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Abstract: Mobile robots, such as Automated Guided Vehicles (AGVs), are increasingly employed
in automated manufacturing systems or automated warehouses. They are used for many kinds of
applications, such as goods and material handling. These robots may also share industrial areas
and routes with humans. Other industrial equipment (i.e., forklifts) could also obstruct the outlined
routes. With this in mind, in this article, a coloured Petri net-based traffic controller is proposed for
collision-free AGV navigation, in which other elements moving throughout the industrial area, such
as humans, are also taken into account for the trajectory planning and obstacle avoidance. For the
optimal path and collision-free trajectory planning and traffic control, the D* Lite algorithm was used.
Moreover, a case study and an experimental validation of the suggested solution in an industrial
shop floor are presented.

Keywords: AGV; mobile robots; path planning; traffic control; artificial intelligence; coloured Petri net

1. Introduction

Automated Guided Vehicles (AGVs) are mobile robots that are often used in many
types of material and goods handling applications, such as in automated manufacturing
systems or automated warehouses, for the cost-effective and efficient movement of goods
and material. These vehicles are commonly employed for raw material delivering, finished
or work-in-progress goods and/or material feeding processes. A typical application is
the supply of parts from storehouses to workstations in a manufacturing plant [1]. AGVs
usually make use of an environment perception system, for example computer vision
systems, enabling their navigation throughout the shop floor. To this end, a path planning
system is required.

Traffic control and collision avoidance mechanisms among all robots and other bodies
in the shop floor are essential. The main goal is to avoid collisions, traffic jams or definitive
deadlocks, while ensuring optimal plant or warehouse productivity. To this end, these
mechanisms shall be able to compute and apply optimal trajectories within the manufactur-
ing plant for the AGVs. This control might distributively be accomplished in each vehicle
or centrally managed by a central control computer. Moreover, possible incidents and
accidents involving people, industrial equipment and/or any other kind of obstruction
elements should be prevented.

Commonly, a zone strategy is adopted to ensure a collision-free and safe operation.
In this method, which is simple to implement and extend, each autonomous AGV is able
to enter and pass through the area only if such a zone is clear at that point. Access to such
an area to other AGVs is then restricted until the first entering vehicle exits the zone and
releases the area accessing flag. Nevertheless, this method introduces several drawbacks
when a high traffic of AGVs is envisioned, leading to traffic obstructions, jams and, finally,
bottlenecks. Such zones might also be blocked due to other elements, such as people
or forklifts. Firstly, deadlocks, states in which each member of a group is waiting for
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some other, including itself, to release a given resource, may occur. Secondly, such traffic
obstructions may lead to unnecessary long trajectories and routes, increasing the transit
time of AGVs and, thus, transportation and manufacturing costs.

In this article, which extends the work presented in [2], an AGV traffic controller is
described. This controller dynamically computes a set of collision-free movements for
each AGV, in which possible system deadlocks are also avoided. Specifically, the following
contributions are presented:

• A Coloured Petri Net- (CPN) and D* Lite-based AGV traffic controller;
• An experimental case study validation, in which four different AGVs moving through-

out an industrial shop floor are emulated.

This article is structured as follows: Following this Introduction, background informa-
tion regarding Petri net theory is provided. A literature review is then presented. After
that, the proposed coloured Petri net- and D* Lite-based Traffic Controller for AGV traffic
and navigation control is described. Next, a case study and an experimental validation are
provided. Finally, conclusions are drawn, and possible future lines are introduced.

2. Background

Petri net theory was first introduced in 1962 by Carl Adam Petri [3]. His work, orig-
inally written in German, attracted the attention of several research groups, and it was
then translated into English. Petri nets are the technique suited to the specification and
development of concurrent and distributed systems [4–7]. Petri nets can model systems
at different abstraction and conceptual levels. This mathematical method allows model
formal proof, validation and performance analysis. For example, Petri nets have been
widely used in the safety domain [8–10] as a formally verifiable method and provide the
foundation of a straightforward and intuitive graphical notion for distributed systems’
specifications. These clear notations make it possible for a system to be visualized by its
corresponding net model. Moreover, all the executions of Petri nets are run by a bounded
and deterministic computer program, which is based on a complete mathematical theory.

