
TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 1

Performance-Driven Metamorphic Testing of
Cyber-Physical Systems

Jon Ayerdi∗, Pablo Valle∗, Sergio Segura†, Aitor Arrieta∗, Goiuria Sagardui∗ and Maite Arratibel ‡

Mondragon Unibertsitatea∗, Universidad de Sevilla †, Orona ‡
∗{jayerdi,hazibek02,aarrieta,gsagardui}@mondragon.edu, †sergiosegura@us.es, ‡marratibel@orona-group.com

Abstract—Cyber-Physical Systems (CPSs) are a new generation
of systems which integrate software with physical processes.
The increasing complexity of these systems, combined with the
uncertainty in their interactions with the physical world, makes
the definition of effective test oracles especially challenging, facing
the well known test oracle problem. Metamorphic testing has
shown great potential to alleviate the test oracle problem by
exploiting the relations among the inputs and outputs of different
executions of the system, so-called metamorphic relations (MRs).
In this article, we propose a MR pattern called Performance
Variation (PV) for the identification of performance-driven MRs,
and we show its applicability in two CPSs from different domains:
automated navigation systems and elevator control systems. For
the evaluation, we assessed the effectiveness of this approach for
detecting failures in an open source simulation-based autonomous
navigation system, as well as in an industrial case study from
the elevation domain. We derive concrete MRs based on the PV
pattern for both case studies and we evaluate their effectiveness
with seeded faults. Results show that the approach is effective at
detecting over 88% of the seeded faults, while keeping the ratio
of false positives at 4% or lower.

Index Terms—Metamorphic testing, metamorphic relation,
metamorphic relation pattern, oracle problem, cyber-physical
systems, autonomous systems

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are complex systems which
integrate computational and physical processes, and are often
composed by multiple interconnected components [8], [35].
The applications of these systems extend to many domains,
such as aerospace, automotive, healthcare, manufacturing and
consumer appliances [33]. Most of these applications require
the system to be resilient to failures while operating in
uncertain environments [67] (e.g., unmanned vehicles), and
many of them also have strict safety requirements [8] (e.g.,
medical implants).

Considering the safety and robustness requirements for
many of these systems, verification is one of the major
concerns when it comes to their development [8]. However,
given their high complexity and the inherent uncertainty of
their interactions with the physical environment, automati-
cally determining the expected output of these systems is
not feasible in many cases [32]. For instance, self-driving
cars suffer from this problem due to the sheer complexity
of determining whether their behaviour—typically driven by
artificial intelligent (AI) algorithms—is correct or not. Also,
these types of systems are extremely hard to test due to the
uncertainty of the possible situations which can occur such
as extreme weather conditions or unexpected obstacles. This

difficulty in predicting the correct output for a given input and
then comparing it with the observed output is known as the test
oracle problem, and it is recognized as one of the fundamental
problems of software testing [10], [63].

There are some alternatives to specifying test oracles for an
automated verification process. For instance, pseudo-oracles
consist in independently developing multiple versions of the
System Under Test (SUT) and comparing the outputs in order
to find discrepancies [23]. This approach, however, has a
very high cost for complex systems, which might make it
impractical in many cases. On the other hand, regression
testing consists in comparing different versions of the SUT
in order to detect breaking changes [66]. While this approach
is applicable to most systems, there are many types of failures
that cannot be detected with it, for instance, failures that are
revealed under new conditions in which the SUT had never
been deployed before. A common solution to compensate for
the shortcomings of automated test oracles is to employ human
oracles (i.e. manual testing), which is costly and error-prone.

Metamorphic testing adopts an alternative approach to tradi-
tional testing in order to alleviate the oracle problem: instead
of verifying the correctness of each individual execution of
the program under test, metamorphic testing exploits known
input and output relations that should hold among multiple
executions, so-called Metamorphic Relations (MRs) [17]. For
example, the following is a MR for the domain of self-driving
cars [59]: ”the car should behave similarly when traversing the
same route under different (non-extreme) weather conditions”.
Metamorphic testing has been used in many domains, such
as machine learning applications, web services, computer
graphics, and compilers [19], [50]. This technique has also
been successfully applied in the domain of CPSs, such as for
testing wireless sensor networks [15], autonomous drones [37],
self-driving cars [59], [70], or elevator installations [5].

MRs can often be defined at an abstract level, representing
not a single relation, but a set of MRs. Inspired by this idea, the
concept of metamorphic relation patterns has been exploited
by different authors [49], [51], [69]. Zhou et al. [69] defines
a Metamorphic Relation Pattern (MRP) as an abstraction that
characterizes a set of (possibly infinitely many) MRs. MRPs
have proved to be very helpful on guiding testers on the search
for MRs with a certain structure, making the identification
of the relations significantly easier than when starting from
scratch. For instance, the following is a MRP for self-driven
cars: ”the car should behave similarly when performing harm-
less alterations to the driving scenario”. Instances of these

0000–0000/00$00.00 c© 2022 IEEE

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 2

pattern could include MRs as the one presented above, where
the same route is traversed under different weather conditions,
but also others like traversing the same route with different
obstacles outside of the driving area [70]. Wu et al. [64]
generalized this idea further proposing the Noise MRP, which
states that a reliable system should be able to perform its
functions when a low level of interference (noise) is present.

Since its introduction in 1998, most research on meta-
morphic testing has focused on functional testing [19], [50].
However, in recent years some authors have outlined the
potential of defining MRs not in terms of the expected
impact in functionality, but in terms of the expected impact
in non-functional properties such as execution time, memory
consumption, or energy usage [13], [53], [55].

In this article, we present a MRP called Performance
Variation (PV) for the identification of failures in CPSs.
Specifically, the pattern encourages testers to identify changes
in the input of the CPSs that should have a predictable impact
in its observed performance. For example, adding obstacles
in the route of a self-driving car will typically result in more
battery consumption. Violations of these MRs can uncover
both functional (e.g., non-optimal route calculation) and non-
functional bugs (e.g., defective hardware component). To show
the applicability of the pattern, we used it to identify MRs
in two different types of CPSs: (1) autonomous navigation
systems, and (2) elevator control systems. For the evaluation,
we assessed the fault detection capability of the identified
MRs in an open source autonomous navigation system and
and industrial elevation system. Results show that the MRs—
derived from the PV pattern— are effective in identifying over
88% of the faults while keeping the ratio of false positives at
4% or lower.

This article extends a previous paper by the authors on the
use of quality of service attributes and metamorphic testing for
detecting bugs in an industrial elevation system [5]. Specifi-
cally, this work is based on the observation that the proposed
MRs can be generalized as a pattern, being applicable to
identify failures in potentially any software system, and CPSs
in particular. Hence, the main contributions of our work with
respect to our previous paper lies in the introduction of a novel
MRP (PV), and extensive empirical results, including a new
case study, showing the potential of the MRs derived from the
PV pattern for uncovering failures in CPSs.

In summary, after presenting the background on CPS (Sec-
tion II-A) and metamorphic testing (Section II-B), this article
presents the following contributions:
• A novel MRP—Performance Variation (PV)—exploiting

the predictable impact in performance of input changes
for the detection of failures in CPSs and an overview of
potential applications (Section III).

• An empirical evaluation studying the effectiveness of
MRs derived from the PV pattern to uncover faults in
an industrial elevation case study, extending our previous
work [5] (Section IV-B).

• An empirical evaluation studying the effectiveness of
MRs derived from the PV pattern to uncover faults in
an open source autonomous vehicle modeled in MAT-
LAB/Simulink [41] (Section IV-C).

• A publicly available replication package containing the
source code for the autonomous driving system exper-
iment discussed in the paper [7]. The results from the
industrial elevation system cannot be published due to
confidentiality concerns.

We discuss threats to validity and related work in Sections V
and VI, respectively. Finally, we conclude the article in Sec-
tion VII.

II. BACKGROUND

In this section, we introduce the basics on cyber-physical
systems and metamorphic testing.

A. Cyber-Physical Systems

CPSs are a combination of computation and physical pro-
cesses that interact with each other in complex ways. These
systems are heterogeneous, and contain different abstractions
for physical and computational elements and their interactions
[33]. An example of a CPS is a brake control system for a car,
which requires the tight integration of physical calculations
(to model the state of the vehicle and predict the effects of
the actions from the controller) and computations (the control
logic). The car as a whole can also be considered a CPS, which
comprises many interconnected subsystems such as the brake
controller and the obstacle detection systems.

Compared to software applications, testing CPSs presents
additional challenges. On the one hand, CPSs tend to be
highly complex, heterogeneous systems which contain both
continuous and discrete components [8]. Model-based design
is the most common paradigm for CPS development, and is
typically performed in modelling and simulation environments
such as MATLAB/Simulink [40] or OpenModelica [46], since
they allow the tight integration of physical elements (e.g.
motor mechanics simulation) with discrete logic that might
be translated to software (e.g. controller design via state
machines) [28], [57]. Testing of a CPS is usually performed
on these modelling environments first (so-called model-in-the-
loop testing), and later, when the actual software is generated,
tests can also be run with the real software and simulated
hardware (software-in-the-loop testing).

On the other hand, CPSs operate in uncertain environments
where unexpected scenarios may happen [67]. Although model
and simulation based testing can be used to verify some of
the behaviours of the system, it is not possible to verify the
behaviour of the system under real conditions until testing is
performed on the real hardware (hardware-in-the-loop testing).
This kind of testing is even more costly than using simulations,
but recent research suggests that the majority of the bugs can
be reproduced and identified in simulation, reducing the total
cost of the verification process [60].

B. Metamorphic Testing

Metamorphic testing (MT) [16], [52] aims to detect bugs
by looking at the relations among the inputs and outputs
of two or more executions of the program under test, so
called metamorphic relations (MRs). For example, consider

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 3

the program spellcheck(T) that searches for spelling errors
in an English text file T . Checking if the output of the
program is correct for non-trivial input text file would be
difficult: this is an instance of the oracle problem. Suppose
that we create a new text file T ′ by adding an independent
text fragment S at the end of T : T ′ = T + {S}. Intuitively,
the spelling errors found in T ′ should include those errors
found in T . This can be expressed as the following MR:
spellcheck(T) ⊆ spellcheck(T ′), where T ′ = T + {S}. In
this relation, (T) is the source test case, and (T ′)—created
by extending the input text file—is the follow-up test case.
This MR can be instantiated into one or more metamorphic
tests by using specific input values and checking whether the
relation holds. If the relation is violated, the metamorphic
test is said to have failed, indicating that the program under
test contains a bug. Successful applications of MT have been
reported in multiple domains including web services and
applications, machine learning, compilers, cybersecurity, and
bioinformatics, among others [19], [50]. Industrial applications
of MT have been reported at Google [24] and Facebook [2].

MRs can often be defined at a very abstract level, rep-
resenting not a single relation, but a set of relations. When
this happens, relations are referred to as metamorphic relation
patterns [49], [51], [69]. Zhou et al. [69] defines a MRP as
an abstraction that characterizes a set of (possibly infinitely
many) MRs. MRPs have proved to be very helpful on guiding
testers on the identification of MRs. As an example, Zhou et
al. [69] proposed a symmetry MRP, based on the observation
that most systems can be observed from different viewpoints
from which the system appear the same. For example, an AI-
enabled object recognition system should recognize the same
objects in a video, regardless of whether it is played forwards
or backwards. Segura et al. [54] proposed several MRPs
for query-based systems, such as adding new conjunctive
conditions (i.e., filters) for a search and expecting the results
to be a subset of the original search.

Patterns are often defined as incomplete MRs where only
the relation among the inputs or the outputs is specified.
These are referred to as Metamorphic Relation Input Patterns
(MRIPs) [69] and Metamorphic Relation Output Patterns
(MROPs) [51], respectively. For example, Zhou et al. [69]
proposed the “change direction” MRIP representing those
MRs where the follow-up test cases are created by changing
the direction of the inputs, either physical or logical, explicit or
implicit. For example, the MR described above, where an AI-
enabled object recognition systems is executed twice running
the input video forward and backward, is an instance of
this pattern. Analogously, Segura et al. [51] proposed, among
others, the “subset” MROP, which represents those MRs where
the follow-up output should be a subset of the source output.
Patterns can be defined hierarchically with some patterns being
instances of more general ones. In this paper, we propose an
MRP and several MRIPs derived from it.

