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Abstract—Orona is a world-renowned elevators developer. Dur-
ing elevators’ lives, their software continues to evolve, e.g., due
to hardware obsolescence, requirements changes, vulnerabilities,
and bug corrections. Such continuous evolution demands the
continuous testing of industrial elevators with the minimum
manual effort possible. To this end, we present a tool, whose
core component is a domain-specific language (DSL) with which
a user can specify test oracles at a higher level of abstraction
and independent of a testing level. The DSL also supports
specifying uncertainty-aware test oracles to test elevators under
various uncertainties inherent in them. Finally, the DSL is also
equipped with test oracle generation that generates test oracle
code automatically at the different DevOps testing levels (i.e.,
Software and Hardware-in-the-Loop test levels, and in operation)
to enable reuse of test oracles across these levels. We evaluated
this DSL with an industrial elevators case study at Orona’s site to
specify and generate test oracles. The evaluation showed that the
high expressiveness of the DSL permits the high-level definition
of test oracles in our industrial context. Based on the industrial
application, we discuss our experiences and lessons learned.

Index Terms—Domain Specific Language, Test Oracle Gener-
ation, Cyber-Physical Systems, Evolution

I. INTRODUCTION

A Cyber-Physical System (CPS) consists of several com-
municating and coordinating systems that provide a specific
service to a set of users [1]. This paper focuses on one such
CPS, i.e., an industrial elevator installation of Orona that
consists of a set of elevators with each having its dedicated
controller, traffic master– a device to control and optimize
traffic across all the elevators, and dedicated computers, e.g.,
for access control. Such an installation is devised to transport
passengers safely, while at the same time considering certain
Quality-of-Service (QoS) measures [2]. Examples of QoS
measures include the energy consumption and the Average
Waiting Time (AWT).

The software of industrial elevators continuously evolves
due to, e.g., bug corrections, adaption to legislation changes,
and including new functionality [3]. For instance, the COVID-
19 pandemic required software updates of Orona’s elevators
installations that were in operation to better handle the social
distance. Subsequently, the use of Design-Operation Contin-
uum approaches (e.g., DevOps) are paramount to enhance
the quality of the software development process for indus-
trial elevator installations. Among others, these methods need
automated software test solutions that require test oracles to
deal with continuous evolution.

In the past, some works focused on the automated genera-
tion of test oracles with Domain-Specific Language (DSL) as
a specification language. For instance, Menghi et al. generated
test oracles for Simulink models [4]. Arrieta et al. generated
both test inputs as well as test oracles using a DSL [5].
Nevertheless, the generated test oracles with these tools were
prepared for design-time testing and do not support CPS
uncertainties. In addition, most of the DSL-related testing
work (e.g., [6], [7]) currently do not support the reuse of test
oracles at different CPS DevOps testing levels.

Therefore, we developed a tool whose core component
includes a DSL that enables a high-level specification of
test oracles and abstraction independent of technical details
of different testing levels, e.g., Software in the Loop (SiL),
Hardware in the Loop (HiL), or operation. Given the inherent
uncertainty in industrial elevators, the DSL also supports
specifying uncertainty-wise test oracles. Moreover, the tool
comes with a compiler that generates executable test oracles
for different testing levels (e.g., SiL or HiL) as well as for
operation. Consequently, we enable the reuse of test oracles
at both the design and operation phases of industrial elevator
installation supporting the reuse of test oracles across different
testing levels. For the evaluation, we used an industrial case
study from Orona. The tool we developed that can generate test
oracles is necessary to automate test execution that up to now
remained manual. Furthermore, we analyzed the uncertainties
to which elevators are exposed and analyzed whether such
uncertainties could be modeled in our tool, too. The evaluation
of the DSL demonstrated sufficient expressiveness to model
test oracles and uncertainties. Based on the evaluation, we
also provide our experiences and lessons learned.