In general, a Petri Net (PN) comprises a bipartite directed graph consisting of a set
of places, a set of transitions, a set of arcs (connecting transitions to places or places to
transitions), together with the associated annotations and an initial marking. Places can
contain tokens (data values). The distribution of tokens to places is known as the marking
of the net, representing the actual system state. An initial marking denotes its initial
distribution, therefore its initial state. Typically, places represent system resources, whereas
transitions represent events. Transitions are enabled when sufficient resources are available.
Enabled transitions can occur or be fired. The occurrence of a transition changes the net
marking, i.e., the state of the system.

A Petri net is described as N =< P, T, Pre, Post >, where P and T are the sets of places
and transitions and Pre and Post are the |P| × |T|-sized, natural-valued, incidence matrices.
For example, Post[p, t] = w means that there is an arc from t to p with weight or multiplicity
w. When all weights are one, the net is defined as ordinary. A marking is a |P|-sized, natural-
valued, vector. A marked net or P/T system is a pair < N, M0 >, where M0 is the initial
marking. A transition t can be fired at marking M if the M ≥ Pre[P, t] condition is satisfied.
The firing of transition t yields then a new marking M′. This is computed by Equation (1),
where C is the token–flow matrix of the net, given by C = Post− Pre, and θ is the firing
vector, representing transition t firing. This equation is also known as the state equation
of the system. Based on an initial marking M0 and Equation (1), the set of all reachable
markings, also denoted as the reachability set or the reachability graph, can be computed.

Mi+1 = Mi + C ∗ θ (1)

Since the descriptive and modelling strength of basic Petri net do not always meet the
needs of complex systems, extensions of Petri net have been proposed, such as Coloured
Petri Nets (CPNs). Coloured Petri nets are a backward-compatible extension of Petri nets
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developed by Prof. Kurt Jensen [11–13]. The CPN maintains the properties of the classical
PN and provides a new formalism to allow the distinction between tokens. Each token is
no longer noted as a black dot, but with a data value or attribute, which is named as the
token colour. Each place in the CPN models can be marked with different tokens, but of the
same type, which is called the colour set. Arcs and transitions are inscribed with symbolic
expressions. The arc expressions on the arc going into or out of the place are evaluated
and become a multiset of tokens of the same type as the colour set of the place.

3. Related Work

Recently, significant advances in the field of autonomous and intelligent industrial
vehicles have been made. An online velocity planner for laser-guided vehicles was pro-
posed by M. Raineri et al. [14]. This planner, which aims at computing optimal trajec-
tories and, at the same time, ensuring safety, computes the required speed profiles for
each AGV taking into account the safety constraints. An experimental validation for this
speed planner was then performed [15]. A mathematical optimization was proposed
by H. Fazlollahtabar et al. [16] for earliness/tardiness minimization in a multiple AGV
manufacturing system.

The Plug And Navigate (PAN)-Robots European project [17–19] aimed at improving
the efficiency and autonomy of AGVs employed in industrial logistics facilities. AGVs used
for the transportation of pallets in automated warehouses were considered. In this project,
an advanced sensing system, which is installed in the AGVs and in the infrastructure, was
proposed, which consisted of an onboard sensing system, an environmental perception sys-
tem installed in the industrial facility and a centralized data fusion system [19]. In addition,
fleet and traffic management features were considered. To this end, the D* algorithm [20]
was used to compute the sequence of sectors to be visited for each AGV (a macroscopic
approach was taken). However, in the proposed method, the avoidance of collisions and
deadlocks was addressed from a local point of view, in the scope of a given industrial
sector. In order to avoid conflicts, a negotiation mechanism was employed. In addition,
when an AGV becomes stuck in a given location, it has to wait in its current position until
the obstacle has been removed.

An improved Dijkstra’s algorithm was proposed by Z. Zhang et al. [21] to compute
the initial trajectories for several AGVs in an automated warehouse, in which potential
collisions were detected by a server. After detection, it was analysed and classified and a
solution strategy to it was calculated. Similarly, D. Silver [22] presented the Cooperative A*
(CA*), Hierarchical Cooperative A* (HCA*) and Windowed Hierarchical Cooperative A*
(WHCA*) algorithms, which were based on the well-known A* algorithm. Nevertheless,
this research was restricted to grid environments. An A*-based algorithm to compute
optimal collision-free trajectories for multiple AGVs was proposed by C. Wang et al. [23].
A dynamic path planning approach based on A* was also suggested. However, in the
presented approach, unavoidable conflicts may arise, causing deadlocks.