Most of the works on metamorphic testing have focused
on the detection of functional faults [20], [50]. Recently,
Segura et al. [53], [55] proposed the concept of performance
metamorphic testing, where MRs are defined in terms of how
the performance of the program under test (e.g., execution

time) is expected to change when making certain changes in
the program’s inputs. For example, intuitively, the execution
time observed when searching for spelling errors in a text
should increase, or at least remain the same, if the size of
the text increases. This can be expressed as the following
(performance) MR: T (spellcheck(T) ≤ T (spellcheck(T +
{S}), where S is a random non-empty text string. Research
on performance metamorphic testing is thriving with new
applications emerging in domains such as code generators [14]
and data analytic platforms [29].

III. PERFORMANCE VARIATION PATTERN

In this section, we propose a novel MRP, defined as follows:

Performance Variation (PV). This pattern represents those
MRs that involve a change in the source input that has
a predictable effect on the performance of the test case
execution.

The intuitive idea behind this pattern is that it is typically
straightforward to think in a change in the system’s inputs such
that it should have an expected impact in its performance. For
example, if one or more obstacles are placed in the way of
an autonomous vehicle, the time and the energy required to
reach its destination should be higher than when performing
the same route without obstacles, assuming similar external
conditions (e.g. weather, traffic, etc.). If they are not, we could
be certain that the system is faulty. Note that performance
variations could reveal not only non-functional bugs, but also
functional ones. For instance, in the previous example, a
violation of the MR could be caused by an energy leak (non-
functional) or a bug in the navigation system (functional).

A key characteristic of the PV pattern is that it is extremely
generic, being potentially applicable to the identification of
metamorphic relations in most systems. However, there are
certain characteristics of CPSs that make them especially
suitable as a target domain. First, many performance metrics
are directly related to requirements on CPSs, such as exe-
cution time on real-time systems, which makes monitoring
this type of property during testing crucial. Second, even if
the performance metrics are not directly part of the require-
ments, these types of systems are often resource constrained
in many aspects, such as tight processing capabilities, low
memory, and limited power sources (e.g. batteries), which
makes performance bugs much more likely to escalate into
severe failures. Finally, the interactions that CPSs have with
the physical environment make some aspects of the state of
these systems uncertain, and performance metrics may be one
of the few ways to detect and diagnose invalid or undesirable
physical states (e.g., ground vehicle traction loss).

Performance measurements are inherently non-
deterministic; they can vary among executions due to
numerous factors such as the system workload or the
hardware settings. This means that it is usually not possible to
perform a direct comparison between the performance metrics
(e.g., execution time) observed in two or more executions of
the systems under test. This is also the case with heuristic

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 4

programs, where the system may return different responses
for the same inputs, leading to performance variations among
executions. To address this issue, several approaches have
been proposed, such as using tolerance thresholds [44] or
comparing statistical distributions obtained from running the
program multiple times [26]. In what follows, when we refer
to a performance measurement being lower (.), higher (&)
or similar (') than another, we assume that some of the
previous methods might be used.

In the next section, we explain how the PV pattern can be
used to identify metamorphic relations in two different types
of CPSs. It is common that a certain change in the inputs can
have an expected impact in different performance metrics such
as execution time, memory consumption and energy usage.
To reflect this, we present several MRIPs derived from the
more general pattern PV. Each MRIP represents groups of
MRs sharing the same input relation. Then, for each MRIP,
we mention at least one MR that can be instantiated using a
specific performance metric.

It is worth noting that the MRs presented in the next
subsections are intentionally simple for illustrative purposes.
Later, in the evaluation section, we show how MRs can get
more complex in practice.

A. Elevator Control System

Passenger elevator control systems must respond to vertical
transportation requests by coordinating one or more elevators
so that all the requests are fulfilled as efficiently as possible.
The efficiency of these systems can be measured by one or
more objectives, including total execution time for a set of
requests, average waiting time for the passengers, or energy
consumption, among others.

e1

e2

Floor
4

Floor
5

Floor
6

Floor
3

Floor
2

Floor
1

Floor
0

(a) Original elevators state

e1

e2

Floor
4

Floor
5

Floor
6

Floor
3

Floor
2

Floor
1

Floor
0

e3

(b) MRIP2: Additional elevators

Fig. 1: Elevator Control System scenarios.

In order to describe MRs, we define the operation
serve(E,P,C) for elevator installations, where E is a list of
integers indicating the floors where the elevators are positioned

initially, P are the various elevator parameters (motor start
delay, acceleration, maximum speed, etc.), and C is a set of
passenger calls c ∈ C, each of which will be encoded as
(ct, cs, cd), representing an arrival time (ct), a source floor
(cs), and a destination floor (cd). Figure 1a shows an example
scenario of a 6-story building with two elevators in floors
4 and 5, which we encode as E = {4, 5}. For simplicity,
we assume that the elevator parameters P applies to all
the elevators equally, i.e., all the elevators are identical. We
will also omit the parameters in P that are not relevant, so
the syntax {speed = 1, ...} indicates that the value of the
speed parameter is 1, whereas the rest of the parameters are
irrelevant/unchanged.

In what follows, we describe some MRIPs derived from
the PV pattern, and some sample MRs derived from them.

MRIP1: Additional calls. This pattern represents MRs
where the follow-up test cases are constructed by adding
one or more passenger calls to the source input. When this
happens, the performance of the system is expected to be
worse, or at least the same, since the elevator(s) must perform
extra tasks. For example, if we add an extra call to the test
case, the total distance (TD) traversed by the elevators should
increase or remain the same, since the elevators need to attend
to one additional passenger. This can be expressed as the
following MR:

TD(serve(E,P,Cs)) . TD(serve(E,P,Cf)) (1)

where Cf = Cs ∪ c.
For instance, suppose a source test case consisting of the

initial elevator positions from Figure 1a, E = {4, 5}, and the
set of passenger calls Cs = {(1, 2, 3)}, representing a single
call at t = 1 from floor 2 to floor 3. Suppose that a follow-up
test case is created by adding a new call at t = 2 from floor
5 to floor 3: Cf = {(1, 2, 3), (2, 5, 3)}. Then, the TD should
increase or remain the same:

TD(serve({4, 5}, {...}, {(1, 2, 3)})) .
TD(serve({4, 5}, {...}, {(1, 2, 3), (2, 5, 3)}))

(2)

Analogous MRs can be derived using other performance
metrics such as the passenger waiting time or the number of
elevators’ movements (see Section IV-B).

MRIP2: Additional elevators. This pattern groups the rela-
tions where the follow-up test case is generated by adding new
elevators to the source input scenario. When this happens, the
overall performance of the system from the user perspective
should be better, since the elevator control system has more
resources available to attend the passenger calls. For example,
the following MR is an instance of this pattern, where adding
one ore more elevators is expected to decrease the average
waiting times (AWT) of passengers:

AWT (serve(Es, P, C)) & AWT (serve(Ef , P, C)) (3)

where Ef ⊃ Es.
Figure 1b shows a sample instance of this MR. An addi-

tional elevator e3 is enabled at floor 4 in the follow-up test
case, resulting in E = {4, 5, 4}. Consider the passenger calls

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 5

C = {(1, 2, 3)}. In this case, the AWT should decrease, or in
a worst case remain the same, when adding the new elevator:

AWT (serve({4, 5}, {...}, {(1, 2, 3)})) &
AWT (serve({4, 5, 4}, {...}, {(1, 2, 3)}))

(4)

MRIP3: Faster elevators. This pattern represents MRs
where the configuration of the elevators Pf is changed so that
the elevators from the follow-up test case are faster than those
from the source test case. This can be implemented in various
ways, such as increasing the nominal speed and acceleration,
or reducing the motor start-up delay. As an example, the AWT
of the follow-up test case is expected to improve due to the
elevators being able to attend calls faster, resulting in the
following MR:

AWT (serve(E,Ps, C)) & AWT (serve(E,Pf , C)) (5)

where the parameters in Pf allow the elevators to attend
calls faster than those in Ps. Similar MRs could be defined
considering other performance metrics. For instance, increas-
ing the speed of elevators may result in a higher energy
consumption.

For example, suppose the initial elevator positions from
Figure 1a, the set of passenger calls Cs = {(1, 2, 3)}, and the
parameters Ps = {speed = 1, ...}. Consider a follow-up test
case is created by doubling the nominal speed of the elevators
(Pf = {speed = 2, ...}). In this scenario, we should expect
the AWT of the follow-up test case to be lower, or at worst
similar to the one observed in the source test case:

AWT (serve({4, 5}, {speed = 1, ...}, {(1, 2, 3)})) &
AWT (serve({4, 5}, {speed = 2, ...}, {(1, 2, 3)}))

(6)

B. Autonomous Navigation System

Autonomous navigation systems can automatically plan and
execute the route of a vehicle without human intervention.
These vehicles (henceforth referred to as autonomous vehicles)
may include, for example, driverless cars, drones, submarines,
and robotic vacuum cleaners. In practice, autonomous vehicles
should be able to determine their own position in its frame
of reference, identify and avoid obstacles, and calculate the
optimal path to traverse a set of target points, among other
tasks.

In what follows, we present some MRIPs and MRs for
autonomous vehicles derived from the PV pattern. For
the definition of the relations, we define the operation
move(P, pA, pB , S,O), where P is a set of guidance points
to follow, pA is the origin point (the vehicle’s initial position),
pB is the destination point, S is the vehicle’s nominal speed,
and O is the set of obstacles in the environment (which the
vehicle should avoid). We will assume that the vehicle’s
path can be modelled as a sequence of guidance points
corresponding to locations in the world where the vehicle is
moving, and that the vehicle is capable of following these
guidance points while avoiding the obstacles that may be
encountered. Figure 2a shows an example scenario where the
vehicle (green) must traverse several guidance points (blue
and purple) to reach its destination (red). Throughout this
work, we will use an autonomous car to illustrate scenarios

(a) Original guidance points (b) MRIP4: Fewer guidance points

Fig. 2: Autonomous Navigation System scenarios

for the proposed MRs, since this is the type of autonomous
vehicle we use for the empirical evaluation, but most of
the MRs described in this section should be applicable to
other types of vehicles (e.g. drones, boats, etc.) as long as
their functionality can be mapped to the move operation we
described.

MRIP1: Faster vehicles. This pattern represents MRs
where the vehicle’s nominal speed is increased in the follow-
up test case. The expected performance should be the same or
better in terms of travel time, since the vehicle can traverse
its route faster as long as it can accelerate to its nominal
speed. Thus, the time to destination (TTD) for a given route
is expected to decrease or remain the same, resulting in the
following MR:

TTD(move(P, pA, pB , Ss, O)) &

TTD(move(P, pA, pB , Sf , O))
(7)

where the nominal speed from the follow-up test case Sf

must be greater than the source nominal speed Ss.
For example, consider a scenario for a self-driving car where

the nominal speed measured in km/h. The route contains the
waypoints P = {w1, w2, w3}, where the starting point is
pA = w1, the goal is pB = w3, and there are no obstacles
(O = {}). If the nominal speed from the source test case is
Ss = 60, and then the execute a follow-up test case with a
higher nominal speed Sf = 80, the time to destination should
decrease:

TTD(move({w1, w2, w3}, w1, w3, 60, {})) &
TTD(move({w1, w2, w3}, w1, w3, 80, {}))

(8)

An analogous MRIP could be defined by decreasing the
nominal speed rather than increasing it.

MRIP2: Additional obstacles. This pattern represents the
MRs where follow-up test cases are created by adding ob-
stacles to the environment where the vehicle operates. In
this case, the expected performance in terms of time or
energy consumption should be worse since the vehicle must
overcome this new obstruction in its path by taking otherwise

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 6

unnecessary actions. Obstacles may include static or dynamic
objects (e.g., other vehicles) as well as adverse environmental
conditions (e.g., storms). The following is a specific MR
derived from this pattern using TTD as the evaluated perfor-
mance metric:

TTD(move(P, pA, pB , S,Os)) . TTD(move(P, pA, pB , S,Of))) (9)

where Of ⊃ Os, i.e., one or more additional obstacles have
been placed in the vehicle’s route.

Depending on the type of system under test and the ob-
stacle types, the applications of this MR may vary: For solid
obstacles where taking a longer route is necessary, we can
expect an increase in both TTD and energy usage, whereas,
for example, a condition such as headwind may only cause
an increase in the energy usage if the navigation system is
configured to compensate for it by increasing its throttle, e.g.
ArduPlane1 with airspeed throttle adjustment.

