining environments. Furthermore, when using
standard GNSS alone, the localization accuracy is not enough for some autonomous
operations requiring a high accuracy [165].

INS is a relative localization system based on an Inertial Measure Unit (IMU) to
estimate position and velocity from an initial point. The IMUs are typically comprised
of gyroscopes and accelerometers. However, like the other relative localization
techniques, the INS accumulates a drift with the time as the change in position
is estimated by integrating the acceleration with time [166]. Depending on the
required accuracy, IMU-based localization systems require an additional absolute
sensing mechanism such as GNSS [167].

Laser systems application for position estimation has increased lately with the
promising results of Light Detection and Ranging (LiDAR) sensor for this task [168]–
[170]. The LiDAR is a relative distance measure technology that analyzes the light
reflected when a laser is directed towards a target [171]. However, LiDAR-based
localization systems are computationally costly and are sensitive to surface types
and textures as the reflections of some surfaces may lead to unreliable data [172].
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Furthermore, precise GPS, INS, or LiDAR-based localization systems cost can be
higher than other sensors [173], [174]. Tschopp et al. [5] propose sensing infras-
tructure replacement with cheaper sensors to get a more cost-effective solution.

2.5 Conclusion

The research in the railway domain has recently increased due to the transformation
of railway vehicles toward autonomous driving systems. However, it is a starting
research field, with little specific work in train localization and no focus on the
cameras as the primary sensors. The first work appeared in 2019 [5] with a
visual-inertial odometry algorithm. Later works have followed the same approach
presenting train localization systems based on sensor fusion [49]–[54]. However,
the application of camera-based algorithms in the railway domain has not been
explored yet.

The SOTA of CV-based autonomous robot and vehicle localization algorithms indi-
cates how the research works have transformed from mainly geometric approaches
in the early 2000s to the proliferation of learning-based algorithms due to the
Machine Learning advances. The problems faced by early algorithms, such as the
scale inconsistency, have been focused on by learning the depth and optical flow
from image sequences. Furthermore, as most recent learning VO/vSLAM algorithms
are based on learning scene depth and flow between consecutive frames, it has
become a research direction itself. However, these algorithms have to deal with other
problems such as the perceptually tough scenario characteristics or the adaptability
to unknown environments.

The literature review of VO/vSLAM usage in visually degraded environments and
scenarios evidences the need for further research in this direction. State-of-the-art
algorithms have been tested in standard scenarios, but their performance is not
measured in scenarios with different circumstances (e.g., poor lighting conditions,
non-Lambertian surfaces, textureless areas or dynamic environments). Therefore,
the analysis of VO/vSLAM algorithms from robotics and autonomous vehicles per-
formance in these scenarios is a required research field.

For that task, ORB-SLAM2 [91] and DF-VO [133] algorithms have been selected from
the SOTA. As stated before, the learning-based DF-VO algorithm outperforms most
learning-based state-of-the-art algorithms, while ORB-SLAM2 is the most referenced
geometric algorithm. Moreover, these algorithms represent two distinct types of VO
algorithms (learning-based and geometric).
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This chapter introduces the dataset requirements of this research. First, an analysis
of most referenced datasets in VO/vSLAM community is carried out. Next, as no
standard or reference railway dataset fitted to the underground railway scenario
was identified, a proprietary dataset generation method is explained.

3.1 Datasets for VO/vSLAM

The evaluation of any algorithm requires a labeled dataset from the application
domain. Furthermore, having an adequately labeled ground truth in these datasets is
especially essential for supervised Deep Learning approaches. This research focuses
on the urban underground railway domain, and a dataset from the target domain
is required. In this case, first, the most referenced datasets for VO/vSLAM were
analyzed to find if any of them could fit the objective domain. In Table 3.1, the
most referenced datasets in CV and localization research works are resumed. For
each dataset, the domain it belongs to, the recording sensor configuration, how
the 6-DoF pose has been obtained, and if the recording scenario is indoors or
outdoors is extracted. This information is helpful to identify possible datasets when
experimenting with VO/vSLAM algorithms.

From Table 3.1, it can be seen that most of the datasets belong to the robotics or car
domains. Additionally, many datasets where the domain is the handheld sensor can
be also found. Most of the datasets fuse several sensors when recording, being the
stereo camera and the IMU the most used. Moreover, some of them include also a
laser or RGB-D camera for depth measurement. The pose ground truth is mainly
obtained from a GPS or a Motion Capture System (MoCap).

Most state-of-the-art VO approaches [71], [100], [116], [119], [124], [133] are
evaluated in the standard KITTI vision benchmark proposed by Geiger et. al. [11],
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[160]. This benchmark includes several datasets for tasks like VO, optical flow
estimation, 3D object detection, or 3D tracking. The data is captured from a moving
car in outdoor urban scenarios, and they provide datasets and evaluation metrics for
each task. However, as the KITTI odometry dataset contains images from an outdoor
environment with good lighting conditions, it is not adequate to evaluate the VO
algorithms in the pursued scenario. Among the other analyzed datasets, it should be
noted that only one database (Nordland [190]) covers the railway domain. However,
Nordland covers outdoor railway scenarios, which is also out of the scope of this
research work. Searching for a publicly available VO dataset from an indoor urban
railway domain, no dataset was found. Therefore, the generation of a proprietary
database was considered.

The data for a proprietary dataset can be collected from real and/or simulated
sources. Real environment datasets are based on real-world scenarios, and therefore,
the performance of algorithms can be effectively evaluated in the target scenario.
However, the database generation in real-world scenarios increases recording and
processing time, effort, and cost. In addition, it also depends on having access and
permission to make the recordings in the target scenario (i.e. as in an underground
railway substation).

Simulated environments can overcome these problems. The drawback of simulated
environments is that it can not be assured that an algorithm trained and validated
in a simulated environment will perform the same way in a real-world scenario. As
stated in [193], all the challenging conditions inherent to underground environments
can not be recreated in virtual scenarios.

Consequently, as a real-world underground railway scenario was accessible, a pro-
prietary dataset was generated from a real underground railway scenario. The
proprietary datasets’ definition, generation and validation process are further ex-
plained in the following sections. First, the recording environment and setup,
including camera calibration, are shown. Then, the ground truth generation method
is defined.
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3.2 Proprietary datasets: use case environments and
recording setup

3.2.1 Use case environments

Before generating the proprietary dataset, a verification of the experimental setup
was performed to verify the camera setup process. For that, a more accessible urban
scenario was selected: a driving car scenario. Therefore, two use cases have been
selected in this research. The first use case, CarDriving, has been used to verify the
experimental setup. The second use case is the main use case, based on the railway
domain. It is the CAF use case.

CarDriving use case

The CarDriving use case is based on the recording made in an urban car driving
experience. For the dataset generated for this use case, two distinct trajectories were
chosen to increase the robustness of the results and conclusions obtained from the
experimentation. Furthermore, the trajectories were chosen following the idea of
trying to replicate the conditions of the sequences from the KITTI dataset (e.g., the
lighting, the slope of the path,...)

Furthermore, these trajectories have circular paths with the same starting and
ending points. This was done aiming to improve the pose estimation in consecutive
algorithms iterations. Some VO/vSLAM algorithms include a loop closing mechanism
that substantially improves localization estimations when loops are found in the
trajectories.

The trajectories shown in figure 3.1 have been named from the name of the street
where they were recorded: Aragoa and Musakola. Two sequences were recorded
in each trajectory, one by day and one by night. The daylight sequences are used
to verify that the algorithms’ performance in scenarios with comparable conditions
to standard datasets is similar. The night sequences simulate the poor lighting
conditions found in the urban underground railway domain.

32 Chapter 3 Dataset generation for VO/vSLAM in an urban underground rail-
way scenario



(a) Aragoa (b) Musakola

Figure 3.1.: The selected two trajectories in CarDriving dataset. Both trajectories belong to
the same city and are circular paths in roads between high buildings. Aragoa
trajectory has 300m in length and Musakola has 450m.

CAF use case

The CAF dataset was recorded in an underground railway line of Euskotren-Bilbao,
named Line 3 (L3). The entire trajectory map of the recordings made in the under-
ground line L3 is depicted in Figure 3.2.

L3 has seven stations from with a total trajectory length of 5.8km. It contains poor
lighting conditions in tunnel areas and significant light changes in platform areas.
Furthermore, the tunnels are challenging for feature extraction algorithms as the
textures from these scenarios are repetitive and the low light hinders the feature
extraction. Figure 3.3 shows two examples of these scenarios to figure out the
distinct conditions found in both situations: (a) tunnel and (b) platform.

In the recordings, the camera was placed in the front of the train, inside the driving
cabin, because, due to safety restrictions, it can not be placed outdoors. Figure 3.4
shows the camera placement from the cabin’s point of view.

3.2 Proprietary datasets: use case environments and recording setup 33



Figure 3.2.: Line 3 railway extracted from ÖPNVKarte map [194]. Each circle represents
one station from L3. In total, L3 contains seven stations and trajectory length
of 5.8km. The train circulates in both directions.

Figure 3.3.: The CAF dataset’s tunnel and platform areas where the poor light conditions
and textureless areas can be appreciated.
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Figure 3.4.: Camera placement for CAF use case. Camera was placed in the front of a
moving train in an urban underground railway scenario.
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3.2.2 Recording setup

The base recording setup includes a camera and a laptop computer running the
camera recording software (StereoLabs ZED API, ZED Explorer). The two hardware
elements are connected by a high-rate USB3.0 wire. In the CAF use case environment,
the ATP data monitored from the train is also included in the recording system.
Figure 3.5 shows the diagram of the recording setup for the defined use case
environments. As the base setup is comprised only by the camera and a laptop
computer, it is adaptable to distinct use case environments and scenarios, and the
introduction of other sensor is affordable.

CarDriving use case

CAF use case

API

SensorPre-process and storageATP

Figure 3.5.: Base recording setup comprised by the ZED stereo camera and a laptop com-
puter. In the case of the CAF use case environment, train ATP data is also used.

The camera is a ZED Stereo Camera with an image resolution of 1280x720 pixels
at 30 Hz, an electronic synchronized rolling shutter, automatic gain, and a lens
aperture of F2.0. The computer is a Dell Latitude 5501, with Microsoft Windows
10 and the API provided by StereoLabs for the image pre-processing and storage.
As shown in figure 3.6, the camera has been placed on the upper part of the front
window of the vehicle (a car in the CarDriving use case and a train in the CAF use
case), thus preventing the front of the vehicle from invading the lower part of the
recording. In the case of the car, the camera has been also placed inside the vehicle
aiming to replicate the same camera setup from the target railway scenario (in this
scenario the camera must be placed inside the train due to safety restrictions).

Camera calibration is essential for VO/vSLAM algorithms since the images recorded
through a camera contain a geometric distortion due to the used lens. In this case,
the ZED camera API undistorts the images automatically when extracting them,
and therefore, the images are undistorted directly and VO/vSLAM algorithms may
be applied directly on them using the factory calibration parameters provided by
StereoLabs. However, an independent calibration assessment was done to verify
the camera calibration parameters. The calibration procedure is detailed in Section
5.2.
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Figure 3.6.: Camera placements for CarDriving use case. The camera was placed in the top
part of the windscreen of a car moving on an urban scenario.

In the following sections the recorded use case environments and each scenario’s
characteristics are explained.
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3.3 Proprietary datasets: structure and ground truth

All the generated datasets are divided into sequences (seq). Each sequence contains
a set of recorded images and a corresponding set of 6-DoF poses. The dataset follows
the standard KITTI odometry dataset format and naming convention. The datasets
structure adopts the following schema:

dataset
sequences/

seqn

image_2/
000001.png
000002.png

...

image_3/
000001.png
000002.png

...

calib.txt
times.txt

seqn+1
...

poses/
seqn.txt
seqn+1.txt

...

As the recordings were done with a stereo camera, the frames are stored in two
folders, image_2 for left camera frames and image_3 for right camera frames. The
frames are rectified RGB color images stored with loss-less compression using 8-bit
PNG files. The size of the images is of 1280x720 (HD).

The camera calibration parameters are saved in a file named calib.txt file follow-
ing the KITTI calibration format [11]. The calibration file contains the rectified
projection matrix (Prect ∈ R3×4) for each camera:

Prect =


fu 0 cx −fubx

0 fv cy 0
0 0 1 0



38 Chapter 3 Dataset generation for VO/vSLAM in an urban underground rail-
way scenario



where (fu, fv) refers to the focal length, (cx, cy) is the principal point and bx is the
baseline in meters w.r.t. reference camera 2. Given a stereo camera, the camera 2
and 3 represent the left and right cameras, respectively. The projection matrix is
flattened for each camera i, where i ∈ {2, 3}, in the following way:

P{i} : fu 0 cx −fubx 0 fv cy 0 0 0 1 0

This projection matrix represents a projection of a 3D point pcam = (x, y, z, 1)T from
the rectified camera coordinates to an image point pim = (u, v, 1)T .

The poses of a given sequence are stored in a pose file (seqn.txt) that follows the
KITTI convention: each row of the pose file contains the first 3 rows of a 4x4
homogeneous pose matrix flattened into one line. The homogeneous pose matrix pn

is represented as:

pn = [rn|trn] =


r11 r12 r13 xn

r21 r22 r23 yn

r31 r32 r33 zn

0 0 0 1


where n is the frame number in the sequence, rn and trn are the rotation matrix
and the translation matrix of the n-th frame respectively. In the 6-DoF pose file it is
represented flattened as:

r11 r12 r13 xn r21 r22 r23 yn r31 r32 r33 zn

3.3.1 CarDriving dataset

As stated before, a proprietary VO dataset from a driving car has been generated
to verify the experimental setup. Table 3.2 resumes this dataset. It is composed by
two trajectories recorded in different street locations (refer to section 3.2.1). Each
trajectory contains two sequences in two different lighting conditions (day, night).
A sequence is the set of images recorded in the target trajectory. The quantity of
images is depicted as Frames in Table 3.2. Finally, the distance traveled by the car in
each recording is shown in the column Sequence length.

The reference ground truth data for CarDriving dataset has been estimated through
the state-of-the-art geometric VO algorithm ORB-SLAM2 [195]. ORB-SLAM2 is
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Trajectory Sequence Frames
Sequence

length (m)
Lighting

conditions
00 1150 Daylight

Aragoa
01 1400

300
Night

02 1640 Daylight
Musakola

03 1480
450

Night
Total 5670 750

Table 3.2.: CarDriving dataset. The table contains the trajectory name, the sequence
identifier, the frame quantity, the sequence length and the lighting conditions
for each recorded sequence. The lihting conditions refer to the recordings being
done by daylight or by night. Altogether, the dataset contains 4 sequences, 2
from each trajectory and with different characteristics.

widely used as a reference in the VO community [71], [196]–[198] and has been
previously used as ground truth generation algorithm [106]. ORB-SLAM2 uses loop
closure to relocalize the camera, and thus, improve the precision of the inferred path
in successive iterations. Consequently, the previously mentioned recordings were
done in closed paths where the starting and arrival points are the same.

As ORB-SLAM2 could have some scale issues, the scale is then corrected considering
the trajectory length extracted from the reference Google Maps [199] trajectories.
The length of the trajectory estimated by ORB-SLAM2 is scaled to match the trajec-
tory length from reference Google Maps. Figure 3.7 shows reference ground truth
data generated from this method for the trajectory named as Musakola.

Figure 3.7.: Reference ground truth data generated using ORB-SLAM2 for Musakola trajec-
tory.
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3.3.2 CAF dataset

The CAF dataset comprises 19 sequences captured in the two directions of the rail
Matiko-Kukullaga. A sequence is a trajectory between two stations defined as initial
and arrival stations in Table 3.3. The dataset has been generated in two recording
sessions of about five hours each. The dataset generation process is explained
focusing on a sequence. A 6-DoF pose is estimated for each captured frame.

The generated dataset is represented in Table 3.3 where the sequences code, traveling
direction, the initial and arrival stations for each sequence, and the number of frames
for each sequence are depicted. The entire set of sequences yields 65.384 frames,
with varying train speed and trajectory length. The quantity of frames of the dataset
has been decided following the standard KITTI odometry dataset, defining a dataset
that contains a similar volume of a standard VO benchmark dataset (e.g., KITTI).

Direction Initial and arrival stations Sequence Frames Length (m)

Matiko

Kukullaga-Otxakoaga 01_50 3048 1420.42
Otxarkoaga-Txurdinaga 01_53 1977 695.41

Txurdinaga-Zurbaranbarri 01_54 2663 1029.75
Kukullaga-Zurbaranbarri 03_49 6700 314505

Zurbaranbarri-Zazpikaleak 02_22 3260 1011.58

Zazpikaleak-Uribarri
01_15 2724 902.93
02_25 2639 902.36

Zurbaranbarri-Uribarri 03_54 5904 1914.38

Uribarri-Matiko
01_17 2532 500.45
02_27 2505 499.81

Kukullaga

Matiko-Uribarri 01_31 2140 524
Uribarri-Zazpikaleak 01_33 2830 898.34

Zazpikaleak-Zurbaranbarri 01_35 2494 1004.42
Matiko-Zurbaranbarri 03_36 6560 2435.27

Zurbaranbarri-Txurdinaga 01_37 2550 1034.19
Txurdinaga-Otxarkoaga 01_39 2126 694.62

Zurbaranbarri-Otxarkoaga 03_41 4493 1728.01

Otxarkoaga-Kukullaga
01_40 4095 1405.63
03_44 4144 1406.01

TOTAL 65384 23152.56

Table 3.3.: CAF dataset resume with recorded sequences, the direction of the sequences,
arriving station for each sequence, frame quantity, and sequence length. Overall,
the dataset includes 19 sequences in the two directions, where the train travels
between the different stations in the L3 line.

Most VO ground-truth datasets are generated using a GPS sensor [11], [17]–[20]
(refer to Table 3.1). However, the GPS signal is not available in the underground
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zones. Thus, a method that computes the 6-DoF pose of each frame from the
train ERTMS/ETCS ATP data, the geodetic map coordinates, and the railway’s
infrastructure gradient profile data was defined and implemented (see algorithm
1).

Geodetic
coordinates

of L3

train stopped = 1
train speed 
acceleration

linear position 
estimation

ATP data

Recorded
frames 

with
timestamp

last x-y position  
of the first interval

Transform geodetic
coordinates to x-y equal-

area coordinates

syncrhonized data sources

Synchronization of the
last image, last x-y

position and ATP data

Estimate totation
component (R) of a pose

x-y for a  
timestamp

height profile Railway
gradient
profile

z for a  
timestamp Estimate z

image
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dataset
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Recorded
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with
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Figure 3.8.: Schematic representation of the ground truth generation algorithm. The
algorithm takes the geodetic coordinates of the railway, train ATP data and the
railway gradient profile and outputs a ground truth pose for each recorded
frame.

The algorithm first estimates (x,y) positions for a given sequence based on geodetic
coordinates, then z is added through the gradient profile. Afterward, the (x,y,z)
translation data is estimated for each frame using ERTMS ATP data, and, finally, the
rotation data of each pose is calculated. In the following sections the data sources
for the ground truth generation algorithm are explained.
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Geodetic coordinates

The geodetic coordinates are represented by a pair (ϕ, λ) expressing Latitude (Lat.)
and Longitude (Lon.) in decimal degrees. These coordinates use an ellipsoid to
approximate the earth’s surface locations [200]. The Lat. represents the angle
between the normal and the equatorial plane while the Lon. measures the angle
between the prime meridian (Greenwich meridian) and the measured point. The
Lat. and Lon. are bounded by ±90° and ±180° respectively.

The geodetic coordinates define the coordinates of each position of the railway
track and have been extracted from a Geomap called ÖPNVKarte [194]. This
Geomap contains public data that includes worldwide public transport facilities
(train, railway, ferry or bus). It is derived from OpenStreetMap [201], an initiative
to create and provide accessible geographic data (i.e. street maps, etc.). It also
contains railway-related information, such as platforms, stop positions, routes, and
track positions.

The database is enriched with different institutions and external collaborators. The
data for this proyect is extracted from the following institutions: Instituto Geográ-
fico Nacional (IGN), Sistema Cartográfico Nacional (SCNE) and Eusko Jaurlaritza
(Basque Government) through geoEuskadi institute and several external collabora-
tors.

In the used Geomap, the minimum route track positions to define the L3 railway
shape are known in geodetic coordinates (see figure 3.2). These track positions
include the platforms start and ending (train stop location) positions, and positions
between platforms. However, the camera frequency is higher than the geodetic
coordinates discretization defined in the Geomap, and, therefore, a method based
on monitoring and synchronizing the frame recording process, with train ERTMS
ATP data has been designed and implemented to generate the poses of the frames
that were recorded between the geodetic coordinates.

ÖPNVKarte is organized following its own tagging schema, OpenRailwayMap where
information is divided into interrelated tags. Each tag is composed of several position
nodes with Lat. and Lon. information. Table 3.4 shows the main tags from L3 line
route where the reference coordinates are defined.

The geodetic coordinates of a sequence must be transformed from a 3D plane to a
2D plane to assign an equal-area (x,y) position to each geodetic coordinate. Figure
3.9 shows a sequence sample in geodetic coordinates and the generated equal-area
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Tag Description

Track
A track represents a railway in one direction and can contain multiple
information with multiple sub-tracks. Each track is composed of nodes
describing the trajectory in coordinate pairs.

Platform
Tag related to stations. Each station contains two platforms, one in
each direction. It contains information such as name, position, area, if
it is covered or if the platform is accessible with a wheelchair.

Stop
Nodes where the railway stops. Contains information related to the
position and the railway type (light rail, subway, tram...).

Table 3.4.: Tagging scheme used by ÖPNVKarte map to classify the position data of rail
transportation routes. The tags are used to define each rail positions and to
generate hierarchical groups of geodetic coordinates.

(x,y) coordinates. In the ground truth generation algorithm, an equal-area (x,y)
coordinate refers to xn and yn components of a 6-DoF pose.

Figure 3.9.: Transformation of a L3 railway route positions defined by geodetic coordinates
into equal-area (x,y) positions.

Railway gradient profile

The railway track gradient profile provided by the railway infrastructure managers
defines how the railway track slope varies in predefined sections. These section
lengths can be synchronized with ATP data to assign an slope for each meter of the
railway. It allows the estimation of the height (z) of each 6-DoF pose. An height
profile can be constructed with this gradient profile. The initial height is initialized
as 0, and the height for each 1m section is calculated using the Equation 3.1.

h(dn) = h(dn−1) + (0.001 ∗ gradn) (3.1)

44 Chapter 3 Dataset generation for VO/vSLAM in an urban underground rail-
way scenario



where h refers to height, dn refers to 1m trajectory sections, and gradn is the gradient
value corresponding to that section from the gradient profile multiplied by 0.001 to
adjust the units, as the gradient is taken in parts per thousands (‰). Figures 3.11
and 3.10 show the L3 railway gradient profile provided by the railway constructor
and the estimated height profile, respectively. In the gradient profile provided
by railway constructor, the gradient can be seen in the upper part of the railway
definition ("SSP VIAS 1 y 2 - SENTIDO CRECIENTE") and it is defined in sections with
known length and slope (being positive for increasing gradients and negative for
decreasing gradients).

Figure 3.10.: Gradient profile provided by the railway constructor. The gradients are
marked in red, they can be seen in the upper part of the railway definition
where the length of the different gradient sections is defined and the gradient
is depicted. The positive gradients refer to sections with increasing slopes and
vice versa.
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Figure 3.11.: Results of the height generation process. Height profile (h) is generated from
gradient profile provided by railway constructor. The green circles represent
the stations.

ATP data: train’s dynamics and speed data

The ERTMS/ETCS ATP train speed estimation process is based on a redundant wheel
encoder and radar sensors to get a safe and accurate estimation. Using these sensors,
the ATP subsystem embedded in the train estimates the train position in the track,
i.e. the distance traveled from a station or a beacon of the track. Track beacon
position or inter-beacon distance is predefined and known by railway infrastructure
managers, even by the ATP subsystem, and therefore the ATP train position is re-
adjusted when a beacon signal is received obtaining a precise estimation. The 6-DoF
pose estimation of each frame is made by synchronizing the ATP system monitoring
process with the image recording process as both are installed in the train. This
process aims to obtain synchronized ATP train position estimation for each frame.
The data monitored from the ATP system is the following one:

• timestamp (s): time measured in the Coordinated Universal Time (UTC)
standard read from the train’s internal clock.
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• linear position estimation (cm): distance traveled by the train from a previous
station.

• train speed (m/s): train speed calculated by ATP.

• train acceleration (cm/s2): train acceleration calculated by ATP.

• train stopped: boolean reflecting whether the train has reached stopping point
or not.

All those variables are extracted from an ATP monitoring proprietary application
that monitors train odometry data. The data acquisition frequency is higher than
the camera frequency (30Hz), and, consequently, they have been synchronized and
a pose estimated for each frame.

Estimate poses of an interval through a backward data synchronization
based on the timestamp

The synchronization algorithm’s main idea is to estimate poses between two geodetic
coordinates (x,y). Those inner poses need to be computed in a way that can be
synchronized with the camera’s frame-rate. To do so, the section between two
consecutive coordinates is defined as a straight line interval. Figure 3.12 represents
a conceptualization of a given sequence with the intervals, the initial and arrival
stations, the (x,y) positions and the estimated poses. The main concepts of the
ground truth generation algorithm are described in Algorithm 1.

As the data is synchronized at the sequence ending, the synchronization process of
an interval is done following backward trajectory and leveraging the timestamps.

Given a sequence, the last (x,y) position, the last frame and the ATP data are taken
for a given interval and the poses for all frame timestamps in that interval are
estimated. Then, the poses of the following interval are estimated by taking the last
(x,y) position and the last frame of the previous interval as the initial position.

However, the train speed is variable and, therefore, the distribution of these poses
can not be linear in different intervals. Therefore, the train speed is used to calculate
the quantity of poses in each interval. The total number of poses within the whole
sequence should match the recorded frame amount.
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Figure 3.12.: A conceptualization of a example sequence with the (x,y) positions extracted
from geodetic coordinates, the intervals, the initial and arrival stations and
estimated poses.

Synchronize the last (x,y) position, last frame and ATP data. The first step is to
synchronize the different data sources of a sequence using the last (x,y) position of
the arrival station, last frame and ATP data. The algorithm generates ground-truth
poses for each recorded sequence using the position where the train has started
the trajectory at the initial station as origin. For that, first the image where train
stops (last frame of the sequence) must be estimated. When there is motion, the
similarity between consecutive frames is very low, however the similarity increases
when the train has stopped. Due to the similarity of the frames corresponding to the
train stopping point, the last frame is selected using the Structural Similarity Index
(SSIM) [202].

SSIM is one of the most standard algorithms for image quality assessment [203],
and therefore, for image similarity measure. It has shown that can outperform
other common image similarity measurements as MSE [204] and has been intensely
researched [205]. The SSIM measures the luminance, contrast, and structure of two
given images and returns a similarity value between them.