Other artificial intelligence (AI) algorithms have also been proposed for the traffic
guidance and scheduling of AGVs. A collaborative evolutionary-genetic-algorithm-based
strategy was proposed by H. Xiao et al. [24] for the simultaneous scheduling of multiple
AGVs. In the presented approach, two different subpopulations, with independent and
concurrent evolution processes, were employed to represent the guide path network. In ad-
dition, a bee colony algorithm was proposed by W. Zou et al. [25] for AGV scheduling
in a linear manufacturing workshop. In order to improve the performance of the algo-
rithm, a heuristics-based initialization, six neighbourhood structures, and a new evolution
approach in the onlooker bee phase were used. However, in these works, deadlocks
caused by conflicts among the computed AGV trajectories were not considered. Possible
collisions among AGVs and other industrial equipment or objects, i.e., humans, were
also no examined. Genetic algorithms were also employed by L. Bai et al. [26], in which
orthogonal collocation direct transcription techniques were used. Although static objects
were considered (other motionless robots), dynamic obstacles were omitted.
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A combination of the Dijkstra algorithm and a genetic algorithm was presented by
X. Lyu et al. [27], in which the Dijkstra algorithm was integrated into the genetic algorithm.
The presented solution aimed at computing the shortest collision-free transportation time
for multiple AGVs. To this end, a tri-string chromosome coding method was designed to
check the feasibility of the computed solution. Nevertheless, dynamic obstacles, for exam-
ple operators, were not taken into account. In contrast, a decentralized traffic management
approach was suggested by I. Draganjac et al. [28]. In the proposed solution, path planning
and motion coordination capabilities were integrated. For that, each AGV was able to
compute the shortest trajectory towards the required goal dynamically solving conflicts
with other AGV, when needed. In order to avoid collisions, a private-zone mechanism was
employed. This work was related to free-ranging AGVs in highly automated industrial
logistics and manufacturing scenarios, in which other types of entities (i.e., forklifts, hu-
man operators) were not examined. Therefore, collision avoidance between AGVs and
these entities was not addressed. Mechanisms for deadlocks prevention and addressing
were also not considered. The D* Lite algorithm was also used by Okumuş et al. [1]
individually for each AGV. When a possible collision is detected, an additional collision
avoidance module is activated. Maw, Aye Aye, et al. presented a hybrid path planning
approach, composed of an optimal flight path generator and a local planning mechanism
collision avoidance [29]. For the global planning, the improved Anytime Dynamic A*
(iADA*), an incremental searching algorithm, was proposed, while for the local planning,
a learning-based algorithm was used.

Petri nets and coloured Petri nets have been used for the definition, planning, schedul-
ing and routing of AGVs, as well as evaluating and analysing their performance [30–32].
A pull-type multiproduct, multistage and multiline flexible manufacturing system was
modelled as a coloured Petri net by T. Aized [33]. In the heuristic searching-based schedul-
ing approach, the reachability graph of the Petri net was analysed and traversed to come
up with an optimal solution (if any) of the planning and/or scheduling problem. The al-
gorithm produces a sequence and/or concatenation of actions to achieve the goal: the
complete schedule. This method was employed by O. T. Baruwa and M A. Piera [34] to find
optimal or near-optimal schedules in simultaneous scheduling problems associated with
machines and AGVs. For this purpose, a hybrid heuristic was used. Besides, a new tool
called TIMSPAT was developed by Baruwa et al. [35], in which several heuristic searching
algorithms, including A*, were integrated.

Table 1 shows a comparison of the presented related work for multi-AGV path and
traffic management.

Table 1. Comparison of the related work.

Work Approach
Adaptability Solution Optimality Deadlock

Avoidance

Static Dynamic Discrete Continuous Yes No Yes No

[14,15] Linear programming X X X X

[16] Linear programming X X X X

[17–19] D* Algorithm X X X X

[21] Dijkstra’s algorithm X X X X

[22]

Cooperative A*, Hierarchi-
cal Cooperative A*, and Win-
dowed Hierarchical Coopera-
tive A*

X X X X
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Table 1. Cont.