For the autonomous car example, consider a scenario where
a static object (e.g. a cone in the middle of the road) is
introduced as an obstacle, resulting in the car having to steer
to avoid it. Since the cone is an additional restriction for the
car, the alternative trajectory should always be less optimal
than the original one performance-wise. Like in the previous
example, we have P = {w1, w2, w3}, pA = w1, pB = w3,
S = 60, and no obstacles in the source test case (O = {}).
The follow-up test case is then generated by adding a cone to
the obstacles, resulting in the following MR:

TTD(move({w1, w2, w3}, w1, w3, 60, {})) .
TTD(move({w1, w2, w3}, w1, w3, 60, {cone}))

(10)

MRIP3: Reversed path. This pattern groups the MRs
where the path P is reversed in the follow-up test case.
Intuitively, this should result in source and follow-up test
executions having similar performance measures. For example,
the following is a MR derived from this pattern expressing that
the energy consumption ϕ should be similar when traversing
the path forward and backward:

ϕ(move(P, pA, pB , S,Os)) ' ϕ(move(P ′, pB , pA, S,Of))) (11)

where P ′ is obtained by reversing the waypoints in P .
This is a very intuitive relation often used to illustrate

metamorphic testing [18], [50], although here we provide a
novel perspective by using performance metrics as a proxy to
reveal failures. This relation can also be considered an instance
of the symmetry MRP proposed by Zhou et al [69].

As an example, the energy consumed in the same scenario
used to demonstrate the previous MRIPs should remain ap-
proximately the same if the path is reversed:

ϕ(move({w1, w2, w3}, w1, w3, 60, {})) '
ϕ(move({w3, w2, w1}, w3, w1, 60, {}))

(12)

MRIP4: Fewer guidance points. This pattern represents
MRs where some of the guidance waypoints from the path
of the vehicle are removed in the follow-up test case. In this
case, the car should be able to traverse the path faster, since

1http://ardupilot.org/plane/docs/airspeed.html

there are fewer guidance points to traverse and so the traversed
distance will be shorter.

TTD(move(Ps, pA, pB , S,O)) & TTD(move(Pf , pA, pB , S,O))) (13)

where Pf ⊂ Ps, i.e., some of the waypoints have been
removed from the vehicle’s path.

For our autonomous car example, if our path is Ps =
{w1, w2, w3}, the following relation should hold:

TTD(move({w1, w2, w3}, w1, w3, 60, {})) '
TTD(move({w1, w3}, w1, w3, 60, {}))

(14)

IV. EVALUATION

In this section, we report two experiments on the effec-
tiveness of performance-driven metamorphic testing of CPSs.
Specifically, we aim to answer the following research ques-
tions (RQs):
• RQ1. Do the generated MRs trigger false positives?

What causes them? Due to the non-deterministic nature
of performance measurements, false positives are likely
to emerge. We aim to investigate to what extent false
positives appear in practice.

• RQ2. Is performance-driven metamorphic testing effec-
tive in revealing failures in CPSs? We aim to study the
ability of performance-driven metamorphic testing, and
in particular MRs derived from the PV pattern, to detect
bugs in different types of CPSs. Automated regression
test oracles will be used as baselines.

• RQ3. Do particular MRIPs or performance metrics per-
form significantly better than others? We plan to compare
the performance of different MRIPs and performance
metrics. Also, we want to study whether the results from
some of the input relations and metrics subsume, or
rather complement, those obtained by other relations and
metrics.

To answer these RQs, we employed two different case
studies, whose main features are summarized in Table I.

A. Evaluation metrics

In this section, we describe the key definitions and metrics
used for the presentation of the experimental results with both
case studies.

A MR can be instantiated into one or more metamorphic
tests by running the source and follow-up test cases with
specific input values and checking whether the relation holds.
If the relation is violated, the metamorphic test is said to have
failed, indicating a test failure. However, in non-deterministic
programs—as the ones used in our case studies—the MR may
be exceptionally violated by mere chance generating a false
positive [26], [53].

We use three different metrics to determine the effectiveness
of our approach. In first place, we use the false positives
(FPs), which refers to the percentage of test failures on
the original system executions. False positives may result in
unnecessary debugging efforts, so the lower the number of
false positives the better. Second, we report the mutation score
(MS), which refers to the percentage of mutants killed by

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 7

TABLE I: Main characteristics of the experimental case studies

SUT Language Test cases (sources + follow-ups) Execution time Mutants MRs Metrics
Elevator C 1340 (140 + 1200) ∼60 hours 89 9 3
Autonomous car Simulink 1300 (100 + 1200) ∼8 hours 20 12 2

the MRs. Specifically, we consider a mutant as “detected” or
“killed” when one or more of the metamorphic tests failed
on the mutant, but not with the original system. The higher
the mutation score, the better, since more seeded faults are
detected. Finally, we measured the failure detection ratio
(FDR), which is the percentage of metamorphic tests on
mutants that resulted in a test failure. A higher percentage is
better, since more potentially faulty behaviours are identified.

B. Experiment 1: Elevator Control System

In this experiment, we tested an industrial elevator dis-
patcher system developed by Orona [45], which inspired the
example presented in Section III-A. A previous version of this
experiment was presented in [5]. In what follows, we describe
the system under test, performance metrics, metamorphic
relations, experimental setup, and the results of the experiment.

1) System Under Test: An elevator is a complex CPS,
where software and hardware interact with the goal of trans-
porting passengers safely and by considering certain QoS
measures. Among the components of the elevator installation,
the traffic master is in charge of managing the passenger
flow. This element is composed of different software modules,
including the dispatching algorithm, which decides which
elevator should attend each call. The dispatching algorithm has
a high impact on the QoS measures of the elevator installation.
Different elevator dispatchers can be used to optimize different
objectives depending on the installation requirements and traf-
fic profiles. For this experiment, we used the most commonly
used elevator dispatching algorithm from Orona [45], a leading
elevator company in Europe, as the system under test. This
dispatcher employs a deterministic rule-based algorithm which
optimizes for the best average waiting time for the passengers.
The dispatcher’s source code is written in C, so that it can be
easily compiled into different targets.

Note that unlike other types of optimizers, such as source
code compilers, a deterministic elevator dispatcher cannot
output the optimal solution for any given scenario. This is
because performing the optimal elevation dispatches requires
the algorithm to know about the passengers that will arrive in
the (near) future, since their effect on the QoS metrics will be
affected by the actions of the dispatcher before they actually
arrive. Since this information will not be available under real
circumstances, the dispatcher algorithm will need to predict
the expected passenger behaviour and act accordingly, which
may or may not be the best decision for a given scenario.
In practice, the dispatcher algorithm will mostly optimize for
the best QoS under the expected most common passenger
behaviours, with some reasonable tradeoffs to avoid worst-
case scenarios in less-expected cases.

Orona has a large suite of elevators dispatching algorithms,
which need constant maintenance to address new functional

requirements, new QoS measures, legislative changes, bug fix-
ing, hardware obsolescence or system degradation, adaptation
to building requirements, etc. When changes are made, Orona
has a well established verification and validation process of
the dispatching algorithm before deploying the new release
in real installations. In a first stage, tests are executed within
a software-in-the-loop level. The software of the dispatching
algorithm is an executable that communicates with a domain-
specific simulator named Elevate [36]. Elevate simulates all
the physical components of the elevator and provides a set of
QoS measure results when the simulation has finished. The
following stage is the hardware-in-the-loop phase. Here, the
software of the dispatching algorithm is integrated with the rest
of the software and hardware infrastructure, encompassing,
among others, real-time operating systems, communication
protocols, and the real target in which the software is executed.
In this stage, the tests are executed in real-time, and their
goal is to validate the functional correctness of the release
within the real infrastructure. Lastly, the software is deployed
into the real system at operation. The elevator maintainer
performs a set of manual tests to ensure that the software
has been successfully deployed and that it works correctly.
As the test level becomes more realistic, the test execution
cost increases significantly, so it is important to detect bugs as
early as possible during the verification and validation process.
Unfortunately, the testing process largely relies on human
oracles (i.e., the test engineer’s judgement) to decide the final
verdict for each test, which hinders full testing automation.

In Orona, a test for the dispatching algorithm is constituted
by the passengers list and the building installation information.
The passengers list represents a list of passengers that arrive to
a landing floor, call an elevator, and request a destination. For
each passenger, the following input values must be provided:
(1) the arrival time, (2) the arrival floor, (3) the destination
floor, (4) the weight of the passenger, (5) capacity factor, i.e.,
the mass threshold at which the passengers will consider the
elevator to be full, (6) the loading time, (7) the unloading
time, and (8) the expected passenger behaviour when not all
elevators serve all floors, e.g., waiting for the right elevator
vs. switching elevators until reaching the destination. For our
experiment, we set different values for the inputs (1)-(4) and
use the default values for the remaining ones. Regarding the
building installation information, it refers to an XML file with
all the information of the building and elevators installation at
which the SUT is being executed. For instance, it encompasses
the number of floors of a building, number of elevators, floors
served by each of the elevators, maximum weight each elevator
can lift, etc.

Note that the this information is passed to the simulation
environment, and the dispatcher algorithm only receives the in-
formation that it would get in a real installation. For example,
the dispatcher does not receive the passengers list beforehand,

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 8

it will only be notified of the passengers as they arrive, and
their destination is only known after they get into an elevator
and press a button.

2) Performance Metrics: For this experiment, we used the
following performance metrics:
• Average Waiting Time (AWT). The average time from the

moment a landing call is issued until an elevator stops
to attend the call, measured in seconds. This is among
the most important metrics for providing a good user
experience [9], and is the metric which the dispatcher
we use for the experiments is designed to optimize.

• Total Distance (TD). The sum of the distances traversed
by all the elevators of the building, measured in floors.
We consider this metric because an unexpected value
may reveal behaviours such as consistently not assigning
elevators which are close to the landing calls or unnec-
essarily dispatching multiple elevators to a single call.

• Total Movements (TM). The count of all the movements
(i.e., engine start-ups) of all the elevators of the building.
We considered that this metric may reveal inefficient or
bugged behaviours in a similar way to Total Distance.

3) Metamorphic Relations: Next, we describe the MRs
used in the experiment. These relations were derived from
the MRIPs presented in Section III-A, which in turn are
instances of the more general PV pattern proposed in our
work. These MRs were defined based on our knowledge of
the dispatcher—acquired during our long-term collaboration in
technology transfer with Orona—and specific inquiries made
to the engineers involved in the development and maintenance
of the dispatcher.

The following MRs are defined assuming the dispatcher
always provides an optimal assignment. However, as previ-
ously explained, the dispatcher under test provides approx-
imate solutions. In practice, this means that false positives
could arise. To mitigate this, as explained in Section III, we
define approximate relations (',&,.) instead of strict ones
(=,≥,≤). In practice, these are implemented using tolerance
thresholds, meaning that a only violations exceeding a certain
value will be consider as failures. The threshold values used in
our experiments are detailed later, in the experimental setup.

In what follows, we revisit the MRIPs defined in
Section III-A, describing the MRs derived from them in the
context of our case study. For the sake of simplicity, we
use the same notation introduced in Section III-A, where
serve(E,P,C) denotes an execution of the dispatcher, E is
a set of floors indicating the positions of the elevators, P
are the elevator parameters, and C is the list of passenger calls.

MRIP1: Additional calls. We propose several MRs where the
follow-up test input is created by appending an additional
passenger call to the source test case. Formally, the input
relation can be defined as Cf = Cs ∪ c′, where c′ is the
additional passenger call. In this scenario, the total distance
(TD) traversed by the elevator should increase (Section III-A,
Equation 1). In practice, however, we found that it is possible
to define a tighter —and therefore more likely to reveal
failures [50]— relation by making a rough estimation of the
worst case total distance required to be traversed, measured

as the sum of the largest possible distance to the source floor
and the distance between the source and the destination floors.
This can be expressed as the following MR:

TD(serve(E,P,Cf)) . TD(serve(E,P,Cs)) + TDw(c
′) (MR1TD)

where TDw(c
′) is the worst case total distance that an

elevator will have to traverse for serving c′, calculated as:
TDw(c) = max(cs − 1, FLOORS − cs) + |cs − cd|, where
max(cs − 1, FLOORS − cs) is the longest possible distance
that may need to be traversed to reach the source floor cs, and
|cs−cd| is the distance from the source floor to the destination
floor of the passenger.