Also, it is easily implementable and requires just a starting optimization phase where
the threshold is selected. Furthermore, the index was used to find just the first image
within the threshold in each sequence, which gives a little number of results totally.
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Algorithm 1 Ground truth data generation algorithm
Input: Given an interval (i) defined as a straight line between two (x,y) positions

Phase 1 - Synchronize last (x,y) position, last frame and ATP data of an interval

1: if i = 0 then ▷ First interval
2: Last frame← SSIM > threshold ▷ SSIM [202]
3: Last (xi, yi) position← given in the interval definition
4: ATP data← train_stopped = 1
5: else ▷ Following intervals
6: Last frame, last (xi, yi) position and ATP data← taken from i− 1
7: end if

Phase 2 - Estimate poses on an interval through a backward data synchroniza-
tion based on the timestamps

Input: Vn: train speed, an: train acceleration, t: timestamp, h: height profile, dn:
linear position estimation

8: Estimate translation component of poses (trn)
a: (xn, yn)← f(vn, an, t) ▷ Eqn. 3.3
b: zn ← h(dn) ▷ Eqn. 3.1

9: Estimate rotation component of poses (rn)
a: rn ← g(trn−1, trn) ▷ Eqn. 3.4, 3.5, 3.6

Although SSIM is sensitive to image distortions, the environment being static, and
the view fixed enables the SSIM application in underground railway scenarios. The
SSIM between two images In and In+1 is calculated following the Equation 3.2. This
equation measures the luminance, contrast and structure of both images.

SSIM(x, y) = (2µxµy + c1)((2σxy + c2)
(µ2

x + µ2
y + c1)(σ2

x + σ2
y + c2) (3.2)

where c1 = 2.56 and c2 = 7.68. The threshold was selected by testing. A threshold
was proposed and then updated until a SSIM threshold that best fitted to the lighting
conditions of the scenario was found. It was a handmade process where the results
were evaluated by this paper authors. In this case a SSIM > 0.965 has been used
as similarity threshold at the train stopping point. The first frame from a given
sequence with a SSIM value higher than the threshold was selected as the train
stopping frame.

The last (x,y) coordinates refer to the train stopping position at the arrival station;
therefore, this coordinate pair and the last frame are already synchronized. Finally,
ATP monitored data is synchronized using the train stopped variable.
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Estimate poses of an interval through a backward data synchronization based
on timestamps. This process has two steps; first, the translation component is
estimated, and then, the rotation is calculated from that translation.

Estimation of translation component. Translation component T = {tr0, tr1, ..., trm}
is defined as 3-DoF poses (trn = [xn, yn, zn]) of an interval where n is the pose num-
ber (0 ≤ n ≤ m) and m is the total number of poses for that interval. For the
translation component of a pose, first, the (x,y) position is estimated, and then the
height (z) is added. The translation is estimated by taking an initial (x,y) position
and calculating the motion to the next (x,y) position using the ATP train speed and
train acceleration data. The ATP data is not constant, and therefore, the frame
timestamps and ATP data timestamps are synchronized to acquire the train speed
and acceleration values corresponding to each recorded frame.

The translation between two consecutive (x,y) positions in a straight line that forms
the interval can be calculated using Uniformly Accelerated Motion (UAM) equations.
This estimation is possible because it is considered that the poses follow a motion in
a straight line and with a constant acceleration between them. Equation 3.3 shows
the application of UAM equations in this case.

dn = vn−1t + 1
2an−1t2 (3.3)

where t refers to the timestamp, vn and an refer to ATP data train speed and
acceleration respectively. The initial (x,y) translation component is set as [0, 0].

After calculating the (x,y) positions, the z or height is estimated using the height
profile estimated from the gradient profile and the traveled distance from the ATP
data. The height profile is based on fixed distances from an origin (see Figure 3.10.
The railway height profile can be synchronized with the train stopping point, and
therefore, with the first (x,y) position as the origin. Then, previously calculated (x,y)
positions can be used to extract the Euclidean traveled distance from that origin to
the following positions.

Each pose’s height (z) is calculated using the traveled distance from the previous
pose and the height profile. Therefore, after height estimation, the translation
component (x,y,z) of a pose has been estimated with respect to a timestamp.

50 Chapter 3 Dataset generation for VO/vSLAM in an urban underground rail-
way scenario



Estimation of rotation component. Rotation component R = {r0, r1, ..., rm} is
defined as the rotation matrices (rn) within an interval where n is the pose number
(0 ≤ n ≤ m) and m is the total number of poses for that interval calculated in the
previous steps.

To calculate the rotation component rn for each translation trn the transformation
between two consecutive orientation vectors orn−1 and orn is estimated. orn defines
the orientation of the train in trn and represents the vector between consecutive
translations trn−1 and trn. It is calculated as shown in 3.4:

orn(trn−1, trn) = (xn − xn−1, yn − yn−1, zn − xz−1) (3.4)

where x, y and z represent the translation components of trn−1 and trn. Then, using
the axis-angle representation, the transformation between consecutive orientation
vectors orn−1 and orn can be calculated. For that, first the orientation vectors are
normalized by dividing their value with the Euclidean norm (vector magnitude)
∥orn∥ of each vector (Eqn. 3.5) to align them at the same origin. The Euclidean
norm can also be defined as the Euclidean distance of a vector from the origin to a
point.

ôrn = orn

∥orn∥
(3.5)

Then, the Euclidean norm of the cross product between the normalized consecutive
orientations is estimated to get the axis. Finally, the rotation component is estimated
using the inverse cosine function as shown in equation 3.6, where the angle between
the orientations vectors is calculated trough the dot product:

rn = acos(∥ôrn × ôrn−1∥
ôrn · ôrn−1

) (3.6)

where acos refers to the inverse cosine function and ôrn−1 and ôrn to two consecutive
orientation vectors. This rotation estimation method accumulates an error relative
to the previous estimations. However, as the train is tied to the rails, the trains’
orientation is always fixed, and the orientation estimation is not critical.

The previously calculated translation component is added to the newly calculated
rotation component to obtain the target 6-DoF ground truth pose.
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Once all the poses from a given interval have been estimated, the next interval is
taken and the process is repeated until all the intervals of a sequence have been
covered.

3.4 Conclusions

This chapter resumes the solution given to the data requirements of the research.
The need for a proprietary dataset from the target domain arose when analyzing the
most referenced datasets in state-of-the-art VO/vSLAM. The main dataset CAF was
generated recording in an urban underground railway scenario.

Additionally, given the difficulties to access the target scenario, a supplementary
dataset CarDriving has been recorded to validate the recording setup (e.g., camera
setup, frame quality,...). This dataset was generated from a driving car in an urban
environment trying to imitate the same recording conditions even recording at night
to replicate the low-light conditions of the urban underground railway scenario.

The ground truth for the CarDriving dataset has been obtained from the standard
algorithm ORB-SLAM2 and corrected with GPS data. In the case of the CAF dataset,
ground truth has been generated by designing and implementing a new method
to estimate 6-DoF poses for the frames recorded in an underground railway line.
The generation process is based on the synchronization of geodetic coordinates, ATP
data, and a railway gradient map.

To our knowledge, the CAF dataset is the first VO/vSLAM dataset in the urban
underground railway domain. In order to make it scientifically sound, it follows
the standard KITTI format and data volume. This dataset enables the testing of the
state-of-the-art VO/vSLAM algorithms in scenarios with perceptual characteristics
that can not be found in the standard VO/vSLAM datasets.

The next chapter addresses the VO/vSLAM performance in the target domain utiliz-
ing generated the proprietary datasets. The experimental setup for that analysis is
also included.
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VO/vSLAM in an urban
underground railway scenario

4

This chapter evaluates the experimentation of the state-of-the-art VO/vSLAM algo-
rithms’ performance in an urban underground railway scenario is evaluated. First,
the standard VO/vSLAM evaluation metrics are studied. Then, the experimentation
setup is explained, and finally, the VO/vSLAM results in the proprietary datasets are
discussed.

4.1 VO/vSLAM evaluation metrics

Traditionally, the performance of VO/vSLAM algorithms has been evaluated focusing
on different aspects. In the case of feature-based VO/vSLAM algorithms where the
standard pipeline is built around the feature detection and matching processes, some
research works have concentrated on evaluating those processes[206]. For that, they
have measured the extracted features quantity or quality, and the feature-matching
performance. Other works have targeted the metrics to measure the estimated pose
accuracy or the algorithm robustness by measuring the reprojection error, RANSAC
iterations and the percentage of inliers [186], respectively. Most works evaluate
VO/vSLAM pose estimation based on estimating the Mean Square Error (MSE)
between the predicted and real poses, and, the Normalized Root MSE (NRMSE) and
the Standard SME (SMSE) to analyze the estimation error of the results [95].

Based on those previous metrics, Geiger et. al. [160] introduced some metrics
that have become standard metrics in the VO research community for the pose
estimation evaluation. This thesis experimentation follows some of those metrics
used by all the works proposed later. The metrics include comparisons of absolute
pose measures through the Absolute Trajectory Error (ATE) and comparisons of
relative pose measures using Relative Pose Error (RPE) [187].

A 6-DoF alignment is recommended to evaluate shape similarities of trajectories
[207]. Therefore, all the trajectories have been transformed with a 6-DoF Umeyama
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alignment [208], a standard alignment method followed by most publications in
KITTI Visual Odometry / SLAM evaluation benchmark [160].

Given this transformation, ATE evaluates the global consistency of estimated trans-
lations compared to the ground-truth trajectory. The ATE is measured in meters.
The ATE for a given sequence is obtained by calculating the root-mean-square error
(RMSE) over all timestep i with respect to the reference data as in Equation 4.1:

ATEtrans =
(

1
n

n∑
i=1

∥∥∥Q−1
i Pi

∥∥∥2
) 1

2

(4.1)

where Pi and Qi are the estimated pose, and ground truth pose at the time i,
respectively, and n is the total number of poses of the sequence.

For relative VO evaluation, the RPE measures the drift error for each pose of the
trajectory. The rotation and translation components are calculated separately in the
RPE calculation. It is measured in meters for the translation component. For rotation,
the rotation matrix is converted to angle-axis representation and the rotation angle is
used as the error. Then, the RMSE for each component is calculated using Equation
4.2:

RPE =
(

1
m

m∑
i=1

∥∥∥∥(Q−1
i Qi+1

)−1 (
P −1

i Pi+1
)∥∥∥∥2

) 1
2

(4.2)

where Pi and Qi are the estimated pose, and ground truth pose at the time i,
respectively, and m is the total number of relative poses from a sequence with n

camera poses, where m = n− 1.

Finally, following the VO evaluation criteria of the KITTI evaluation benchmark,
the Average Translational Error (terr) and the Average Rotational Error (rerr) are
calculated on sub-sequences of different lengths. These errors measure the average
relative pose error at a fixed distance. The sub-sequences length in meters is
(100,200,...,800) because the error for smaller sub-sequences affect significantly
and do bias the evaluation results. The terr is measured in percent and the rerr in
degrees per meter.
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4.2 Experimentation setup

DF-VO implementation was taken from [209], and weights of flow estimation deep
models were selected from the authors’ trained models. The flow model is initially
trained in the synthetic dataset Scene Flow [210] with good generalization ability.
The model stereo_640x192, previously trained in the ImageNet and KITTI datasets,
is used as the depth estimation model for Monodepth2 [157].

In the case of ORB-SLAM2, in order to handle its non-deterministic nature, each
sequence is executed five times. The median accuracy of the estimated trajectory is
evaluated as proposed by authors in [91]. Each ORB-SLAM2 execution is different
because the initialization process is based on the reliability of descriptors matching.

The VO evaluation is done using the KITTI Odometry Evaluation Toolbox as in [133],
in the same workstation used for training.

4.3 DF-VO in CarDriving dataset

To verify the recording setup, DF-VO [133] has been evaluated in CarDriving se-
quences. The results have been compared to the results obtained by the same
algorithm in the standard KITTI dataset (see Table 4.2).

Trajectory Aragoa Musakola
Avg. Err.

Seq. 00 01 02 03
terr (%) 7.81 8.26 9.70 12.52 9.572

rerr (º/100m) 3.22 4.36 3.18 5.92 4.17
ATE (m) 5.21 5.71 3.83 8.73 5.285
RPE (m) 0.269 0.268 0.305 0.38 0.305
RPE (º) 0.785 0.784 0.398 0.565 0.633

Table 4.1.: Results obtained from DF-VO application in the CarDriving dataset following the
standard metrics.

As shown in Table 4.1, the results in the daylight sequences (00 and 02) are better
than sequences recorded by night (01 and 03). The minimum ATE is obtained in the
sequence 02 (3.86m). The scenario where sequence 02 was recorded has similar
characteristics (e.g., more building and static objects) to the KITTI dataset. On
the contrary, sequences 00 and 01 have some open spaces with scenarios with less
features (e.g., the sky) and dynamic objects that can be challenging for VO/vSLAM
methods.
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The average translational (terr) and rotational (rerr) errors are higher than the
errors obtained in the KITTI dataset, as the sequences lengths are shorter and,
therefore, the sub-sequences used to calculate these metrics have been shorter
(10, 20, 30, 40, 50, 60, 79m). As the authors of the proposed metrics explain in [160],
the average errors increase in short sub-sequences.

The results shows that when the scenario’s light conditions are similar to the lighting
of standard datasets, the results are also similar. The poor light conditions in the
sequences recorded by night hinder the DF-VO performance.

Algorithm Metric Avg. Err

DF-VO in KITTI dataset

terr (%) 1.972
rerr (º/100m) 0.365

ATE (m) 6.872
RPE (m) 0.041
RPE (º) 0.038

Table 4.2.: Average standard VO errors obtained by DF-VO in the standard KITTI dataset
[133].

From Table 4.1, it can be seen that the average ATE obtained over all the sequences
of 300/450m long is 5.285m. Consequently, the results obtained by DF-VO in the
CarDriving dataset are similar to the results obtained by DF-VO in the KITTI dataset
in the sequences where lighting conditions and scenario characteristics (e.g., the
appearance of buildings, no big slopes and static objects) are also similar.Therefore,
the recording setup is considered validated for the later experimentation.

However, the night recorded sequences trying to replicate poor lighting conditions
found in the underground railway scenario obtain slightly worse results and, there-
fore, DF-VO is expected to follow the same behavior in the CAF dataset. Figure
4.1 shows the trajectory results of DF-VO against the ground truth trajectory gener-
ated by the ORB-SLAM2 (see section 3.3.1 for the ORB-SLAM2 based ground truth
generation). Sequence 00 (daylight) and 01 (night) were recorded in Aragoa and
sequence 02 was recorded in Musakola by day.

From Figure 4.1, it can be seen that the trajectories estimated by DF-VO are close to
the reference trajectories.
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Figure 4.1.: Comparison between DF-VO pose estimation and the reference created by
ORB-SLAM2 in CarDriving dataset.

4.4 DF-VO and ORB-SLAM2 in CAF dataset

This section discuss the evaluation of the state-of-the-art VO/vSLAM algorithms’
performance in the CAF proprietary dataset. The ground truth of this proprietary
dataset has been generated by synchronizing geodetic coordinates, train ERTMS
ATP data and the gradient profile of the target railway (see section 3.3.2). Table 4.3
shows the errors for each sequence estimated with selected VO algorithms DF-VO
and ORB-SLAM2. Figures 4.2 and 4.3 represent the errors depicted in Table 4.3.

Previously, DF-VO and ORB-SLAM2 were evaluated in the KITTI Odometry dataset;
however, KITTI does not contain those perception challenges as it contains consider-
ably different properties related to the sequence length and visual characteristics.

In Table 4.3, it can be seen that ORB-SLAM2 obtains better results than DF-VO
in all the metrics. The minimum ATE is found in sequence 01_17 (15.61m), the
shortest sequence, with a length of 505m. On the contrary, the maximum ATE
is estimated by DF-VO in the sequence 03_41 (478.76m) from a 1729m length
sequence. The smallest translational RPE is estimated by ORB-SLAM2 (0.086m in the
01_17 sequence), while the largest is estimated by DF-VO (0.764m in the sequence
01_37). The sequence length affect to the error estimations in this scenario.

The average translational (terr) and rotational (rerr) errors follow the same behavior.
An average terr of 70.07% and 58.34% are obtained by DF-VO and ORB-SLAM2,
respectively. These results are higher than those obtained by the same algorithms
in the standard KITTI dataset (see Table 4.4. However, the urban underground
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railway scenario characteristics are distinct and hinder the use of light-dependent
localization algorithms, such as DF-VO and ORB-SLAM2.

In some of the sequences, much larger ATE than in the other sequences can be ap-
preciated (e.g., sequences 03_49, 03_36, and 03_41). The length of those sequences
is larger than others (see dataset definition in Table 3.3) because they skip some
stations (e.g., sequence 03_49 skips stations Otxarkoaga and Txurdinaga, and stops
at Zurbaranbarri). As all the used metrics are incremental and the sequences do not
contain loops (do not go through the same place two times) for global localization
optimization, the trajectory length seems critical for pose estimation.

Figure 4.2.: ATE (m) of DF-VO and ORB-SLAM2 application on the generated proprietary
CAF dataset. The most significant errors are estimated on the longest sequences
(e.g., 03_49 and 03_36).

As shown in Figure 4.2, in most of the sequences the ATE is well below the average.
However, in the longest sequences (e.g., 03_49, 03_36 and 03_41), the ATE increases
greatly, which means that the average error is affected highly by those few long
sequences. The ORB-SLAM2 pose estimation is 42% better than DF-VO estimations
when comparing the ATE in this scenario.

Comparing the results to those obtained by the same algorithms in the KITTI dataset,
in the case of the ATE, the error of DF-VO in the KITTI dataset is 6.872m while in
the CAF dataset is 152.32m. For ORB-SLAM2, the ATE is 26.480m and 89.72m in
the KITTI dataset and CAF dataset, respectively. The terr is also lower for the KITTI
dataset, increasing from 1.972% to 70.07% for DF-VO between the standard and
the proprietary datasets. In the case of ORB-SLAM2, the terr also increases from
8.074% to 58.34% from KITTI dataset to CAF dataset. Consequently, the evaluation
of the algorithms’ pose estimation in the CAF dataset shows that both algorithms’
errors are higher than those found in the KITTI dataset. However, it can be seen that
ORB-SLAM2 outperforms DF-VO in this challenging scenario.

4.4 DF-VO and ORB-SLAM2 in CAF dataset 59



Figure 4.3.: Comparison of relative VO evaluation metrics when applying DF-VO and ORB-
SLAM2 algorithms in CAF datasets. Translational and rotational components
of relative errors are shown separately.

Algorithm Metric Avg. Err

DF-VO [133]

terr (%) 1.972
rerr (º/100m) 0.365

ATE 6.872
RPE (m) 0.041
RPE (º) 0.038

ORB-SLAM2 (w/o Loop Closure) [91]

terr (%) 8.074
rerr (º/100m) 0.304

ATE 26.480
RPE (m) 0.130
RPE (º) 0.063

Table 4.4.: Quantitative results of ORB-SLAM2 [91] and DF-VO [133] in the KITTI Odom-
etry dataset. ORB-SLAM2 is executed without loop closure, as the sequences
from CAF proprietary dataset do not contain loops.
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Looking at the results obtained in the CAF dataset (resumed in Table 4.4, an addi-
tional experimentation was needed to ensure that the algorithms’ performance was a
results of the scenario characteristics. For that, the CAF sequences were shortened to
just platform areas which have more similar lighting conditions of the KITTI dataset
and, consequently, more limited lighting challenges.

Algorithm Metric Avg. Err

DF-VO [133]

terr (%) 27.123
rerr (º/100m) 6.824

ATE 3.116
RPE (m) 0.063
RPE (º) 0.036

ORB-SLAM2 [91]

terr (%) 14.011
rerr (º/100m) 2.023

ATE 2.945
RPE (m) 0.04
RPE (º) 0.029

Table 4.5.: Average standard VO errors in CAF dataset when reducing the sequences to
platform areas without lighting challenges.

In this specific case, the errors are reduced to similar values (see Table 4.5) of
executing DF-VO, and ORB-SLAM2 in the KITTI dataset [91], [133] (see Table 4.4).
For instance, DF-VO achieves an RPE (m) of 0.027 in the KITTI dataset and 0.063 in
the platform CAF dataset. ORB-SLAM2 achieves an ATE of 9.464 in KITTI dataset
while 2.945 is achieved in the shortened sequences of CAF dataset. Seeing ATE
values that are lower in the shortened CAF dataset than in the KITTI dataset could
be related to the sequences’ length, as these sequences are shorter than those in the
KITTI dataset.

For the evaluation of these shortened sequences that are under 80m, the terr and
rerr have been calculated with sequence lengths of {10, 20, 30, 40, 50, 60, 70}m. The
difference in the terr obtained by DF-VO may be caused by the lack of training of the
deep models under DF-VO or by the sequences length, as the authors of KITTI that
propose these metrics mention, the error may be biased in short sequences.

These results seem to support that the challenging scene conditions hinder the
application of VO algorithms in such scenarios. The qualitative VO/vSLAM results of
DF-VO and ORB-SLAM2 on CAF dataset are shown in the following section (Section
5).
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4.5 Conclusion

This chapter discusses the experimentation of applying VO/vSLAM algorithms in
the CAF proprietary datasets (whole trajectory and platforms only). It can be seen
that the results in the CarDriving dataset are similar to the results obtained in the
standard KITTI dataset. However, the performance of reference DF-VO and ORB-
SLAM2 algorithms is considerably degraded in the whole trajectory CAF dataset.
ORB-SLAM2 shows to perform better than DF-VO in this scenario, obtaining lower
errors in all the used metrics.

As mentioned in [211], geometry-based VO algorithms such as ORB-SLAM2 suffer
a scale drift issue if additional mechanisms as loop detection are not used. This
effect is increased when ideal visual conditions are not met. The results obtained in
the CAF dataset raise the need of dealing with scale drift and low lighting related
visual conditions. They require an adaptation procedure of geometric algorithms
to handle scenarios that contain more challenging visual characteristics (low-light,
low-textures, or non-lambertian surfaces).

In the case of DF-VO, being a hybrid algorithm, the estimation errors might be related
to the geometric or learning parts of the algorithm. The geometric part follows
the same issues faced by other geometric algorithms such as ORB-SLAM2. The
estimation error of the learning part of the algorithm could be reduced by training
the deep models (Monodepth2 [157] for depth estimation and LiteFlowNet [212]
for flow estimation) in the target scenario. However, the authors of Monodepth2
mention that learning depth from such challenging scenarios is difficult for this
specific network.

Nevertheless, these results obtained by the reference algorithms in the CAF dataset
require an adaptation of reference VO solutions in order to become applicable in
challenging scenarios, such as the underground railway domain.
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Data enhancement for
VO/vSLAM in an urban
underground railway scenario

5

As seen in the results from previous sections, VO/V-SLAM algorithms performance is
degraded when dealing with complex conditions of an urban underground railway
scenario. This scenario presents certain difficulties compared to other standard sce-
narios, such as significant light changes from tunnel areas to platforms, insufficient
illumination, non-Lambertian surfaces, and low textures in tunnels.

One of the main problems of these challenges is the poor lighting conditions, as
it is related to all the others, and it is the base of them. Data enhancement has
been considered in order to reduce the poor lighting effect in VO/V- SLAM results.
The data enhancement process aims to handle the lighting-related limitations of
state-of-the-art VO algorithms by reducing the lousy lighting conditions in the target
domain. For that, an analysis of data augmentation techniques that can reduce the
impact of poor lighting conditions has been carried out.

However, many VO/V-SLAM algorithms rely on camera calibration information for
ego-motion estimation (e.g., [81], [85], [91], [133]). Camera calibration parameters
are tied to image geometry, and a concern about the influence of this transformation
in the calibration parameters of the camera raised. Consequently, an exploration of
the data enhancement effects on calibration parameters was carried out.

In this section the application of previously selected state-of-art ORB-SLAM2 and
DF-VO algorithms in images augmented with a GAN-based enhancement algorithm
is considered and evaluated. Furthermore, as ORB-SLAM2 is a non-deterministic
algorithm, the effect of the enhancement in the dispersion of the estimated poses
among different executions is be examined.

This work has been presented on the IEEE International Workshop of Electronics,
Control, Measurement, Signals and their application to Mechatronics (ECSMS2021)
in a paper called Image enhancement using GANs for Monocular Visual Odometry. In
this paper, image enhancement techniques application is proposed an evaluated. It is
shown that VO solutions performance is improved when applying those techniques.
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This chapter is divided into the following sections. First, a literature review of data
enhancement methods applied in the Computer Vision research works is made. Next,
the enhanced datasets generation is explained. Then, a selected data enhancement
algorithm from the literature review is applied in the proprietary datasets CAF
and CarDriving. After that, as camera calibration parameters are fundamental
for the state-of-the-art VO/vSLAM algorithms, the augmentation effect on camera
calibration parameters is studied. Finally, the results of ORB-SLAM2 and DF-VO
algorithms in generated enhanced dataset are shown and main conclusions are
drawn.

5.1 Data enhancement in Computer Vision

The data manipulation is a very common strategy in the Computer Vision and Deep
Learning research communities. Data enhancement in the computer vision field
refers to techniques that improve the quality of images to enhance the processing of
those images by computer vision algorithms [213]. Data enhancement sometimes is
mixed up with Data augmentation. However, Data augmentation refers to increasing
the data diversity and quantity for Deep Learning model training to improve the
learning model inference performance.

Several enhancement methods can be found in the spatial domain, where pixel
values are manipulated to achieve the desired enhancement. Given an image f ,
the data enhancement is defined as a transformation T that produces image g

represented in equation 5.1,

g = T (f) (5.1)

where each pixel value in f is mapped to a pixel in g. Following the taxonomy of
image augmentation approaches in [214], data enhancement techniques can be
divided into basic image manipulations or deep learning-based techniques.

Among the fundamental image transformations, changes in pixel values can be
found such as color space transformation [215]–[218], kernel filters application
[219], edge enhancement, noise injection [220], [221], or thresholding. Other pri-
mary augmentations are based on geometric operations, such as rotation, cropping,
translation, scale, or flipping [222]. Another proposed technique is mixing images
by averaging their pixel values [223], [224].
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Deep Learning-based enhancement approaches started with Szegedy et al. [225]
proposing adversarial examples to define small perturbations done to images to
change deep networks predictions. Later, they were further studied by Goodfellow
et al. [226]. From those works, later, Goodfellow et al. [227] proposed Generative
Adversarial Networks (GANs).

Most Deep Learning-based enhancement methods are GAN-based, and they consist
of two neural networks competing with each other during their training. These
networks are composed of a generative model that captures data distribution (often
called latent variables) and a discriminative model that estimates the probability of
a sample being from the training set rather than from the generative model. Both
networks keep improving the models through backpropagation through this com-
petition until the generators’ capability to create realistic data becomes acceptable.
Once the training is done, the discriminator is no longer used, and the generator is
used to make enhanced data. Figure 5.1 represents the main structure of GANs.

backpropagation

fake samplesGenerator

backpropagation

Discriminator

real samples

Training samplesLatent random
variable

Fake/real
probability

Figure 5.1.: GANs main architecture with generative and discriminative models and input
data sources.

Lately, many research projects have focused on modifying the GAN framework
with different network architectures, loss functions, or evolutionary methods [214].
For example, some research works have improved the capacity of GANs to create
high-quality samples produce higher-resolution output images [228], [229].