Work Approach
Adaptability Solution Optimality Deadlock

Avoidance

Static Dynamic Discrete Continuous Yes No Yes No

[23] A* algorithm X X X X

[24] Collaborative evolutionary
genetic algorithm X X X X

[25] Linear programming and bee
colony algorithm X X X X

[26] Nonlinear programming X X X X

[27] Dijkstra algorithm integrated
with a genetic algorithm X X X X

[28] Linear programming X X X X

[1] D* Lite algorithm X X X X

[29] Anytime Dynamic A* X X X X

[30] Petri nets X X X X

[31] Petri nets X X X X

[33] CPN and response surface
modelling X X X X

[34,35] CPN & A* algorithm X X X X

As can be observed in Table 1, most of the works computed a discrete solution.
The well-known A* and D* algorithms are widely used, which, through an admissible
heuristic, enable optimality. Only the methods presented by Herrero-Perez, D. and H.
Martinez-Barbera [30], Wu, N., and Zhou, M. [31] and Aized, T. [33], which were based on
Petri nets, provide deadlock avoidance features. Nevertheless, they might not produce an
optimal multi-AGV trajectories solution. Finally, the assumption that machine operations
and AGVs movements are nonpreemptive and there is sufficient space to avoid deadlocks
was made by Baruwa, O. T., and Piera, M. A. [34].

It should also be noted that Petri nets have also been applied in the railway domain,
for example by A. Giua and C. Seatzu [36] and D. Giglio and N. Sacco [37]. P. Sun [38]
modelled the French railway interlocking system as a coloured Petri net with the aim of
verifying and ensuring railway traffic safety. The use of time Petri nets methods is highly
recommended for the development of safety-critical systems, according to the industrial
safety standard IEC 61508 (Part 3) [39].

4. Traffic Controller

An AGV Manager is a central AGV administration, control and supervision unit used in
industrial facilities, which manages and controls all AGV traffic and movements within the
manufacturing plant or a given area. The high-level architecture of this system is depicted
in Figure 1. The system would provide an interface for a Warehouse Management System
(WMS), Enterprise Resource Planning (ERP) system and/or Manufacturing Execution
System (MES). The AGV Manager could also be an extension or be integrated with the
WMS, ERP system or MES. A Graphical User Interface (GUI) could also be offered to the
plant operators [18].
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Robot controller Traffic controller

AGV 1 AGV 2 AGV n

MES / WMS 

Other 
modules

AGV Manager

Figure 1. General architecture of the AGV Manager.

As depicted in Figure 1, the main Robot Controller service is responsible for all AGVs’
mission and navigation control (i.e., pick-up/drop-off goods in given places, material/parts
supply). To this end, the Robot Controller is able to remotely communicate with all AGVs
(e.g., to send movement commands or receive feedback from onboard sensors), as well as
with other equipment, such as obstacle detection devices, positioning systems or energy
storage management systems. These are symbolized as Other modules in Figure 1. The Traffic
controller service, which might be connected as a plugin, will compute an optimal navigation
solution (set of trajectories) for the AGVs, while avoiding deadlocks and collisions. For this
purpose, the current and desired positions of the AGVs, in addition to the environmental
information obtained from the onboard sensors and auxiliary equipment (i.e., detection of
new obstacles, blocked passages, etc.) will be supplied to the Traffic controller by the Robot
Controller. Initially, a CPN model of the manufacturing plant is provided, which describes
the physical layout and the possible movements actions to be performed by the AGVs in
the industrial facilities. Possible places that can be held and/or occupied are also defined.

Figure 2 depicts the sequence diagram for AGV navigation in the presence of dynamic
obstacles. The plant operator, a human operator (if manually operated), WMS, ERP system
or MES will define the goal positions for each AGV. It has to be pointed out that the Robot
Controller might offer additional services and capabilities, such as AGV energy management
or material pick-up and drop-off features. After the goal positions for each AGV are defined,
the trajectories to be followed by each AGV within the industrial shop floor are computed
at the request of the Robot Controller. Once computed, the Robot Controller will monitor and
control the navigation of each AGV through the shop floor.