A similar relation is defined based on the expected impact
on the average waiting time (AWT), namely:

AWT (serve(E,P,Cf)) . AWT (serve(E,P,Cs)) +WTw(c
′) (MR1AWT)

where WTw(c
′) is the estimated worst case waiting time

for c′, calculated as T (max(cs − 1, FLOORS − cs)), where
max(cs− 1, FLOORS− cs)) is the longest possible waiting
distance described previously, and T (distance) is a formula
which calculates the time in seconds that it takes an elevator to
traverse the given distance considering its speed, acceleration
and jerk (which are parameters that can be obtained from the
building installation XML).

Finally, when adding a call to the passenger list, the number
of total movements of the elevators should increase or remain
the same. This is expressed as the following MR:

TM(serve(E,P,Cf)) & TM(serve(E,P,Cs)) (MR1TM)

MRIP2: Additional elevators. We define MRs where the
follow-up test input is created by enabling one or more
additional elevators to the source test. Formally, we can define
this as Ef = Es ∪ E′, where E′ is a set of one or more
new elevators. For elevator dispatching algorithms that aim
at obtaining the best passenger waiting times, this should
improve the average waiting time, or at least remain the same,
yielding the following MR:

AWT (serve(Ef , P, C)) . AWT (serve(Es, P, C)) (MR2AWT)

Conversely, the total distance traversed is likely to increase
if more elevators are moving in parallel. This is reflected in
the following MR:

TD(serve(Ef , P, C)) . TD(serve(Es, P, C)) · (1 + |Ef | − |Es|) (MR2TD)

where |Ef | − |Es| is the upper bound of the traversed
distance based on the number of additional elevators. For
instance, if we add 2 more elevators, the TD could be increased
by up to 200% in the worst case.

Similarly, the total number of movements (TM) is expected
to increase if new elevators are added, namely:

TM(serve(Ef , P, C)) . TM(serve(Es, P, C)) · (1 + |Ef |−|Es|
2) (MR2TM)

where |Ef |−|Es|
2 is the upper bound of the traversed

distance based on the number of additional elevators. Here,
TM is only expected to increase by up to 50% more for each
additional elevator because out of the two movements that
the elevators might have to perform for each call (one for

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 9

attending to the calling floor, and another one for travelling
to the destination floor), only the first one may increase due
to attending calls in parallel.

MRIP3: Faster elevators. We define several MRs where the
follow-up test case is created by increasing the speed of the
elevators in the source test case. Speed is increased in all the
elevators of the scenario equally. For the elevators dispatching
algorithm under test, this should generally improve the AWT,
since faster elevators should be able to attend the calls more
rapidly. This can be expressed as the following MR:

AWT (serve(E,Pf , C)) . AWT (serve(E,Ps, C)) (MR3AWT)

On the other hand, TD and TM are expected to increase.
This is because when the elevators move slower, the passenger
calls on the same floor will accumulate, and the elevators will
end up carrying more passengers, and therefore traversing less
distance and making fewer movements. Based on this, we
define the following MR using the total distance traversed:

TD(serve(E,Pf , C)) & TD(serve(E,Ps, C)) (MR3TD)

And an analogous one using the total number of movements:

TM(serve(E,Pf , C)) & TM(serve(E,Ps, C)) (MR3TM)

4) Experimental Setup: The test cases are based on a
template project from a real building with 10 floors and up
to 6 elevators. For the MRs, our inputs are: (1) The set of
available elevators (at least 2, and up to 6), including their
positions (floors 1 through 10), (2) The set of relevant elevator
parameters to change their speed (explained later on), and
(3) The passengers list, where the arrival time, source floor,
destination floor, and passenger weights are variable and the
rest of the parameters are set to default values. The rest of the
building parameters, elevator specs, etc. are taken from the
building template and will be identical for all tests.

Source test cases were randomly generated based on the
template project of the building. Each test case has a duration
of roughly 3 minutes (simulation time) on average. For each
generated test case, we selected a random number of elevators
(between 2 and 6), a random initial floor for each elevator, and
a random passenger list generated by uniformly distributing
the calls across a fixed time period. The source and destination
floors for each call were also uniformly selected from the 10
landing positions of the building. In total, we generated 140
random source test cases and 1200 follow-up test cases. In
total, there are 1200 pairs of source and follow-up test cases:
420 for MRIP1, 360 for MRIP2, and 420 for MRIP3.

The follow-up test cases for the MRs derived from MRIP1
(additional calls) were generated by appending a single addi-
tional call to the end of the passengers list, i.e, the new call
is always the last one. This is to ensure that the additional
call has no unexpected effects on the execution of the rest of
the test case. On the other hand, the follow-ups for MRIP2
(additional elevators) was implemented by randomly selecting
a number of elevators |Ef | for the follow-up test case, given
the constraint |Es| < |Ef | ≤ 6 (the limit of 6 elevators
is specific to the elevator installation template we use in

our experiments). The additional elevators are given random
initial positions. As for the implementation of MRIP3 (faster
elevators), Cf is generated by modifying the following elevator
parameters from Cs: speed, acceleration, jerk, door open
time, door close time, motor start delay, and leveling delay.
Specifically, we select a multiplier m, which is a constant
integer number ranging between 2 and 4, and we multiply the
speed, acceleration and jerk parameters by that constant, while
the rest of the mentioned parameters are divided by it.

To measure the effectiveness of the MRs at detecting bugs,
we seeded artificial faults into the SUT using mutation testing.
This approach has been found to be a valid substitute for
testing with real faults [31]. Specifically, we created 89 faulty
variants (mutants) of the elevator dispatcher by seeding faults
using traditional mutation operators, including arithmetic, logi-
cal and relational operator mutations [1]. Faults were manually
seeded in a uniform manner throughout the sections of the
source code that are relevant in the simulation environment.
This process was performed by one of the authors, who is a
domain expert and has extensive experience with this system.
The behaviour of the generated mutants was also checked in
order to assert that none of them were semantically equivalent.
Both the 140 source test cases and the 1200 metamorphic
tests (pairs of source and follow-up test cases) were executed
against the original dispatcher and the 89 mutants resulting in
a total of (140 + 1200)× 90 = 120, 600 test executions.

As previously mentioned, to implement approximate
relations in practice, we defined tolerance thresholds for
some of the MRs. After some preliminary tests, we defined
a threshold of 30% for the relations MR3TD and MR3TM.
In MR3TD, for example, the exact assertion we used
is TD(serve(E,Pf , C)) ≥ TD(serve(E,Ps, C)) · 0.7.
The rest of the MRs were implemented by evaluating
them strictly, without any threshold or other tolerance
mechanisms, since they did not yield any false positives during
preliminary testing. For instance, MR3AWT was evaluated as
AWT (serve(E,Pf , C)) ≤ AWT (serve(E,Ps, C)).

5) Baseline: We considered the current practice for testing
elevator dispatching algorithm versions at Orona, explained
in [3]. Current approaches use a regression test oracle. Such
oracles use a previous version of the SUT and compare the
AWT performance metric over time between both the SUT
and its previous version. Specifically, the regression oracle
has different thresholds for each of the three possible failing
conditions: (1) Major AWT degradation over a single 5 minute
period, (2) accumulated AWT degradation over multiple 5
minute periods, and (3) degradation of the total AWT. In
addition, the current automated process at Orona for executing
such tests is by means of employing 14 full-day test cases,
which are both theoretical (i.e., synthetic test cases) and real
(i.e., test cases obtained from the building installation). We
used the very same test suite used at Orona for testing the
dispatcher under test, composed of 10 theoretical test cases and
4 real test cases. Table II summarizes the key characteristics
of the test cases in the baseline.

Out of the 89 mutants created, 8 of them ended in an infinite
simulation due to one or more call left unattended. This could

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 10

TABLE II: Main characteristics of the used test cases for the
considered baseline, which is the current approach used in Orona

Test case # of Up
Calls

of Down
Calls

of Detected
Mutants

Simulation
time (h:min)

real1 2756 1711 18 8:30
real2 3086 2366 18 9:10
real3 3438 3117 18 11:45
real4 3508 3050 21 13:35
theoretical1 3994 3377 20 12:55
theoretical2 3950 3379 18 12:55
theoretical3 3983 3379 26 12:55
theoretical4 3989 3402 18 12:55
theoretical5 3989 3387 18 12:55
theoretical6 3964 3384 19 12:55
theoretical7 3977 3386 21 12:55
theoretical8 3919 3433 21 12:55
theoretical9 3976 3354 18 12:55
theoretical10 3945 3407 20 12:55

easily be detected by an implicit timeout, and therefore were
marked as killed. The total simulation time of these test cases
was 10,330 minutes (approximately 7 days), but notice that
each test case should be executed twice (one with the SUT
and the other with the reference implementation). Therefore,
the total execution time is 20,660 minutes (approximately 14
days).

6) Experimental Results: The evaluation of the proposed
MRs resulted in a single false positive for each of the following
MRs: MR1TD, MR1TM and MR3AWT. The analysis from the
corresponding test cases revealed some suspicious behaviours
from the elevator dispatcher for both of the cases from MR1.
After consulting with domain experts, one of those cases
was due to a mismatch between the way Orona’s controllers
and Elevate send information to the dispatcher, which can
cause abnormal results in some simulation scenarios. This
discrepancy has not been fixed because it requires to either
maintain two separate versions of the dispatcher or modify
Orona’s controllers, and both options were deemed too expen-
sive compared with tolerating some infrequent deviations in
the simulations. Another FP revealed a case where an elevator
skipped a passenger call in a scenario where stopping for the
passenger would have been the obvious choice. This was a
corner case already known by Orona developers, who preferred
to leave the system as is to provide a better performance
on average. Reporting a failing condition can be considered
acceptable in both of these cases, since there are abnormal
conditions involved. As for the false positive for MR3AWT, the
change in speed just happened to cause the scenarios to diverge
in a way which happened to favor the slower elevators, which
is statistically unlikely but possible, and no obvious abnormal
behaviour from the dispatcher was observed in either of the
test executions.

As for their effectiveness, all the MRs combined killed
79 out of 89 mutants, which results in a mutation score of
88.76%. On the other hand, there were 1,593 out of 320,400
metamorphic test failures, which corresponds with a failure
detection ratio of 0.5%. Recall that there are 420 test pairs for
each MR derived from MRIP1 and MRIP3, and 360 test pairs
for each MR derived from MRIP2, so considering there are
89 mutants, the number of metamorphic tests on mutants is
calculated as: 89× (420× 3+ 360× 3+ 420× 3) = 320, 400
The original dispatcher was also verified with the proposed

MRs and the same test cases, and three of the MRs yielded
false positives in a single case each.

TABLE III: Evaluation results on the elevator dispatcher (MS:
Mutation Score, FDR: Fault Detection Ratio, FP: False Positives)

MRIP MR MS (%) FDR (%) FP (%)

MRIP1
MR1AWT 29.21

85.39

88.76

0.19 0.00
MR1TD 65.17 0.88 0.24
MR1TM 75.28 0.98 0.24

MRIP2
MR2AWT 42.70

42.70
2.27 0.00

MR2TD 13.48 0.08 0.00
MR2TM 5.62 0.03 0.00

MRIP3
MR3AWT 31.46

44.94
0.55 0.24

MR3TD 33.71 0.24 0.00
MR3TM 6.74 0.06 0.00

76

38 40

29

MRIP1

MRIP2 MRIP3

36 39

29

Fig. 3: Mutants killed per
MRIP (out of 89)

45

66 68

35

AWT

TD TM

39 38

58

Fig. 4: Mutants killed per
QoS metric (out of 89)

Table III details the evaluation results. For each MR, the
table shows the mutation score (MS), failure detection ratio
(FDR), and the percentage of false positives (FP). Additionally,
the table shows the aggregated MS for each MRIP and in total.
Furthermore, Figure 3 shows the exact number of mutants
killed by all the MRs for each MRIP, and the intersection of
mutants killed for all the MRIP combinations. On the other
hand, Figure 4 shows the same, but with the MRs grouped by
the QoS metric they use. The MS of each MR ranged from
5.62% to 75.28%, whereas the FDR ranged from 0.03% to
2.27%. This suggests a great diversity in the results of the
different MRs.

When comparing our approach with the baseline (i.e.,
regression test oracle, see Section IV-B5), our approach killed
32 more mutants. That is, the current approaches used in Orona
are killed 47 out of 89 mutants, resulting in a mutation score
of 52.8% (our MRs killed 79 out of 89 mutants, achieving a
mutation score of 88.76%). In terms of execution time, the sum
of the costs from all the source and follow-up test cases used in
our experiments is 3678.62 minutes (approximately 2 days and
a half), whereas the test cases used by the baseline have a total
cost of 10,330 minutes (approximately 7 days), and the actual
cost is twice as much if the reference implementation needs
to be run as well. Overall, the results show that metamorphic
testing is significantly more cost-effective than the baseline. It
is worth noting, however, that our MRs did yield three FPs,
which may lead to some unnecessary efforts from the domain
experts, whereas the regression oracles do not have this issue
on a pseudo-deterministic simulation environment.