The key contributions of this paper are: 1) A practical and
expressive DSL to specify test oracles for industrial CPSs;
2) Explicit support to capture uncertainty-wise test oracles in
CPSs and their environment; 3) Support to generate and com-
pile executable test oracles for different testing levels, which
is compatible with an architecture based on microservices
explicitly designed for DevOps of CPSs [8]; 4) Validation
of the DSL in the context of industrial elevators case study
provided by our industrial partner.

II. INDUSTRIAL CONTEXT AND PROBLEM

Figure 1 shows a simplified version of the architectural
topology of a system of elevators from Orona. An installation



Fig. 1: Industrial Elevator Installation

may consist of a set of physical elevators (e.g., three in Figure
1), devices (e.g., traffic controllers, and lift controllers in
Figure 1), and dedicated computers (e.g., for access control).
Communication among different devices is enabled through
different communication protocols (e.g., Controlled Area Net-
work and Ethernet). The overall aim is to transport passengers
safely and by providing the best QoS possible.

When a passenger calls a lift through the user interface, the
traffic master receives information about the call. The traffic
master is the system in charge of deciding which elevator
should attend each call. In conventional installations, the traffic
master only receives information related to the call direction
(i.e., if it goes up or down), dealing with different uncertainties
(e.g., number of people waiting on the floor, destination
floor, etc). In the destination-selection installation, the traffic
master receives the final destination of the user. In addition,
each passenger may have certain restrictions (e.g., in hotel
buildings, certain passengers can only go to particular floors).
Such restrictions of controlling the accesses are programmed
through a personal computer which communicates with the
dispatcher through Ethernet. After the call has been assigned,
the assignment is sent to the corresponding lift controller.
The lift controllers are in charge of performing the low-level
elevator control, including their speed, acceleration, doors
opening/closing, etc.

The software of this system constantly evolves. Every time
the code is modified, Company has a well-established software
testing process, where simulation-based testing is the dominant
technology. Testing at different levels is carried out. For
instance, when testing the dispatching algorithm, the first
test level is SiL. In such a case, a domain-specific simulator
named Elevate is employed to carry out the initial tests. After
the tests have been executed at this level, the software is
integrated with the remaining software modules (e.g., real-
time operating system), compiled, and deployed in the real-
target processor for the tests to be executed at the next test

level, i.e., HiL. During the HiL test level, all the infrastructure
related to the controllers is real, whereas the physical part
(e.g., electrical engines) is emulated. The tests are executed
in real-time. After the HiL tests have been accomplished, the
software module is compiled and manually deployed on the
real installation through the maintainer. When the software is
deployed, the maintainer performs some manual tests to ensure
that everything is working correctly. As can be seen, as the
test level maturity increases, the execution of tests becomes
more expensive.

While the current testing process is robust and helps detect
several bugs before the code is in production, there is a need
for higher test automation to establish a DevOps software
development method. This would not require human interven-
tion to test and deploy a new software version in operation
thoroughly. This paper focuses on capturing and generating
test oracles to support testing at different test levels within
this context. To achieve this, test oracles with the following
characteristics are necessary:

• Streamlined test oracles: The test oracles shall be
reuseable across the different test levels (i.e., SiL, HiL) as
well as in operation. This requires for (1) an interoperable
solution and (2) support for uncertainty-wise test oracles
to deal with the inherent uncertainty that CPSs are
exposed to at operation-time.

• Support for asserting time-continuous behavior: Ele-
vators systems, as other CPSs, provide data over time,
which requires asserting that the system is behaving
correctly at a specific instant, and also by considering
evolving signals over time. Furthermore, these systems
are tested through simulation-based testing at develop-
ment time, which is based on certain QoS metrics (e.g.,
energy consumption, AWT) [2].

• Feedback from operation: When a new dispatching
algorithm is deployed in operation, problems that were
undetectable at design-time might arise. One core require-
ment of the tool is to enable the compatibility of the
generated test oracles to support run-time testing at oper-
ation. To this end, (1) the oracles incorporate uncertainty-
wise functionalities, and (2) they are compatible with a
microservice architecture targeting DevOps of CPSs [8].