As observed in Figure 2, in case a new obstacle is detected, both by an obstacle
detection system or by onboard sensors located in the AGVs, a new set of trajectories for the
AGVs might be needed. This task will be performed by the Traffic Controller for which the
initial coloured Petri net model will be used as a basis for the AGVs’ trajectory replanning.
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loop
Opt

alt

Traffic controller

Obstacle  
detection 
system

Robot controller

RobotsOperator

ACK

move(robot, nextPos)

loop

setObstacles(obstacles)

setGoal(robot, place)

ACK

startMission computePaths(actualPos)

Paths

ACK

ACK

setObstacles (obstacles)

Paths

ACK

setObstacle(obstacles)

loop

Define goals for
each AGV

initialize()

ACK

Figure 2. AGV navigation sequence diagram.

4.1. Coloured Petri Net Model

The industrial shop floor was modelled as a coloured Petri net, in which AGVs were
considered tokens and different locations within the industrial shop floor places. Each
AGV is defined and identified as a colour. Figure 3 depicts a CPN model of a manufacturing
plant. In the model, special places are defined, which are workstations (Wi for ∀i in [0..5])
and storehouses (S0 and S1).

The coloured Petri net model extends the classic Place/Transition (PT) net, maintaining
its original features and functionalities. In particular, the assumption that a single AGV is
positioned in a given place at a given time instance is made. For each place in the Petri net
shown in Figure 3, different inbound and outbound transitions, for which firing enables the
incoming and outgoing traffic of AGVs, are defined. Due to net colouring, in each transition,
a single AGV is involved. However, in a given time instance, different transitions can be
simultaneously fired, which will promote the movement of multiple AGVs.

However, particular transitions related to the modification of the attributes, the state
of the AGV or the manufacturing process are defined. On the one hand, the T0 and T1
transitions implement storehouse functionalities, such as pick-up and drop-off functions.
On the other hand, transitions T58 to T63 represent part/product processing functions at
workstations. Through the activation of these special transitions, the state of the corre-
sponding AGV, storehouse and/or workstation might be changed. Since these transitions
are not related to the AGV traffic control and navigation, they are disabled for the AGV
path planning and traffic control.
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Figure 3. Petri net model of the manufacturing facility.

Once the CPN model is defined (Pre and Post matrices) and supplied to the Traffic
Controller, the reachability graph is built. This directed graph contains all feasible AGVs
position, that is the CPN markings and their progression paths. These movements are ob-
tained using the state equation shown in Equation (1). Figure 4 shows the built reachability
graph for a single AGV computed from the Petri net model shown in Figure 3, in which
edges represent the transition to be activated in order to reach a new marking. On the
contrary, each vertex corresponds to a CPN marking, displayed as a vector. This vector
indicates where each of the AGVs is located on the shop floor; in other words, the position
in the vector of the AGV identifier corresponds to the place number. A 0 implies that no
AGV is positioned in such a place. When multiple AGVs are defined, those marking vector
positions are filled with the corresponding AGV identifier number.

For the construction of the graph, all feasible CPN markings are initially computed.
After that, for each marking, all possible successors and firings are firstly computed. To this
end, a list of fireable transitions is obtained by comparing the actual marking Mx with the
Pre incidence matrix. If Mx ≥ Pre[P, t] is met, transition t is determined as fireable. This
ensures that transitions without any token origin places are not fired. A recursion method
is then employed to compute a list of possible firings. This list will contain an inventory of
all possible firing vectors θ for a given marking. This method is shown in Algorithm 1.

Algorithm 1 Recursive firing vector list computation.
emphtyFiring := θ (∅)

list := {emphtyFiring}

for each fireableTransition do

copyList := list

activateTransitions(fireableTransition,copyList)

list.Add(copyList)

end for



Electronics 2021, 10, 2235 9 of 17

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

T 41 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

T 57 

T 40 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

T 39 T 38 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

T 37 

 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

T 53 

T 36 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

T 35 T 34 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

T 33 

 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

T 49 

T 32 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

T 31 T 30 

 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

T 45 

T 56 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

T 29 

 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T 55 

T 28 

T 27 

T 52 

T 26 

 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

T 25 

 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T 51 

T 24 

T 23 T 48 T 22 

 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

T 21 

 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T 47 

T 20 

T 19 

T 44 

T 18 

 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T 43 

T 54 

 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T 17 T 16 

T 15 

 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T 5 

T 50 

T 14 

 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T 13 T 12 

T 11 

T 46 

T 10 

 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T 9 T 8 

T 7 
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T 4 

T 1 
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Figure 4. Example reachability graph for a single AGV for the CPN model shown in Figure 3.