Among these new architectures, Radford et al. presented DCGAN [230], an approach
to increase the complexity of generator and discriminator models. Mirza et al. [231]
proposed Conditional GANs that add a conditional vector to both deep models. Liu et
al.. proposed Coupled GAN (CoGAN) [232], where an image can be translated from
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one domain to another (e.g., night images to daylight images) but without having
corresponding images in those domains. Donahue et al. [233] proposed Bidirectional
GAN (BiGAN), which included an encoder to make the mapping between domains
bidirectional.

Later, other approaches to do an image-to-image translation were developed by
Isola et al. (based on Conditional GANs) [234] or by Zhu et al. (CycleGAN)
[229]. Following these works, Antioniu et al. [235] developed Data Augmentation
Generative Adversarial Network (DAGAN) to generate new data from sample images.
The generation is based on image conditional GANs, and these generated images
are practically indistinguishable from real images.

As mentioned in [214], DCGANs, CycleGANs, and Conditional GANs seem to have
the most significant potential for application in data enhancement. To summarize,
several data enhancement methods are available depending on the research interest
and existing dataset.

In this case, the research aimed to handle the poor visual conditions of the target
scenario through data enhancement. The underground railway domain is character-
ized by varying lighting conditions (tunnel vs. platform) and low illumination (in
tunnels), creating texture-less areas. Furthermore, the captured images are blurred
as the train is in motion, degrading the visual perception. However, this research
focuses only on enhancement methods that handle illumination issues.

Reviewing the literature, several methods have focused on lighting problems from
different approaches such as deep curve estimation for low-light images [236],
feature learning for image enhancement [237], synthetic dataset generation [238],
or image decomposition into illumination and reflectance [239].

Jung et al. proposed Multi-Frame GAN (MFGAN) [240], an approach that introduces
Generative Adversarial Networks (GAN) for VO with the introduction of a flow
estimation-based loss term. It demonstrates the potential of GAN-based networks
to enhance VO results in low-light conditions. In [241], LIME was presented, a
low-light image enhancement method based on pixel values for each RGB channels.
Another widely referenced GAN-based enhancement approach is EnlightenGAN,
presented by Jian et al. [242].

EnlightenGAN is an unsupervised generative adversarial network for image lighting
enhancement. It takes a dark image and enhances it lighting conditions using a
encoder-decoder architecture. Then, global-local discriminators are used to minimize
the adversarial loss, by evaluating randomly cropped local patches in addition to
the image-level global discriminator. The deep model can improve the illumination
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of images and has adapted the weights of a VGG-16 model pre-trained on the
ImageNet dataset [243]. EnlightenGAN has been trained with low-light and normal
light images from several datasets released in [239], [244] and also High-Dynamic-
Ranging (HDR) sources [245], [246]. It is the unique deep enhancement technique
with the ability of making the training process with unpaired low/standard light
images. Figure 5.2 illustrates the architecture of EnlightenGAN algorithm.

Figure 5.2.: EnlightenGAN architecture proposed by Jian et al. in [242]. The generator
is composed by an attention-guided U-Net. Then, the generated images are
introduced to global and local discriminators.

To summarize, this research has focused on the main degraded characteristics of the
underground railway domain: significant light changes and low-light areas. These
issues are related to scenes illumination, and consequently, the algorithms devoted
to improving image lighting were aimed. From the SOTA, EnlightenGAN has been
selected among the state-of-the-art data enhancement methods due to the simplicity
and the results shown in other tasks.

5.2 Data enhancement effects on camera calibration
parameters

Some VO/vSLAM algorithms are based on minimizing the reprojection error of
consecutive frames captured by the camera (e.g., [86]). The error is estimated by
solving the essential matrix, which depends on the intrinsic camera parameters, and
assumes the camera satisfies the pinhole camera model. The camera parameters
are obtained by a camera calibration process consisting on the minimization of the
non-linear least-squares problem shown in [247].This process has a certain level of
uncertainty that quantifies how reliable a calibration measurement is.
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Accordingly, an evaluation of the selected algorithm impact on the camera calibration
parameters and the related uncertainty values is required. It follows the idea of
ensuring that the data enhancement methods do not affect the camera calibration
parameters (e.g., the camera calibration parameters are still valid in the enhanced
datasets).

5.2.1 Camera calibration setup

The effect of the EnlightenGAN enhancement technique in the calibration parameters
of the proprietary datasets has been evaluated by analyzing the differences between
the camera calibration parameters obtained in normal conditions and in enlightened
conditions. Therefore, the focus was to check whether the calibration parameters
do not change from non-enlightened images in standard illumination conditions to
enlightened images in challenging conditions.

The calibration process has been carried out using Matlab’s calibration tool Stereo
camera Calibrator. It is based on the work presented by Zhang [248]. As they
recommend, enough frames to cover the field of view, and to have a good distribution
of different 3D orientations of the checkerboard are necessary (e.g., between 10 and
20 image pairs). Therefore, in this research, twenty frame pairs have been recorded
for each calibration image set.

To analyze the changes in the calibration parameters obtained through the calibration
process of the enlightening images, three image sets have been used. The standard
images has been used to verify the calibration parameters given by the camera
manufacturer and is composed by frames captured in appropriate light conditions.
The low-light images are composed by frames recorded in poor lighting conditions
so they can be enhanced to generate the third enlightened images set.

The effect of EnlightenGAN in the calibration parameters has been performed by
comparing the calibration parameters obtained in the calibration process of the
standard and the enlightened image sets. The scheme of the generated image sets is
depicted in 5.3.

Table 5.1 resumes the calibration image sets generated for the calibration evaluation
process. The defined image sets, the characteristics, and the frame quantity of each
set are described.

In the figure 5.4, the calibration image set recording process setup is shown. It
depicts the camera and a checkerboard calibration patterns positions. The calibration
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Standard images

Low-light images Enlightened images

EnlightenGAN

Figure 5.3.: Scheme of the image sets for the calibration verification. Enlightened images
are obtained applying EnlightenGAN [242] to low-light images.

Image set Frame pairs Characteristics

Standard images 20
Images recorded in normal lighting condi-
tions.

Low-light images 20
Images recorded with poor lighting condi-
tions.

Enlightened images 20
Low-light images enhanced with the Enlight-
enGAN [242] algorithm.

Table 5.1.: Generated image sets for calibration using a camera and the EnlightenGAN
[242] image enhancement technique. The characteristics and the frame pair
quantity of each set are described.

pattern was placed in different poses inside the camera’s visual area. Two images
were taken in each pose: one with the light of the room switched on (for the
standard images set) and the second with the light turned off, simulating poor
lighting conditions (for the low-light images set). Therefore, the only change between
a standard and a low-light image is the illumination.

5.2.2 Camera calibration evaluation

The calibration was evaluated using two standard metrics used in camera calibration
experimentation processes: Mean Reprojection Error (MRE) and uncertainty. The
MRE provides a qualitative measure of the accuracy during calibration. The repro-
jection error is the error in the distance between a pattern keypoint detected in an
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Figure 5.4.: Calibration dataset generation setup with the camera, the image recording
area and the checkerboard pattern for calibration.

image used in the calibration and a corresponding world point projected into the
same image. See the MRE definition in Equation 5.2:

MRE := 1
n ∗m

n∑
i=1

m∑
j=1

2
√

(KPij p⃗i − x⃗ij)2 (5.2)

where K is the intrinsic camera parameter matrix, Pij is the camera pose, p⃗i are
feature locations in 3D, and x⃗ij corresponds to their projection in the 2D image
plane after correcting lens distortions.

The uncertainty represents the standard error corresponding to each estimated
camera parameter and measures the dispersion of sample means around the popula-
tions mean [249]. In other words, quantifies all the possible differences between
a measure and its real value, taking into account that a result of a measure is an
approximation of its real value. The resulting uncertainty error can be used to
calculate the confidence intervals. It is necessary to know the uncertainty to have a
more realistic estimate, as the lower the uncertainty, the better the estimation.

Both the MRE and the uncertainty have been calculated with Matlab’s calibration
tool. The following tables represent the optimal calibration parameters given by the
manufacturer, and the calibration results obtained in the different image sets. The
MRE and the uncertainty of the main camera calibration parameters are measured:
the focal length, the principal point, and the radial distortion.
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Metric Optimal calibration values
Focal length (fu/fv) 700.57 / 700.57
Principal point (cx/cy) 647.99 / 371.86
Radial distortion (k1/k2) 0.025 / −0.17

Table 5.2.: Optimal calibration values obtained from the camera manufacturer.

As shown in Table 5.3, the focal length and principal point estimated in the standard
images set and the intrinsic camera parameters given by the camera manufacturer
(see Table 5.2) are similar.

Metric Standard images
MRE 0.1089
Focal length (fu/fv) 690.31± 4.171 / 689.58± 4.104
Principal point (cx/cy) 644.96± 0.546 / 381.21± 2.367
Radial distortion (k1/k2) 0.014± 0.002 / −0.013± 0.002

Table 5.3.: Standard images calibration results. The MRE and the estimated camera intrinsic
parameters with their uncertainty are shown.

Table 5.4 shows the calibration results on low-light images and enlightened images.
The results reveal that the focal length and principal point in both low-light images
and enlightened images are also similar, being the mean reprojection error and
uncertainties slightly higher in the enlightened images set.

Metric Low-light images Enlightened images
MRE 0.0775 0.0904

Focal length (fu/fv)
694.058± 2.558 /
693.605± 2.482

693.379± 3.204 /
692.858± 3.130

Principal point (cx/cy)
645.006± 0.351 /
380.768± 1.490

644.871± 0.43 /
380.984± 1.840

Radial distortion (k1/k2)
0.015± 0.001 /
−0.017± 0.001

0.015± 0.001 /
−0.017± 0.002

Table 5.4.: Calibration results in low-light images and enlightened images. The MRE and
the estimated camera intrinsic parameters with their uncertainty are shown.

The results show that EnlightenGAN algorithm slightly increases the MRE and the
calibration parameters’ uncertainty. However, even the MRE and the uncertainty of
the camera’s intrinsic parameters being slightly worse than the optimal calibration
parameters provided by the manufacturer (see Table 5.2), they are still similar, and,
consequently, it can be concluded that EnlightenGAN algorithm does not disturb the
camera calibration parameters significantly.
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Consequently, the EnlightenGAN algorithm can be used without having to consider
camera calibration afterwards, and it can be integrated in any VO/vSLAM algorithm
directly.

5.3 Enhanced datasets generation:
EnlightenCarDriving and EnlightenCAF

Once the enhancement algorithm has been selected and the effect on camera cali-
bration parameters has been verified, the generation of the enhanced datasets has
been pursued. Figure 5.5 shows the diagram of the enhancing procedure.

EnlightenGAN

Dataset Enlighten
dataset

Figure 5.5.: Procedure followed for dataset enhancement through EnlightenGAN algorithm.

The EnlightenGAN algorithm implementation for inference and weights for the
learning models have been taken from [242].

Given the two generated proprietary datasets (SteroDriving and CAF, see Chapter 3
for these datasets generation), EnlightenCarDriving enhanced dataset was generated
from the DrivingCar dataset, and EnlightenCAF from the proprietary CAF dataset.

In the case of DrivingCar dataset, the low-light sequences have been enlightened to
generate enhanced sequences 01 and 03 from EnlightenCarDriving.

For the CAF dataset, all the sequences have been enlightened to generate a new
dataset where all the frames’ light conditions are enhanced. Figure 5.6 shows the
result of the enhancement in sample images from both datasets (left-side image is
the original one, right-side image is the enhanced).
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Figure 5.6.: Result of the enhancement of a frame sample for CarDriving and CAF datasets,
respectively. The right-side frame is the enlightened version of the left-side
frame. EnlightenGAN algorithm is applied to the enhanced samples.

5.4 DF-VO in EnlightenCarDriving dataset

This section resumes the performance achieved by DF-VO [133] in the enhanced
EnlightenCarDriving dataset. This dataset is generated enlightening the low-light
sequences from CarDriving dataset (sequences 01 and 03). The recordings were done
driving a car through urban scenarios by night. The ground truth data was generated
using the geometric VO/vSLAM algorithm ORB-SLAM2 [91] and corrected utilizing
the traveled distance through a GPS. ORB-SLAM2 has become an state-of-the-art
algorithm for the VO/vSLAM research community, and has been previously used as
the ground truth data generation algorithm [106]. The dataset generation process is
more deeply depicted in Section 3.3.1.

The performance of DF-VO in EnlightenCarDriving has been evaluated using the
same metrics from the previous section (Average Absolute Trajectory Error – ATE
and Relative Pose Error – RPE). The results are summarized in Table 5.5.

The results show that the minimum ATE was obtained in the enlightened sequence
01 (the Aragoa trajectory), 4.88m over 6.99m of the enlightened sequence 03
(Musakola trajectory). The RPE follows the same behavior in both sequences. For
the average translational error (terr), a lower pose estimation error is obtained in
the Aragoa trajectory (7.20% over 9.82%).
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Trajectory Aragoa Musakola
Avg. Err.

Seq. 01 03
terr (%) 7.20 9.82 8.51

rerr (º/100m) 2.51 4.23 3.37
ATE 4.88 6.99 5.935

RPE (m) 0.087 0.318 0.2025
RPE (º) 0.183 0.398 0.2905

Table 5.5.: DF-VO evaluation in EnlightenCarDriving dataset generated from enhancing
CarDriving dataset through EnlightenGAN algorithm. Sequence 01 belongs to
the Aragoa trajectory and sequence 03 to the Musakola trajectory.

The difference in the results of the two sequences could be related to the trajectories
lengths, as the Aragoa trajectory (sequences 00 and 01) is 300m in length, while
the Musakola trajectory (sequences 02 and 03) is 450m in length. DF-VO is an
incremental algorithm, the poses are estimated based on the previous estimated
poses and the error is accumulated over time. Consequently, the pose estimation
errors are more significant in longer trajectories.

5.4.1 Comparison of DF-VO in CarDriving and EnlightenCarDriving
datasets

This section depicts the comparison between the results obtained in the CarDriving
proprietary dataset and the enhanced EnlightenCarDriving dataset. Table 5.6 shows
the errors of applying DF-VO in CarDriving (only in the night sequences 01 and 03)
and EnlightenCarDriving (the enlightened sequences 01 and 03) datasets.

Trajectory Aragoa Musakola
Seq. CD ECD CD ECD

terr (%) 8.26 7.20 12.52 9.82
rerr (º/100m) 4.36 2.51 5.92 4.23

ATE 5.71 4.88 8.73 6.99
RPE (m) 0.268 0.087 0.38 0.35
RPE (º) 0.784 0.183 0.565 0.46

* CD=CarDriving, ECD=EnlightenCarDriving
Table 5.6.: DF-VO evaluation in CarDriving (night sequences) and EnlightenCarDriving

datasets (sequences 01 and 03). Standard metrics from VO/vSLAM research
community are used. The results in the two trajectories are shown for each
dataset.

ATE over a non-enlightened 300m run from the sequence 01 of Aragoa is 5.71m.
However, the enlightened sequence has an ATE of 4.88m. Therefore, the Enlight-
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enGAN enhancement algorithm has improved the results obtained in the original
sequence by 1.17m. The same behavior can be appreciated for the Musakola trajec-
tory (improvement of 1.74m in the enlightened sequence). The average translational
error (terr) is also reduced from 8.26% to 7.20% for Aragoa trajectory, and from
12.52% to 9.82% for Musakola trajectory.

The relative errors (RPE) are reduced in the enlightened sequences when compared
to the sequences recorded by night. Translational RPE is reduced in 0.181m for
Aragoa trajectory and 0.03m for Musakola trajectory.

Manifestly, the experimental results show that EnlightenGAN improves the DF-VO
performance in low-light car scenarios. Seems that EnlightenGAN is capable of in-
creasing the performance of DF-VO by improving the deep flow or depth estimations
that contribute to the pose calculation through 2D-2D or 3D-2D correspondences.

5.5 DF-VO and ORB-SLAM2 in EnlightenCAF dataset

This section resumes the performance of the state-of-the-art VO/vSLAM algorithms
ORB-SLAM2 and DF-VO in an enlightened urban underground railway scenario.
Then a comparative between the performance of both algorithms in the enhanced
and non-enhanced datasets (CAF and EnlightenCAF) is performed.

The enhanced EnlightenCAF dataset was generated through enlightening the CAF
dataset. This dataset contains 19 image sequences of a train driving trough the L3
railway in Bilbao. The ground truth was generated through a novel method that
synchronizes geodetic coordinates that represent the track positions, ATP monitored
data from train sensors and a gradient map provided by the railway constructor. The
dataset definition is explained more in depth in section 3.3.2).

Results are depicted in Table 5.7 and in the Figures 5.7, 5.9, and 5.8. The av-
erage translational (terr) and rotational (rerr) errors for ORB-SLAM2 and DF-VO
in EnlightenCAF dataset is shown in Figure 5.7. It can be noticed that the algo-
rithms’ performance continues the same behavior as in the non-enhanced datasets.
ORB-SLAM2 outperforms DF-VO in both metrics. The highest terr can be found in
sequence 01_35, a situation that might be produced because it is the sequence that
has the steepest turn. In general, the average errors (terr and rerr) measured in the
performance of both algorithms continue to be higher than the results obtained in
the standard KITTI dataset.
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Figure 5.7.: Comparison of the average translational (terr) and rotational (rerr) errors
when applying DF-VO and ORB-SLAM2 algorithms in EnlightenCAF dataset.

5.5 DF-VO and ORB-SLAM2 in EnlightenCAF dataset 77



As shown in Figure 5.8, the longest sequences (e.g., sequences 03_49, 03_36 or
03_41) are the ones that have the higher ATE error for both algorithms. The mean
ATE error is 151.71m for DF-VO, while it is 86.64m for ORB-SLAM2. The higher ATE
error is obtained in the sequence 03_49 (410.95m over a trajectory of 3145m) by
DF-VO algorithm. This sequence (as the other long sequences) mixes tunnel and
platform areas, with more low-light frames and big light changes between the two
underground environments.

Figure 5.8.: ATE obtained by DF-VO and ORB-SLAM2 algorithms on the enhanced Enlight-
enCAF dataset. The mean error for each algorithms is also shown.

In the case of the RPE, also depicted in Figure 5.9, it can be seen that ORB-SLAM2
also obtains better results than DF-VO. However, the mean translational RPE of all
the sequences is similar between both algorithms (0.3174m for DF-VO and 0.3108
for ORB-SLAM2). The minimum translational RPE is obtained in sequences 01_17
and 02_27 (0.084m), which belong to the same trajectory, by ORB-SLAM2. DF-VO
also obtains its lowest estimation errors in those two sequences. Those sequences
are characterized by a nearly linear path with almost no curves. ORB-SLAM2 obtains
the maximum RPE in the sequence 01_35 (0.618m). In some of the sequences, the
translational RPE is similar between DF-VO and ORB-SLAM2 when estimating the
poses. For example, in the sequence 01_33, a translational RPE of 0.386 and 0.39 is
obtained by DF-VO and ORB-SLAM2, respectively.

Consequently, the results show that the algorithms’ performance in enhanced Enligh-
tenCAF dataset is improved with respect to the non-enlightened CAF dataset. The
behavior observed in the CarDriving and EnlightenCarDriving datasets is preserved.
Furthermore, although the pose estimation errors have decreased generally, the
results of both algorithms continue to be higher than those obtained in the KITTI
dataset. Also, ORB-SLAM2 outperforms DF-VO in this scenario even in the enhanced
images.
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Figure 5.9.: Comparison of relative VO evaluation metrics when applying DF-VO and ORB-
SLAM2 algorithms in EnlightenCAF datasets. Translational and rotational
components of relative errors are shown separately.
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5.5.1 Comparison of DF-VO and ORB-SLAM2 in CAF and
EnlightenCAF datasets

The comparative between the algorithms in CAF and EnlightenCAF datasets shows
that EnlightenGAN reduces the ego-motion estimation errors for DF-VO and ORB-
SLAM2 algorithms. The following figures demonstrate the reduction in the mean
terr, rerr, ATE, and RPE for all the sequences in EnlightenCAF for both algorithms.

Figure 5.10.: Comparative of ATE error of DF-VO (in green) and ORB-SLAM2 (in orange)
algorithms in CAF and EnlightenCAF datasets. For each dataset, the mean ATE
error is shown. The error is reduced for the enlightened sequences.

ATE, shown in Figure 5.10, reduces by 0.40% for DF-VO estimation and by 3.43%
for ORB-SLAM2 estimation with respect to CAF dataset results. This seems to
point out what has been theorized previously, that low-lighting conditions affect the
performance of VO/vSLAM algorithms and EnlightenGAN reduces that effect. Figure
5.11 shows RPE behavior when selected VO algorithms are applied in EnlightenCAF
dataset.

In the case of the RPE (see Figure 5.11), the DF-VO estimation is improved by 3.01%
and by 28.19% for translation and rotation components, respectively. ORB-SLAM2
estimation improves by 1.96% for the RPE translation component and 0.28% for the
rotation component. The use EnlightenGAN use improves the DF-VO performance
more than the ORB-SLAM2 performance when analyzing the RPE.
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Figure 5.12 resumes the comparison of the average translational (terr) and rotational
(rerr) errors obtained by DF-VO and ORB-SLAM2 in the CAF and EnlightenCAF
datasets. terr and rerr are reduced in 4.18% and 1.64% for DF-VO, and in 1.43%
and 0.44% for ORB-SLAM2. As with the other metrics, the errors of the learning-
based DF-VO are decreased more than the errors obtained by the estimations of
ORB-SLAM2.

Table 5.8 resumes the comparison between the average errors in CAF and Enligh-
tenCAF datasets. The results show that the use of EnlightenGAN enhancement
in low-light images improves the performance of the state-of-the-art VO/vSLAM
algorithms.

Algorithm Metric CAF ECAF

DF-VO

terr (%) 70.0726 67.1457
rerr (º/100m) 18.9521 18.6421

ATE (m) 152.3263 151.7163
RPE (m) 0.3273 0.3174
RPE (º) 0.1497 0.1075

ORB-SLAM2

terr (%) 58.3468 57.5126
rerr (º/100m) 12.7531 12.6968

ATE (m) 89.7231 86.6473
RPE (m) 0.3171 0.3108
RPE (º) 0.0953 0.0950

* ECAF=EnlightenCAF
Table 5.8.: Average errors of DF-VO and ORB-SLAM2 evaluation in CAF and EnlightenCAF

(ECAF) datasets. Standard VO/vSLAM evaluation metrics are used (Average
translational and rotational errors, ATE and RPE).

From Table 5.8, it can be seen that the performance of both algorithms is improved in
the enhanced sequences. An average ATE of 86.64m is obtained in the EnlightenCAF
dataset with ORB-SLAM2, while DF-VO obtains an average ATE of 151.71m. To
understand the magnitude of that error, the average length of the sequences in the
generated CAF and EnlighenCAF datasets is 2343.34m. The average translational
(terr) and rotational (rerr) errors are also reduced in the enhanced sequences. From
58.34% to 57.51% for the ORB-SLAM2 algorithm and 70.07% to 67.14% for DF-VO.
The terr and the rerr are reduced by 2.80% and 1.04% on average between the two
algorithms.

Although the pose estimation errors are high for both algorithms in this challenging
scenario, EnlightenGAN reduces those errors more for the DF-VO algorithm than
for the ORB-SLAM2 algorithm. However, ORB-SLAM2 still has more accurate pose
estimation results.
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Figure 5.13 shows a qualitative result comparison of DF-VO and ORB-SLAM2 in CAF
and EnlightenCAF datasets, where the estimation of some sequences are compared
to reference data trajectories. As in the original trajectories (CAF dataset), it can
be seen that the algorithms can estimate the shape of the EnlightenCAF trajectories.
However, a scale underestimation problem appears again. Furthermore, DF-VO
results show that the rotation estimation is affected in the EnlightenCAF dataset.

In most sequences, an underestimation of scale is apparent for both algorithms,
especially for DF-VO. The scale of DF-VO depends on the correspondences found
in the flow estimation, and those correspondences are affected by the lighting
conditions of tunnels in the underground environment. Also, a shift in estimating
the curves made by the train during its travel is observed. For example, in the
sequence 02_22, DF-VO has issues detecting the correct curves once the train starts
to turn to the left. ORB-SLAM2 estimations are closer to the ground truth trajectory.
Overall, although a scale shift appears and curves are wrongly estimated, the shapes
of the estimated trajectories are similar to the reference trajectories.

In conclusion, the results demonstrate that EnlightenGAN improves VO/vSLAM
algorithms performance in the underground railway domain. Furthermore, the errors
are more reduced for the learning-based DF-VO algorithm than for the geometric-
based ORB-SLAM2 algorithm. It seems that the learning algorithms are more affected
by the lighting conditions of the scenario. As in the CAF dataset, an influence of
lighting conditions of the scenario can still be appreciated. This effect could be
related to scale underestimation problems found in both algorithms, especially in
the hybrid DF-VO.
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Figure 5.11.: Comparison of RPE when applying DF-VO and ORB-SLAM2 algorithms in CAF
and EnlightenCAF datasets. Translational and rotational components of RPE
are shown separately.
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Figure 5.12.: Comparison of the average translational (terr) and rotational (rerr) errors
when applying DF-VO and ORB-SLAM2 algorithms in CAF and EnlightenCAF
datasets. Translational and rotational components are shown separately.
These errors measure the performance of the algorithms in different length
subsequences.
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(a) Sequence 01_15 (b) Sequence 01_17

(c) Sequence 02_22 (d) Sequence 01_39

(e) Sequence 01_53 (f) Sequence 01_50

Figure 5.13.: Comparison of ORB-SLAM2 and DF-VO application in some sample sequences
in both CAF and EnlightenCAF (ECAF) datasets and the reference ground truth
for each trajectory. The improvement from the non-enhanced to enlightened
sequences can be appreciated more in the DF-VO algorithm estimations.
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5.5.2 ORB-SLAM2 dispersion in enhanced EnlightenCAF dataset

As stated before, ORB-SLAM2 is a non-deterministic algorithm, where each execution
is different because of the initialization process based on the reliability of descriptors
matching. Therefore, the poses estimated by ORB-SLAM2 fluctuate among different
runs. When evaluating the ORB-SLAM2 pose estimation, this fluctuation seems to
be reduced when enhancing the frames with EnlightenGAN algorithm. Accordingly,
an initial evaluation of ORB-SLAM2 dispersion has been done, where the impact of
the enhancing EnlightenGAN in that dispersion is observed.

The dispersion of poses among different executions has been evaluated using stan-
dard metrics [250]. These metrics include the variance (σ2) and the Coefficient of
Variation (cv). The variance measures the variability of the values from the sample’s
mean. σ2 is defined in the following equation 5.3:

σ2 =
∑n

i=1(xi − x̄)2

n− 1 (5.3)

where xi is the ith data point, x̄ refers to the mean of all data points, and n is the
number of data points. In the case of the cv, it measures the ratio between the mean
value and the variance of a data sample and can be defined as in 5.4. For the data
sample p, which includes five pose estimations, the cv is calculated as:

cv = σ2

x̄
100 (5.4)

where σ2 and x̄ are the variance and the mean of all data points, respectively. The
lower the cv value, the lower the dispersion. A value of cv < 1 is considered to be a
low variation sample.

