
Deep Packet Inspection for intelligent Intrusion
Detection in Software Defined industrial

networks: A proof of concept

Markel Sainz, Iñaki Garitano, Mikel Iturbe, and Urko Zurutuza

Electronics and Computing Department
Mondragon University, Goiru 2, 20500 Arrasate-Mondragón, Spain,

{msainzo,igaritano,miturbe,uzurutuza}@mondragon.edu

Abstract Specifically tailored Industrial Control Systems (ICSs) at-
tacks are becoming increasingly sophisticated, accentuating the need of
ICS cyber security. The nature of these systems makes traditional IT
security measures not suitable, requiring expressly developed security
countermeasures. Within the last decades research has been focused in
network based Intrusion Detection Systems (IDSs). With the appear-
ance of Software Defined Networks (SDNs), new opportunities and chal-
lenges have shown up in the research community. This paper describes
the potential benefits of using SDNs in Industrial Networks with security
purposes and presents the set up and results of a pilot experiment car-
ried out in an scaled physical implementation. The experimental set up
consists in the detection of ICMP Flood and packet payload alteration
based on signature comparison. Results point to the potential viability
of the technology for intrusion detection and the need of researching in
architectural scalability.

Keywords: Software Defined Networking, Industrial Control Systems,
Security, Anomaly Detection

1 Introduction

Industrial Control Systems (ICSs) are a collection of special elements used for the
control and supervision of industrial processes. ICSs are large scale, geograph-
ically dispersed heterogeneous, life-critical systems that encompass a variety of
sensors, actuators and control and network devices [1]. Since the interconnection
of ICSs to the Internet, Cyber Physical Systems (CPSs) security has become
an important issue. Nowadays, most of the ICSs are composed of legacy hard-
ware equipment designed decades ago, without following any security by design
concept neither considering future existence of Internet and the many threats
that would bring with it [2]. ICSs have been the objective of many cyber at-
tacks used in IT environments and also, attacks designed specifically to cause
damage in Operational Technology (OT) scenarios. In 2010, Stuxnet [3] worm
demonstrated how sophisticated an attack could be by uploading malicious code
to Programmable Logic Controllers (PLCs) and hiding the modifications. A set



2 Markel Sainz et al.

of causes that make ICSs vulnerable are described by Graham et al. [4] such as
the long hardware replacement periods and their limited computing power, the
delay or non-existence of software or firmware updates and patches, the use of
insecure communication protocols and the long lasting conviction that security
can be enhanced through obscurity.

Consequently, after realizing the potential threat, the scientific community
has been working on different approaches to enhance cyber security in ICSs,
including Critical Infrastructures (CIs). Due to their availability constraints,
upgrading ICS hardware to include security enhanced devices becomes difficult
and thus, the development of technologies able to cope with legacy devices has
been necessary, such as Intrusion Detection Systems (IDSs) [1].

Software Defined Networking (SDN) consists in an alternative networking
paradigm that separates control and data plane, in order to ease the manage-
ment and maintenance of IT networks [5]. SDN has demonstrated benefits in
Traffic Engineering (TE) and security in traditional IT networks as stated in
[6]. However, SDN has been barely used with cyber security purposes in ICSs,
which could be considered a good test candidate due to their communication
periodicity and predictability. Research in the area is getting more and more
active with new approaches emerging both for IT and OT environments. This
work presents a pilot experiment carried out in an scaled industrial scenario
using Deep Packet Inspection (DPI) for the detection of network attacks.

The article is structured as follows. Section 2 presents the related work.
Section 3 explains the experimental set up and the process used to obtain the
data. Section 4 is used to expose the results. Finally Section 5 outlines identified
research challenges and Section 6 extracts the final conclusions.

2 Related work

As it has been previously mentioned, the research in SDN based ICS security
cannot be considered as mature as IT related, but it is getting more and more
active with new publications showing up frequently. This section describes the
approaches that we consider more relevant and lined up with our work.

Concerning DPI based solutions, several novel research articles can be cited.
Wan et al. [7] present an event based anomaly detection system. The authors
have created a solution that installs a DPI module in a switch using NFV and
inspects packets matching them with a Hidden Markov Model designed adhoc.
Ha et al. [8] describe the creation of an external IDS connected to the controller
that samples part of the mirrored network traffic directly from the switches.
The amount of traffic mirrored is dependent of the sampling rate established
for each flow rule, that can be altered dynamically if suspicious behaviour is
detected in a type of transmission. It is interesting that they have developed
an algorithm to reduce the false negative occurrence as a consequence of low
sampling rates. Murillo et al. [9] present an efficient solution composed of an
external signature based IDS connected to an SDN controller. In case a threat is
detected in the network, the controller gets notified and changes the needed flow



DPI for Intelligent Intrusion Detection in SDN Industrial Networks 3

rules to deviate the transmission to a reliable ICS honeypot, in order to register
precisely the attack. The approach published by Mantur et al. [10] consists of an
external IDS connected to Opendaylight [11], a well known SDN controller which
changes network behaviour based on inspected packets. The intrusion detection
process is signature based and is carried out by using Hadoop. Sultana et al.
[12] describe in a rich way several SDN based intrusion detection solutions using
Machine Learning (ML) and Deep Learning (DL) algorithms, emphasizing the
detection accuracy of DL based approaches. Niyaz et al. [13] have presented a
work for the detection of DDoS attacks in Software Defined Network by the use
of DL algorithms with an accuracy rate of 95%. They have been able of detecting
seven types of DDoS attacks with different communication protocols.