As depicted in Algorithm 1, a list of possible firings is initially instantiated, where
an empty θ firing vector (no fireable transition) is inserted. Then, for each fireable and
nonblocked transition, a copy of it is performed and the correspondent transition activated
for all elements in the duplicated list. Lastly, all firing possibilities contained in the copyList
are appended to the original list. Moreover, the assumption that only a transition from a
couple that connects two places can be activated is made, which means that only a single
AGV can go through a passage each time (unidirectional road). Given the example above
depicted in Figure 3, T6 and T7 cannot simultaneously be fired.
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The recursive firing list computation shown in Algorithm 1 does not deal with this
issue. As a result, the computed list is then analysed, and all θ firing vectors that do not fulfil
this property are removed from the list. Depending on the use case, this feature of the Traffic
Controller could be disabled (just omitting the last step), enabling bidirectional passages.

Following this, a list of all possible movements of AGVs, denoted successors, is
obtained based on the previous state. This task is accomplished by using Equation (1).
New markings are computed based on the computed θ firing vectors (recorded in the
list data structure). If any collision is detected in the new state (more than one AVG in
a given place), the new possible state, and thus the coloured marking, is rejected. All
descendant movements and states for each marking are calculated and, at the same time,
the reachability graph built.

4.2. Trajectory Planning

For the collision-free trajectory planning and traffic control, the D* Lite searching
algorithm [40] is executed throughout the initially constructed reachability graph. Unlike
the usual grid-based space searching approach employed in robotics, in which each grid
cell refers to a discretized physical area, this approach works at the all-at-once simul-
taneous multi-AGV-aware trajectory planning level. A combined solution considering
multiple AGVs trajectories is computed. D* Lite, as suggested by its name, is an incre-
mental (dynamic) heuristic searching algorithm. This algorithm, which is based on the
Lifelong Planning A* (LPA*), reuses previously generated states and data to speed up
the new searches, and hence save time, instead of solving the search every time from the
beginning. Although it is not based on the original D* or Focused D*, it implements the
same behaviour.

In order to improve the searching time, as commonly done in robotics, heuristics
were used. As stated by S. Koenig and M. Likachev [40], the heuristics need to be non-
negative and satisfy h(s, s′) ≤ c∗(s, s′) (c∗(s, s′) being the cost of the shortest path from
vertex s to vertex s′) and h(s, s′′) ≤ h(s, s′) + h(s′, s′′). An admissible heuristic should not
overestimate the real cost. Therefore, the Manhattan distance was used for the heuristics,
which is defined as the sum of the vertical and horizontal distances between points in a
grid. The heuristic was then calculated by summing up all the Manhattan distances of all
the AGVs from the actual positions of the vehicle towards the goal positions, as shown
in Equation (2).

h = ∑
agv∈AGV

Manhattan(agvactual.pos, agvgoal.pos) (2)

During the execution of the simulation and the D* Lite searching algorithm, the cost
of edges in the reachability graph of the Petri net might change depending on if any
related transition has been affected by an obstacle or not. A dynamic obstacle refers to
any element (i.e., forklifts) or people that might obstruct a given zone or passage in the
manufacturing plant. When a new obstacle is detected, either by a global detection system
or onboard sensors (as depicted in Figure 2), this information is transmitted to the AGV
Manager. The Robot Controller will specify which transitions of the CPN model became
blocked. In the recomputation of the trajectories for the AGVs, the cost for the activation of
those transitions, and hence the corresponding movement, was set to infinity. The D* Lite
algorithm will try to come up with an alternative solution.

5. Case Study

In this section, a case study of the proposed method is presented, in which four
different AGVs were considered. Furthermore, the previously depicted manufacturing
shop floor model, shown in Figure 3, was used. This model is loaded into the Traffic
Controller, which then constructs the reachability graph. After its initialization, the current
and goal positions of the AGVs can be determined. Table 2 shows the defined initial and
goal places for the AGVs.
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Table 2. Initial and goal places of the AGVs.