III. DSL IMPLEMENTATION AND OVERVIEW

Figure 2 shows an overview of the proposed framework
for the definition and automated generation of test oracles in
systems of elevators. The framework is divided into 1) the
language for the definition of test oracles and 2) the test oracle
generator.1

A. Language for the definition of test oracles

The language is implemented in Xtext. Its syntax has as
objective to be expressive enough to characterize test oracles,
but at the highest abstraction level possible. This abstraction

1The implementation of the language is available at https://github.com/
maialenotaegi/AdeptnessDSL



Fig. 2: Overview of the tool architecture for the automated generation of test oracles

should also include where the test oracles will be executed.
The objective is to use these oracles in a streamlined way at
different CPS DevOps testing levels (i.e., SiL, HiL test levels,
or directly in operation).

1) Monitoring plan: In the upper side of Figure 2, the
data extraction process for our test oracle is shown. This data
extraction process is the same at all test levels (i.e., SiL, HiL
and Operation), but in this case, we only show the operation
side for simplicity. Test oracles need to monitor elevators’
data. Such monitoring data is obtained through MQTT, and
it is necessary to define test oracles. To do so, the monitoring
plan file needs to be defined. Subsequently, we have developed
a simple syntax in Xtext, where the monitoring plan’s name
is defined, and after that, each variable to be monitored. For
each of these variables, their names, datatype and maximum
and minimum values are specified.

2) Oracle definition: After defining the monitoring plan,
oracles are defined for the CPS. Each CPS implements a
monitoring plan, which means that it can access all data
defined in the monitoring plan (previous section). Additionally,
it is possible to include cardinality at this level, meaning that
there is more than one CPS with the same information. For
instance, for the installation in Figure 1, three lift controllers
are available with the same information. The same oracles for
the three elevators would be automatically triplicated by using
this option.

Figure 3 shows an example of the DSL implementing the
definition of two oracles for Orona’s traffic master. All oracles
shall specify a name. Each oracle can optionally have a
precondition satisfying a boolean condition, expressed through
a when or a while clause. The difference is that a when
precondition refers to events of the system, and it later allows
for expressing temporal-logic expression, such as the after
(which asserts the checks expression after the specified
time). On the contrary, the while precondition models states
of the system and it only permits later to assert the checks

expression during the same cycle(s) that the precondition is
given.

Fig. 3: DSL snippet example for our industrial case study

After the precondition, which is optional (i.e., there can
be oracles that constantly assert data), the post-condition
is asserted through the checks instruction. To define the
assertion, we analysed the properties of the industrial case
study and a total of six assertion patterns were defined. The
should be pattern asserts that a signal is the same as
the specified reference signal. The should not be pattern
asserts that a signal is different from the specified reference
signal. The is below pattern asserts that a signal is below
the specified reference signal. The is above pattern asserts
that a signal is above the specified reference signal. The is
in range between ref1 and ref2 pattern asserts that a
value is between the two specified references. Lastly, the is
not in range between ref1 and ref2 pattern asserts
that a value is above ref1 or below ref2.

Each of these data assertions are converted into a confi-
dence level value every time the test oracle is triggered. The
confidence level value ranges from -1 to 1. A positive value



means that the property defined within the checks is asserted
as “PASS”, whereas a negative value means that the property
is being violated. However, by analysing the case study we
noticed that certain violations could be accepted, especially
those related to QoS measures. For instance, in the case of the
AWTCheckerNonECO oracle defined in Figure 3, having
the AWT over 50 seconds for a small time window is not a
reason for classifying a test as “FAIL”. To solve this issue, we
used the confidence level and defined a total of three failing
reasons, allowing this way some laxity in the confidence level
in each failing reasons, expressed as fails if in the DSL.
At least one failing reason shall be specified, but the three
types could be used. Specifically, a test oracle can fail if:
(1) its confidence value is below a certain threshold, (2) its
confidence value is below certain threshold for long time, (3)
its confidence value has been below certain threshold for N
times or more in a given time window.