The dispersion of the poses estimated by ORB-SLAM2 in different runs seems
to reduce when enhancing the frames with EnlightenGAN. Therefore, it can be
concluded that the translation estimation error range of the non-deterministic
ORB-SLAM2 algorithm can be reduced by applying GAN based data enhancement
techniques such as EnlightenGAN.

The evaluation has been done by executing ORB-SLAM2 in both datasets, the
original CAF and the enhanced EnlightenCAF, to compare the dispersion of the
estimated poses among different executions. Each sequence has been run five times
as proposed by [91]. Therefore, the number of points for each pose when calculating
the variance (σ2) and the coefficient of variation (cv) is n = 5.
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Figure 5.14 shows the results of applying ORB-SLAM2 five times on trajectory
01_54 in the CAF and the enhanced EnlightenCAF datasets. It can be seen that the
distribution of the poses through the trajectory is more constant in the enlightened
dataset.

(a) 03_54 in CAF dataset (b) 03_54 in EnlightenCAF dataset

(c) 01_40 in CAF dataset (d) 01_40 in EnlightenCAF dataset

Figure 5.14.: Pose dispersion analysis on sample sequences 01_40 and 03_54. ORB-SLAM2
algorithm is executed five times on each dataset.

Regarding the ORB-SLAM2 dispersion, seems that the scenarios’ lighting conditions
are a critical characteristic for ORB-SLAM2 performance, and that improving that
lighting through data enhancement methods reduces the pose estimation dispersion.
Good lighting conditions seem to be critical for VO/vSLAM algorithms.
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From the results, it can be seen that enlightening the datasets with EnlightenGAN
increases the DF-VO and ORB-SLAM2 performance. Moreover, it tends to reduce
ORB-SLAM2 dispersion in pose estimation.

5.6 Conclusion

This chapter covers the experimentation related to the DF-VO and ORB-SLAM2
performance in the lighting enhanced proprietary datasets EnlightenCarDriving
and EnlightenCAF. The urban underground railway domain is characterized by
varying lighting conditions (tunnel vs. platform), low illumination (in tunnels), or
texture-less areas that challenged the state-of-the-art VO/vSLAM algorithms. These
algorithms are mainly based on scenario feature extraction processes that depend on
image luminosity. Therefore, their performance in the presented low-light scenarios
diverges from the performance in standard VO/vSLAM benchmarks. However, new
approaches from the data enhancement research community were identified as
a methodology to reduce the impact of poor lighting conditions in VO/vSLAM
algorithms.

The results show that the data enhancement through EnlightenGAN increases the
performance of both state-of-the-art DF-VO and ORB-SLAM2 algorithms in all the
generated enhanced datasets (EnlightenCarDriving and EnlightenCAF), reducing the
Absolute Trajectory Error by at least 1.91% and the Relative Translational Error by
2.80% when using the enhanced frames.

Furthermore, as ORB-SLAM2 is considered non-deterministic due to its initialization
phase, the pose estimations can vary from run to run. Analyzing different ORB-
SLAM2 runs in the same sequences, it was detected that GAN-based enhanced
techniques tend to reduce the dispersion of the pose estimations among different
runs. A deeper analysis of the frames where the dispersion of ORB-SLAM2 increases
or decreases could lead to detecting the scenario characteristics that hinder the use
of such VO/vSLAM algorithms and, therefore, explore adjustments to increase their
performance in such challenging domains.

88 Chapter 5 Data enhancement for VO/vSLAM in an urban underground rail-
way scenario



Conclusions 6
This research aims to investigate the usage of Computer Vision (CV) for autonomous
train operations in the urban underground railway domain. An autonomous train
must accomplish all the operations in an autonomous way including the localization.
In that task, the use of cameras could be helpful as it has been in other domains
such as robotics or other vehicles (e.g., cars or drones).

The research in the railway domain has recently raised due to the transformation
of railway vehicles toward autonomous driving systems. However, it is a starting
research field, with little specific work in train localization and no focus on the
cameras as the primary sensors. Most of works have focused on sensor fusion [49]–
[54]. To our knowledge, this research is the first research work that explores the
application of VO/vSLAM algorithms based only on cameras as primary sensors in
the underground railway scenarios. This decision comes from the relative low-cost
of cameras and the results shown in other domains. The urban underground railway
domain is characterized by varying lighting conditions (tunnel vs. platform), low
illumination (in tunnels), or texture-less areas that challenge the VO/vSLAM in this
domain.

When focusing on the literature in the railway domain, limited research works
have been found. Therefore, a state of the art (SOTA) of CV-based autonomous
robot and vehicle localization algorithms has been done, pursuing the usage of
state-of-the-art algorithms in the target domain. The SOTA points out that the
localization algorithms started relying on the geometric features of the images in the
early 2000s, and then, learning-based algorithms proliferated due to the Machine
Learning advances.

Learning-based algorithms have mainly focused on Convolutional Neural Networks
(CNN) for their feature-extraction capabilities and Recurrent Neural Networks (RNN)
to include temporal knowledge through sequential modeling. The challenges faced
by some geometric VO/vSLAM algorithms, such as the scale inconsistency or the drift
issues of monocular algorithms, have been focused on by learning the depth and
optical flow from image sequences. Furthermore, as most recent learning VO/vSLAM
algorithms are based on learning scene depth and flow between consecutive frames,
it has become a research direction itself. However, these algorithms have to deal

89



with other problems such as the perceptually tough scenario characteristics or the
adaptability to unknown environments.

The literature review of VO/vSLAM in visually degraded environments and scenarios
evidences the need for further research in this direction. State-of-the-art algorithms
have been primarily tested in standard scenarios, but their performance is not
measured in scenarios with different circumstances (e.g., poor lighting conditions,
non-Lambertian surfaces, textureless areas or dynamic environments). Consequently,
and based on this analysis, this research has focused on the study of the performance
of VO/vSLAM algorithms from robotics and autonomous vehicles in a visually
challenging scenario: the urban underground railway domain.

6.1 General conclusions

Reviewing the most referenced datasets by the VO/vSLAM research community,
no dataset was found to fit the target scenario. Most of the referenced datasets
belong to the robotics or car domains. Moreover, most state-of-the-art VO/vSLAM
algorithms have been evaluated on the KITTI vision benchmark [11] which offers
data captured from a moving car in outdoor urban scenarios. These scenarios
are defined in outdoor environments with good lighting settings and favorable
conditions for feature extraction.

Among the other analyzed datasets, it should be noted that only one database related
to autonomous localization and mapping covers the railway domain (Nordland
[190]), although it covers only outdoor scenarios. Consequently, the need for a
proprietary dataset from the target domain arose. The CAF dataset was generated
by recording in an urban underground railway scenario.

Furthermore, given the access difficulties to the target scenario, the complementary
dataset CarDriving has been recorded to validate the recording setup (e.g., camera
setup, frame quality,...). This dataset was generated from a driving car in an urban
environment recording by night, imitating the low-light conditions of the urban
underground railway scenario.

Usually, the ground truth for standard datasets is generated by adding a GPS-based
localization system to the cameras. The ground truth for the CarDriving dataset
has been obtained from the standard algorithm ORB-SLAM2 and corrected with
GPS data. However, in the railway scenario, the GPS is unavailable and, therefore,
another methodology to acquire reference data was pursued. Ground truth has been
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generated by designing and implementing a novel method to estimate 6-DoF poses
for the frames recorded in an underground railway line. The generation process
is based on the synchronization of geodetic coordinates from a geomap, ATP data
recorded from the train wheel sensors, and a railway gradient map provided by the
railway constructor. This ground truth generation method shows that reference data
can be generated from other sources than the most commonly used GPS.

To our knowledge, the CAF dataset is the first VO/vSLAM dataset in the urban
underground railway domain. In order to make it scientifically sound, it follows
the standard KITTI format and data volume. The generated CAF dataset enables
the evaluation of the state-of-the-art VO/vSLAM algorithms in scenarios with chal-
lenging perceptual characteristics that can not be found in the standard VO/vSLAM
datasets.

From the SOTA of VO/vSLAM algorithms, DF-VO [133] and ORB-SLAM2 [91]
were selected for the experimentation as they were two of the algorithms with
the best results in robotics and autonomous car datasets such as KITTI, and they
belong to distinct types of VO/vSLAM algorithms (learning-based and geometric,
respectively).

The evaluation of state-of-the-art VO/vSLAM algorithms in the generated datasets
CAF and CarDriving has been conducted following standard VO/vSLAM evaluation
metrics. It can be seen that the results in the CarDriving dataset are similar to the
results obtained in the standard KITTI dataset.

However, the performance of state-of-the-art DF-VO and ORB-SLAM2 algorithms is
considerably degraded in the CAF dataset. Furthermore, by shortening the under-
ground railway sequences to platform areas with more similar lighting conditions
to standard datasets such as KITTI, the errors are also reduced to similar values of
executing the VO/vSLAM algorithms in those standard datasets.

As mentioned in [211], geometry-based VO algorithms such as ORB-SLAM2 suffer
a scale drift issue when ideal visual conditions are not met. The results obtained
in the CAF dataset raise the need for affording scale drift and low lighting-related
visual conditions. They require an adaptation procedure of this type of VO/vSLAM
algorithm to handle scenarios that contain more challenging visual characteristics
(low-light, low-textures, or non-Lambertian surfaces).

In the case of DF-VO, being a hybrid algorithm, the scale may be wrongly estimated
due to issues related to the geometric characteristics of the underground visual
domain or the deep learning training process. Even training the depth estimation
network, the scenario lighting characteristics (low-light) and the repetitive textures
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seem to hinder the performance of the depth estimation algorithm compared to
standard datasets that do not afford such challenging visual characteristics.

Nevertheless, these results obtained by the reference algorithms in the CAF dataset
demonstrate that an adaptation of reference VO solutions is required in order to
become applicable in challenging scenarios, such as the underground railway domain.
Following the above idea, this research also explores improving those results in the
target domain through image enhancement techniques. New approaches from data
enhancement research have brought the opportunity to analyze if they might reduce
the impact of poor lighting conditions in VO/vSLAM algorithms.

Therefore, enhanced dataset variants of CAF (EnlightenCAF) and CarDriving (Enlight-
enCarDriving) datasets have been generated using EnlightenGAN [242] algorithm.

The results of using DF-VO and ORB-SLAM2 in the enlightened proprietary datasets
(EnlightenCarDriving and EnlightenCAF) show that the data enhancement through
EnlightenGAN increases the pose estimation accuracy, reducing the translational
error by at least 18% compared to the non-enhanced datasets.

Furthermore, from a first evaluation of the pose estimations variability of the non-
deterministic ORB-SLAM2 algorithm, it can be seen that enlightening the sequences
tend to reduce the dispersion of the ORB-SLAM2 estimations.

6.2 Future work

This research evidences the need of further research activities in challenging sce-
narios such as in the underground railway domain. It covers the analysis of two
state-of-the-art algorithms (DF-VO and ORB-SLAM2), but the exploration of other
algorithms is foreseen as a future research task. An option is the exploration of
geometric direct VO/vSLAM algorithms in such challenging domains (e.g., Stereo
DSO [82] (2017) or TANDEM [83] (2022)), which has not been analyzed in this
research. Other options include the use of VO/vSLAM works that have been de-
signed to handle other challenging characteristics as [89] that focuses on scenarios
under day-night or seasonal changes; in [131] BGNet is proposed, an algorithm
that handles scenes with illumination changes or repetitive patterns; [121] proposes
GeoNet, a robust algorithm for non-Lambertian surfaces; or, low-textured regions
are explored in CNN-SLAM [102].

Furthermore, lately, research works in the VO/vSLAM community have pointed out
data fusion as the best solution to autonomous vehicles’ localization [15], [16].
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Therefore, the inclusion of other sensors, such as the LiDAR or an IMU, is also
foreseen.

Focusing the proposed ground truth generation method, an interesting approach is
to improve the train stopping point detection in the image sequences by updating
the SSIM with other methods (i.e., the Siamese networks) that could lead to a more
automatic ground truth generation method skipping the SSIM threshold definition.
Also, the adaptation of this reference data generation method to other underground
scenarios might be interesting to evaluate the suitability of the proposed dataset
generation method.

Referring to the results obtained by the selected state-of-the-art VO/vSLAM algo-
rithms, the estimation error of the learning part of DF-VO could be reduced by
training the deep models in the target scenario. However, the authors mention
that the depth network under DF-VO (Monodepth2) may not be appropriate for
these challenging scenarios as it might be difficult for self-supervised algorithms
to learn in scenarios with visually degraded conditions. This evidences a research
direction to explore learning depth in such scenarios where the lighting conditions
are inadequate, with textureless areas or non-Lambertian surfaces.

From the results obtained by DF-VO and ORB-SLAM2 in the enhanced datasets,
the exploration of other enhancing algorithms can be an interesting research field.
Several research works are envisioned, such as the application of more types of
enhancement methods (e.g., algorithms devoted to other visually challenging issues
such as the non-Lambertian surfaces), the integration of the enhancement with the
VO/vSLAM algorithms as a unique process or the research works focused on learning
the best enhancement combination for the target scenario.

Furthermore, a deeper analysis of the frames where the dispersion of ORB-SLAM2
increases or decreases could lead to detecting the scenario characteristics that
hinder the use of such VO/vSLAM algorithms and, therefore, explore adjustments to
increase their performance in such challenging domains.

Lastly, the analysis of the application of VO/vSLAM in the embedded systems of
the train is out of the scope of this research. Evaluating the performance of the
algorithms in such systems is an engaging research direction. Furthermore, current
train localization systems are designed according to functional safety standards, that
currently do not consider the application of deep learning-based algorithms.

6.2 Future work 93
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Application of Computer Vision and Deep Learning in the railway
domain for autonomous train stop operation

Mikel Etxeberria-Garcia1, Mikel Labayen2, Maider Zamalloa1 and Nestor Arana-Arexolaleiba3

Abstract— The purpose of this paper is to present the results
of the analysis of the application of Deep Learning in the
railway domain with a particular focus on a train stop opera-
tion. The paper proposes an approach consisting of monocular
vision-based and Deep Learning architectures. Even the difficul-
ties imposed by actual regulation, the findings show that Deep
Learning architecture can offer promising results in railway
localization using techniques like visual odometry, SLAM or
pose estimation. Besides, in spite of the many datasets available
in the literature needed to train the neural network, none
of them have been created for indoor railway environments.
Therefore, a new dataset should be created. Furthermore, the
paper presents future research and development suggestions for
railway applications which contribute to guiding the mid-term
research and development.

I. INTRODUCTION

The application of Machine Learning has increased since
the applicability of some of its techniques has improved.
Deep Learning is one of the most growing techniques of
Machine Learning. The good results that have achieved in
recent researches and the increase of computational capacity
have lead to a time where Deep Learning can be applied to a
wide range of domains [1]. From Medical technologies to the
Internet of Things through its mayor domain, robotics. The
power of Deep Learning in robotics lies in the potential it
has of making a system that can learn [2]. The robotics com-
munity has identified and summarized several applications
for Deep Learning in robotics, such as, learning complex
dynamics, control operations, advanced manipulation, object
recognition or interpretation of human actions [3].

In this context, Deep Learning application has facilitated
a development in the autonomous driving industry as one of
the most important future business bets. Computer vision
techniques, using Deep Learning, have helped to create
machine-learning-based robots and cars that can predict
and learn how to drive in various environments. The re-
cent advances on Intelligent Transportation Systems (ITS),
Advanced Driving Assistance Systems (ADAS), intelligent
infrastructures and autonomous driving have carried many
benefits to the transportation industry [4]. These technologies
provide the vehicle its own decision-making capacity and
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the ability to interpret its environment, and consequently,
enhance the control and signaling solutions. The irruption
of Artificial Intelligence techniques in general and Deep
Learning techniques, in particular, have allowed improving
the perception capacity of these systems and the knowledge
derived from the information perceived in the environment.

The railway domain is also transforming towards the ITS
and ADAS industry. Nowadays, this sector is ready for
the next steps involving itself in different research projects
related to Computer Vision and Artificial Intelligence devel-
opment. In a fully autonomous train system all the operations
involved in must be automatic, for example, visual odometry,
people and obstacle detection-identification in railroads, op-
erations such as train doors opening/closing, gauge control in
platforms, coupling or as is presented in this work, accurate
train stopping in train platforms.

This paper is divided into the following sections. Section
II presents a use case of a company related to the railway
domain. Main approaches in train-robot localization using
Deep Learning are explored in Section III, followed by
the first use case presentation in Section IV. Finally, some
expected results are drawn in Section V.

II. PROBLEM DEFINITION

Communication-Based Train Control (CBTC) is a standard
defined by the IEEE (IEEE 1474 [5]) which defines a
set of performance and functional requirements for track
and onboard equipment in order to enhance performance,
availability, operations and the protection of the involved
systems. A CBTC system could be defined as an automatic
train control system where the track and onboard subsystems
are continuously communicated. The main two functionali-
ties covered by those subsystems are the Automatic Train
Protection (ATP) and Automatic Train Operation (ATO).
ATP subsystems monitor the train speed and position in
order to guarantee a safe train operation. On the other hand,
ATO subsystems are dedicated to the operations devoted
to reaching a more autonomous and efficient train driving
experience, such as, driving assistance tasks or automatic
control of train brake and traction commands that aim to
ensure that train speed is lower than the limit established by
the ATP system [6].

Current CBTC systems, according to the standard IEC
62290-1, can be divided into pre-established Grades of
Autonomy (GOA). The GOA of a train implementing any
autonomous operation will have a value between 2 and 4:
GOA2 for a semi-automated Train Operation, GOA3 for a
driverless Train Operation and GOA4 for an unattended Train
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Operation. In GOA3 and GOA4 systems, as there is not
a driver inside the train, an accurate train location system
is required. Precise positioning systems can reach a higher
grade of automation [7]. A train that implements GOA3 or
GOA4 level can be considered as a robot that navigates
through a track in indoor and outdoor environments including
underground stations. Therefore, it becomes essential to
implement precise and reliable train localization subsystems.
A GOA3 or GOA4 train must compute, among others, the
braking curve or the train stopping location with precision.

Accurate train localization and platform-train doors align-
ment are required for a safe passenger transfer train op-
eration. Door equipped platforms, which avoid human or
undesirable objects to fall in the railway area, are more
common now than in the past. To align the doors and
platform in a train stopping point requires a precise local-
ization information. Nowadays, it is calculated using train
speed data captured form different odometry sensors. These
sensor errors are corrected time-to-time during train service
using beacon information. However, in a stopping point, the
driver’s eyes and experience are still the key factors to align
correctly the train with the platform area and to remove final
localization error.

The sensors used in visual localization systems include
monocular, stereo, RGB-D cameras, and LIDAR. In visual
problems, some cameras are not able to calculate the absolute
scale, and therefore, scale drifts appear [8]. Stereo cam-
eras provide an immediate scale while requiring calibration.
RGB-D cameras provide color and depth information for
each pixel in an image [9], but its economical cost is higher
than the other options. In general, a lot of research interest
has been focused on dense and semi-dense methods from a
single camera [10]. In the railway domain, the only research
found using a monocular camera is DisNet [11] proposed by
Haseeb et al. Most approaches in this domain are based on
another type of sensors as stereo cameras [12], [13].

The main objective of this research is to explore the
capability of Machine Learning techniques, particularly Deep
Learning techniques, and monocular computer vision for
an accurate train stopping in fully autonomous train stop
operation.

III. RELATED WORK

Lately, the capacity of Computer Vision to address some
robotics problems has increased due to the rise of the
application of Deep Learning algorithms and the increase
of computational resources. This situation also comes from
the promising results obtained by the application of deep
approaches in computer vision, specifically with the use
of Deep Neural Networks (DNN), as Convolutional Neu-
ral Networks (CNN), on large-scale image classification
(Krizhevsky et al. [14]). This work demonstrates the idea of
the benefits of using CNNs on Computer Vision problems.
Additionally, it has been shown that one of the potentials
of CNN is their generalization ability in visual recognition
tasks, i.e., visual localization estimation. A CNN trained
for another purpose at first instance can be reused to solve

another purpose without the need for a full training phase
again. Most systems use CNNs to find only local features
or generate descriptors of discrete proposal regions [15].
Several works state that deep learning algorithms can model
localization or depth solutions by regression [16]. On the
railway domain, most researches focus on other computer
vision problems as object and rail detection [17], [18] or
stations monitoring [19] although some of these approaches
may be applied for localization purposes.

Three main techniques can be distinguished in visual
localization problems: Visual Odometry (VO), Simultaneous
Location and Mapping (SLAM) and Depth Estimation. Some
of these techniques refer to the same problems, share view-
points and in some cases cannot be differentiated.

• Visual Odometry (VO). Odometry can be defined as the
use of data from motion sensors in order to estimate
changes in position over time [20]. Visual odometry
(VO) is a particular case of odometry, where the position
information is acquired through camera images [8]. The
term Visual Odometry was first introduced by Niester
et al. [21] proposing a method for estimating camera
motion using RANSAC [22] outlier refinement method
and tracking extracted features across all frames. Before
that, feature matching was done just in consecutive
frames. Later researches have shown that VO methods
perform significantly better than wheel odometry in
robotics while the cost of cameras is much lower
compared to more accurate IMUs and LASER scanners
[8]. This scenario raises the need for exploration of
the applicability of VO in the railway domain and
autonomous driving trains.

• SLAM. Simultaneous Localization and Mapping
(SLAM) is a technique to reconstruct an unknown 3D
environment. It has become a popular research topic, as
it is the base for autonomous robot navigation. Visual
SLAM (vSLAM) is the field of SLAM comprised
of methods that use visual information. Both share
many components such as feature extractors. The main
difference between both techniques is that VO centers
on a relative part of the map, while vSLAM uses the
full context and global consistency is aimed [23].

• Depth estimation. Scene depth refers to the distance
from the camera optical center to the object along to the
optical axis [24]. The estimation of depth can contribute
to localization, and in many approaches is used as a
SLAM phase.

Some recent works based on previously mentioned tech-
niques, apply deep learning algorithms in VO solutions. They
can estimate the pose directly from an input image without
feature extraction or feature matching processes. In [25],
Kendall et al. proposed PoseNet, a robust and real-time
monocular re-localization system based on an end-to-end
trained CNN. This approach was improved by adding a treat-
ment of scene geometry introducing geometric loss functions
[26]. Wang et al. [27] presented DeepVO, an approach that
mixes CNN and RNN called Recurrent Convolutional Neural
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Network (RCNN). It takes the benefits of both networks, the
feature extraction capabilities of the CNN and the sequential
modeling from the RNN. Besides, Clark et al. [16] extended
PoseNet with an RNN in order to exploit temporal depen-
dencies and improve the monocular localization accuracy.
Some approaches that extend the PoseNet system have been
presented, i.e., relative ego-motion [28]. Later, in [29] Xiang
et al. introduced PoseCNN, a CNN for 6D object pose
estimation. PoseCNN localizes an object center in the image
and predicts its distance from the camera.

From all the explored techniques, three of them have been
selected as the most interesting and relevant for our particular
use case:

• Disnet. It is the only approach based on the same
domain and is based on CNNs. It uses a CNN to
regress the distance to previously detected objects by
a monocular camera installed on a train. For the object
detection part uses the standard YOLO [30] algorithm,
also based on CNNs.

• PoseCNN. Detects the center of a known object and
estimates the distance from the camera to regress the
pose of that object using a CNN.

• DeepVO. Introduces Recurrent Networks to the local-
ization problem and takes advantage of the input videos
as it infers poses of objects directly from a sequence of
images.

The application of these techniques is foreseen in a real-
world use case from the railway environment, as there are
few applications of deep learning approaches in this domain
due to strict railway regulation. The main goal is to explore
the applicability of Deep Learning for Visual Odometry,
SLAM, and Depth estimation in the railway domain.

IV. USE CASE: TRAIN STOP OPERATION

A. Use case definition

The use case scenario is the Autonomous Urban Train
where artificial intelligence and high-performance computa-
tional capabilities are used to increase the dependability and
the safety of the system. The objective is to apply Computer
Vision and Deep Learning techniques to improve different
autonomous train operation functionalities as precision stop,
rolling stock coupling operation or person and obstacle
detection-identification in railroads.

The selected use case is the automatic accurate stop at
door equipped platforms aligning the vehicle and platform
doors. The goal is to perform precise localization inside the
platform area using visual patterns detection, identification
and tracking in order to reach an accurate stopping point
and managing automatic train operation (traction and brake
commands, ATO functionality). A contribution is expected to
the automatic train operation system, adding the visual local-
ization estimation information to the usual trains odometry
data calculations based on radars and encoders.

In the current train localization system, beacon positions
are known by trackside equipment and may be known by
train if previously announced. From beacon to beacon, a

localization error is accumulated that is proportional to
traveled distance. Each time the train crosses a beacon, the
localization and accuracy are reset. With the combination
of wheel odometry data, given by radars and encoders,
and Visual Odometry (VO) data, provided by our proposed
approaches, an improvement on the precision of the stop is
foreseen, where the localization error must be lower than the
current error given by beacon-based train localization system.

The main idea of our approach is to detect a pattern
that is always placed on the platform that will help us to
locate the train through Deep Neuronal Networks (DNN).
These patterns usually are used by train drivers to know the
stopping position of the train and have a regular form and
color. One example is shown in figure 1.

Fig. 1. Signaling patterns are placed at the end of the platforms, as the
yellow pattern shown in this figure.

B. Architecture

The architecture of the designed application for this use
case is shown in figure 2. The videos are captured using
a camera that transfers the images to a capturer, which has
two workflows. First, transfers the videos to a database (DB)
that will be used to pre-process the videos and train a DNN.
The training process of the DNN will produce a model that
will be used later for real time processing. Secondly, the
capturer passes the streaming of frames to the previously
trained DNN that will output the desired result. Depending
on the selected approach, the pre-process done to the input
videos, the structure of the DNN and the output will be
different. Usually, the pre-processing phase is done using
Computer Vision techniques without Machine Learning.

C. Datasets and data collection

Deep Learning approaches require large amounts of data
for training. This data can be collected from different
sources: use data from existing real datasets and using
simulated environments. The first option is to use data
from the standard datasets created by other institutions or
researches previously or, in case those datasets do not fit the
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Fig. 2. The architecture of the designed application for train localization
using Computer Vision and Deep Neural Networks (DNN)

problem, to create a new dataset. Having a properly labeled
ground truth in these datasets is essential as they are the base
for training DNNs and evaluating performances. Depending
on the selected approach the required ground truth data is
not the same. After an analysis of the most used databases
for visual localization researches, we have found that only
one database (Norland [37]) covers the railway domain.
Furthermore, it does not match our needs for different type
of scenarios, including indoor environments. A summary of
database analysis is shown in table I. For each database, the
used sensors, the domain it belongs to, if they give pose
or/and depth information and if it is an indoor or an outdoor
research is addressed.