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 11

MR1TM obtained the highest MS (75.28%), which indicates
that this MRs is capable of detecting more (types of) failures
than the rest, at least for the seeded faults used in our
evaluation. Furthermore, it also achieved a relatively high FDR
(0.98%), the second highest for all the proposed MRs. MR1TD
obtained very similar but slightly worse results. On the other
hand, MR2AWT obtained the highest FDR (2.27%). For MRIP2
(additional elevators), MR2AWT also appears to subsume the
other two metrics, as they do not contribute to the aggregate
mutation score, and their results are overall much worse.
Looking at Figure 3, MRIP1 (additional calls) is overall the
most effective pattern in terms of MS by a large margin, since
all of the derived MRs have a fairly high score, and aggregated
they only miss three of the mutants that can be killed by the
other MRIPs. As for Figure 4, surprisingly, AWT appears to
be the least effective metric, even though this is supposed to
be the most relevant one to the dispatcher algorithm under test.
Nevertheless, AWT still detects six mutants missed by TD and
seven mutants missed by TM.

Overall, it seems that the best results can be obtained by
using MR1TD and MR1TM due to their apparent ability to
detect many different types of failures (as indicated by their
high MS), combined with MR2AWT due to its significantly
higher FDR (more than 3 times higher than any other MR).
These 3 MRs combined can detect 78 of the mutants (MS of
87.64%), only one less than when using all 9 MRs combined.

C. Experiment 2: Autonomous Driving System

For this experiment, we tested an autonomous vehicle in
a simulation environment. This is a particular case of the
autonomous navigation system presented in Section III-B. A
very preliminary version of this experiment was presented in
[62]. In what follows, we describe the system under test, per-
formance metrics, metamorphic relations, experimental setup,
and the results of the experiment.

1) System Under Test: For this experiment, we tested an
autonomous car simulated using Matlab and Simulink, based
on the model published by MathWorks [41]. Both, Matlab
and Simulink are popular environments for the development
of CPSs [22], and they are also widely used by the scientific
community for research on CPS testing [68], [70].

Within the autonomous car, one of the most important
components is the navigation controller, which drives the
vehicle through the optimal path from an origin location
to the destination by traversing a set of reference points
(a.k.a. guidance points). This controller is the SUT for this
experiment. The navigation controller used in our evaluation
uses a reference speed value and a set of guidance points,
including the current and destination positions, as its inputs,
and adjusts the vehicle throttle and steering in order to move
it to the destination. The vehicle will try to move through the
reference points in order until the destination point is reached,
where the vehicle will stop. The test execution will end when
the vehicle has stopped completely at the destination point.

This Simulink model allows the simulation of different
driving scenarios, which can be used as test cases for our
SUT, the underlying vehicle controller. Each test case for this

system is composed of five different inputs, namely: (1) the
origin point, (2) the destination point, (3) a set of guidance
points to go through, (4) the vehicle’s nominal speed, and (5)
a set of obstacles on the way. In this case, the obstacles are
other vehicles which move in a straight line and may cross the
path of the car. Whenever another vehicle blocks the route,
the implemented obstacle avoidance system makes the car
slow down to a stop and wait until the path is clear. Since
the scenarios may involve multiple cars, we refer to the car
controlled by the SUT as the ego car in order to distinguish
it from other cars that are used as obstacles.

2) Performance Metrics.: For this experiment, we used the
following performance metrics, which were selected among
those typically used in the domain of autonomous vehi-
cles [27]:

• Time to destination (TTD): The time required for the
vehicle to reach its destination from its initial position,
measured in seconds. The vehicle controller is expected
to traverse its assigned route as fast as possible, as long as
the nominal speed is respected and there is no significant
risk of collision against obstacles or deviating from the
trajectory (e.g. the vehicle should reduce its speed to a
reasonable value before steering with a sharp angle).

• Total Trajectory Offset (TTO): The integral of the offset
between the vehicle’s angle and the reference angle:
When the vehicle is not facing the next reference point,
the larger the difference between the current and expected
angles, and the longer it takes to correct its angle, the
higher this metric will be. A high trajectory offset may be
caused, for instance, because its speed was too high when
taking a turn, which makes it difficult for the vehicle to
correct its direction. The vehicle controller is expected to
keep the value of this metric reasonably low.

3) Metamorphic Relations: For the definition of the MRs,
we used the same notation introduced in Section III-B, where
an execution of the autonomous navigation system is denoted
by the operation move(P, pA, pB , S,O). To reiterate, the in-
puts of the system are: (1) a set of guidance points to follow
P , (2) the origin point pA, (3) the destination point pB , (4)
the nominal speed S, and (5) a set of obstacles O. As in
the previous experiment, we next present the MRs derived
from the MRIPs presented in Section III-B, which in turn are
instances of the proposed PV pattern.

Just like in the previous case study, the MRs described
here may be violated by a small margin in practice, due to
factors such as non-determinism, limited precision of the
simulation, or MRs assuming unrealistically ideal behaviour
from the SUT. Therefore, just like before, we define
approximate relations (',&,.), and we specify the threshold
values used in our experiments later, in the experimental setup.

MRIP1: Faster vehicles. We propose several MRs where the
follow-up test input is created by increasing the original
nominal speed. Formally, Sf > Ss. When this happens the
time to destination (TTD) of the follow-up test case should be
lower than the source test case or in the worst case similar.

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 12

This can be expressed as the following MR:

TTD(move(P, pA, pB , Sf , O)) . TTD(move(P, pA, pB , Ss, O)) (MR1TTD)

On the contrary, the TTO should increase, or in the best
case it should be similar, because the car is more difficult to
control as the speed increases. This can be expressed as the
following MR:

TTO(move(P, pA, pB , Sf , O)) & TTO(move(P, pA, pB , Ss, O)) (MR1TTO)

MRIP2: Additional obstacles. We define several MRs where
the follow-up test input is constructed with an extra obstacle
in the vehicle’s path. This can be expressed as Of ⊃ Os. The
TTD should increase due to the vehicle having to dodge an
extra obstacle. This can be expressed as the following MR:

TTD(move(P, pA, pB , S,Of)) & TTD(move(P, pA, pB , S,Os)) (MR2TTD)

Conversely, the TTO metric should not change, since the
SUT we use in this case should just stop and wait without
altering its trajectory. Thus, the following MR expresses this
relation:

TTO(move(P, pA, pB , S,Of)) ' TTO(move(P, pA, pB , S,Os)) (MR2TTO)

MRIP3: Reversed path. We define several MRs by swapping
the origin and destination points. This should not make any
difference for the metrics we use, since all the roads are
bidirectional in our test scenarios, and therefore the vehicle’s
trajectory in the follow-up test should be exactly the reverse
of the one in the source test case. This can be expressed as
the following MRs considering both TTD and TTO:

TTD(move(P, pA, pB , S,O)) ' TTD(move(P ′, pB , pA, S,O)) (MR3TTD)

TTO(move(P, pA, pB , S,O)) ' TTO(move(P ′, pB , pA, S,O)) (MR3TTO)

MRIP4: Fewer guidance points. We have defined some MRs
where some points of the guidance path are removed, i.e.,
Pf ⊂ Ps. For our SUT specifically, we define a tighter version
of the MRIP where only non-essential guidance points are
removed from the path. We assume that the path contains non-
essential guidance waypoints that only help the vehicle navi-
gate to the next goal more accurately, but have no significant
effect on the trajectory of the car, such as the blue waypoints
in Figure 2. Note that pA and pB should never be removed,
and just like in the example shown in Figure 2b, the purple
waypoints should also not be removed in order to avoid severe
alterations in the trajectory. Intuitively, this transformation
should now result in similar performance measurements. We
can therefore define the following output relations for TTD
and TTO:

TTD(move(P ′, pA, pB , S,O)) ' TTD(move(P, pA, pB , S,O)) (MR4TTD)

TTO(move(P ′, pA, pB , S,O)) ' TTO(move(P, pA, pB , S,O)) (MR4TTO)

4) Experimental Setup: This empirical evaluation is based
on short-scenario test cases, which have a duration of 2
minutes (simulation time) on average. Source test cases were
randomly generated from a template project of a city modeled
in Simulink, which includes the ego car and two additional
cars which can act as obstacles. This city’s map contains 51
reference points for the navigation system, each of which
is a joint between roads. For each generated test case we
selected two random points as pA and pB and a random
trajectory and speed for each of the other two simulated cars
(obstacles). The rest of the environmental conditions (weather,
road friction, etc.) were identical for all the test cases. The
navigation controller from the ego car calculates the shortest
path between the selected points and follows it. In total, we
generated 100 random source test cases and 600 follow-up test
cases, resulting in 100 + 600 = 700 individual test cases. In
total, there are 600 pairs of source and follow-up test cases:
300 for MRIP1, 100 for MRIP2, 100 for MRIP3 and 100 for
MRIP4.

The follow-ups for MRIP1 (faster vehicles) were generated
multiplying the nominal speed value in the source test case by
a constant. In this case we generated three different MRs for
each metric, as we used three different constant multipliers for
the speed: 1.1 for MR1.1, 1.2 for MR1.2 and 1.3 for MR1.3.
On the other hand, the follow-ups for MRIP2 (additional
obstacles) were implemented by adding an obstacle within the
ego vehicle’s path making sure that it will interfere with its
operation, forcing it to stop and wait. For the implementation
of MRIP3 (reversed path), the follow-ups were generated by
reversing the path to be traversed by the vehicle. Since the
pathfinding algorithm is not a part of the system that we are
testing, and there is a risk that the route calculated by swapping
the initial and destination points is different, the path for the
original initial and destination points is calculated first, and
then the whole path is reversed for the follow-up test case.
Finally, the follow-ups for MRIP4 (fewer guidance points)
were generated by removing 20% of the guidance points in the
path. Given the source path, 20% of the guidance points are
selected with a uniform random function and discarded from
the follow-up path, but the initial and destination points are
never selected for removal so that the path is always similar in
both test cases. This process works for our system because the
waypoints are relatively close to each other, so the trajectory
remains very similar even if some arbitrary points are removed.

Similarly to our previous case study, mutation testing was
used in order to assess the effectiveness of the proposed
MRs. Specifically, we created 20 faulty models (mutants)
of the autonomous vehicle. Most of the mutants contain a
seeded fault on the vehicle control block, as this is the main
component. Some other mutants simulate failures in sensors
and other components (e.g. bad reference speed input) instead.
The faults were seeded manually using traditional mutation
operators [11], and equivalent or broken models were checked
for and discarded. All the test cases were executed against
the original system and the 20 mutants resulting in a total of
(100 + 600)× 21 = 14, 700 test executions. Some of the test
executions on the original system did not terminate correctly
after a timeout (i.e. the vehicle did not stop at its destination),

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 13

either due to the vehicle not having enough time to reach
its destination, or due to the vehicle stopping too far away
from the destination to trigger the stopping condition. The
corresponding test cases have been ignored in our evaluation
(including the mutant executions of these test cases). In total,
4 out of 100 source test cases and one of the follow-ups for
MRIP2 did not terminate correctly, so there are 100− 4 = 96
test pairs for every MR and mutant form MRIP1, MRIP3 and
MRIP4, and 100− 4− 1 = 95 test pairs for MRIP2.

After some tests, we defined a threshold of 50% for
MR3TTO and MR4TTO, and a threshold of 15% for every other
MR, in order to implement approximate operators (', & and
.). Both of the 50% thresholds were used because the MRs
can cause unexpected changes to the performance metrics in
some cases, particularly in very short test cases (some of our
test executions were shorter than 10 seconds). In the case of
MR3TTO, the vehicle always drives through the right lane,
which means that if the vehicle drives through the inner lane
in the source test case, it will drive through outer lane on
the follow-up, so the sharpness of the turns will differ. As
for MR4TTO, removing some key waypoints might allow the
vehicle to take a shorter path and make smoother turns.