3) Uncertainty handling: To specify uncertainty related
test oracles in industrial elevators, we implemented three
uncertainty datatype libraries (i.e., Probability library, Vague-
ness library and Ambiguity library) based on an existing
work [9]. The Probability library contains datatypes such as
Percentage and various probability distributions (e.g., Normal
Distribution and Gamma Distribution). In some cases, it is not
possible to specify uncertainties as probabilities. For example,
QoS-based passenger’s satisfaction defined in [10] is usually
measured with fuzzy logic. Thus, we implemented data types
related to fuzzy logic such as Fuzzy set and Fuzzy Interval
in Vagueness library. Similarly, we implemented Ambiguity
library for cases when probability and vagueness libraries are
not adequate. For example, a specific traffic profile with a
specific building configuration has an acceptable distribution
of AWTs over a specific period (e.g., every 5 minutes) to
achieve better user satisfaction. This means that AWTs per
5 minutes should not have too much uncertainty (e.g., AWTs
per 5 minutes shouldn’t change frequently and drastically),
which can be measured with Shannon Entropy implemented
in Ambiguity library. Due to confidentiality reasons, we do not
provide detailed information about uncertainties in the public
repository.

Figure 4 presents an example of a test oracle using the
uncertainty datatype Percentage in Probability library to test
the elevator system’s response time performance, which is one
of the QoS indicators defined in CIBSE Guide D [10].

Fig. 4: Uncertainty test oracle snippet example

4) Syntax validation, error handling and oracle assessment:
The rules in Xtext validate that the syntax provided by the
user is correct (e.g., all monitoring variables are available,
they are in specific ranges). Another problem with test oracles
is that they are prone to false positives, which we handled

by considering data obtained from monitors in operation. For
instance, for an elevator installation, if the overall AWT is
around 30 seconds, but the test engineer specifies that the AWT
shall be below 20 seconds, the tool warns test engineers of the
possibility of a false positive being introduced.

B. Automated generation of test oracles

After modeling the test oracles in the DSL tool, the oracles
are generated and compiled to be used in a DevOps environ-
ment for CPSs. Such test oracle generation encompass four
steps, which are automated and streamlined in a Continuous
Integration (CI) pipeline running in GitLab, providing an easy
to use and transparent workflow for engineers from Orona.

1) Step 1 - Generation of oracle artifacts: DSL files are
compiled to obtain test oracle artifacts ready to integrate
within any compatible infrastructure. Two files in C code
language are generated for each of the oracles defined in the
DSL, including all the necessary functions to evaluate the
execution of tests. Furthermore, other generic C code language
files are generated, encompassing specific functions related to
uncertainty and other utility functions (e.g., compute averages,
free arrays). In addition, this generator provides a *.json file
with all the necessary information for integrating these test
oracles in compatible infrastructures.

2) Step 2 - Integration of test oracles: In this step, the pre-
viously generated files are integrated on top of a microservice
template defined in another work [8]. The .c files generated for
each oracle contain a pre-agreed function (defined in the *.json
file) that needs to be called to generate verdicts. This function
needs to be able to receive the values published by monitors
(implemented through other microservices [8]) and be able
to publish the generated verdict through MQTT (which are
later used by other microservices [8]). Additional functionality
must also be integrated, such as configuring the oracle through
REST API calls and managing the execution status.

3) Step 3 - Microservice compilation and docker container-
ization: After the required source code has been consolidated
and modified to fit the oracles, the compilation and Docker
image generation phase takes place. The main motivation
for the generation of Docker images is the portability across
platforms that it provides, being able to use the microservice
in different systems where the sole requirement is having
Docker installed. In the case of Orona, the required portability
goes further, having to provide the ability to execute the
microservices across multiple architectures, as several nodes
in Orona’s installations are running on ARMv7 and ARM64
nodes, whereas other nodes are running on AMD64 architec-
tures. The docker image generation stage runs as part of an
Ansible task, generating the docker image compatible with
these architectures.