In the case of new datasets, an appropriate environment is
required, where a camera can be used to take images from
the front of the train to the track. The advantage of this
system is that the database can be designed to the particular
use case, but it requires a lot of time of recording for
experimentation in the track and means to generate a ground
truth. To overcome this problem, simulated environments can
be used, where no real railways are involved. The drawback
of simulated environments is that we can not assure that an

algorithm trained and validated in a simulated environment
will give the same results in a real world scenario.

Therefore, the creation of a database is envisioned to af-
ford the lack of a standard dataset that fits this research. The
database will be collected in indoor stations including sce-
narios with unfavorable light conditions, pattern shape/color
degradation due to the passing of time and partial occlusions
(hidden patterns because of people or object presence).

V. EXPECTED RESULTS AND CONCLUSIONS
The main goal of this research is to explore the applica-

bility of the Visual Odometry and Deep Learning techniques
used in robotics and autonomous car vehicles to the railway
domain. This article presents a train stopping use case based
on improving the train localization estimation in indoor
environments. It also defines the main architecture of the
system designed to solve the presented use case. Finally, the
need for a dataset oriented to validate and test indoor train
visual localization systems is pointed.

As the results, a visual localization system that improves
the accuracy of indoor localization systems is expected.
According to the accuracy requirements, localization error
should be lower than 15 cm at 99,9% of times (measure
errors must to be taken into account). Consequently, the
system should be able to perform an accurate automatic stop
at door equipped platforms, aligning the vehicle and platform
for correct passenger transfer.

Railway operators are interested in more accessible market
and flexible solutions aligned with social sustainability and
mobility concerns. If urban vehicles (metro) gain autonomy,
system development cost is reduced (install and maintenance
costs) and operation flexibility is gained. The information
received from railroad signaling modes can be enriched by
computer vision and deep learning approaches giving to
vehicles more autonomy and decision-making capabilities.
This way they can observe and interpret the environment in
an independent manner.

Dataset Domain Sensors Pose Depth Indoor/Outdoor
SUN3D [31] Robot RGB-D camera X X I

TUM-LSI [32] Robot RGB-D camera X I
NavVis [32] Robot Camera X I

Cambridge [25] Robot Smartphone X O
7-scenes [33] Urban localization RGB-D camera X I
BigSFM [34] Urban localization Camera X O

MIT DATA [35] Robot LIDAR, Stereo camera, Odometry X I
KITTI [36] Car Laser, Stereo camera, GPS X X O

Nordland [37] Train Camera, GPS/INS X O
Oxford RobotCar [38] Car Cameras, LIDAR, GPS/INS X O

EuroC/MAV [39] Micro Aerial Vehicle Stereo camera, Laser, IMU X X I
The Wean Hall [40] Robot Stereo camera, Laser, IMU X X I
Ford Campus [41] Car Camera, LIDAR, IMU X O

RGB-D SLAM [42] Robot RGB-D camera, Accelerometer X X I
GMU Kitchen [43] 3D reconstruction RGB-D camera X X I

NYUD/NYUD2 [44] 3D reconstruction RGB-D camera X I
ETH3D [45] 3D reconstruction Camera, Laser, IMU X X I/O
Make3D [46] 3D reconstruction Camera, Laser X X I/O

MPI-Sintel [47] Movie (Digital) X I/O

TABLE I
MOST USED DATASETS FOR VISUAL LOCALIZATION PROBLEMS
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A.2 Embedded object detection applying Deep Neural
Networks in railway domain
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Abstract—In the last few years, research on deep learning
application on the transportation industry has grown. One of the
tasks afforded on those works is the object detection, a essential
function in autonomous vehicles, including railway vehicles.
While the application of deep learning for object detection is
increasing in railway domain, proposed methods have to be yet
tested on embedded hardware. This work explores the efficiency
of the standard YoloV3 detector embedded on a NVIDIA Jetson
AGX Xavier to infer traffic signals in the railway domain.
Furthermore, different architectures of YoloV3 are analyzed
and compared to find the best output for the used dataset. A
data augmentation technique called RICAP-DET is developed to
create the training dataset by generating labeled images from
cutouts of a set of images. The results show that YoloV3 can be
used to detect rail traffic-signals in real time on an embedded
platform and that RICAP-DET is adequate to train YoloV3.

Index Terms—deep neural networks, object detection, railway
domain, embedded systems, data augmentation

I. INTRODUCTION

Deep Learning evolution of the last decade has been critical
for the development of some industrial applications. Since
the breakthrough of Convolutional Neural Networks (CNN)
for image processing problems, they have been applied for
numerous tasks such as classification, localization, or object
detection. As in robotics and autonomous vehicles before, the
railway domain is also beginning to experiment an increase
on deep learning application. Object detection specifically,
is essential for many autonomous railway vehicles functions,
such as track monitoring or signal detection. In the recent
years, deep learning based object detection applications are
also emerging in the railway domain. In some of these works,

deep learning is used for signal detection [2]–[4] while others
use signal detection as a first step for other tasks [5].

Usually, the training of Deep Neural Networks (DNN)
occurs on a high-performance computing system, either on-
premises or in the cloud. However, previously trained models
can be deployed and executed on completely different process-
ing platforms. Railway vehicles (and also track equipment)
include some computing systems for control, monitoring and
signaling purposes which are embedded in the vehicle itself.
These embedded systems are constrained by processing cycles,
memory, size or power consumption. Hardware manufactures
like NVIDIA are developing new embedded hardware to
migrate the application of deep learning approaches towards
the industry of autonomous vehicles such as autonomous cars,
trains, trams, etc.

In this work we aim to explore the efficiency and limitations
of such embedded hardware when affording a deep learning
based railway-track signal detection task from the imagines
captured by a camera installed in the front of a train.

This paper is divided into the following sections. Section 2
resumes the most relevant previous works in object detection
along with the main techniques of data augmentation. All the
experimentation phase and data generation are explained in
depth in section 3 and finally some conclusions are drawn in
section 4.

II. RELATED WORK

A. Object detection

In the field of computer vision, different visual recognition
problems have been tackled, for instance: image classification,
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object detection, semantic segmentation or instance segmen-
tation. Object detection locates the presence of an object
in an image, performs object classification and localization
altogether. In this section the common strategies and archi-
tectures used in visual object detection are gathered. All
the explored approaches are camera based, as cameras are a
non-expensive and non-invasive alternative to other sensors
(LIDAR, RADAR, etc.).

In recent years, the detection techniques based on hand-
designed features as SIFT [6] or HOG [7] have become obso-
lete, and many improvement are being achieved in inference
speed and detection accuracy by using DNNs. The publication
of standard datasets, the cost reduction of storage devices
and GPU power allowed the application of deep learning in
industry and machine learning practitioners solutions.

Two types of detectors can be found when designing a deep
learning based object detector. The used detector type depends
on the main objective pursued, which may be the inference
speed or the accuracy [17]: one-stage detectors and two-stage
detectors.

Recent two-stage detectors predict proposals based on back-
bone networks, and then an additional classifier is involved
for the classification and regression of those proposals. In the
two-stage models, the detection is based on regions proposed
by selective search or by using a Region Proposal Network.
Then, a classifier processes only the candidate regions. Some
popular two-stage detectors are R-CNN [8], Fast R-CNN [9],
Faster R-CNN [10] or Mask R-CNN [11].

One-stage detectors skip proposal stage and run detection
directly over a dense sampling of possible locations. The
detection is simpler and faster but might potentially decrease
the accuracy. One of the most well-known one-stage object
detector was presented by Redmon et al. in 2015: You Only
Look Once (YOLO) [13]. YOLO was the first attempt to build
a real-time object detector, as it was designed to achieve fast
inference speed. It is built with a CNN that is pretrained in
ImageNet [16], and the final layer of this network is modified
to output a tensor of bounding boxes to localize the objects
and the class probabilities.

In 2016, YoloV2 [14] was presented with a series of
improvements with respect to the original YOLO, such as,
the use of BatchNorm, passthrough layers and the change
from using fully connected layers to predict bounding boxes
to using CNNs to predict anchor box localization. Later, in
2018, YoloV3 [1] was presented, a detector that uses the
DarkNet-53 network as backbone, and the pyramidal feature
architecture on top of it, to make predictions at different scales.
Moreover, YoloV3 adds residual blocks, skip connections and
up sampling, creating a more robust object detector but always
maintaining the high inference speed of YOLO.

Outside the YOLO detector family, other approaches have
been also proposed over the last few years, such as, SSD [15]
or RetinaNet [12].

As this research aims to explore the efficiency of deep
learning object detectors in embedded hardware, YoloV3 has

been selected for experimentation, as it is one of the most
standard and fast (one-stage) object detectors.

B. Data augmentation

One of the main demands of deep learning approaches
is the huge data need of the models. Additionally, in the
case of supervised learning, another requirement is included
where the training data must be labeled. Many methods have
arisen to try to reduce the impact of the mentioned data
problems, such as, transfer learning, pretraining, one-shot
learning or data augmentation. This last method addresses
the creation of the training dataset and has been widely used
in many deep learning problems. Additionally, some of data
augmentation techniques can help generating refined labeled
datasets. Most of these methods can be stacked on top of other
data augmentation methods.

Basic image manipulation. One of the most basic data
augmentation technique is to produce new data transforming
the original. Some basic manipulations are based on pixel
values as color operations, blurring using kernel filters or edge
enhancement. Other augmentations are based on geometric op-
erations, such as, rotation, cropping, translation, scale, flipping,
etc. In the case of data augmentation for object detection, most
of these techniques can generate new labeled data.

Hinton et al. [19] proposed Dropout augmentation by drop-
ping some pixels on an image and therefore injecting some
noise. Another interesting technique is mixing images by
averaging their pixel values, also called SamplePairing. In
2018, Takashi et al. proposed Random Image Cropping and
Patching (RICAP) [18]. RICAP, randomly crops four images
and patches them to construct a new training image. As
in the previous case, the generated images are not logic to
human eye but are very useful to train DNNs. Additionally, it
makes possible to generate accurate labels for objects in object
detection task.

Generative Adversarial Networks. Since the fast evolution
of deep learning, new strategies have been developed by
creating learning data generators. In 2014, Goodfellow et al.
invented the idea of Generative Adversarial Network (GAN)
[20]. Following this approach, several works appeared where
GANs were applied or improved, such as, Coupled GAN
(CoGAN) [21], Bidirectional GAN (BiGAN) [22], pix2pix
[23] or CycleGAN [24].

Following these works, Antioniu et al. [25] developed Data
Augmentation Generative Adversarial Network (DAGAN) to
generate new data from sample images. The generation is
made using image conditional GANs and these generated
images are practically indistinguishable from real images.

Summarizing, several methods of data augmentation are
available depending on research interest and existing dataset.
However, it is important to consider a search method to find the
best augmentation policies as adding too many augmentation
methods on top of other augmentation methods not always
results on a good training dataset.

Taking all of this into account, we have decided to define a
variation of RICAP [18] method, as it is easily implementable,
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the labelling is done automatically, and it generates enough
data to training our model. This variation and how the aug-
mented dataset has been created are explained more in depth
in the following section.

III. EXPERIMENTATION

The aim of this work is to check if a computer vision
system embedded in a train could localize in real-time a known
type of traffic signals located in the rail track. In this work a
simulation has been used recording about 8 minutes at 30 FPS
(frames per second) and 1920x1080 resolution. The techniques
and experiments described here can be applied to surface
trains, tramways, undergrounds, etc. The process of embedding
begins with an off-line training of the network in a Workstation
and later exporting the network into an embedded platform in
the train, in this case, an NVIDIA Jetson AGX Xavier [27].

A. Hardware

The Workstation used for training is a Windows 10 PC with
an Intel i9-9900k processor with 64GB RAM and an NVIDIA
RTX 2080 Ti. The trained networks are tested in an NVIDIA
Jetson AGX Xavier Developer Kit that is composed by an
ARM 64 bits 8 cores processor, with 32 GB RAM and a GPU
Volta with 512 Tensor Cores.

B. Signals detection with Darknet YoloV3

The object detection algorithm used in this work is the
Darknet YoloV3 implementation for Windows by AlexeyAB
[26]. The full YoloV3 variant has been used with 3 and 5 yolo
layers. The following sections describe the experimentation
main goals:

• Verifying that neural networks trained with the Worksta-
tion and later embedded into an NVIDIA Jetson AGX
Xavier really do have almost equal performance in terms
of detection precision and recall. This will ensure that the
process of training and later embedding in the Jetson is
working consistently.

• Investigating about the best architectural choices for the
neural network for this task. The performance of different
architectural alternatives of Yolo 3 layers Vs. Yolo 5 layers
with three different sizes of input layers will be measured,
comparing how they behave in terms of precision, recall,
and in the case of the Jetson, also in terms of FPS. This
will result into guidelines and conclusions about the best
architectures for the task.

• Experimenting with a variant of data augmentation tech-
nique based in cropping.

C. Data Augmentation for Detection

In this paper an innovative cropping type technique inspired
in RICAP has been developed. While RICAP is focused on
classification, the technique presented in this paper (that we
call RICAP-DET) focuses on detection. RICAP-DET was
developed to generate a large artificial set of images by
composing image cutouts and adding later the signals to be
detected. Furthermore, RICAP-DET automates the labeling

and annotation of training images using neither manual anno-
tation tools nor semi-automatic video annotation tools (as for
example CVAT [30]). The main reason to increase the training
dataset was to avoid overfitting during training.

The data augmentation process begins by collecting two
groups of images. First, crops with all the types of signals to
be detected (as in Figure 1) with different sizes are selected.
The size of the images can vary from very small signals of
20x20 pixels up to large signals of 200x200 pixels. In this
work, 40 signal images have been selected and they all belong
to the same class category (speed signal). Note that the image
cutout of the signals must fit only the signal to be detected.
Second, a large number of image cutouts representing a variety
of railway scenes are selected, ensuring that the selected
cutouts do not contain any of the signals to be detected. As
an example, Figure 1 shows three image cutouts of railway
scenes. In this work, 80 image cutouts of railway scenes have
been used.

Fig. 1. RICAP-DET data augmentation process

Once a sufficient number of composed images representing
a variety of scenes and signals have been collected, the
generation process proceeds as follows:

• Generate 10000 images by composing cutouts in a ma-
trix. Each image is composed by randomly selecting
12 cutouts (480x360 pixels) and composing the whole
image.

• Randomly select 5000 images out of the 10000 images.
For each of the 5000 images, randomly select a signal,
draw the signal in a random position on the composed
image, and generate the annotation file. Note that the
process knows the exact position where the signal is
located, thus, can generate the exact annotation.

Some key advantages of this process are that it is possible
to generate an arbitrary large number of images to avoid
overfitting and the signals to be detected can be inserted
in scenes in which they were not located originally in the
source material, preventing the network to learn that some
signals are associated to some specific scenes, thus helping
again to avoid overfitting. It is frequent that after training,
the network misclassifies objects that are similar to signals.
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In this case it is easy to a) select a group of objects that
are not signals, b) randomly add the objects to the composed
images that are labeled to contain no signal, and c) retrain
the network (starting from last weights of the network).
This way, the network will learn that those objects are not
signals. Furthermore, this procedure can be iterated, obtaining
successive versions of the network that learn to exclude the
undesired objects. This approach has demonstrated to be very
powerful and easily adaptable to new objects, retraining the
network in a simple way.

D. Experiment setup

YoloV3 can be configured with multiple parameters and
can be trained to detect custom objects by training the final
yolo layers of the network. In this work, the network has
been configured by combining the number of yolo and the
size of input layer. In this case, only one type of object will
be detected, thus, the network detects only one class: speed
signal (shown in Figure 1). Note the different sizes and that
the signals can have one or two numbers inside a red circle. In
this work, a total of seven YoloV3 configurations have been
trained:

• 960 x 960 input layer (with 5 yolo layers)
• 608 x 608 input layer (with 5 and 3 yolo layers)
• 416 x 416 input layer (with 5 and 3 yolo layers)
• 320 x 320 input layer (with 5 and 3 yolo layers)
The seven networks share the configuration parameters sug-

gested by YoloV3 authors. Anchors, as required by YoloV3,
have been recalculated for each input layer size and each
number of yolo layers (3 or 5). Additionally, and to speed-up
training as recommended by AlexeyAB [26], only the YoloV3
layers are trained. For that purpose, all previous convolution
layers weights are preloaded before training.

After training each network in the workstation, it is em-
bedded into the NVIDIA Jetson AGX Xavier. Then, in both
platforms, all network variants will be evaluated with the
following well known metrics: precision, recall and FPS
(measures the throughput of frames that can be achieved).

Once the metrics of all networks combination in both
platforms are computed, it must be verified first that the
Workstation and the NVIDIA Jetson behaves similarly (in
terms of precision and recall) ensuring a consistent embedding
process and, second, investigate which architectures show
better performance.

E. Results

Regarding the consistency between the workstation and the
NVIDIA Jetson Xavier, both platforms perform very similar
comparing the precision (Figure 2) and the recall (Figure
3), with negligible differences, therefore ensuring that the
embedding process is working properly.

Figure 2 shows the final precision of the seven YoloV3
networks after 4000 epochs in the NVIDIA Jetson Xavier.
Precision is shown in Y axis while Intersection Over Union
(IoU) threshold is shown in X axis. Figure 3 shows the final
general recall of the seven YoloV3 networks after 4000 epochs

Fig. 2. Precision of the seven networks in the Jetson Xavier

Fig. 3. Recall of the seven networks in the Jetson Xavier

in the NVIDIA Jetson Xavier. Recall is shown in Y axis while
IoU threshold is shown in X axis.

Comparing the precision and the recall of different archi-
tectural choices, all the networks (except 3 layers 320x320)
performs reasonably well up to a threshold, but degrade
quickly from that point on. However, in the case of the recall,
there are important differences among them, the best being the
one with 5 layers and input size of 960x960. In general terms,
it is clear that the network performs better with greater amount
of layers and larger input sizes. One interesting result emerges
from the transition between 5 and 3 layer: the size of the input
layer can have a larger impact in the precision and recall than
having more layers. This is demonstrated by the fact that the
3 layer 608x608 solution is better at recall than the 5 layer
416x416 and the 5 layer 320x320 solution. Therefore, the size
of the input layer of the network is important: the degree of
scaling that YoloV3 must apply is a key factor.

Figure 4 shows the FPS (frames per second) achieved by
the NVIDIA Jetson AGX Xavier with 32-bit and 16-bit float
precision. Note that while precision and recall are similar in
32-bit and 16-bit version (Figures 2 and 3), there is however a
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huge difference in terms of FPS in favor of the 16-bit versions.
Note also that in the transition (5 layer 16-bit and 3 layer 32-
bit) the FPS are very similar.

Fig. 4. FPS of the seven networks in the Jetson Xavier with 32-bit and 16-bit
float precision

IV. CONCLUSION

This paper analyzes the possibility of embedding a YoloV3
network into an NVIDIA Jetson Xavier platform in the railway
domain for real-time detection of traffic signals located along
the track. Several possible configurations have been trained
in a workstation and tested on an embedded platform. To
make a wise choice in a real life applications it is always
recommended to study several types of architectural choices
in terms of number of Yolo layers, size of Yolo input layer
and 32-bit or 16-bit precision.

From results, it can be verified that the networks behave
similarly in both platforms (workstation and Jetson). It has
been found that it is feasible to use an NVIDIA Jetson AGX
Xavier embedded in a train to detect traffic signals in real-time.
The best architectural choice, from all the evaluated ones, is
the 3 Yolo layers with a 608x608 input layer and 16-bit float
precision, achieving a throughput of 18 FPS.

Regarding the used data augmentation technique called
RICAP-DET, it has shown good results and has proved being
a viable choice to create a dataset to train a detection network
on a semi-automatic way.

Since the experimentation of this research concluded, a new
promising approach called EfficientNet has been presented by
Tan et al. [31]. In this work, each of the detector component is
improved and the model obtains remarkable results, improving
by far the current state-of-the-art results, hence, its future
application is foreseen.
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ABSTRACT

In this paper, the application of monocular Visual Odometry (VO) solutions for underground train stopping
operation are explored. In order to analyze if the application of monocular VO solutions in challenging environ-
ments as underground railway scenarios is viable, different VO architectures are selected. For that, the state of
the art of deep learning based VO approaches is analyzed. Four categories can be defined in the VO approaches
defined in the last few years: (1) supervised pure deep learning based solutions; (2) solutions combining geomet-
ric features and deep learning; (3) solutions combining inertial sensors and deep learning; and (4) unsupervised
deep learning solutions. A dataset composed of underground train stop operations was also created, where the
ground truth is labeled according to the onboard unit SIL-4 ERTMS/ETCS odometry data. The dataset was
recorded by using a camera installed in front of the train. Preliminary experimental results demonstrate that
deep learning based VO solutions are applicable in underground train stop operations.

Keywords: computer vision, rail transportation, deep learning, artificial intelligence, autonomous train

1. INTRODUCTION

The evolution of technology in the field of Computer Sciences and Artificial Intelligence (AI) is transforming
the world around us with revolutionary solutions such as autonomous vehicles, medicine or 4.0 industry. These
advances are allowing the introduction of some technological solutions in the society that a few years ago was
only a visionary idea: virtual assistants and autonomous vehicles within others. In this context, the development
of Computer Vision (CV) and AI are opening new opportunities that allow migrating towards an autonomous
operation of vehicles.

The railway domain is transforming towards the Intelligent Transportation Systems (ITS) and the Advanced
Driving Assistance Systems (ADAS) industry. The Communication-Based Train Control (CBTC) standard
(IEEE 14741) defines an automatic train control system where the track and onboard subsystems are continuously
communicated. In an autonomous train system all the operations involved must be automatic, for example,
operations such as train doors opening/closing, gauge control in platforms, or train stopping or coupling. In this
context, accurate train localization and platform-train doors alignment are required for a safe passenger transfer
train operation.

Nowadays, some of the technologies that estimate the train position are based on wheel odometry and radars:
a beacon-based system in the track and, encoders and radars installed onboard to estimate train odometry data.
The inaccuracy of radar and encoder sensors estimation is corrected when the onboard controlling system receives
track beacon distance information.
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However, at a stopping point, the driver’s eyes and experience are still the key factors to align the train
correctly with the platform area and to remove the final localization error. Furthermore, the beacon-based
system has a high cost, as a lot of beacons must be placed in the rail infrastructure, maintenance cost is high,
and the deployment is slowed down.2 Additionally, some researches state that sensing infrastructure may be
replaced with cheaper sensors leading to a more cost-effective solution (Tschopp et al.3), for example, cameras.
These visual sensors are a low-cost technology, have availability, and have been successfully used for localization
task in multiple domains. The motivation of this research comes from the need of overcoming to the drawbacks
of current perception systems regarding autonomous train stopping operation.

Recent advances in Visual Odometry, the branch of computer vision that is responsible for the pose estimation
and localization of autonomous systems using motion changes in camera images, have arisen new approaches.
Furthermore, deep learning advances have enhanced these new approaches. However these approaches are usually
tested on known concrete environments. This research aims to explore the application of monocular
VO algorithms for train localization in underground scenarios.

This paper is divided into the following sections. In Section 2, Visual Odometry (VO) approaches of the
literature are explored followed by the data generation process in Section 3. Then, the applications of the
selected algorithms in the railway domain are presented in Section 4 and, finally, conclusions are drawn in
Section 5.

2. RELATED WORK

The use of Machine Learning (ML) approaches in Computer Vision problems has grown with the increase
of computational resources and new Deep Learning (DL) architectures. This situation also comes from the
promising results obtained by the application of DL methods in CV, specifically with the use of Convolutional
Neural Networks (CNN) on large-scale image classification (Krizhevsky et al.4). Additionally, it has been shown
that one of the potentials of Deep Neural Networks (DNN) is their generalization ability in visual recognition
tasks.

Focusing on the railway domain, some Deep Learning based approaches can be found, but not as much as
in other common fields as Computer Vision and robotics. Some of the works focus on rail track inspection or
monitoring.5,6 Other researches are more focused on risk assessment.7 Object (signal) detection is also a main
task for railway domain researches as in8 or in.9 In this last work, Haseeb et al. defined DisNet, a method to
estimate the distance to the objects detected by a monocular camera installed on a train. It makes a regression
based on the size of the detected objects using YOLO.10 Later in 2019, Multi-DisNet was presented in11 where
previous work was improved using multiple cameras.

Concerning VO applications in the railway domain, Tschopp et al. perform an experimentation of VO
Methods on Rail Vehicles.3 They study geometric outdoor VO methods and introduce some Visual-Inertial
Odometry algorithms by adding stereo cameras and an inertial sensor to their setup. Apart from this work,
there is not much research on VO application in the railway domain. Therefore, approaches from other domains
have to be considered, and their applicability has to be analyzed. Following this, deep learning based approaches
can solve some of the geometric monocular VO approaches problems as their predictions are associated with a
real-world scale.

Visual Odometry (VO). Visual Odometry (VO) is a particular case of odometry where the position
information is acquired through camera images. The term Visual Odometry was first introduced by Niester
et al.12 VO techniques can be classified as geometric-based or learning-based. Even the geometric approaches
have received a lot of attention, still in 2017, ORB-SLAM213 was presented, an efficient and accurate geometric
localization approach that has become the state-of-the-art comparison for all the later approaches. It is based
on feature matching consecutive frames and on bundle adjustment algorithm. Geometric based approaches show
particularly good when there are enough illumination and texture to match features among different frames,
sufficient overlap between frames and scene is static.3 However, geometric VO works suffer from scale drift
issue where scale is inconsistent and expensive global bundle adjustment algorithms are applied to minimize the
problem. Furthermore, monocular VO algorithms have a depth-translation scale ambiguity issue.
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DL-based approaches can solve the scale-ambiguity issue in monocular VO as their predictions are associated
with a real-world scale. In recent years, there have been several works based on monocular VO and DL. They
can be classified in the following four categories (see Figure 1): (1) Supervised Deep Learning VO solutions; (2)
VO solutions that combine learning based and geometric techniques/features; (3) Solutions that include an IMU
in deep learning based VO approaches, and (4) Unsupervised Deep Learning VO solutions.

1. Supervised Deep Learning VO. In 2017, DeepVO14 was created which infers camera poses directly
on an end-to-end manner from a sequence of RGB frames. It can produce accurate results and has a
good generalization ability as it works well in new scenarios. Recently, D3VO15 was presented which infers
camera pose, depth and uncertainty altogether. The authors claims that it out-performs state-of-the-art
stereo/Lidar based methods. However, it is not a fully monocular work as the network is trained using
stereo images.

2. Deep Learning + geometric. Semi-direct visual odometry (SVO)16 is the state-of-art of feature match-
ing methods that combines direct and indirect methods offering an efficient probabilistic mapping method.
Based on SVO, CNN-SVO17 introduced an improved using a depth prediction neural network when ini-
tializing the map point. It was the first work mixing geometric and learning-based odometry methods.
Recently, Zhan et al. presented DF-VO.18 It outperforms pure deep learning-based and geometry-based
methods and solves the scale-drift issue by adding a scale consistent single-view depth CNN. The training
can be done using monocular or stereo datasets.

3. Deep Learning + IMU. Lately, some approaches have introduced IMU sensor to improve pure deep
learning-based methods. Han et al.19 presented DeepVIO, a method that merges mono-camera optical
flow and IMU trough three neural networks. DeepVIO shows state of the art results in terms of accuracy
and data adaptability while reducing the impact of inaccurate calibrations and unsynchronized or missing
data. To avoid the need for ground-truth labelling, they use a self-supervised learning framework, as they
do the next articles.