5) Baseline: Since there is no previously existing test oracle
for this system, we have implemented a simple threshold-based
oracle which will raise an alarm if any of the performance
metrics drop below a certain threshold value. This oracle is a
simple version of the one proposed in [27], with the following
differences: (1) The oracle operates on global performance
metrics rather than per road sector, (2) we compute thresholds
for TTD

distance and TTO
distance , and (3) we do not allow any FPs

when we compute the optimal thresholds. These characteristics
ensure that the baseline is comparable to our MRs. The
thresholds cannot be calculated directly for TTD or TTO,
since both of these metrics increase as the test execution
progresses, making the thresholds dependent on how long the
test case is. This is why the thresholds are calculated for these
performance metrics over distance, where distance is the sum
of the distances between the waypoints that the vehicle must
traverse. Note that we chose to not allow any FPs in the
thresholds calculation because our MRs are also expected to
have zero or very few FPs.

In order to compute the thresholds, we simply take the
maximum values of the metrics obtained for a given test suite,
which are the minimum values that ensure no FPs:

maxt∈T (
TTDt

distancet
) (ThresholdTTD)

maxt∈T (
TTOt

distancet
) (ThresholdTTO)

Here T are the test executions of the original system on the
1,300 test cases used for our MRs (100 + 12 × 100, source
test-cases plus follow-ups for all MRs), but just like for our
MRs, the test executions that did not terminate are ignored.
Analogously to the approach followed for the definition of
MRs, we increased the thresholds by 10% to allow small
variations in the performance measurements.

TABLE IV: Baseline results on the AV (MS: Mutation Score, FDR:
Fault Detection Ratio, FP: False Positives)

Thresholds Metric MS (%) FDR (%) FP (%)

Tolerance TTD 90 95 6.89 16.12 0.00
TTO 60 9.76 0.00

Perfect TTD 90 95 7.02 16.74 0.00
TTO 65 10.25 0.00

Table IV shows the results obtained by the baseline. The
“Tolerance” rows show the results obtained with the calculated
thresholds increased by 10%, whereas the “Perfect” rows show
the results for the exact thresholds. Note that the “Perfect”
results are the best results that can be obtained with this
approach and test suite without FPs, since we use the same test
suite for calculating the thresholds and for evaluating them.

As a sanity check, we validated our test oracles by gener-
ating and running an additional test suite of 100 random test
cases and confirming that all the performance measurements
where under the thresholds with 10% tolerance. The thresholds
without tolerance, on the other hand, resulted in false positives,
indicating that they may be too tight to be used in practice.

6) Experimental Results: This evaluation resulted in four
false positives from MR3TTO. The analysis from the corre-
sponding test cases revealed that all the FPs were caused by
the curves having a different sharpness when traversing them
in either direction, as explained at the end of Section IV-C4
where we discuss the selected tolerance thresholds. Usually,
such cases would be compensated by having balanced right
and left turns, and for short test cases, the effect would not be
too significant. The test cases resulting in FPs had a duration
of around 30 seconds and unbalanced right and left curves,
resulting in an accumulated difference in the TTO which
exceeded the tolerance threshold for the MRs. These FPs could
be avoided by increasing the tolerance threshold for this MR,
or alternatively, using only longer test cases (e.g. longer than
1 minute), such that having significantly unbalanced curves
becomes very unlikely.

Regarding their effectiveness, all the proposed MRs com-
bined killed the 20 mutants, which means that the mutation
score is 100%. On the other hand, there were 964 out of
23,000 metamorphic test failures on mutants. This corresponds
to a failure detection ratio of 4.19%. Recall that there are 20
mutants, 12 different MRs, and 100 test pairs per MR, but the
simulation did not finish in four of the source test cases and in
one of the follow-up test cases from MRIP2. Considering this,
the number of metamorphic tests on all mutants is calculated
as: 20× 12× 96− 20× 2× 1 = 23, 000.

Table V shows the MS, FDR and FPs obtained by each
MR, as well as the total results for each MRIP and the total
aggregate results. Furthermore, Figure 5 shows the number of
mutants killed by all the MRs derived from each MRIP and the
intersection of mutants killed if the MRIPs are combined, and
Figure 6 shows the mutants killed by the MRs grouped by the
QoS metric they use. The MS for each individual MR ranged
from 15% to 90%, whereas the FDR ranged from 0.31% to
14.58%.

Comparing our approach with the baseline (i.e., thresholds-
based oracle, see Section IV-C5), our MRs killed one more

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 14

TABLE V: Evaluation results on the autonomous vehicle (MS:
Mutation Score, FDR: Fault Detection Ratio, FP: False Positives).

MRIP MR MS (%) FDR (%) FP (%)

MRIP1

MR1.1TTD 25

55

100

0.31 0.00
MR1.1TTO 50 2.08 0.00
MR1.2TTD 20 0.63 0.00
MR1.2TTO 55 2.29 0.00
MR1.3TTD 15 0.83 0.00
MR1.3TTO 55 2.86 0.00

MRIP2 MR2TTD 25 80 1.05 0.00
MR2TTO 80 7.79 0.00

MRIP3 MR3TTD 90 100 14.58 0.00
MR3TTO 65 11.98 4.17

MRIP4 MR4TTD 85 85 3.18 0.00
MR4TTO 55 2.71 0.00

MRIP3 MRIP4

MRIP1 MRIP2

20

11 16

10

10

11

10

15 11
16 11

15

10

17

17

Fig. 5: Mutants killed per MRIP (out of 20)

mutant than even the best possible thresholds. In this case, both
approaches have the same cost, so our MRs can be considered
more efficient in terms of MS. The mutant which could not be
killed with the baseline approach and our evaluation test suite
was detected by MR2TTO, MR3TTD and MR4TTD. On the other
hand, one of the MRs did yield four FPs, while the baseline
resulted in none. Furthermore, the baseline approach appears
to obtain a better FDR than most MRs, although the top three
MRs with the best MS do obtain comparable or better FDRs.

The analysis of the individual MRs shows that there is a
great gap between their performances regarding the evaluation
metrics we use. MR3TTD obtained both the highest MS (90%)
and the highest FDR (14.58%), which makes it the most
effective individual MR. On the other hand MRIP2 seems to
be the most effective MRIP when using the TTO metric, since
the MS obtained by MR4TTO (80%) is significantly higher than
the best MS obtained by any of the other MRs which uses TTO

19 1817

TTD TTO

Fig. 6: Mutants killed per QoS metric (out of 20)

(65%).
As for the MRs derived from MRIP1, their results are

clearly inferior to the ones obtained by MRIP2, MRIP3 and
MRIP4. They only accomplished a MS of up to 55%, and their
FDRs are also much lower on average. Taking a look at MRIP1
(faster vehicles), we generated three different variations, where
the nominal speed increase was different (10%, 20%, and
30% faster), and we can appreciate small differences in the
result. For the MRs based on TTO, a larger speed increase
appears to slightly boost the MS and FDR obtained by the
MR without resulting in any false positives. This makes sense,
since a larger speed increase makes it harder for the navigation
controller to maneuver the vehicle if the throttle is not properly
adjusted, so excessive throttle and similar issues are easier to
detect with higher nominal speeds. On the other hand, the
effect of a larger speed increase is not so obvious for TTD.
This may be because even if the controller makes some errors
in handling the vehicle, the TTD may still improve or remain
similar because the car is moving faster, so at higher speed
increases, all but the most severe failures can be masked by the
naturally smaller TTD when using this metric. Nevertheless,
the effect on the results that different speed increases have is
not very significant compared with the differences with the
results from other MRIPs.

Ultimately, MRIP1, MRIP2 and MRIP4 seem to be redun-
dant based on the results from this experiment, since MRIP3
alone can kill every mutant, and both of the MRs derived
from this pattern also have the highest (14.58%) and second
highest (11.98%) FDRs by a significant margin. MR2TTO is
the only other MR with comparable results. There could be
failure modes which can only be detected with TTO, and for
this metric, MR2TTO is the most effective MR in terms of
mutation score.

D. Discussion

In what follows, we further explore the results from both
case studies and what they tell us about the research questions.

1) RQ1: False positives: One of the main limitations of
performance testing lies in the presence of false positives. The
inherent non-determinism of performance measurements, the
inaccuracies of the simulators and the sensor readings, and
the approximate nature of some CPSs algorithms may lead to
some violations of the MRs when there is no real observable
failure, resulting in false alarms. To mitigate this, we used
tolerance thresholds, under which MR violations were dis-
missed. Adjusting such thresholds required some preliminary
work with the systems under test and the MRs. We observed,
for example, that some MRs require more restrictive thresholds
than others in order to avoid false positives, while others
did not seem to require any tolerance threshold whatsoever.
Finding the right balance is difficult: higher thresholds will
result in fewer false positives, but it will also limit the failure-
detection capability. In our work, we adopted a conservative
approach, mostly prioritizing the removal of false positives
over failure-detection to avoid engineers spending too much
time on manual triage. Despite this, the mutation scores
obtained, ranging between 88% and 100% make us confident

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 15

in the feasibility of the approach. It is worth remarking that,
although adjusting the threshold requires some extra work, it
is an upfront investment that should not need to be repeated
once appropriate thresholds have been defined.

During our evaluation, we found 3 instances where the
proposed MRs yielded false positives in the elevation case
study, and 4 of such instances in the autonomous driving
system case study.

For the ones related to the elevator dispatcher, 2 out of
3 false positives actually revealed some abnormal behaviour
in the system. While reporting both of these cases would
have been desirable at some point of the development of
the dispatching algorithm, they are currently scenarios that
are recognized and dismissed by the domain experts during
manual testing. Although the number of false positives appears
to be manageable, aggregating the MR violations into specific
issues, so that those already marked as “invalid” or “wontfix”
can be automatically ignored, would be desirable in order to
minimize manual checking. In order to achieve full automation
in this case, the test failures could be classified based on the
features of the test cases, similar to the approach for detecting
flaky test failures proposed by Lampel et al. [34].

As for the remaining false positive from the elevation case
study and the 4 false positives from the autonomous driving
system, they were a consequence of the MRs not being fully
accurate. Such properties would ideally be implemented based
on a statistical distribution from multiple test executions, i.e.,
statistical metamorphic testing [26], rather than being checked
over individual executions. However, this approach may not
be feasible if the cost of test executions is very high, since
collecting enough results for a meaningful statistical analysis
might not be affordable.

In view of these results, we can answer RQ1 as follows:

RQ1: Some of the MRs triggered false positives, but
the number is manageable. Some of them could be
avoided by classifying the MR violations and ignoring
duplicates, while others may require more advanced
statistical techniques in order to mitigate them.

2) RQ2: Effectiveness of performance-driven metamorphic
testing of CPSs: Our results show that performance meta-
morphic testing, and in particular MRs derived from the
proposed PV pattern, are effective at detecting failures in
CPSs (with mutation scores of 88.76% and 95% in our case
studies), alleviating the oracle problem and enabling a high
degree of automation. Although this approach can be relatively
expensive, since metamorphic testing requires multiple test
executions for the oracle, the cost is still affordable, especially
when the only alternative is manual testing. Furthermore, while
the definition of the MRs usually requires domain knowledge,
we show that very simple relations can still yield useful results.
It is also noteworthy that once defined, MRs can be reused
as long as the system specification does not change. Besides
providing a fully automated oracle for cases where a regular
oracle is not feasible, these MRs will be more resilient to
hardware or configuration changes (e.g. increasing the nominal
speed of the elevators), since the outputs of follow-up test

cases are evaluated against those observed in the source test
cases [53]. This last point is particularly important in the
Elevator case study, where the SUT will be deployed into many
installations with significantly different configurations.

It is also worth noting that the experiments presented in
this paper use random testing, which is the simplest and most
naive approach. The use of more sophisticated technique for
the source test case generation could surely improve the cost-
effectiveness of the presented approach (better FDR and MS).

As for the comparison with the baselines, the proposed
approach beat them in both cases in terms of mutation score,
showing that metamorphic testing can identify failure modes
that are difficult to detect with regular oracles. Nevertheless,
some of the MRs did result in some FPs, whereas the baseline
approaches had none. These FPs would result in some unnec-
essary efforts from the test engineers. Furthermore, comparing
the FDRs from the autonomous driving system case study
shows that the baseline oracles detect more failures than most
MRs on the same test suite. Nevertheless, the MRs with the
highest mutation score have similar or better FDRs than the
baseline. Overall, the MRs appear to be more effective as long
as the cost of tolerating some FPs is acceptable. Beyond the
evaluation metrics, it is worth noting that the MRs are much
more flexible regarding changes to the systems. For instance, if
the nominal speed of the elevators or the autonomous vehicle
were to change, the proposed MRs would still be valid as
they are, whereas the baseline approaches would require new
reference executions.