AGV Initial Place Goal Place Colour
AGV1 P1 (S1) P17 (W0) Blue
AGV2 P14 (W5) P0 (S0) Red
AGV3 P10 (W3) P21 (W2) Green
AGV4 P17 (W0) P14 (W5) Cyan

Once these initial and goal locations are determined, an initial trajectory is computed
for each AGV by the Traffic Controller (see Figure 2). The Robot Controller would then
control the navigation of the AGVs. In case an obstacle is detected, the execution of the D*
Lite algorithm is triggered, from which an alternative solution to the initially calculated
trajectories could be computed. The initially computed solution and the final outcome
might differ. In this case study, the behaviour of the obstacle detection system and mobile
robots were emulated by means of a simulation. On the one hand, the experimental results
obtained through such simulation are provided. On the other hand, the performance of the
Traffic Controller was evaluated in terms of expanded vertices in the D* Lite processing and
employed CPU.

5.1. Experimental Results

As previously stated, after the initialization and the specification of AGV current
and desired goal positions, an initial solution is computed. Figure 5 shows the initially
computed solution, which shows which AGV (depicted as coloured boxes, as defined in
Table 2) should be situated and/or displaced to which place at which time instance in order
to reach the goal.

As observed in Figure 5, both AGV1 and AGV2 intend to go through P6 and P4. On the
contrary, AGV3 and AGV4 intend to move from P11 to P13. Both AGV2 and AGV4 should
go just behind their respective front leader. It was expected to require seven time instances,
seven movements for each AGV (concurrently), to reach their goals.

During the simulation, the detection of several obstacles was emulated. In particular,
three different obstacles were simulated. Table 3 shows the properties of these obstacles,
specifically which passage do they obstruct, which transitions are blocked and at which
time instances are enabled and disabled in the simulation.

Table 3. Emulated dynamic obstacles.

Obstacle Obstructing Road Transition(s) Enabled at Disabled at

O1 P12–P13 T24 & T25 2 4

O2 P4–P11 T46 & T47 4 8

O3 P9–P16 T44 & T45 4 6

Figure 6 shows the AGV trajectories obtained in the simulation, in which the dynamic
obstacles shown in Table 3 were considered and avoided (similarly to Figure 5, and AGVs
are shown as coloured boxes as defined in Table 2). As can be observed, different trajectories
to the ones computed initially (shown in Figure 5) were followed by the AGVs in order
to avoid the obstacles. The AGVs required, as a whole, two more steps to reach their goal
positions. Due to obstacle O1, the passage between P12 and P13 (initially considered and
planned at Time Instances 4 and 5) was avoided by AGV3 and AGV4. Both robots drove
across the downside track of the manufacturing shop floor to reach the goal, instead of
using the middle track, as initially estimated.
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Figure 5. Initially computed solution: places held by the AGVs in each time instance.

Moreover, since the road between P4 and P11 was later in the blocked state (at Time
Instance 4 by O2), AGV1 required stepping backwards to P6 and moving through the route
between P6 and P13. The passage through P12 and P13 (free after Time Instance 4) was then
used by AGV1. It is worth pointing out that obstacle O3 did not affect the outcome of
the simulation.
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Figure 6. Simulation output: places held by the AGVs in each time instance.

Both in the initially computed solution and in the simulation output, AGV3 and
AGV4 needed to wait some time in a given position. Meanwhile, AGV1 and AGV2 took
advantage of the situation and exchanged their positions in the upper and middle tracks of
the manufacturing shop floor. This behaviour, addressed by the D* Lite algorithm, avoided
any future deadlocks.