4. Unsupervised Deep Learning. In 2018, a new unsupervised learning framework called SFMLearner was
proposed by Kathpal et al.20 It infers depth and camera motion using only monocular video sequences to
train the network based on scene structure and view synthesis. However, assumes camera intrinsic are given
and does not explicitly estimate scene dynamics. In 2019, SC-SFMLearner21 was proposed that improves
SFMLearner with a geometric consistency loss to solve the scale ambiguity over the frames and with a
self-discovered mask to handle moving objects and occlusions. SC-SFML can estimate scale-consistent
camera trajectory over a long sequence.

DVSO22 leverages deep monocular depth prediction to overcome limitations of geometry-based monocular
VO. It is a semi-supervised approach, trained with stereo images. It achieves state-of-art accuracy for
monocular and deep learning-based visual odometry while in performance it can be compared with stereo
methods. It recovers metric scale and reduces scale drift in geometric monocular VO. The generalization
ability of DVSO must be analyzed yet. In 2018, Depth-VO-Feat23 was proposed by Zhan et al. Depth-
VO-Feat is an unsupervised monocular VO framework trained with stereo video sequences for learning
depth and VO. They propose a novel feature reconstruction loss without scale ambiguity. However, no
occlusion assumption is made, and the scene must be rigid. Furthermore, the training is done using stereo
video sequences while we focus on training with a monocular dataset. In 2019, Shen et al.24 presented
DeepMatchVO, a self-supervised monocular approach for VO. They introduce the matching loss that
includes the photometric loss and the geometric loss to avoid significant systematic errors due to occlusions
and reflective surfaces. The authors claim that it outperforms previous unsupervised monocular approaches.

However, none of the previous works have dealt with challenging scenarios as underground railway. These
scenarios are characterized by some conditions that can hinder the application of state-of-the-art VO algorithms.
As Almalioglu et al.25 point out, these techniques usually rely on finding correspondences between consecutive
frames, which can not be made accurately in challenging environments as they infringe fundamental conditions
such as stable lightning, lambertian surfaces and variable textures. Underground railway scenarios can be
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included into those challenging environments as they include non-lambertian surfaces or big lighting changes,
being low in the tunnel, and high in the stations where part of the images are saturated. Besides, cameras tuned
to work in both lighting conditions, give blurring and noisy images.

Figure 1. State-of-the-art works in Visual Odom-
etry approaches classified into four categories:
(1) supervised pure deep learning based solu-
tions; (2) solutions combining geometric features
and deep learning; (3) solutions combining iner-
tial sensors and deep learning; and (4) unsuper-
vised deep learning solutions.

Taking into account the previous related work classification
and the issues of challenging scenarios, in this paper we propose
to compare the application of two different approaches: geomet-
ric state-of-the-art approach ORB-SLAM2 and DL+geometric
hybrid solution DF-VO. Furthermore, DF-VO algorithm uses a
depth model that can be trained to evaluate if the results may be
improved.

3. EXPERIMENTATION

Taking into account the previous related work categorization and
the generated dataset, an experimental and theoretical study of
two monocular VO algorithms is being made: geometry based
state-of-the-art approach ORB-SLAM2 and DL+geometric hy-
brid solution DF-VO. The importance of having a dataset with
a precise ground truth is well known in the DL community. This
ground truth can be used to train supervised networks or to evalu-
ate unsupervised networks. Usually, Visual Odometry researches
are evaluated using the standard KITTI dataset26 (specifically se-
quences 09-10), but KITTI does not include underground railway
environment data. Consequently, one of the tasks to afford was
the collection of an underground railway scenario dataset.

3.1 Dataset generation

The data for DL algorithms can be collected from different
sources: from simulated environments, from existing datasets, and datasets explicitly recorded and labeled
in a railway scenario. From an analysis of the most used dataset in Deep Learning applications for autonomous
navigation,27 no existing dataset was found that fit the requirements stated in this research. A unique database
of the railway domain was identified (Norland28) but it is recorded in an outdoor environment and the train does
not stop on stations. Therefore, it is out of underground train stop operation scenario use-case.

Station Sequence ID Number of frames Sequence length (m)

Txurdinaga
00 946 64.14
01 504 65.62
02 462 61.33

Otxarkoaga

03 719 68.35
04 546 64.15
05 462 67.16
06 515 69.48

Uribarri
07 529 66.85
08 488 62.54

Zurbaranbarri
09 549 67.02
10 594 68.60
11 500 61.31

Zazpikaleak 12 504 63.82

Table 1. Dataset generated from railway Line 3-Bilbao. The table resumes
the sequence number, the number of frames from each sequence and the
ground truth length of each sequence.

Simulated environments offer power-
ful possibilities to generate data when no
real railway applications are involved, be-
cause the dataset can be created automat-
ically. However, simulators do not neces-
sarily replicate real-world scenario condi-
tions accurately to validate industrial ap-
plications. This situation raised the need
to collect and label a new dataset.

The recording was done by a camera
installed in a train running in the railway
called Line 3 - Bilbao. This train cov-
ers five underground stations, with a total
length of 5,8 km, and each station is recorded more than once in different directions. A monocular camera was
installed in front of the train to capture the data. The captured data is synchronized with onboard unit odometry
data extracted from replicated radar and encoder sensors and used as reference. The synchronization was done
using a self-made application for frame processing and on an onboard monitoring system to capture the data.
The synchronized data includes speed and traveled distance, and also other derived information as the distance
to the stopping point, and distance from the last beacon.
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Figure 2. Sample image of the generated
dataset from a real underground railway
scenario. This dataset contains 13 se-
quences of a train stopping on various sta-
tions from line 3 in Bilbao.

The accuracy of distance estimation is directly related to scenes’
characteristic points sharpness and the accuracy in their detection. For
this reason, blur effect reduction is essential in image capture process
limiting the shutter time. Unfortunately, one of the undesirable effects
derived from this action is obtaining low-light images. This effect is
corrected adding electronic gain in the camera, but this action in turn
adds noise to images. In order to get balanced solutions and considering
that the maximum train speed in this research is 90km/h, shutter time
is limited to a maximum of 12ms, electronic gain to a maximum of 25dB
and lens aperture is set to F1.2. Fig. 2 shows one of the frames from
the collected dataset. The used camera is a Basler acA1920-40uc with
a sensor Sony IMX249 color CMOS and a lens Fujinon DF6HA-1S at
a frame rate of 25 fps (50 Hz). The full generated dataset is depicted
in table 1.

3.2 VO evaluation

The applicability of the algorithms is evaluated using the ego-motion
from odometry obtained from the train. As all the sequences from the
railway environment are focused on the platforms and barely rotate (platforms are straight), just the translation
is taken into account. The comparison is made using three standard metrics. First, Absolute Trajectory Error
(ATE) is used where the root-mean-square error between estimated trajectory poses and the respective refer-
ence are measured. For relative evaluation, Relative Pose Error (RPE) and average translational error (terr)
are common metrics on VO evaluation. The RPE measures the local accuracy of the trajectory per frame.29

Therefore, the relative pose error corresponds to the drift of the trajectory which is in particular useful for the
evaluation of VO systems. Following the underground challenging environments’ evaluation criteria proposed by
Almalioglu et al.25 , average translational error terr(%) is used on sub-sequences of different lengths at different
speeds (the speeds vary in different sequences as the train is stopping). It is calculated in the same way as RPE,
but instead of calculating the relative error on the full sequence, the error on some sub-sequences is calculated
and the averaged.

To calculate ATE, first Horn30 method is used to align both trajectories and find the rigid-body transformation
S between them. Given this transformation, the trajectory error matrix at time i as

EATE
i := Q−1

i SPi (1)

where Pi and Qi are the estimated pose and reference pose at time i respectively. For relative evaluation
relative error matrix at time i is calculated as

ERPE
i :=

(
Q−1

i Qi+∆

)−1 (
P−1
i Pi+∆

)
(2)

where usually ∆ = 1 meaning that two consecutive poses are used. Then the root-mean-square error (RMSE)
from error matrices is calculated to obtain the ATE and the RPE:

RMSE =

(
1

m

m∑
i=1

‖trans(Ei)‖2
) 1

2

(3)

where m is the quantity of error matrices from a sequence of n poses which is m = n in absolute metrics
and m = n −∆ in relative metrics. As stated before, the average translational error t err is calculated in the
same way as RPE, but instead of calculating the relative error from frame to frame over all the full sequence,
the average error in sub-sequences of length {7, 14, 21, 28, 35, 42, 49, 56} m is used. The relative error matrix is
calculated as in 2. Then, RMSE over all sub-sequences RPE is calculated.
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Dataset Metric 00 01 02 03 04 05 06 07 08 09 10 11 12 Avg. Err.

DF-VO
(KITTI)

terr (%) 12.15 5.52 10.7 9.22 7.05 6.89 5.94 5.77 11.46 9.04 10.71 12.76 3.10 8.49
ATE (m) 1.64 1.04 1.54 1.46 1.12 1.21 1.14 0.94 1.78 1.58 1.79 2.06 0.56 1.37
RPE (m) 0.014 0.016 0.024 0.014 0.026 0.046 0.015 0.012 0.027 0.019 0.020 0.024 0.009 0.020

DF-VO
(Line 3-Bilbao)

terr (%) 10.44 6.29 6.34 9.95 8.78 8.9 6.92 10.09 8.34 7.24 10.17 6.16 4.66 8.02
ATE (m) 1.07 0.58 0.6 1.47 1.32 1.51 1.15 1.52 1.24 1.22 1.83 0.95 0.64 1.162
RPE (m) 0.023 0.031 0.031 0.019 0.031 0.049 0.022 0.019 0.029 0.031 0.032 0.029 0.014 0.028

Table 2. Comparison of DF-VO application were depth estimation model from Monodepth2 is trained on KITTI dataset
and on Line 3-Bilbao using monocular model 640x192.

3.3 VO application

As stated before, two VO algorithms have been selected in this research. ORB-SLAM213 is a well-known
accurate geometry based VO approach that has been used as state-of-the-art comparison for DL based VO
algorithms. It relies on ORB features and then it performs frame tracking, local mapping and loop closing
steps to reconstruct the environment while estimate the camera trajectory. When using a monocular camera,
geometry based algorithms suffer from some issues. As depth is not observable from just one camera, there is a
scale issue that affects the estimation of the map and the trajectory. In addition, the triangulation of the initial
map depends on multi-view or filtering techniques and reconstruction may fail when performing pure rotations.

From experimentation is observed that ORB-SLAM2 does not work in Line 3-Bilbao dataset. This makes
sense as the tested environment contains some characteristics that violate the conditions of image correspondence
between consecutive frames (big light changes and nono-lambertian surfaces). However DL-based algorithm DF-
VO18 overcomes those limitations. DF-VO is an unsupervised DL+geometric hybrid VO algorithm that is based
on depth and flow estimation. These estimations are made using the unsupervised algorithm Monodepth231 for
depth and LiteFlowNet32 for flow estimation. Monodepth2 learns depth from a stereo pair (consecutive frames
from monocular camera) minimizing the reprojection error and auto-masking stationary and occluded pixels.

The results show that DF-VO is capable of obtaining a mean average translational error of 8.02 in a challenging
environmet as Line 3-Bilbao, which is a similar results to other results obtained on the standard KITTI odometry
dataset by other VO methods such as SfM-Learner33 (14.068), Depth-VO-Feat23 (7.911), ORB-SLAM213 (8.074)
or CNN-SVO17 (12.663).

Furthermore, DF-VO has been evaluated with two depth models to asses if the training process improves the
results in these challenging environments: monocular model 640x192 trained in KITTI dataset and monocular
model 640x192 retrained in Line3-Bilbao dataset. As it is shown in table 2, the training process improves the
results.

4. CONCLUSIONS

In this paper, the application of monocular VO solutions in underground railway scenarios for train stop operation
are explored. Geometric VO approaches are limited by some key factors like illumination, textures, subsequent
frames overlap or whether the scene is static or not. In this study is analyzed if deep learning based VO
approaches can afford some of the limitations of geometric VO solutions. For that, a geometric approach and
a hybrid Deep Learning approach were chosen to explore its applicability in underground railway scenarios. To
test the applicability of the selected approach, an underground railway scenario dataset was created by using a
monocular camera installed in front of the train.

Geometric approach ORB-SLAM2 seems to fail on underground railway platforms as some of the minimum
geometric requirements are not full-filled on this challenging environment: platform surfaces and big lightning
changes (saturation). However, when other type of environments are selected, such as underground railway
tunnels, geometric ORB-SLAM2 does not fail due to scenes attributes. Although hybrid approaches as DF-VO
are also based on geometric features, estimating the flow and the depth from deep learning algorithms makes DF-
VO less dependent to scenario characteristics and this algorithm obtains comparable results in this environment.
Furthermore, training the depth network under DF-VO for this environment improves the results. Nonetheless,
the algorithm suffers from underground environment conditions in other scenarios outside railway platforms.

These results could be boosted by adapting the algorithms to the characteristics of these challenging envi-
ronments so it can handle the changing lightning conditions or the non-lambertian surfaces. This study also
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suggests to analyze if other deep learning VO techniques that have shown good results in robotics are also ad-
equate for underground railway scenarios (i.e. unsupervised deep learning solutions, approaches that combine
inertial sensoring information with deep learning, solutions that include LiDAR). Therefore, future work includes
the creation of an underground railway scenario dataset recorded by a stereo camera, IMU sensors or LiDAR
and increasing the current monocular dataset.
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Abstract—Drones, mobile robots, and autonomous vehicles use
Visual Odometry (VO) to move around complex environments.
ORB-SLAM or deep learning-based approaches like DF-VO
are two of the state-of-the-art technics for monocular VO.
Those two technics perform correctly in outdoor scenarios but
show some limitations in indoor environments. The extreme
lighting conditions, non-Lambertian surfaces, or occlusion of
indoor environments can disturb the visual information, and
so the odometry information. Generative Adversarial Network
(GAN) architectures recently proposed in the literature can
help to overcome image low-light and blurring limitations. This
research study aims to assess image enhancement’s impact using
GANS on the Visual Odometry algorithm DF-VO. Since DF-
VO is also based on visual geometric information, the paper
first considers the effect of two different GAN architectures
in the camera’s calibration. Then, the impact in the odometry
information computed by DF-VO is evaluated. The preliminary
results show that the reprojection error and the uncertainty
of the calibration of a pin-hole-based camera do not increase
significantly, and DF-VO’s performance is improved.

Index Terms—Image enhancement, Calibration, Visual Odom-
etry, Deep Learning

I. INTRODUCTION

Autonomous vehicles such as Robots, Cars and Trains use
to be equipped with multiple sensors such as Inertial Mea-
surement Unit (IMU), Laser Imaging Detection and Ranging
(LiDAR), Global Positioning System (GPS), Wheel Odometry
or Visual sensors. Visual sensors like RGB or RGB-Depth
(RGBD) cameras in a mono or stereo settings are extensively
studied since they offer rich information, which helps to
understand the vehicle’s surrounding environment.

On the other hand, Deep Neural Network concepts and tools
are becoming more popular approaches to extract information
from visual data. For example, the learning based object
detection algorithm YOLO(You Only Look Once) can be used

to detect traffic signs from visual information [1] in real-
time. UNet is a well-known neural network that performs
images semantic segmentation [2]. Visual segmentation allows
us to understand the meaning of each pixel. Finally, Visual
Odometry (VO) or Simultaneous Localization and Mapping
(SLAM) are approaches that compute the vehicle’s movement
using images and SLAM, in addition to the motion, to create
a map and localize itself in it [3].

All these approaches based on neural networks are practical
whenever there is enough information to extract the crucial
features necessary for the neural network to learn. Sometimes,
these algorithms have also learning guidelines (i.e. ground
truth or a loss function) from which to learn. However, there
is not always enough information available.

Night driving [4], driving in varying weather conditions [5],
underground railways [6], mining [7], or indoor parking [8]
are some scenarios where researchers are studying how to
take advantage of various types of visual sensors to compute
odometry. Those scenarios are characterized by low lighting
conditions like the mine tunnel or changing lighting when the
train goes from the tunnel and enters the platform. We can also
find specular surfaces [8], and the images are usually blurring
due to poor lighting conditions.

Another issue in the scenarios mentioned above is the
difficulty to create a dataset [9] with enough images to train the
neural network and make it learn. Some researchers try to train
the neural network using augmented data. The data quantity
can be increased using traditional data augmentation tech-
niques such as pixel colour operations, blurring using kernel
filters, edge enhancement, rotation, cropping or translation. It
can also be augmented using Generative Adversarial Networks
(GANs) [10]. Other researchers try to enhance the images
before using the pre-trained network [11] is trained for image
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recorded in good conditions, and there is no enough data to
train the network with new images. In both cases, GANs seem
to be a promising solution.

This research aims to study to which extend GANs can
improve the monocular Visual Odometry results by enhancing
low lighting and blurring images. More precisely, the effect
of image enhancement using GANs on image geometrical
properties will be studied.

II. RELATED WORKS

A. Visual Odometry (VO)

Visual Odometry (VO) refers to using data from cameras to
estimate the camera’s position changes over time. We refer to
monocular VO when one single camera is used to capture
frames. VO is used in robotics and autonomous vehicles
to calculate the robot’s position displacement. Depending
on the method, different monocular VO approaches can be
defined. Geometric VO approaches rely on image geometric
characteristics and perspective camera model to reconstruct
ego-motion between consecutive images. One of the most
standard geometric VO approaches is called ORB-SLAM2
[12] and has become the state-of-the-art comparison for all the
later approaches. It is based on feature matching consecutive
frames and on bundle adjustment algorithm.

Geometric monocular VO suffers from scale drift issue
where scale is inconsistent and expensive global bundle adjust-
ment algorithms are applied to refine the camera’s pose. Fur-
thermore, monocular VO algorithms have a depth-translation
scale ambiguity issue.

With the improvements of Deep Learning-based Computer
Vision techniques, Deep Learning in VO has started using
extensively. It has led to DL-based VO algorithms that can
solve some of these problems. Some are considered hybrid
VO algorithms within these DL-based approaches as they mix
geometric characteristics and DL-based inference.

In this context, Zhan et al. proposed the unsupervised VO
algorithm DF-VO [17]. This algorithm is a hybrid approach
that uses both geometric image information and deep learning-
based depth and flow estimation to estimate the camera pose.

B. Data enhancement

Generative Adversarial Networks (GAN). GAN networks
are machine learning models designed by Ian Goodfellow
and his teammates in 2014 [18]. Their functioning consists
of two neural networks competing with each other during
their training. One network is known as the generator, and it
aims to generate data capable of fooling the second network,
the discriminator. At the same time, the discriminator must
determine whether the generated data is real or fake. Through
this competition, both networks keep improving until the gen-
erators capability to create realistic data becomes acceptable.
Once the training is done, the discriminator is no longer used,
and the generator is the one that works, generating new data.

This research work aims to improve images with poor or
varying lighting conditions and blurring. To tackle these issues,

two different GAN variations have been chosen: Enlighten-
GAN and DeblurGAN.

DeblurGAN. The task of image deblurring is to get the
sharp version of the blurred image corrupted by some unknown
blur kernel or spacially variant kernel. DeblurGAN [19] pro-
posed the solution based on a conditional GAN and content
loss for its learning. It achieves state-of-the-art performance in
terms of structural similarity measure and visual appearance.
Besides, it is 5 times faster than the closest competitor, ”Deep
Deblur” [20]. The DeblurGAN model used to get the sharp
version of our blurred images has been a VGG19 network,
pretrained on ImageNet and after that trained on corresponding
blurred and sharp 256x256 patches from MS COCO dataset.

EnlightenGAN. Images captured in lousy light condi-
tions suffer from low contrast, poor visibility and high ISO
noise. Those issues challenge computer vision algorithms.
The proposed solution by EnlightenGAN [21] is an effective
unsupervised generative adversarial network. VGG-16 model
pre-trained on ImageNet. The EnlightenGAN model used
to improve the lightening of our images has adopted the
weights of a VGG-16 model pre-trained on ImageNet. Then,
because EnlightenGAN has the unique ability to be trained
with unpaired low/normal light images, is has been trained
with low light and normal light images from several datasets
released in [22], [23] and also High-Dynamic-Ranging(HDR)
sources [24], [25].

The hypothesis stated in this work proposes that the men-
tioned GANs may improve hybrid-VO (geometric+deep learn-
ing) approaches performance in low-lighting scenarios. The
research will study first the effect of using GANs in geometric
visual information using a calibration process. And then the
results of the DF-VO in low-lighting trajectories with and
without enhancing images using GANs.

III. EXPERIMENTATION

In this section, two different experimentations will be ex-
plained; the calibration and visual odometry experimentations.
In both cases, the camera used to record the datasets is a ZED
Stereo Camera. The image’s resolution is 1280x720 pixels at
60 Hz with an electronic synchronized rolling shutter, auto-
matic gain and a lens aperture of F2.0. All the experimentation
was done for the processing part in a workstation with an Intel
i9-9900k processor with 64GB RAM and an NVIDIA RTX
2080 Ti.

The state-of-the-art monocular VO algorithms are based
on minimizing the reprojection error of consecutive image
frames. The reprojection error is estimated by solving the
essential matrix encoding the epipolar geometry and assuming
the camera satisfies the pinhole camera model. To evaluate
the GAN based data enhancement architectures applicability
in VO algorithms, it becomes essential to analyze the impact
of GAN based data enhancement techniques in the camera
parameters by following a camera calibration procedure.

Therefore, to assess the applicability of GAN-based image
enhancement techniques in the VO algorithm such as DF-VO,
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first, its impact on the camera calibration’s reprojection error
will be performed.

A. Calibration experimentation

This experimentation has aimed to evaluate the impact that
the used image enhancement techniques have on the repro-
jection error and uncertainty during the camera calibration.
The calibration has been done using Matlab’s calibration tool
Camera Calibrator.

1) Calibration setup: Firstly, two primary datasets have
been generated named Day-calibration and Night-calibration.
The dataset Day-calibration consists of images captured on
appropriate lighting conditions. On the other hand, the dataset
Night-calibration is composed of the same images in the
Day-calibration dataset but with poor light conditions. For
that, the setup in figure 1 has been used, with a camera and
a calibration pattern. The calibration pattern was placed in
different posses inside of the visual area of the camera. In
each pose, two images have been taken: One with the light
of the room switched on and the second with the light turned
off, simulating poor lighting conditions.

Fig. 1: Setup used to generate day-calibration and night-
calibration datasets.

Once these two primary datasets have been created, two
datasets have been derived from them. DeblurGAN has been
applied to the Day-calibration dataset to create the DB-
calibration dataset, and EnlightenGAN has been applied to
the Night-calibration dataset to get the Enlighten-calibration
dataset. In figure 2 can be seen the scheme of the datasets
used for calibration.

2) Calibration evaluation metrics: To evaluate the calibra-
tion results, the following metrics have been used:

Mean reprojection error: Provides a qualitative measure
of accuracy during calibration. A reprojection error is a
distance between a pattern keypoint detected in an image used
in calibration and a corresponding world point projected into
the same image.

ReprojErrormean :=
1

n+m

n∑

i=1

m∑

j=1

2

√
(KPij �pi − �xij)2

(1)

Fig. 2: Distribution of the datasets used in the dataset experi-
mentation.

where K are the camera intrinsic parameters, Pij is the
camera pose, �pi are feature locations in 3D and �xij its
projection in a 2D image plane.

Uncertainty: It can be said that the result of a measurement
is an approximation of the measured value. Therefore, to
have a more realistic estimate, it is necessary to know its
uncertainty.

Both the reprojection error and the uncertainty have been
calculated with Matlab’s calibration tool.

B. Visual Odometry experimentation

1) VO setup: To evaluate the previously mentioned Data
Enhancement techniques in VO algorithms, the need for a
dataset with specific characteristics (i.e., consisting of dark
photos or well illuminated, but with improvable sharpness)
arose. Usually, VO algorithms are evaluated on standard
datasets, such as KITTI [26]. After researching on most used
datasets for VO evaluation [27], no standard dataset with
adverse lighting conditions was identified in the autonomous
vehicle sector. This led us to generate our database by making
recordings of the same road trajectory during day and night.
It has been chosen this road scenario because of its similarity
with the KITTI dataset, which as said, is it hugely used while
testing VO algorithms.

For the generation of the reference data with whom the
results achieved with the VO algorithm will be compared,
the state-of-the-art VO algorithm ORB-SLAM2 [12] has been
used. ORB-SLAM2 is widely used as a reference in the
VO community [22]–[25]. ORB-SLAM2 uses loop closure
to relocalize the camera and thus improve the precision of
the inferred path. For that reason, the previously mentioned
recordings were done in closed paths where the starting and
arrival points are the same.

Two distinct trajectories have been chosen to increase the
robustness of the results and conclusions obtained from experi-
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(a) Aragoa (b) Musakola

Fig. 3: Trajectories used to generate the VO experimentation
dataset using a camera installed in a car.

Trajectory Seq. Frames Characteristic

Aragoa

00 1150 Raw images recorded at daylight
01 1150 Seq. 00 enhanced with DeblurGAN
02 1400 Raw images recorded at night
03 1400 Seq. 03 enhanced with EnlightenGAN

Musakola

04 1640 Raw images recorded daylight
05 1640 Seq. 05 enhanced with DeblurGAN
06 1480 Raw images recorded at night
07 1480 Seq. 08 enhanced with EnlightenGAN

TABLE I: Full generated dataset for experimentation. The
datasets contain 8 sequences, 4 from each trajectory.

mentation. The trajectories shown in figure 3 have been named
after the street where they are located: Aragoa and Musakola.

Fig. 4: Camera setup for the
recordings of the generated
dataset.

As it can be seen in fig-
ure 4, the camera has been
placed on the upper part of
the front window of the car,
thus preventing the front
of the vehicle from invad-
ing the lower part of the
recording.

Two sequences were
recorded in each trajectory.
One of the sequences has
been recorded during the
day and one at night. The sequences recorded during the
day have been used to generate other sequences using the
data enhancement technique mentioned above: DeblurGAN.
The sequences recorded at night were used to create
another sequences using EnlightenGAN data enhancement
approach. Consequently, 8 sequences were generated, four
for each trajectory: two original sequences and two enhanced
sequences. The full gathered dataset is depicted in table I.