In view of these results, we can answer RQ2 as follows:

RQ2: Performance metamorphic testing, and in par-
ticular MRs derived from the proposed PV pattern,
are effective at detecting 9 out of every 10 faults in
CPSs, alleviating the oracle problem and achieving a
high degree of automation. This approach shows clear
benefits over automated regression test oracles.

3) RQ3: Differences in the performance of the MRIPs
and performance metrics: We observed significantly different
performance among the proposed MRs in terms of failure-
detection capability. In fact, we observed that some of the
relations are largely subsumed by others. A similar observation
was made when comparing the results of MRs grouped by
MRIP or performance metric.

In the elevation case study, we found that one of the MRIPs
obtained the best overall results by a great margin, whereas the
rest could only make relatively modest contributions to failure
detection. However, some of the other MRs also obtained
outstanding results for specific evaluation metrics, and are still
able to complement the results from the best MRIP.

As for the autonomous navigation system, we found that
one of the MRIPs completely dominated the others in our
evaluation. Nevertheless, some of the MRs derived from the
other MRIPs still achieved good results, and might not be
redundant for detecting some failure modes not considered in
our evaluation, so keeping them would still be reasonable.

Generally, the best results seem to be obtained when com-
bining specific MRIPs and performance metrics, and all of the

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 16

performance metrics seemed to be able to achieve good results
when combined with the right MRIP in both case studies, so
none of them can be said to be useless. Finding the effective-
ness of each MR and identifying redundant ones requires an
extensive evaluation of all of them, ideally performed with real
test cases from the SUT, or otherwise by using techniques such
as mutation testing. Before such an evaluation is performed, in
line with the results in the field of metamorphic testing [39],
we advocate for defining diverse relations in terms of input
changes and performance metrics.

In view of these results, we can answer RQ3 as follows:

RQ3: Some MRIPs and QoS metrics perform signifi-
cantly better than others. In line with previous results
in metamorphic testing, MRs should be as diverse as
possible.

V. THREATS TO VALIDITY

In this section, we describe the sources of internal and
external validity threats which may have influenced our work,
and how they have been mitigated.

A. Internal validity

Internal validity threats are related to issues that might have
affected the results of our evaluation. A potential threat for
our experiments is that amount of mutants employed might
have been too small. For the autonomous driving system,
the amount of mutants we employ is similar to other studies
were Simulink models are used [4], [38], [42]. As for the
elevation case study, we have employed an even larger set of
mutants, at the cost of approximately a month of execution
time. Furthermore, we also checked for equivalent mutants, as
recommended by Papadakis et al. [47], [48].

It is also worth noting that we employed manual fault
seeding in order to generate the mutants. Unfortunately, the
dispatcher needs to be compiled with a specific toolchain
in order to make it compatible with the simulator, which
prevented us from using existing mutation testing tools.

B. External validity

The external validity threats are related to the generaliz-
ability of the results obtained from the experiments. In this
work, we evaluate the application the PV pattern in two case
studies, which may not be enough to conclude its effectiveness
for CPSs in general. Nevertheless, both of our case studies
are highly complex systems, and they both have significantly
different characteristics. Furthermore, the elevation case study
employs a real-world industrial CPS which is used in most of
the multi-elevator installations deployed by Orona.

On the other hand, the manual step of defining effective
MRs may be too complex for some types of systems, which
might make this approach unfeasible in practice. In this work,
we deliberately present and evaluate minimal MRs which only
consider a limited set of inputs and a single output metric in
order to demonstrate that this approach can yield useful results
in complex systems with relatively simple MRs.

VI. RELATED WORK

A. Metamorphic Testing

In our previous work, we proposed the use of MRs based
on domain-specific performance metrics to test multi-elevator
systems [5], and we present experimental results with new
MRs for this case study in Section IV-B. Furthermore, we also
presented a work in progress version of the the autonomous
driving system experiment from Section IV-C [62].

Regarding autonomous vehicle systems, various MRs have
already been applied to several types of vehicles. Lindvall et al.
proposed several MRs for model-based testing of autonomous
drone controller [37]. In their approach, they employ input
transformations similar to the ones we use for our autonomous
driving system case study, such as altering the path of the vehi-
cle in a way which should not affect the outcome, or modifying
the obstacles in the vehicle’s path. As for self-driving cars,
many approaches have employed input transformations which
simulate different driving conditions (e.g. clear day VS rain) in
order to detect erroneous behaviour [59], [70]. However, our
work presents the novel approach of using output relations
based on the performance metrics of the system, as opposed
to checking the internal state or the outputs of the system.

An early precedent of performance-based MR can be found
in [15], where the testing of a wireless sensor network ap-
plication is performed by comparing the power consumption
of multiple nodes for an equivalent computation. This MR
is designed to detect bugs in the software which may cause
excessive power consumption, i.e. non-functional failures.

More recently, the concept of Performance Metamorphic
Testing was presented in [53], where several MRs which
follow a similar pattern are proposed to search for and identify
non-functional failures on a system. In that work, they propose
MRs for general applications and web browsers based on
the execution time, memory usage and energy consumption
of the test cases. In contrast, we propose the use of MRs
following this pattern not only as a means to detect non-
functional failures, but also in order to identify potential
functional failures from the violation of these properties, and
we apply this approach in the domain of autonomous driving
and elevator control systems.

Performance Metamorphic Testing has already been applied
in the context of software testing. In [30], a MR based on the
statistical distribution of page load times is used in order to
discover a race condition in the Adobe Launch Tag Manager.
However, our work is one of the first to apply such MRs in
the domain of CPSs.

B. Testing CPSs

Testing is the main technique used by developers to verify
that CPSs achieve an acceptable level of conformance and
reliability. As a result, in the last few years, the scientific
community has focused on devising novel techniques for
automated and scalable CPS testing, some of which aim to
alleviate the test oracle problem.

Menghi et al. proposed a method to generate online test
oracles for Simulink models based on a set of properties
expressed in signal temporal logic [43]. Boufaied et al.,

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 17

defined signal-based properties of CPSs, which can be used
for the definition of test oracles [12]. We have previously
proposed the application of metamorphic testing in the context
of an industrial CPS, in order to automatically test elevator
dispatching algorithms [5]. This technique has also been used
to test other CPSs, such as autonomous vehicles [70], but its
application in this domain remains largely unexplored. In this
work, we propose a MR pattern to facilitate the adoption of
performance-based metamorphic testing for CPSs.

Besides metamorphic testing, an alternative approach to
alleviate the test oracle problem is to employ machine learning
techniques in order to predict the outputs or learn invariants
of the CPS under test [10]. Chen et al. employed traces from
normal and abnormal (with seeded software faults) system
executions in order to learn a Support Vector Machine (SVM)
classifier able to detect anomalous behaviours in a water
purification plant testbed [21]. Shahamiri et al. presented an
approach to derive test oracles by using Artificial Neural
Networks (ANNs) [56]. This approach consists in training
an ANN for every output of the system, and using the
predicted outputs as a reference to evaluate the real system
outputs. The verdict from the ANN oracle is calculated as the
Mean Squared Error (MSE) between the real and predicted
outputs, which means that the oracle can calculate quantitative
verdicts [56]. We also proposed the application of machine
learning algorithms to alleviate the test oracle problem in
the domain of elevation, both for functional [3] as well as
non-functional faults [25]. Other domain-specific approaches
based on machine learning have also been proposed, such
as an unsupervised approach for autonomous vehicles testing
[58]. Another approach for the autonomous vehicle domain is
performing a human study to find the correlation between the
quality metrics used in the domain and the human perception
of driving quality, which can then be used to generate test
oracles that approximate human oracles [27].

VII. CONCLUSIONS

In this article, we present a performance-driven metamor-
phic testing approach for CPSs. Specifically, we propose a
novel MR pattern, performance variation (PV), which encour-
ages testers to exploit input changes with a predictable impact
in the system performance. In practice, the PV pattern eases
the identification of performance MRs in CPSs, alleviating
the test oracle problem. For the evaluation, we assessed the
effectiveness of MRs derived from the PV pattern in detecting
failures in an industrial elevator dispatcher and an open-source
autonomous car by using seeded faults. Results show that MRs
derived from the PV pattern are effective in detecting 88.76%
and 100% of the seeded faults, respectively, keeping the
number of false positives at no more than 4%. The definition
of the MRs and their implementation is a costly endeavour,
but it pays off because the oracles are highly reusable.

Potential lines of future work include, on the one hand,
evaluating the cost-effectiveness of this approach when com-
bined with more efficient test case generation, selection or
prioritization techniques, which would be more representative
of its full potential. On the other hand, there are several aspects

of this approach that could be further automated. One of them
is the identification of the MRs themselves, which could be
automated by defining generic templates for PV, similarly to
how the approach in [61] identifies MRs for model trans-
formations, or even generated by an evolutionary algorithm
based on a dataset of test executions labeled as correct or
incorrect [6]. Another potentially automatable process is the
fault localization for failures detected by the MRs, for which
approaches based on metamorphic slices already exist [65].

ACKNOWLEDGMENT

This work is part of a project that has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871319. Jon Ayerdi,
Aitor Arrieta and Goiuria Sagardui are part of the Software and
Systems Engineering research group of Mondragon Unibertsi-
tatea (IT1519-22), supported by the Department of Education,
Universities and Research of the Basque Country.

This work has been partially supported by the Euro-
pean Commission (FEDER) and Junta de Andalucia under
projects APOLO (US-1264651) and EKIPMENT-PLUS (P18-
FR-2895) and by the Spanish Government (FEDER/Ministerio
de Ciencia e Innovación – Agencia Estatal de Investigación)
under project HORATIO (RTI2018-101204-B-C21).

REFERENCES

[1] Hiralal Agrawal, Richard DeMillo, R Hathaway, William Hsu, Wynne
Hsu, Edward W Krauser, Rhonda J Martin, Aditya P Mathur, and Eugene
Spafford. Design of mutant operators for the c programming language.
Technical report, 1989.

[2] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte,
Inna Dvortsova, Johann George, Natalija Gucevska, Mark Harman,
Maria Lomeli, Erik Meijer, Silvia Sapora, and Justin Spahr-Summers.
Testing web enabled simulation at scale using metamorphic testing. In
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP), pages 140–149,
2021.

[3] Aitor Arrieta, Jon Ayerdi, Miren Illarramendi, Aitor Agirre, Goiuria
Sagardui, and Maite Arratibel. Using machine learning to build test
oracles: an industrial case study on elevators dispatching algorithms. In
2021 IEEE/ACM International Conference on Automation of Software
Test (AST), pages 30–39. IEEE, 2021.

[4] Aitor Arrieta, Shuai Wang, Goiuria Sagardui, and Leire Etxeberria.
Search-based test case prioritization for simulation-based testing of
cyber-physical system product lines. Journal of Systems and Software,
149:1–34, 2019.

[5] Jon Ayerdi, Sergio Segura, Aitor Arrieta, Goiuria Sagardui, and Maite
Arratibel. Qos-aware metamorphic testing: An elevation case study.
In 2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE). IEEE, 2020.

[6] Jon Ayerdi, Valerio Terragni, Aitor Arrieta, Paolo Tonella, Goiuria
Sagardui, and Maite Arratibel. Generating metamorphic relations for
cyber-physical systems with genetic programming: an industrial case
study. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 1264–1274, 2021.

[7] Jon Ayerdi, Pablo Valle, Sergio Segura, Aitor Arrieta, Goiuria Sagardui,
and Maite Arratibel. Replication package for the autonomous driving
system. https://github.com/pablovalle/MT-AutonomousVehicle, 2021.
Last access: Dec 2021.

[8] Radhakisan Baheti and Helen Gill. Cyber-physical systems. The impact
of control technology, 12(1):161–166, 2011.

[9] Gina Barney and Lutfi Al-Sharif. Elevator traffic handbook: theory and
practice. Routledge, 2015.

[10] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and
Shin Yoo. The oracle problem in software testing: A survey. IEEE
transactions on software engineering, 41(5):507–525, 2014.

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 18

[11] Nguyen Thanh Binh et al. Mutation operators for simulink models.
In 2012 Fourth International Conference on Knowledge and Systems
Engineering, pages 54–59. IEEE, 2012.