5.2. Performance Evaluation

In this subsection, the performance of the proposed approach is evaluated. For this
purpose, the number of evaluated vertices in the computation of the solution by the D* Lite
algorithm was obtained and the employed CPU time measured. Figure 7 shows the number
of evaluated vertices from the reachability graph throughout the simulation. The Traffic
Controller required a low number of evaluations at Time Instances 2 and 6 for the AGV
trajectories replanning. However, at Time Instance 4, the system came to the conclusion
that AGV1 should move backwards, since passages P4 and P11 were not available. Five
more evaluations comparing to the computation of the initial solution were then needed in
order to overcome the O2 obstacle.
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As far as the required processing capabilities are concerned, the utilized CPU time was
measured. The Traffic Controller service was executed on two different hardware platforms,
an ARM-based embedded board (ARM Cortex-A72 (ARM Inc., Cambridge, UK) running at
1.5 GHz) and on an x86 personal computer (Intel i7-8565U (Intel Inc., Santa Clara, CA, USA)
CPU running up to 4.60 GHz). Figure 8 shows the employed CPU time for the computation
of the AGV trajectories throughout the simulation in both hardware platforms. It has to
be noted that these measurements may vary depending on the selected programming
language and/or employed technology. The Traffic Controller service was implemented in
Ada. This programming language is widely used in the safety domain [39], as well as for
the development of air traffic management systems [41].
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Figure 8. Employed CPU time for the computation of the AGV trajectories.
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As depicted in Figure 8, for the computation of the initial solution, the Traffic Controller
required 98 ms (ARM Cortex A-72) and 18 ms (Intel I7-8565U), respectively. At Time
Instance 4, where higher processing for the recalculation of trajectories was needed, 379 ms
and 68 ms of CPU time were employed. Otherwise, since the searching algorithm tried to
reuse previously generated information, low processing overhead was evaluated at Time
Instances 2 and 6. In both cases, less than a millisecond of CPU time was measured on
the personal computer. As noted, the computational capabilities of the selected hardware
platform play an important role.

6. Discussion

In contrast to the methods and techniques discussed in the Related Work Section, the
method proposed in this article provides a formally verifiable dynamic traffic management
system. The main advantage over other suggested techniques is the avoidance of deadlocks;
this is because, instead of managing each AGV independently or locally, the traffic controller
considers all the moves of all AGVs. As shown in the presented case study, in which the
traffic management and navigation of four AGVs were handled, the proposed approach
provides a formally verifiable, sound and robust AGV path planning and traffic controlling
method. Furthermore, according to the obtained experimental results, the implemented
Traffic Controller, executed in two different hardware platforms, showed good real-time
performance, requiring, in the worst case, less than half a second of processing time.

As observed, the computation performance is considerably improved if high-performance
computing systems are used. Nevertheless, an important drawback of the proposed ap-
proach is the exponential increase of the reachability graph size as the shop floor area
and the number of AGVs grow. The size of the graph depended on the CPN model (de-
fined places and transitions) and the amount of considered AGVs. In order to overcome
this constraint, dynamic graph data structures might be used. However, this technique
will, most probably, introduce computation overheads. The presented method could be
applied, for example, in the fabric manufacturing enterprise case study presented by
Okumuş et al. [1].

7. Conclusions and Future Work

In the scope of the Industry 4.0 revolution, advanced digital and computer-based
technologies (e.g., big data, IIoT) are incorporated for increased self-monitoring, automation
and production. In these smart factories, higher cooperation among cyber-physical systems,
such as AGVs, and humans is envisioned. By means of the provided advanced connectivity
and processing features, these intelligent systems may enable dynamic and cost-effective
internal flows of goods with minimal human input. However, since AGVs might share
industrial areas and routes with operators, a trustworthy and efficient collision avoidance
mechanism should be enforced. This topic was tackled in the European Plug And Navigate
(PAN)-Robots project [17–19]. In addition to an advanced sensing system, macroscopic-
level fleet and traffic management features were examined.

In this article, a CPN- and D* Lite-based [40] traffic controller was proposed, which
dynamically determines collision-free trajectories for the AGVs. Due to the employed
formal method technique, possible deadlocks were also prevented. To this end, the reacha-
bility graph was firstly computed. For the computation of paths, the well-known D* Lite
algorithm [40] was executed throughout the created reachability graph. D* Lite, which is
an incremental (dynamic) searching algorithm, reuses previously generated states and data
to speed up new searches, instead of computing the solution every time from the start.

For future work, the real-time performance of the traffic controller on real industrial
manufacturing and/or warehouse facilities could be evaluated. In this analysis, different
amounts of AGVs should be considered and timing variations measured. A systematic
study, for example by means of benchmarking, may also be performed to evaluate and
characterize the applicability and boundary of the proposed approach for large-scale CPN
models. This evaluation should also consider and assess different computation platforms.
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Moreover, as previously stated, the use of dynamic graph data structures should also
be investigated.
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