2) VO evaluation metrics: The evaluation of the generated
enhanced datasets in DF-VO algorithm has been done using
common metrics from standard datasets. Absolute Trajectory
Error (ATE) is used where the root-mean-square error between
estimated trajectory poses and the respective reference is
calculated. For that, both trajectories are aligned through
a transformation S using Horns [28] method. Given this

transformation, the absolute trajectory error matrix at time i
is calculated as

Ei := Q−1
i SPi (2)

where Pi and Qi are the estimated pose and ground truth
pose at time i, respectively. Then the translational root-mean-
square error (RMSE) over all i is calculated:

ATEtrans =

(
1

n

n∑

i=1

‖Ei‖2
) 1

2

(3)

For VO relative evaluation, relative pose error (RPE) and
average translational error (terr) are also common metrics.
The RPE measures the drift error per frame of the trajectory
[29] . Relative pose error matrix at time step i is defined as:

Ei :=
(
Q−1

i Qi+1

)−1 (
P−1
i Pi+1

)
(4)

where Pi and Qi are the estimated pose and ground truth
pose at time i, respectively. The total number of relative poses
from a sequence with n camera poses can be calculated as
m = n − 1. Then, the RMSE of the translational component
is calculated as in the previous metric:

RPEtrans =

(
1

m

m∑

i=1

‖Ei‖2
) 1

2

(5)

Following the evaluation criteria proposed in the KITTI
evaluation benchmark, average translational error terr(%) is
used on sub-sequences of different lengths from the generated
dataset. The error is calculated in the same way as RPE. But
instead of calculating the relative error from frame to frame
over all the sequence, the average error for all possible sub-
sequences along {100, ..., 800} m is used. The relative error
matrix is calculated as in equation 4. Then, RMSE over all
sub-sequences RPE is calculated.

IV. RESULTS

In the following sections, the effects that image enhance-
ment techniques(EnlightenGAN and DeblurGAN) have on the
repro-jection error and uncertainty during the camera cali-
bration, and the results of applying these data augmentation
techniques on VO are shown.

1) Calibration results: The following tables II and III
represent the calibration results through the previously men-
tioned mean reprojection error and uncertainty and the camera
parameters, the focal length and the principal points.

As shown in Table I, the focal length and principal point in
both Day-calibration and DB-calibration are similar. However,
the Mean reprojection error and the Uncertainty increase
slightly.

In Table II can be seen that the focal length and principal
point in both Night-calibration and Enlighten-calibration are
also similar, being the mean re-projection error and uncertain-
ties a bit higher in Enlighten-calibration.
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Metric Day-calibration DB-calibration
Frames 20 20
Mean reprojection error 0.1089 0.1208
Focal length 690.31; 689.58 690.34; 689.42
Principal point 644.96; 381.21 644.76; 380.90
Radial distortion 0.014; -0.013 0.01; -0.01
Focal length uncertainty 4.171; 4.104 4.837; 4.76
Principal point uncertainty 0.546; 2.367 0.637; 2.73
Radial distortion uncertainty 0.002; 0.002 0.002; 0.002

TABLE II: Day calibration results.

Metric Night-calibration Enlighten-calibration
Frames 20 20
Mean reprojection error 0.0775 0.0904
Focal length 694.058; 693.605 693.379; 692.858
Principal point 645.006; 380.768 644.871; 380.984
Radial distortion 0.015; -0.017 0.015; -0.017
Focal length uncertainty 2.558; 2.482 3.204; 3.130
Princ. point uncertainty 0.351;1.490 0.435; 1.840
Radial dist. uncertainty 0.001; 0.001 0.001; 0.002

TABLE III: Night calibration results.

The first sets of experiments show that DeblurGAN, and
EnlightenGAN degrades the re-projection error and the uncer-
tainty of the calibration parameters, that is, to the geomet-
rical information available in the images slightly. However,
geometrical information is not the only information used by
the latest VO techniques. In the next section, the results of
applying the image enhancement techniques(EnlightenGAN
and DeblurGAN) in VO are shown.

2) VO results: As shown in table IV, in the Aragoa trajec-
tory, on the sequences recorded at day, the minimum ATE was
obtained in the original sequence 00, 18.36m, slightly lower
than the sequence 01 (enhanced using DeblurringGAN).

On the night sequences, ATE over a 300m run from the 02
sequence obtained was 36.21m. However, the enhanced (En-
lightenGAN) sequence 03 has an ATE of 28.40m. Therefore,
the EnlightenGAN enhancement algorithm has improved the
results obtained in the original sequence by 7.81m.

V. CONCLUSIONS

In the Musakola trajectory, the results in terms of ATE
are similar to those of Aragoa. The dataset generated by the
DeblurGAN algorithm (sequence 05) have accumulated an
ATE similar to the original 04 sequence, being this slightly

Trajectory Sequence ATE
(m)

ATE
(%)

RPE
(m)

RPE
(%)

00 18.36 6.12 0.26 0.78
01 19.55 6.51 0.26 0.78
02 36.21 12.07 0.25 0.49

Aragoa
300m

03 28.40 9.46 0.24 0.49
04 15.43 3.42 0.31 0.39
05 15.70 3.48 0.31 0.39
06 50.78 11.73 0.35 0.46

Musakola
450m

07 40.78 9.06 0.35 0.46

TABLE IV: Results obtained from DF-VO application in the
generated dataset where Absolute Trajectory Error (ATE) and
Relative Pose Error (RPE) are measured.

(a) Sequence 00 in Aragoa. (b) Sequence 05 in Musakola.

Fig. 5: Sample comparison between DF-VO estimation and
the reference created by ORB-SLAM2.

lower. In the dataset generated by the EnlightenGAN (sequence
07), the ATE has been 12m lower than its source dataset
Musakola night (sequence 06).

On the other hand, the relative errors (using RPE metric)
were almost identical between the original dataset and its
derivatives in both the Musakola and Aragoa trajectories.
These results can also be seen on sample trajectories in figure
5, where the reference created using state-of-the-art ORB-
SLAM2 and the result obtained with DF-VO are compared.

In this paper, GAN based image enhancement architectures
in an unsupervised monocular visual odometry algorithm
called DF-VO is evaluated. The evaluated GAN techniques
DeblurGAN and EnlightenGAN, aim to enhance the image’s
blurring and lighting conditions. The images captured by a
camera installed in an autonomous vehicle (car, train, tram),
being a moving element, may include low-light and blurring
that can disturb the visual information.

State-of-the-art monocular VO algorithms are based on min-
imizing the reprojection error of consecutive frames captured
by the camera. The error is estimated by solving the essential
matrix, which depends on the intrinsic camera parameters,
and assuming the camera satisfies the pinhole camera model.
In this study, the enhanced images calibration procedure is
pursued to assess the three GAN architecture’s effect in the
camera’s calibration. The experimental results show that the
analyzed GAN architectures do not disturb the camera cali-
bration parameters significantly. The reprojection error and the
uncertainty of the camera’s intrinsic parameters (optical centre
and focal length) being slightly worse are still aligned with the
optimal calibration parameters provided by the manufacturer.
Therefore, the experimental calibration results support GAN-
based enhancement architectures in unsupervised monocular
VO algorithms.

The selected visual odometry algorithm for GAN based
enhancement architectures evaluation is DF-VO. DF-VO is an
unsupervised hybrid visual odometry algorithm based on deep
learning and geometric properties. A proprietary database con-
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taining the characteristics required by the GAN architectures
(low-light, blurring and improvable sharpness) was created by
a monocular camera installed in a car. Two close-loop car
routes were defined, and the same routes with daylight and
nightlight were recorded.

The experimental results show EnlightenGAN architectures
improve the DF-VO performance in low-light scenarios. A
possible explanation is that EnlightenGAN could increase the
number of characteristic points used by DF-VO even if image
uncertainty is slightly worse in the enhanced images. The
ATE value decreases in Aragoa route from 12.07 to 9.46,
and it reduces from 11.73 to 9.06 in the route Musakola.
The performance obtained by DeblurGAN’s architecture is
more limited. The experimental results observed a similar
performance when evaluating the DF-VO algorithm in daylight
enhanced images. Note these results support the conclusion
obtained in the images’ calibration procedure enhanced by the
GAN architectures.
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ABSTRACT Localization is one of the most critical tasks for an autonomous vehicle, as position
information is required to understand its surroundings and move accordingly. Visual Odometry (VO) has
shown promising results in the last years. However, VO algorithms are usually evaluated in outdoor street
scenarios and do not consider underground railway scenarios, with low lighting conditions in tunnels and
significant lighting changes between tunnels and railway platforms. Besides, there is a lack of GPS, and
it is not easy to access such infrastructures. This research proposes a method to create a ground truth of
images and poses in underground railway scenarios. Second, the EnlightenGAN algorithm is proposed
to face challenging lighting conditions, which can be coupled with any state-of-the-art VO techniques.
Finally, the obtained ground truth and the EnlightenGAN have been tested in a real scenario. Two different
VO approaches have been used: ORB-SLAM2 and DF-VO. The results show that the EnlightenGAN
enhancement improves the performance of both approaches.

INDEX TERMS Visual Odometry, Autonomous vehicles, Computer vision, Data enhancement, Simulta-
neous localization and mapping, Image processing, Railway domain

I. INTRODUCTION

V ISUAL ODOMETRY (VO) is a particular case of
odometry based on Computer Vision (CV), where the

position and motion information are acquired through camera
images [1]. VO algorithms aiming to derive localization data
through visual sensors are usually evaluated and compared
by reference standard datasets such as KITTI [2, 3] and
EuRoC-MAV [4]. This situation leads solutions adapted to
the visual characteristics contained on those scenarios with
adequate lighting conditions (good illumination and similar
lighting conditions in subsequent frames), relatively suffi-
cient textures and Lambertian surfaces. However, few algo-
rithms, datasets, and benchmarks can be found in challenging
scenarios with varying light conditions, low illumination, low
textures, or non-Lambertian surfaces.

For instance, one of the latest benchmark challenges in
visually challenging odometry is the Subterranean Chal-

lenge (SubT), organized by the Defense Advanced Research
Projects Agency (DARPA). Perceptually challenging scenar-
ios and tasks were stated in this challenge, such as naviga-
tion through tunnel systems, cave networks, or urban un-
derground environments. The participating teams presented
several approaches [5, 6, 7, 8] to study the robotics autonomy
in underground scenarios exploration and navigation. These
works emphasize the complexity of localization and naviga-
tion in underground environments due to their perceptually-
degraded conditions. They also emphasize on the importance
of field testing.

The railway domain is also moving towards the Intelligent
Transportation Systems (ITS) and the Advanced Driving
Assistance Systems (ADAS) industry. A train that implements
autonomous operations requires accurate localization estima-
tion to carry out operations as precise stop operation or cou-
pling successfully. Algorithms applied in urban underground
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railway scenarios must deal with significant light changes
from tunnel areas to platforms, with insufficient illumination
and low textures in tunnels.

In this context, the application of state of the VO algo-
rithms and data enhancement techniques was analyzed in a
perceptually challenging driving car scenario [9]. The results
showed that the Generative Adversarial Network (GAN)-
based image enhancement methods can improve the perfor-
mance achieved by state-of-the-art VO solutions.

In this paper, an analysis of state-of-art VO algorithms
is performed and the use of a data enhancement method in
underground railway VO solutions is evaluated. Algorithms
applied in these scenarios must deal with significant light
changes from tunnel areas to platforms, with insufficient
illumination and low textures in tunnels. Therefore, an image
enlightening technique is integrated to improve the results of
state-of-the-art VO algorithms.

A dataset with challenging characteristics is really needed
in order to evaluate VO performance in such scenarios. From
an analysis of datasets used in CV for localization (datasets
labeled with 6-DoF pose), no standard dataset of the railway
domain was found; hence, an ad-hoc underground railway
dataset generation was pursued.

The following section (II) includes a literature review of
the main VO algorithms, a description of the applied enlight-
ening data enhancement technique, and a list of reference VO
datasets. Section III depicts the urban underground railway
dataset generation process. Then, the results of state-of-art
VO algorithms in the underground railway dataset and the
influence of an enlightening technique are shown in sections
IV and V, respectively. Finally, some conclusions are drawn
in section VI.

II. LITERATURE REVIEW
A. VISUAL ODOMETRY
The term Visual Odometry was first introduced by Niester
et al. [10] proposing a technique to estimate camera motion
using RANSAC [11] outlier refinement method and track-
ing extracted features across the frames. Previously, feature
matching was done just in consecutive frames. Later works
have shown that VO methods might perform as well as wheel
odometry while the cost of cameras is much lower compared
to wheel sensors [1].

The VO research community started from the robotics
domain to, later, focus on the localization in other sub-
domains. In this context, different types of vehicles from
distinct sub-domains and diverse characteristics have been
studied, such as, cars [12][13], trains [14], or lately UAVs
[15].

Depending on the algorithm used to estimate odometry
data, VO techniques can be classified as learning-based and
geometry-based [16, 17]. Geometry-based VO is usually
divided into appearance-based VO (also referred to as direct),
feature-based VO, and a hybrid approach that mixes the two
of them.

Direct VO techniques operate directly on intensity val-
ues. In feature-based VO methods features are extracted
from the image and a tracking-matching process is done.
Feature-based methods have good accuracy, are robust in
dynamic scenes, and can deal with variances in viewpoint
[18]; however, in contrast to direct methods, feature-based
techniques are inadequate in low texture areas. However, the
performance of direct VO algorithms degrades if the dataset
is not photometrically calibrated and is sensitive to geomet-
ric distortions as those induced by the camera speed [19].
Furthermore, as mentioned in [20], direct methods require
a constant irradiation appearance between matched pixels,
which hinders its application in some scenarios.

Geometry-based VO approaches rely on image geometric
characteristics and camera model to reconstruct the ego-
motion between consecutive frames. One of the most stan-
dard geometric VO approach is ORB-SLAM2 [21]. It is
based on the ORB [22] feature matching and a bundle ad-
justment algorithm. It is the reference geometric solution in
the VO community [23, 24, 25, 26, 19, 27, 28].

Geometry-based VO is reliable and accurate under fa-
vorable conditions, when there are enough illumination and
textures to make the feature matching among consecutive
frames. As stated in [29], monocular VO experiences a scale
drift issue and global bundle adjustment algorithms needs to
be applied. Furthermore, monocular VO algorithms have a
depth-translation scale ambiguity issue [30].

Stereo geometry-based VO works have been also targeted
lately. Semi-direct visual odometry (SVO) [31] is one of
the most predominant approaches among direct monocular
and stereo VO algorithms. It uses a probabilistic mapping
method to estimate ego-motion and explicitly models out-
lier measurements. In 2017, Wang et al. presented Stereo
Direct Sparse Odometry (Stereo DSO) [19], a method for
VO estimation from stereo cameras based on the previously
proposed monocular DSO algorithm [32]. Lately, Koestler et
al. presented TANDEM [33], a SLAM system that estimates
ego-motion based on a direct VO pipeline and deep multi-
view stereo.

The expansion of Deep Learning-based Computer Vision
techniques carried the emergence of Deep Learning-based
VO solutions. Learning-based VO/vSLAM algorithms usu-
ally rely on learning parts of a standard VO/vSLAM pipeline
or designing end-to-end trainable algorithms for ego-motion
estimation.

One of the first and most relevant learning-based VO
algorithms was PoseNet proposed by [34] Kendall et al., a
robust and real-time monocular re-localization system based
on an end-to-end trained CNN. This approach was later
improved by introducing loss functions based on geometry
and scene reprojection error [35]. Following this end-to-end
pose estimation networks, DeepVO [36] was published, a
solution that infers camera poses directly in an end-to-end
manner from a sequence of RGB frames through a supervised
Deep Recurrent Convolutional Neural Network (RCNN).

Some research works have tried to adapt traditional
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non-learning approaches into Deep Learning pipelines.
Brachmann et al. introduced DSAC (Differentiable Sample
Consensus) [37] algorithm based on previously proposed
RANSAC [11]. They applied DSAC in a camera localization
solution, learning an end-to-end camera localization pipeline.

However, most of the research works from the literature
emphasize the importance of an accurate depth and flow
estimation for VO/vSLAM. Depth information is crucial for
the localization as it enables the inference of the scene ge-
ometry from 2D images. Moreover, it allows scale recovery
[38] and the distinction of foreground and background points,
allowing a better environment understanding. Together with
depth estimation, the optical flow estimation is also a critical
component of some VO/vSLAM algorithms as it models
the motion between consecutive images. Therefore, most
of learning-based VO/vSLAM algorithms have focused on
learning depth and flow estimation for the pose inference
process.

Following this research line, several works have focused
the depth estimation [39],[40],[41]. In 2018, Zhan et al.
presented Depth-VO-Feat [42], where stereo training was
introduced to reduce the spatial and temporal photometric
error. At the same time, DVSO was presented by Yang et
al. [29], introducing deep depth predictions in Direct Sparse
Odometry (DSO). D3VO [43] algorithm was also proposed
in this direction, including the uncertainty estimation with
camera pose and depth.

Zhan et al. proposed the unsupervised VO algorithm DF-
VO [17]. This algorithm applies a deep learning-based depth
and flow estimation, and, geometric image information to
estimate the camera pose. As shown in [17], DF-VO out-
performs most learning-based state-of-the-art algorithms in
standard datasets.

Some works have proposed loss functions to handle
challenging scenario characteristics. Yin et al. proposed
GeoNet [44], to increase robustness towards outliers and
non-Lambertian surfaces. After GeoNet, more works were
proposed in this direction [45],[46].

However, as mentioned in [47], literature VO solutions
have limitations in challenging scenarios that contain insuf-
ficient illumination and textures, or, variable lighting con-
ditions. Literature VO solutions, as they are adapted to the
characteristics of standard datasets, require sufficient illu-
mination and enough textured surfaces for a correct feature
matching. A good illumination allows motion extraction from
images, as pixel displacement can not be accurately estimated
otherwise. Therefore, the lighting issue needs to be handled
in scenarios that contain low illumination or varying illu-
mination conditions. These are the conditions that face the
urban underground railway scenario.

DF-VO and ORB-SLAM2 have been selected from the
literature review as reference VO algorithms. As stated be-
fore, the DF-VO algorithm outperforms most learning-based
state-of-the-art algorithms, while ORB-SLAM2 is the most
referenced geometric algorithm. Moreover, these algorithms
represent two distinct types of VO algorithms (learning-

based and geometric). Both solutions can use mono-vision or
stereo-vision camera frames as input. The stereo-vision input
was chosen for the analysis, as stereo-vision solutions keep
the real-world scale, i.e. the predictions are directly aligned
to a real-world scale.

B. DATA ENHANCEMENT FOR VISUAL ODOMETRY IN
CHALLENGING ENVIRONMENTS
In order to afford the scenario limitations of VO in chal-
lenging environments, the application of a data enhancement
technique was considered. In this work, the data enhance-
ment process is dedicated to the lighting limitations of the
target domain. It aims to reduce the impact of the drastic
lighting conditions found in the underground railway sce-
nario.

In this paper, the work published in [9] is extended. In
the previous work the application of EnlightenGAN [48] data
enhancement approach in an outdoor driving car scenario
with varying lighting conditions was evaluated. This previ-
ous research was focused on a driving car scenario where
the lighting conditions of the underground railway domain
where replicated driving by night. The results showed that
the performance of DF-VO algorithm is improved when
EnlightenGAN is applied in the recorded frames.

EnlightenGAN is based on machine learning models pro-
posed by Ian Goodfellow et al. [49]. The algorithm uses an
unsupervised Generative Adversarial Network (GAN) pre-
trained on the ImageNet dataset [50] and then trained on
several datasets [51, 52, 53, 54] to improve input image
lighting.

EnlightenGAN was previously used for several tasks such
as image reconstruction [55], photo exposure correction [56],
image quality assessment [57] or illumination enhancement
[58]. However, to our knowledge, the use of data enhance-
ment methods to handle specific problems of VO methods in
such challenging scenarios has not been researched yet.

In this paper, the application of EnlightenGAN in the
underground railway domain when using geometric and hy-
brid VO solutions is evaluated. The study aims to explore if
EnlightenGAN technique can afford the lighting limitations
of reference VO approaches (DF-VO and ORB-SLAM2).
The evaluation procedure and results are detailed in section
V.

C. DATASETS FOR UNDERGROUND RAILWAY VISUAL
ODOMETRY
In this work, a propietary dataset is generated as no standard
or reference railway dataset fitted to the underground rail-
way scenario was identified. Table 1 resumes the reference
datasets used by starte-of-the art VO approaches.

Most state-of-the-art VO approaches are evaluated in the
standard KITTI [2, 3] vision benchmark [36, 82, 42, 29,
17, 43]. This benchmark includes several datasets for tasks
like VO, optical flow estimation, 3D object detection, or 3D
tracking. The data is captured from a moving car in outdoor
urban scenarios, and they provide datasets and evaluation
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Dataset Domain Sensor configuration Pose ground truth Environment
Cambridge Landmarks [34] Handheld sensor Monocular SfM outdoors

7-scenes [59] Handheld sensor RGB-D MoCap indoors
BigSFM [60] Handheld sensor Monocular GPS outdoors

ICL-NUIM [61] Handheld sensor RGB-D SLAM indoors
ADVIO [62] Handheld sensor Stereo/IMU IMU in/outdoors
OIVIO [63] Handheld sensor Stereo/IMU Total station in/outdoors

Rawseeds [64] Robot Stereo/IMU GPS in/outdoors
SUN3D [65] Robot RGB-D SfM indoors
TUM-VI [66] Robot Stereo/IMU MoCap in/outdoors

TUM-RGB-D SLAM [67] Robot RGB-D MoCap indoors
TUM-Monocular VO [68] Robot Monocular LSD-SLAM/MoCap in/outdoors

NavVis [69] Robot Monocular GPS indoors
MIT Stata [70] Robot Stereo/RGB-D/Laser Laser indoors

The Wean Hall [71] Robot Stereo/IMU/Laser/Wheel odometry GPS in/outdoors
RGB-D SLAM [72] Robot RGB-D MoCap indoors

ETH3D [73] Robot Stereo/RGB-D/Laser/IMU MoCap/SfM/LIDAR in/outdoors
NCLT [74] Segway Stereo/IMU/Laser GPS/IMU/Laser in/outdoors

KITTI [2, 3] Car Stereo/IMU/Laser GPS/IMU outdoors
Málaga Urban [75] Car Stereo/IMU/Laser GPS outdoors

Oxford RobotCar [76] Car Stereo/Laser GPS outdoors
Ford Campus [77] Car Stereo/Laser/IMU GPS outdoors
KAIST Urban [78] Car Stereo/IMU GPS/Laser outdoors

Nordland [79] Railway Monocular GPS outdoors
Zurich Urban [80] MAV Monocular/IMU GPS outdoors
EuroC/MAV [4] MAV Stereo/IMU MoCap/Laser indoors

MVSEC [81] Multi Vehicle Stereo/IMU/Laser GPS/MoCap/Laser in/outdoors
* MoCap=Motion Capture System. SfM=Structure From Motion

TABLE 1: Referenced datasets for Computer Vision-based VO approaches application and evaluation ordered by domain or
motion type.

metrics for each task. However, as the KITTI odometry
dataset contains images from an outdoor environment with
good lighting conditions, it is not adequate to evaluate the
VO algorithms in the pursued scenario. Among the other
analyzed datasets, it should be noted that only one database
(Norland [79]) covers the railway domain; however it only
covers outdoor scenarios, which is also out of the scope of
this research work. Searching for a publicly available VO
dataset from an indoor urban railway domain, no dataset
was found. Following the idea that the evaluation of the VO
approaches that have previously been evaluated in standard
datasets is essential to adapt the algorithms to other industrial
scenarios. Therefore, the generation of a proprietary database
was considered.

The data for a proprietary dataset can be collected from
different sources: from real scenarios or simulated environ-
ments. Real environment datasets are based on real-world
scenarios, and therefore, the performance of algorithms can
be effectively evaluated in the target scenario. However, the
database generation in real-world scenarios increases record-
ing and processing time, effort, and cost. In addition, it also
depends on the access and permission to make the recordings
in the target scenario.

Simulated environments can overcome these problems.
The drawback of simulated environments is that it can not be
assured that an algorithm trained and validated in a simulated
environment will perform the same way in a real-world
scenario. As stated in [83], all the challenging conditions
inherent to underground environments can not be recreated
in virtual scenarios.

Consequently, and as a real-world underground railway
scenario was accessible, a proprietary dataset was generated
from a real underground railway scenario. The definition,
generation and validation processes of the proprietary CAF
dataset is explained in the next section III.

III. URBAN UNDERGROUND RAILWAY DATASET
GENERATION
The proprietary (CAF) was generated for the evaluation of
VO algorithms in underground railway scenarios. The sensor
set validation and camera calibration procedure was done
by generating a complementary dataset (CarDriving) in an
urban driving car domain. CarDriving dataset generation is
described in [9].

The CAF dataset was recorded in an underground scenario
in the railway Line 3 of Euskotren-Bilbao. The line is com-
posed by seven stations from Matiko to Kukullaga and it has
a whole track length of 5.8km. It contains poor lighting con-
ditions in tunnel areas and significant light changes in plat-
form areas. Furthermore, the images captured in the tunnels
contain repetitive and light dependent textures, and therefore,
they are challenging for feature extraction algorithms. Figure
1 shows two frames of this scenario: (a) tunnel frame and (b)
platform frame.

The camera was placed in the front of the train, inside
the driving cabin according to the safety requirements of the
railway domain. Figure 2 shows the camera placement in the
active cabin.

The recording camera is a ZED Stereo Camera. The
image’s resolution is 1280x720 pixels at 30 Hz with an
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FIGURE 1: The CAF dataset’s tunnel and platform areas where the poor light conditions and textureless areas can be
appreciated.

electronic synchronized rolling shutter, automatic gain and
a lens aperture of F2.0.

FIGURE 2: Camera setup for CAF dataset, placed in the
cabin of a train moving through an underground urban rail-
way scenario.

A. CAF DATASET

The dataset is composed by 19 sequences captured in the
two directions of the rail Matiko-Kukullaga. A sequence is
a record that begins at one station and ends in the stations
the train stops. A 6-DoF pose is estimated for each captured
frame. The dataset format follows the standard KITTI odom-
etry dataset format and naming convention. The frames are
rectified RGB color images stored with lossless compression
using 8-bit PNG files.

The camera calibration parameters and the poses are stored
in files specified by the KITTI format [3]. Each row of the
pose file contains the first three rows of a 4x4 homogeneous
pose matrix flattened into one line. The homogeneous pose
matrix pn can be represented as:

pn = [rn|trn] =




r11 r12 r13 xn

r21 r22 r23 yn
r31 r32 r33 zn
0 0 0 1




where rn and trn are the rotation matrix and the translation
matrix of the n-th frame, respectively. The translation com-
ponent of the pose matrix follows the right-hand rule when
defining axes in a 3D space (x-axis forward, y-axis right and
z-axis up).

The dataset generated in this domain is represented in
table 2 where the recorded sequences, recording direction,
the arrival station for each sequence, the number of frames,
and the track length of each sequence are depicted. The entire
set of sequences yields 65.384 frames, with varying speed
and length.

Direction Arrival
station Sequence Frames Length (m)

Matiko

Otxakoaga 01_50 3048 1420
Txurdinaga 01_53 1977 699

Zurbaranbarri 01_54 2663 1029
03_49 6700 3148

Zazpikaleak 02_22 3260 1011

Uribarri
01_15 2724 90302_25 2639
03_54 5904 1913

Matiko 01_17 2532 50502_27 2505

Kukullaga

Uribarri 01_31 2140 524
Zazpikaleak 01_33 2830 979

Zurbaranbarri 01_35 2494 1007
03_36 6560 2449

Txurdinaga 01_37 2550 1032

Otxarkoaga 01_39 2126 695
03_36 4493 1729

Kukullaga 01_40 4095 140503_44 4144
TOTAL 65384 23261

TABLE 2: CAF dataset resume with recorded sequences, the
direction of the sequences, arriving station for each sequence,
frame quantity, and sequence length.
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B. GROUND TRUTH GENERATION ALGORITHM DATA
SOURCES
In general, the ground truth of VO datasets is generated
using a GPS sensor [3, 75, 76, 77, 78] (refer to Table 1).
But, the GPS signal is unavailable in underground zones
like the urban underground railway domain. Thus, a method
that computes the 6-DoF pose of each frame from the train
ERTMS/ETCS ATP data, geodetic map coordinates, and
railway infrastructure gradient profile data was defined and
implemented (see figure 3).