4) Step 4 - Upload to registry: After the newly created
microservices have been made available on the Docker Reg-
istry, they are ready to be used as validation components in
a DevOps workflow. In order to make the other components
in the DevOps ecosystem installed at Orona aware of the
existence of the microservice images and Oracles, entities



have to be uploaded to a context broker (i.e., in our case,
Stellio). The model in Stellio contains entities for the Oracle
definitions, the Oracle microservice image definitions, CPSs
in the DSL, and the inputs that the oracles support. These
entities allow the test engineers to directly select available
oracles when creating test suites through a Test as a Service
(TaaS) tool.

IV. EVALUATION AND LESSONS LEARNED

A. Evaluation with Industrial Case Study

In the first step of our evaluation, we carefully analyzed
the documentation of the tests carried out manually in Orona.
Those documents indicate the expected output (e.g., elevator 1
should attend call 1) for each test case. For all these expected
outputs in the documents, we first aimed at understanding what
the systems should do. After that, we confirmed with engineers
whether our understanding was correct. When confirming, we
developed test oracles with our DSL. For all the analyzed test
cases, our DSL had expressiveness enough to model the test
oracles. In total, we defined 37 test oracles in the DSL, and
their code was automatically generated.

In the second step, we analyzed the different uncertainties
that elevator systems are exposed to. This was done by (1)
studying the CIBSE standard and (2) interviewing domain ex-
perts. After we carried out this analysis, we assessed whether
the DSL could express and consider such uncertainties. We
concluded that all the uncertainty to which elevators are
exposed to can be modeled with our DSL.

B. Experiences and Lessons Learned

Reusability of Test Oracles with Abstraction and Au-
tomation. With our DSL test oracles are described at a
higher level of abstraction independent of low-level technical
details (Abstraction). Moreover, with test oracle generation,
the code of specified test oracles is automatically (Automation)
generated for any testing level. Thus, our DSL with the tool
support provides an expressive and easy-to-use tool for our
industrial partner to test oracle generation.
Continuous Evolution of Dispatcher based on Test Results.
Based on the validation results from test oracles, the dispatcher
can be continuously improved to ensure the desired QoS.
Such an approach of continuously validating the dispatcher
against specified test oracles even in operation is essential
for continuous improvement of the quality of the dispatcher
since industrial elevators remain operational for years. Thus,
with such an approach, new behaviors of dispatchers in real
operational conditions are learned and validated that are not
possible during the design time.
Uncertainty-wise Testing. Given that uncertainty is present
everywhere in industrial elevators, our DSL provides a tool
to the developers to capture and assert uncertainties within
the design-operation continuum of industrial elevators and at
various testing levels. Consequently, our DSL offers a tool for
elevator developers to consider uncertainty explicitly during
testing, which is not common practice, thus enabling them to
handle uncertainties systematically in DevOps.

V. CONCLUSION AND FUTURE WORK

We presented the industrial application of a domain-specific
language precisely designed to specify test oracles and au-
tomatically generate their code in the context of industrial
elevators development in Company. The evaluation results
with the industrial case study, including interviews with the
domain experts at Orona, suggest that our DSL is expressive
enough to specify test oracles for this domain. Thanks to this
tool, several tasks that were manual before can be automated
at Orona. Based on our acquired knowledge, we reported
our experiences and lessons learned that are beneficial for
researchers and practitioners. Our next step is to investigate
the technology transfer of the DSL to Orona such that the
DSL can be integrated in their day-to-day work. Moreover,
in the future, we plan to evaluate to the tool in other CPS
domains and get their feedback to further improve our tool.
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