[12] Chaima Boufaied, Maris Jukss, Domenico Bianculli, Lionel Claude
Briand, and Yago Isasi Parache. Signal-based properties of cyber-
physical systems: Taxonomy and logic-based characterization. Journal
of Systems and Software, 174:110881, 2021.

[13] Mohamed Boussaa, Olivier Barais, Gerson Sunyé, and Benoit Baudry.
Leveraging metamorphic testing to automatically detect inconsistencies
in code generator families. Software Testing, Verification and Reliability,
30(1):e1721, 2020. e1721 stvr.1721.

[14] Mohamed Boussaa, Olivier Barais, Gerson Sunyé, and Benoit Baudry.
Leveraging metamorphic testing to automatically detect inconsistencies
in code generator families. Software Testing, Verification and Reliability,
30(1):e1721, 2020. e1721 stvr.1721.

[15] WK Chan, Tsong Y Chen, Shing Chi Cheung, TH Tse, and Zhenyu
Zhang. Towards the testing of power-aware software applications for
wireless sensor networks. In International Conference on Reliable
Software Technologies, pages 84–99. Springer, 2007.

[16] T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic testing: A new
approach for generating next test cases. Technical report, Technical
Report HKUST-CS98-01, Department of Computer Science, The Hong
Kong University of Science and Technology, 1998.

[17] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. Metamorphic
testing: a new approach for generating next test cases. Technical report,
Technical Report HKUST-CS98-01, Department of Computer Science,
Hong Kong . . . , 1998.

[18] Tsong Yueh Chen, DH Huang, TH Tse, and Zhi Quan Zhou. Case
studies on the selection of useful relations in metamorphic testing.
In Proceedings of the 4th Ibero-American Symposium on Software
Engineering and Knowledge Engineering (JIISIC 2004), pages 569–583.
Polytechnic University of Madrid, 2004.

[19] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave
Towey, T. H. Tse, and Zhi Quan Zhou. Metamorphic testing: A review
of challenges and opportunities. ACM Comput. Surv., 51(1), January
2018.

[20] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave
Towey, T. H. Tse, and Zhi Quan Zhou. Metamorphic testing: A review of
challenges and opportunities. ACM Computing Surveys, 51(1):4:1–4:27,
January 2018.

[21] Yuqi Chen, Christopher M Poskitt, and Jun Sun. Learning from mutants:
Using code mutation to learn and monitor invariants of a cyber-physical
system. In 2018 IEEE Symposium on Security and Privacy (SP), pages
648–660. IEEE, 2018.

[22] Yanja Dajsuren, Mark GJ Van Den Brand, Alexander Serebrenik, and
Serguei Roubtsov. Simulink models are also software: Modularity
assessment. In Proceedings of the 9th international ACM Sigsoft
conference on Quality of software architectures, pages 99–106, 2013.

[23] Martin D Davis and Elaine J Weyuker. Pseudo-oracles for non-testable
programs. In Proceedings of the ACM’81 Conference, pages 254–257,
1981.

[24] Alastair F. Donaldson. Metamorphic testing of android graphics drivers.
In Proceedings of the 4th International Workshop on Metamorphic
Testing, MET ’19, page 1. IEEE Press, 2019.

[25] Aitor Gartziandia, Aitor Arrieta, Aitor Agirre, Goiuria Sagardui, and
Maite Arratibel. Using regression learners to predict performance
problems on software updates: a case study on elevators dispatching
algorithms. In Proceedings of the 36th Annual ACM Symposium on
Applied Computing, pages 135–144, 2021.

[26] Ralph Guderlei and Johannes Mayer. Statistical metamorphic testing
testing programs with random output by means of statistical hypothesis
tests and metamorphic testing. In Seventh International Conference on
Quality Software (QSIC 2007), pages 404–409. IEEE, 2007.

[27] Gunel Jahangirova, Andrea Stocco, and Paolo Tonella. Quality metrics
and oracles for autonomous vehicles testing. In 2021 IEEE 14th In-
ternational Conference on Software Testing, Validation and Verification
(ICST). IEEE, 2021.

[28] Jeff C Jensen, Danica H Chang, and Edward A Lee. A model-based
design methodology for cyber-physical systems. In 2011 7th Inter-
national Wireless Communications and Mobile Computing Conference,
pages 1666–1671. IEEE, 2011.

[29] O. Johnston, D. Jarman, J. Berry, Z. Q. Zhou, and T. Y. Chen.
Metamorphic relations for detection of performance anomalies. In 2019
IEEE/ACM 4th International Workshop on Metamorphic Testing (MET),
pages 63–69, 2019.

[30] Owen Johnston, Darryl Jarman, Jeffrey Berry, Zhi Quan Zhou, and
Tsong Yueh Chen. Metamorphic relations for detection of performance

anomalies. In 2019 IEEE/ACM 4th International Workshop on Meta-
morphic Testing (MET), pages 63–69. IEEE, 2019.

[31] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid
Holmes, and Gordon Fraser. Are mutants a valid substitute for real
faults in software testing? In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages
654–665, 2014.

[32] Aaron Kane, Thomas Fuhrman, and Philip Koopman. Monitor based
oracles for cyber-physical system testing: Practical experience report. In
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 148–155. IEEE, 2014.

[33] Siddhartha Kumar Khaitan and James D McCalley. Design techniques
and applications of cyberphysical systems: A survey. IEEE Systems
Journal, 9(2):350–365, 2014.

[34] Johannes Lampel, Sascha Just, Sven Apel, and Andreas Zeller. When
life gives you oranges: detecting and diagnosing intermittent job failures
at mozilla. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 1381–1392, 2021.

[35] Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded
systems: A cyber-physical systems approach. Mit Press, 2016.

[36] Peters Research Limited. Elevate. https://peters-research.com, 2021.
Last access: Jun 2021.

[37] Mikael Lindvall, Adam Porter, Gudjon Magnusson, and Christoph
Schulze. Metamorphic model-based testing of autonomous systems. In
2017 IEEE/ACM 2nd International Workshop on Metamorphic Testing
(MET), pages 35–41. IEEE, 2017.

[38] Bing Liu, Shiva Nejati, Lionel C Briand, et al. Improving fault local-
ization for simulink models using search-based testing and prediction
models. In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 359–370. IEEE,
2017.

[39] H. Liu, F-C. Kuo, D. Towey, and T. Y. Chen. How effectively does
metamorphic testing alleviate the oracle problem? Software Engineering,
IEEE Transactions on, 40(1):4–22, Jan 2014.

[40] MathWorks. Matlab/simulink. https://www.mathworks.com/products/
simulink.html, 2021. Last access: Jun 2021.

[41] MathWorks Student Competitions Team”. mathworks/vehicle-pure-
pursuit.

[42] Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruck-
mann. Test generation and test prioritization for simulink models
with dynamic behavior. IEEE Transactions on Software Engineering,
45(9):919–944, 2018.

[43] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C Briand.
Generating automated and online test oracles for simulink models with
continuous and uncertain behaviors. In Proceedings of the 2019 27th
acm joint meeting on european software engineering conference and
symposium on the foundations of software engineering, pages 27–38,
2019.

[44] Christian Murphy, Kuang Shen, and Gail Kaiser. Automatic system
testing of programs without test oracles. In Proceedings of the eighteenth
international symposium on Software testing and analysis, pages 189–
200. ACM, 2009.

[45] Orona. Orona group. https://www.orona-group.com/, 2021. Last access:
Jun 2021.

[46] Open Source Modelica Consortium (OSMC). Openmodelica. https:
//www.openmodelica.org/, 2021. Last access: Jun 2021.

[47] Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves
Le Traon. Threats to the validity of mutation-based test assessment. In
Proceedings of the 25th International Symposium on Software Testing
and Analysis, pages 354–365, 2016.

[48] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. Trivial
compiler equivalence: A large scale empirical study of a simple, fast
and effective equivalent mutant detection technique. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, volume 1,
pages 936–946. IEEE, 2015.

[49] S. Segura. Metamorphic testing: Challenges ahead (keynote speech). In
Proceedings of the 3rd International Workshop on Metamorphic Testing
(ICSE MET’18), New York, NY, USA, 2018. ACM. Slides available at
http://personal.us.es/sergiosegura/files/presentations/segura18-MET.pdf.

[50] S. Segura, G. Fraser, A. Sanchez, and A. Ruiz-Cortés. A survey on
metamorphic testing. IEEE Transactions on Software Engineering,
42(9):805–824, Sept 2016.

[51] S. Segura, J.A. Parejo, J. Troya, and A. Ruiz-Cortés. Metamorphic test-
ing of RESTful Web APIs. IEEE Transactions on Software Engineering,
44(11):1083–1099, Nov 2018.

TRANSACTIONS ON RELIABILITY, VOL. TODO, NO. TODO, MONTH YEAR 19

[52] S. Segura, D. Towey, Z.Q. Zhou, and T.Y. Chen. Metamorphic testing:
Testing the untestable. IEEE Software, 37(3):46–53, 2020.

[53] S. Segura, J. Troya, A. Durán, and A. Ruiz-Cortés. Performance
metamorphic testing: Motivation and challenges. In 2017 IEEE/ACM
39th International Conference on Software Engineering: New Ideas and
Emerging Technologies Results Track (ICSE-NIER), pages 7–10, 2017.

[54] Sergio Segura, Amador Durán, Javier Troya, and Antonio Ruiz-Cortés.
Metamorphic relation patterns for query-based systems. In 2019
IEEE/ACM 4th International Workshop on Metamorphic Testing (MET),
pages 24–31. IEEE, 2019.

[55] Sergio Segura, Javier Troya, Amador Durán, and Antonio Ruiz-Cortés.
Performance metamorphic testing: A proof of concept. Information and
Software Technology, 98:1 – 4, 2018.

[56] Seyed Reza Shahamiri, Wan MN Wan-Kadir, Suhaimi Ibrahim, and
Siti Zaiton Mohd Hashim. Artificial neural networks as multi-networks
automated test oracle. Automated Software Engineering, 19(3):303–334,
2012.

[57] Narayanamurthy Srinivas, Panditi Stefan Schmidt, and Ralf Garrelfs.
Mil/sil/pil approach a new paradigm in model based development, 2014.

[58] Andrea Stocco, Michael Weiss, Marco Calzana, and Paolo Tonella. Mis-
behaviour prediction for autonomous driving systems. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
pages 359–371, 2020.

[59] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest:
Automated testing of deep-neural-network-driven autonomous cars. In
Proceedings of the 40th international conference on software engineer-
ing, pages 303–314. ACM, 2018.

[60] Christopher Steven Timperley, Afsoon Afzal, Deborah S Katz, Jam Mar-
cos Hernandez, and Claire Le Goues. Crashing simulated planes is
cheap: Can simulation detect robotics bugs early? In 2018 IEEE
11th International Conference on Software Testing, Verification and
Validation (ICST), pages 331–342. IEEE, 2018.

[61] J. Troya, S. Segura, and A. Ruiz-Cortés. Automated inference of likely
metamorphic relations for model transformations. Journal of Systems
and Software, 136:188 – 208, 2018.

[62] Pablo Valle. Metamorphic testing of autonomous vehicles: a case
study on simulink. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
pages 105–107. IEEE, 2021.

[63] E. J. Weyuker. On testing non-testable programs. The Computer Journal,
25(4):465–470, 1982.

[64] C. Wu, L. Sun, and Z. Q. Zhou. The impact of a dot: Case studies
of a noise metamorphic relation pattern. In 2019 IEEE/ACM 4th
International Workshop on Metamorphic Testing (MET), pages 17–23,
2019.

[65] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu. Metamorphic slice:
An application in spectrum-based fault localization. Information and
Software Technology, 55(5):866 – 879, 2013.

[66] Shin Yoo and Mark Harman. Regression testing minimization, selection
and prioritization: a survey. Software testing, verification and reliability,
22(2):67–120, 2012.

[67] Man Zhang, Shaukat Ali, Tao Yue, Roland Norgren, and Oscar Okariz.
Uncertainty-wise cyber-physical system test modeling. Software &
Systems Modeling, 18(2):1379–1418, 2019.

[68] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sar-
fraz Khurshid. Deeproad: Gan-based metamorphic testing and input
validation framework for autonomous driving systems. In 2018 33rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 132–142. IEEE, 2018.

[69] Z. Q. Zhou, L. Sun, T. Y. Chen, and D. Towey. Metamorphic relations
for enhancing system understanding and use. IEEE Transactions on
Software Engineering, 2018.

[70] Zhi Q Zhou and Liqun Sun. Metamorphic testing of driverless cars.
2019.