The algorithm first estimates (x,y) positions based on
geodetic coordinates, then z is added through the gradient
profile. Afterwards the (x,y,z) translation data is estimated
for each frame by using ERTMS ATP data, and, finally, the
rotation data of each pose is calculated.

1) Geodetic coordinates
The geodetic coordinates are represented by a pair (ϕ, λ)
expressing Latitude (Lat.) and Longitude (Lon.) in decimal
degrees. These coordinates use an ellipsoid to approximate
the the earth’s surface locations [84].

In this research, the geodetic coordinates define the coor-
dinates followed by the trains in the target railway and have
been extracted from a Geomap called ÖPNVKarte [85]. This
Geomap contains public data that includes worldwide public
transport facilities on a uniform map with information con-
cerning several transport methods such as train, railway, ferry
or bus. It is derived from OpenStreetMap [86], an initiative
to create and provide accessible geographic data (i.e. street
maps, etc.). It also contains railway-related information, such
as platforms, stop positions, and routes.

The entire trajectory of an underground train in L3 ex-
tracted from ÖPNVKarte is shown in figure 4. As stated
before, the trajectory of L3 is made up of seven stations in
the route Kukullaga - Matiko, where some route positions,
the station entrances, and train stop positions of each station
are known in geodetic coordinates. However, the frequency
of the camera is higher than the geodetic coordinates defined
in the Geomap, and, therefore, a method based on ERTMS
ATP data has been designed and implemented in order to
generate the poses of the frames that were recorded between
the geodetic coordinates.

The geodetic coordinates must be transformed from 3D
plane to a 2D plane to assign an equal-area (x,y) position to
each geodetic coordinate. Figure 5 shows a trajectory sample
in geodetic coordinates and the generated equal-area (x,y)
coordinates. In the ground truth generation algorithm, an
equal-area (x,y) coordinate refers to trx and try components
of a 6-DoF pose.

2) Railway gradient profile
The railway gradient profile provided by the railway infras-
tructure managers, defines how the slope of the railway varies
in predefined sections and allows the estimation of the height
(z) for each 6-DoF pose. For that, a height profile can be
constructed with this gradient profile. The initial height is

initialized as 0, and then the height for each 1m section is
calculated using the Equation 1.

h(dn) = h(dn−1) + (0.01 ∗ gradn) (1)

where h refers to height, dn refers to 1m railway sections
and gradn is the gradient value corresponding to that section
from the gradient profile. Figure 6 shows the obtained railway
gradient profile of the whole L3 railway.

3) ATP data: train’s dynamics and speed data
The ERTMS/ETCS ATP train speed estimation process is
based on redundant wheel encoder and radar sensor in order
to get a safe and accurate estimation. By using these sensors,
the ATP subsystem embedded in the train estimates the
train position in the track, i.e. the distance traveled from an
station or a beacon of the track. Track beacon position or
inter-beacon distance is predefined and known by railway
infrastructure managers, even by the ATP subsystem, and
therefore the ATP train position is re-adjusted when a beacon
signal is received obtaining a precise estimation. The 6-DoF
pose estimation of each frame is made by synchronizing the
ATP system monitoring process with the image recording
process as both are installed in the train. The objective of this
process is to obtain a synchronized train position information
for each frame. The data monitored from the ATP system is
the following one:

• timestamp (s): time measured in the Coordinated Uni-
versal Time (UTC) standard read from the train’s inter-
nal clock.

• linear position estimation (cm): distance traveled by the
train from a previous station.

• train speed (m/s): train speed calculated by ATP.
• train acceleration (cm/s2): train acceleration calculated

by ATP.
• train stopped: boolean reflecting whether the train has

reached stopping point or not.
All those variables are extracted from a ATP monitoring

proprietary application that monitors ATP data with a fre-
quency of 128000 Hz. The data acquisition frequency higher
than the camera frequency (30Hz), and, consequently, they
have been synchronized and a pose estimated for each frame.

C. ESTIMATE POSES OF AN INTERVAL THROUGH A
BACKWARD DATA SYNCHRONIZATION BASED ON
TIMESTAMP
The main idea of the synchronization algorithm is the es-
timation of poses in the trajectory sections between the
known (x,y) positions obtained by transforming the known
geodetic coordinates. These known (x,y) positions define the
trajectory, but they are not enough for camera frequency
and, therefore, more poses must be estimated between them.
The interval has been defined to represent the idea of the
trajectory sections, and it is a straight line between two
consecutive known (x,y) positions. The estimated poses are
located in the intervals. Figure 7 represents the intervals,
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Geodetic
coordinatesATP data

Frames

Synchronization of data
sources

Estimate rotation
component of a

pose

x-y for a  
timestamp

z for a  
timestampEstimate z

Estimate x-y
position for a

timestamp

generated dataset

Translation component  
of pose (3-DoF)

6-DoF
poses with
timestamp

Railway
gradient
profile

Estimate poses of an interval through a backward 
data synchronization based on timestamp

6-DoF pose  
for a timestamp 

Recorded
frames 

with
timestamp

FIGURE 3: Diagram of the algorithm processes, with the data sources and the outputs.

FIGURE 4: Line 3 railway extracted from ÖPNVKarte map
[85]. Each circle represents one station from Line 3.

known (x,y) positions and estimated poses in the railway. The
main concepts of the ground truth generation algorithm are
described in 1.

As the data sources are synchronized at the sequence
ending, from now on, the ground truth generation is done in a
backward data synchronization process of an interval based
on the images timestamps. The last (x,y) position, last image
and ATP data are taken for a given interval and the poses for
all timestamps in that interval are estimated. Then, the poses
of the following interval are estimated by taking the last (x,y)
position and the last image of the previous interval as the
initial position.

However, the train speed is variable and, therefore, the dis-
tribution of these poses can not be linear in different intervals.
The total number of poses within the whole sequence should
match the record frame amount.

Algorithm 1 Ground truth data generation algorithm
Input: Given an interval (i) defined as a straight line be-

tween two known (x,y) positions

Phase 1 - Synchronize last (x,y) position, last image and
ATP data of an interval

1: if i = 0 then ▷ First interval
2: Last image← SSIM > threshold ▷ SSIM [87]
3: Last (xi, yi) position← given in the interval defini-

tion
4: ATP data← train_stopped = 1
5: else ▷ Following intervals
6: Last image, last (xi, yi) position and ATP data ←

taken from i− 1
7: end if

Phase 2 - Estimate poses on an interval through a back-
ward data synchronization based on timestamps

Input: Vn: train speed, an: train acceleration, t: timestamp,
h: height profile, dn: linear position estimation

8: Estimate translation component of poses (trn)
a: (xn, yn)← f(vn, an, t) ▷ Eqn. 2
b: zn ← h(dn) ▷ Eqn. 1

9: Estimate rotation component of poses (rn)
a: rn ← g(trn−1, trn) ▷ Eqn. 3, 4, 5

1) Synchronize last (x,y) position, last image and ATP data
The first step is to synchronize the different data sources
using the last (x,y) position, last image and ATP data. The
algorithm generates ground-truth poses for each recorded
sequence using the position where the train has stopped as
origin. For that, first the image where train stops (last image
of the sequence) must be estimated. When there is motion,
the similarity between consecutive frames is very low, how-
ever the similarity increases when the train has stopped. Due
to the similarity of the frames corresponding to the train
stopping point, the last frame is selected using the Structural
Similarity Index (SSIM) [87]. SSIM is one of the most
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FIGURE 5: Transformation of a given sequence from L3
railway defined by geodetic coordinates into equal-area (x,y)
positions.

standard algorithms for image quality assessment [57], and
therefore, for image similarity measure. It has shown that can
outperform other common image similarity measurements
as MSE [88] and has been previously referenced [89]. The
SSIM measures the luminance, contrast, and structure of two
given images and returns a similarity value between them.

Also, it only requires a starting optimization phase where
the threshold is selected. Furthermore, the index was used to
find just the first image within the threshold in each sequence,
which gives a little number of results totally. Although SSIM
is sensitive to image distortions, the environment being static,
and the view fixed enables the SSIM application in under-
ground railway scenarios.

The threshold was selected by exploratory testing. A pre-
defined threshold was stated and iterated it until a SSIM
threshold that best fitted to the lighting conditions of the
scenario was identified. In this case a SSIM > 0.965 has
been used as similarity threshold at the train stopping point.

The last (x,y) coordinates refer to the train stopping po-

FIGURE 6: Results of height generation process. Height
profile (h) is generated from gradient profile provided by
railway constructor. The green circles represent the stations.

Last x-y position

Stations

Known x-y positions
Interval

Estimated poses

(x0,y0)

(x1,y1) p1

Motion direction

interval

p0

p2

FIGURE 7: Railway with the known (x,y) positions, the
intervals and estimated poses.

sition; therefore, this coordinate pair and the last image
are already synchronized. Finally, ATP monitored data is
synchronized using the train stopped variable.

2) Estimate poses of an interval through a backward data
synchronization based on timestamps

A ground truth pose is generated for each recorded image
in an interval using a backward synchronization process
based on the timestamp. This process has two steps; first, the
translation component is estimated, and then, the rotation is
calculated from that translation.

Estimation of translation component. Translation com-
ponent T = {tr0, tr1, ..., trm} is defined as a set containing
all the 3-DoF poses (trn = [xn, yn, zn]) of an interval
where n is the pose number (0 ≤ n ≤ m) and m is the
total number of poses for that interval. For the translation
component of a pose, first, the (x,y) position is estimated,
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and then the height (z) is added. The translation is estimated
by taking an initial (x,y) position and calculating the mo-
tion to the next one using the ATP data train speed and
train acceleration. The translation between two consecutive
(x,y) positions in a straight line that forms the interval can
be calculated using Uniformly Accelerated Motion (UAM)
equations. This estimation is possible because it is considered
that the poses follow a motion in a straight line and with a
constant acceleration between them. Equation 2 shows the
application of UAM equations in this case.

dn = vn−1t+
1

2
an−1t

2 (2)

where t refers to the timestamp, vn and an refer to ATP
data train speed and acceleration respectively. The initial
(x,y) translation component is set as [0, 0].

After calculating the (x,y) positions, the z or height is
estimated using the height profile estimated from the gradient
profile and ATP data. The railway height profile can be
synchronized with the train stopping point, and therefore,
with the first (x,y) position.

Then, previously calculated (x,y) positions can be used
to extract the Euclidean distance traveled from position to
position. Each pose’s height (z) is calculated using trav-
eled distances and the height profile. Therefore, after height
estimation, the translation component of a pose has been
estimated with respect to a timestamp.

Estimation of rotation component. Rotation component
R = {r0, r1, ..., rm} is defined as a set containing all the
rotation matrices (rn) within an interval where n is the pose
number (0 ≤ n ≤ m) and m is the total number of poses for
that interval calculated in the previous steps.

To calculate the rotation component rn for each translation
trn the transformation between two consecutive orientation
vectors orn−1 and orn is estimated. orn defines the orien-
tation of the train in trn and represents the vector between
consecutive translations trn−1 and trn. It is calculated as
shown in 3:

orn(trn−1, trn) = (xn−xn−1, yn− yn−1, zn−xz−1) (3)

where x, y and z represent the translation components of
trn−1 and trn. Then, using the axis-angle representation,
the transformation between consecutive orientation vectors
orn−1 and orn can be calculated. For that, first the orientation
vectors are normalized by dividing their value with the Eu-
clidean norm (vector magnitude) ∥orn∥ of each vector (Eqn.
4) to align them at the same origin. The Euclidean norm can
also be defined as the Euclidean distance of a vector from the
origin to a point.

normalize(orn) =
orn
∥orn∥

(4)

Then, the Euclidean norm of the cross product between the
normalized consecutive orientations is estimated to get the

axis. Finally, the rotation component is estimated using the
inverse tangent function as shown in equation 5, where the
angle between the orientations vectors is calculated trough
the dot product:

rn = acos(
∥orn × orn−1∥
orn · orn−1

) (5)

where acos refers to the inverse tangent function and
orn−1 and orn to two consecutive orientation vectors. This
rotation estimation method accumulates an error relative to
the previous estimations. However, as the train is tied to
the rails, the trains’ orientation is always fixed, and the
orientation estimation is not critical.

The previously calculated translation component is added
to the newly calculated rotation component to obtain the
target 6-DoF ground truth pose. This is done by following
the representation in equation III-A.

Once all the poses from a given interval have been esti-
mated, the next interval is taken and the process is repeated
until all the intervals of a sequence have been covered.

IV. VO APPLICATION IN URBAN UNDERGROUND
RAILWAY ENVIRONMENT
In this section the application of DF-VO and ORB-SLAM2
in the CAF dataset is evaluated.

In the following subsection, the standard VO evaluation
metrics are explained. Then, the experimentation setup is
described. Finally, the experimental results are discussed.

A. VO EVALUATION METRICS
The metrics used to evaluate the performance of the exper-
iments are the following: Absolute Trajectory Error – ATE
[72], Relative Pose Error – RPE [72], Average Translational
Error – terr and Average Rotational Error – rerr.

All the sequences were transformed with a 6-DoF
Umeyama alignment [90], a standard alignment method used
in most VO and SLAM evaluation benchmarks. [2]. A 6-DoF
alignment is recommended to evaluate shape similarities of
trajectories [91].

Given this transformation, ATE evaluates the global con-
sistency of an estimated trajectory compared to the ground-
truth trajectory. The RPE measures the drift error for each
pose of the trajectory and the rotation and the translation
components are calculated separately.

Finally, following KITTI evaluation benchmark criteria,
the Average Translational Error (terr) and the Average Ro-
tational Error (rerr) are calculated on sub-sequences of dif-
ferent lengths. These errors measure the average relative
pose error at a fixed distance. The sub-sequences length in
meters is (100,200,...,800) because the error for smaller sub-
sequences was large and hence biased the evaluation results.

B. EXPERIMENTATION SETUP
These experiments extend the evaluation done at [9], where
ORB-SLAM2 and DF-VO were evaluated in an outdoor
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urban car driving scenario. In those experiments, the bad
lighting conditions were replicated by car driving recordings
in the night.

DF-VO implementation [92] flow-weights and depth esti-
mation deep models were selected from the authors’ trained
models. The flow model is trained by the authors in the
synthetic dataset Scene Flow [93].

To handle the non-deterministic nature of the ORB-
SLAM2 algorithm, each sequence is run five times, and
the median accuracy is evaluated as proposed by authors in
[21]. The VO evaluation is done using the KITTI Odometry
Evaluation Toolbox [17].

C. VO RESULTS IN CAF DATASET
Table 3 shows the results of DF-VO and ORB-SLAM2 in the
CAF dataset. Figures 8 and 9 represent the results depicted in
table 3. The visual representation can be found in Figure 9.

FIGURE 8: ATE of DF-VO and ORB-SLAM2 application on
the generated CAF dataset.

Previously, DF-VO and ORB-SLAM2 were evaluated in
the KITTI Odometry dataset; however, KITTI does not con-
tain those perception challenges as it contains considerably
different properties related to the sequence length and vi-
sual characteristics. Results in CAF dataset show that the
errors of both algorithms are higher than those found in the
KITTI dataset. The RPE for DF-VO is 0.038 and 0.339 in
KITTI dataset and CAF dataset, respectively. While for ORB-
SLAM2, RPE measures are 0.130 and 0.353.

In the case of the ATE, the error of DF-VO in KITTI
dataset is 6.344 while in the CAF dataset is 210.517. For
ORB-SLAM2, the ATE is 26.48 and 115.754 in KITTI
dataset and CAF dataset, respectively.

It can be seen that ORB-SLAM2 outperforms DF-VO in
this challenging scenario, where the sequences are longer
than the standard KITTI dataset. If the CAF sequences are
shortened to just platform areas where the lighting chal-
lenges are more limited, and more similar to the lighting
conditions of the KITTI dataset, the errors are reduced to
similar values (see Table 4) of executing DF-VO, and ORB-
SLAM2 in KITTI dataset [21, 17]. For instance, DF-VO
achieves an RPE (m) of 0.027 in KITTI dataset and 0.049
in shortened CAF dataset. ORB-SLAM2 achieves an ATE of
9.464 in KITTI dataset while 4.113 is achieved in shortened
CAF dataset. Furthermore, the same behavior as in KITTI
dataset is observed: DF-VO performance is higher than ORB-

SLAM2. These results seem to support that the challenging
scene conditions hinder the application of VO algorithms in
such scenarios.

Results are visually shown in figure 10. In the case of DF-
VO, a scale misalignment can be appreciated as the shape
of most estimated trajectories is similar to the ground truth
shape, but a dimensionality error appears.

As mentioned in [17], geometry-based VO algorithms as
ORB-SLAM2 suffer from a scale drift when ideal visual
conditions are not met. In the case of DF-VO, being a hybrid
algorithm, the scale may be wrongly estimated due to issues
related to the geometric characteristics of the underground
visual domain or deep-learning training process. The esti-
mation error of the learning part of the algorithm could be
reduced by training the deep models in the target scenario.

Nevertheless, these results require an adaptation of refer-
ence VO solutions to increase the performance in the under-
ground railway domain. Image enhancement techniques or
solutions based on the fusion of different odometry sensors
could provide the precision required by autonomous train
operations.

V. ENLIGHTENGAN IN VO APPLICATION
This section explores the application of the image enhance-
ment technique EnlightenGAN in ORB-SLAM2 and DF-VO
algorithms.

VO algorithms are based on minimizing the reprojection
error of consecutive frames captured by the camera. The
error is estimated by solving the essential matrix, which
depends on the intrinsic camera parameters, and assuming
the camera satisfies the pinhole camera model. In a previous
work, the enhanced images calibration procedure was pur-
sued to assess the EnglithenGAN architecture’s effect on the
camera’s calibration. The experimental results showed that
the GAN architecture did not significantly disturb the camera
calibration parameters. Therefore, it was concluded that VO
algorithms could be applied directly to the dataset enhanced
by EnlightenGAN.

In the following section the enhanced dataset generation,
the experimental configuration, and, finally, the results are
explained.

A. ENHANCED DATASET GENERATION:
ENLIGHTENCAF
The CAF dataset enhanced by EnlightenGAN is named En-
lightenCAF. Figure 11 shows the result of the enhancement
in the same tunnel zone frame as in figure 1.

The same algorithm configuration from CAF dataset ex-
perimentation has been used. The enhancing inference model
is composed of pretrained weights from original authors.

B. RESULTS IN ENLIGHTENCAF
In the previous work [9], the experimental results showed
that EnlightenGAN improves the DF-VO performance in
low-light car scenarios. In this case, the same behavior was
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Record 14_11_2021 ( ->Matiko)Algorithm Seq 01_50 01_53 01_54 03_49 02_22 01_15 02_25 03_54 01_17 02_27

DF-VO

terr (%) 80 52.97 85.74 86.27 77.94 64.09 94.52 111.55 56.61 55.69
rerr (º/100m) 13.21 21.25 29.92 18.48 35.88 24.43 33.5 41.71 21.34 21.33

ATE 230.66 106.38 157.46 478.76 135.36 29.11 94.27 175.64 26.1 36.39
RPE (m) 0.402 0.232 0.354 0.423 0.269 0.236 0.314 0.34 0.132 0.133
RPE (º) 0.156 0.135 0.156 0.176 0.124 0.13 0.157 0.143 0.057 0.062

ORB-SLAM2

terr (%) 68.79 54.93 177.16 125.85 80.28 55.03 94.26 136.06 51.89 53.88
rerr (º/100m) 5.95 19.19 50.42 17.2 25.6 20.17 31.97 39.34 15.21 14.24

ATE 56.58 44.98 169.39 435.36 72.35 26.71 74.61 177.23 15.61 17.1
RPE (m) 0.34 0.192 0.641 0.646 0.277 0.204 0.302 0.371 0.116 0.122
RPE (º) 0.081 0.092 0.429 0.264 0.125 0.104 0.11 0.121 0.065 0.064

Algorithm Record 14_11_2021 ( ->Kukullga) Avg. Err.Seq 01_31 01_33 01_35 03_36 01_37 01_39 03_41 01_40 03_44

DF-VO

terr (%) 63.64 135.76 175.28 148.11 136.82 58.1 110 93.32 99.36 93.9879
rerr (º/100m) 17.81 28.84 29.64 23.51 27.19 21.01 22.21 31.19 41.2 26.50789

ATE 38.38 104.98 119.08 754.45 150.64 62.88 957.69 226.86 114.75 210.5179
RPE (m) 0.183 0.467 0.583 0.541 0.594 0.192 0.365 0.332 0.35 0.35389
RPE (º) 0.088 0.13 0.132 0.116 0.166 0.103 0.111 0.103 0.147 0.125895

ORB-SLAM2

terr (%) 58.49 145.36 185.8 101.98 155.7 51.05 125.01 94.92 96.31 100.6711
rerr (º/100m) 16.71 22.53 24.31 20.11 17.51 17.15 18.82 10.41 10.41 20.9079

ATE 30.67 38.47 88.96 172.66 36.31 22.28 478.87 103.74 137.45 115.754
RPE (m) 0.167 0.498 0.649 0.388 0.672 0.154 0.362 0.311 0.312 339053
RPE (º) 0.09 0.099 0.113 0.11 0.113 0.079 0.097 0.07 0.07 0.12084

TABLE 3: DF-VO and ORB-SLAM2 application evaluation using standard VO evaluation metrics: Average Translational Error
(terr), Average Rotational Error (rerr), ATE and RPE. The sequences are organized by the direction they are recorded. The
average errors for all 19 sequences are calculated, and the best result is in bold.

FIGURE 9: Comparison of relative VO evaluation metrics when applying DF-VO and ORB-SLAM2 algorithms in CAF
datasets. Translational and rotational components of relative errors are shown separately.

confirmed: quantitative results show that EnlightenGAN re-
duces the VO errors for both algorithms. Figure 12 shows the
reduction in the mean ATE and mean RPE of both algorithms
for all the sequences in EnlightenCAF.

A relative ATE reduction of 24.89% and 20.20% is ob-
served, respectively, when DF-VO and ORB-SLAM2 are
applied in the enhanced sequences. Figure 13 shows RPE,
terr and rerr evaluation metrics in EnlightenCAF dataset.

In the case of RPE, DF-VO algorithm obtains a relative
improvement of 1.97% and 4.74% for translation and rota-

tion components, respectively. ORB-SLAM2 gets a relative
improvement of 14.59% for the RPE translation component
and a relative improvement of 18.55% for the rotation com-
ponent. terr and rerr present a relative reduction of 0.22%
and 4.16% when applying DF-VO, and a relative reduction
of 3.63% and 9.31% when applying ORB-SLAM2.

Figure 10 shows a result comparison of DF-VO and ORB-
SLAM2 in the sequences of CAF and EnlightenGAF. As in
CAF dataset, it can be seen that the algorithms can estimate
the shape of the EnlightenCAF trajectories. However, a scale
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(a) Sequence 01_15 (b) Sequence 01_17

FIGURE 10: Comparison of ORB-SLAM2 and DF-VO application on two sample sequences in both CAF and EnlightenCAF
datasets and the ground truth for each trajectory.

Algorithm Metric Avg. Err

DF-VO

terr (%) 18.520
rerr (º/100m) 6.975

ATE 2.298
RPE (m) 0.049
RPE (º) 0.037

ORB-SLAM2

terr (%) 19.484
rerr (º/100m) 14.681

ATE 4.113
RPE (m) 0.0798
RPE (º) 0.126

TABLE 4: Average standard VO errors in CAF dataset when
reducing the sequences to platform areas without lighting
constraints.

underestimation problem appears again. Furthermore, DF-
VO results show that the rotation estimation is affected in
the EnlightenCAF dataset.

The results demonstrate that EnlightenGAN improves VO
algorithms performance in the underground railway domain.
Furthermore, the relative error is reduced more for the
geometric-based VO algorithm, while absolute error is re-
duced more in the learning-based algorithm.

However, as in the CAF dataset, the errors continue being
higher than the results obtained by the algorithms in the
KITTI dataset. Therefore, an affection of lighting conditions
of the scenario can still be appreciated. This affection could
be related to scale underestimation problems found in both
algorithms, especially in the hybrid DF-VO.

Additionally, when evaluating the VO algorithms, it has
been seen that the dispersion of the poses estimated by ORB-

FIGURE 11: A frame from the CAF dataset enhanced by
EnlightenGAN.

SLAM2 in different runs is reduced when enhancing the
frames with EnlightenGAN.

The dispersion of poses among different executions of
ORB-SLAM2 has been evaluated using standard metrics
[94]. These metrics include the variance (σ2) and the Co-
efficient of Variation (cv).

The evaluation procedure has been to run ORB-SLAM2
five times in each dataset, the original CAF and the enhanced
EnlightenCAF. Figure 14 shows the results of applying ORB-
SLAM2 five times for a given sequence (01_54) in the CAF
and the enhanced EnlightenCAF datasets. It can be seen that
the distribution of the poses through the trajectory is more
constant in the enlightened dataset.

From the results, it can be seen that enlightening the
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FIGURE 12: Comparative of ATE when applying DF-VO
and ORB-SLAM2 algorithms in CAF and EnlightenCAF
datasets.

datasets with EnlightenGAN increases the VO performance
and tends to reduce ORB-SLAM2 dispersion. An analysis
of the trouble spots in the dispersion results could better
understand the high dispersion in such frames and detect
further possible improvements for VO algorithms in such
scenarios.

VI. CONCLUSION
This paper has presented a method to create a ground truth
database for underground railway scenarios, where the GPS
is unavailable, or the access to the infrastructure is not
easily granted. The ground truth data generation is based
on camera frames, ERTMS/ETCS ATP data, the railway
gradient profile map, and geodetic coordinates of the target
railway. Second, it has proposed to enhance image lighting
conditions with EnlightenGAN, which can be used with any
state-of-the-art VO. Finally, it has presented the result of
the experiment performed within a real urban underground
railway scenario. The scenario was characterized by varying
lighting conditions (tunnel vs. platform), low illumination
(in tunnels), or texture-less areas that challenged the state-
of-the-art VO algorithms. The experiments were performed
using two VO approaches: geometric (ORB-SLAM) and
hybrid (DF-VO). The results show that the data enhancement
increases the performance of both VO algorithms, reducing
the translational error by at least 18%.

Future research proposes to apply the proposed dataset
generation method and image enhancement algorithm in
more underground railway scenarios. Sensor fusion is also a
promising research direction. It is expected that the inclusion
of new sensors will reduce uncertainty and increase accuracy,
which will be welcome for autonomous train operations
requiring higher localization accuracy (e.g., precise train stop
operation).
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