Apart from DPI based solutions, there are others focused on the flow-rule
statistics analysis. Braga et al. [14] present a solution that recollects flow rule
statistics and detect DDoS attacks by the use of Self Organizing Maps. They
use as input relevant OpenFlow features as packet counts, byte counts, flow
pairs, augmentation of single flows and augmentation of used ports. Abubakar
et al. [15] have built an hybrid solution consisting on an Snort IDS and a traffic
statistics based anomaly detection system. The solution is based in flow counts
and uses neural networks to detect misbehaviours with a 97% accuracy rate.
The used neural network have been trained with NLS-KDD dataset, which can
be considered quite obsolete and they do not present any solution for payload
based zero day attacks.

The presented approach bases its efficacy in the centralization of the DPI
process by performing it on the SDN Controller. This leads to the enlargement
of the visibility of the network and the possible categorization of traffic in an
smarter way. Moreover, implementing the detection logic in a high level device
enables the development of complex logic for intrusion detection.

3 Experimental set up

In order to test the viability of developing SDN based IDSs, an experimental
environment has been set up where Deep Packet Inspection is used to detect
illicit network packets and prevent them from reaching their destination. To test
the suitability of the strategy, the experimental phase has been divided into two
test cases.

The experimentation testbed consists in an emulation of a bottle filling plant
deployed in the eMUlab laboratory of Mondragon Unibertsitatea. eMUlab labor-
atory sits on top of emulab software [16], which allows the construction of a wide
range of testing environments. Figure 1 shows the topology built for this exper-
iment. The plant simulation runs in an ABB AC800M proprietary PLC, which
stands in the control network of the topology and is connected directly to an
OpenFlow Switch. On the other side, an ABB SCADA Server located in the
supervisory network, pulls data from the mentioned PLC. ABB devices commu-
nicate with each other by default using the Manufacturing Message Specification
(MMS) protocol [17]. In the middle of the link between the SCADA Server and



4 Markel Sainz et al.

the OpenFlow switch, an Ubuntu machine has been set with the purpose of
performing a transparent Man in The Middle (MITM) attack using two bridged
Ethernet ports and capturing traffic with an application based on Scapy [18].
This machine is used in order to modify licit packets to alter their functionality or
create and inject new malicious packets into the network. Lastly, the OpenFlow
switch is attached to an Opendaylight controller, running in an isolated subnet.
The controller is not accessible for any device except for the switch, which is con-
nected to it using a dedicated port that is unreachable from the rest. A bundle
has been developed in controller native language Java that implements listening
capabilities to capture network packets and process them. The experimentation
phase has been divided into two different test cases: MMS packet alteration and
ICMP Flood.

Figure 1: Implemented topology

3.1 Test Case 1: MMS packet alteration

The bottle filling plant simulation running in the PLC manages a set of vari-
ables and processes that make possible the operation. This variables can be seen
from an HMI connected to the SCADA Server. To enable this action, SCADA
server periodically pulls available data from PLC and refreshes its database. As
stated before, this communication happens under the MMS protocol, a propriet-
ary industrial network protocol. MMS integrates a collections of message types
or PDUs with different purposes. Under normal condition with no errors, the
following four PDU types can be identified if the transmissions are captured:

– Initiate-RequestPDU
– Initiate-ResponsePDU



DPI for Intelligent Intrusion Detection in SDN Industrial Networks 5

– Confirmed-RequestPDU
– Confirmed-ResponsePDU

The first two are essential to establish a TCP tunnel among two devices. Once
established, they will not be sent again unless a connection reset happens.
The other two are associated with the periodical request and response of vari-
able data. SCADA Server will send a Confirmed-RequestPDU packet to PLC
whenever it wants to refresh its database and if transmission is correct, PLC
will response with a Confirmed-ResponsePDU that will contain the actual value
of the variables. In this scenario, this information exchange occurs once every
second, as it has been set in the SCADA Server configuration. The attack fo-
cus on this implementation has been the request packet. Request packets are
expected to be the same during all the operation cycle, while responses will
change continuously due to process variations. In the future, possible responses
will be mapped and used to detect anomalies. Figure 2a shows a fragment of
a Confirmed-RequestPDU packet captured with Wireshark [19], specifically the
section where the address of requested variable values is stored. This packet is
firstly intercepted by the MITM machine, where it is identified and altered. Fig-
ure 2b shows exactly the same packet after being altered. It can be observed
that bytes six and seven have exchanged positions. Taking into account that
the purpose of this work is demonstrating the capability of SDN to detect illicit
packets in industrial environments, the alteration of the packet has been per-
formed in an arbitrary way, due to the little relevance of the attack complexity
in this particular case. By altering the packet this way, the pointer to the PLC
variables has been changed, causing a malfunction in the value retrieval process.
Once the packet has been altered by the MITM machine, it is again pushed to
the network in the original direction.

(a) MMS Request licit packet (b) MMS Request altered packet

Figure 2: MMS Request packets

As mentioned earlier in this section, the switch is attached to an SDN con-
troller, where an application bundle has been developed to perform DPI. When
the packet arrives to the switch, its header values are checked looking for a match
with installed flow rules. If a match happens, the associated action will be per-
formed for that packet. If no flow rule matches with the incoming transmission,
the packet is sent to the controller for further processing tagged as PACKET IN
under the OpenFlow encapsulation. In our approach, packets are sent directly to
controller, where the developed application handles them and applies the appro-
priate routing logic after extracting the payload from the OpenFlow income and
inspecting it. The application acts as a learning switch, with a dynamic MAC
table that performs routing transparently.



6 Markel Sainz et al.

Every packet that reaches the controllers is inspected throughout different
analysis stages. If the matching conditions of an stage are met, the packets is
further processes in the next stage. Otherwise, is routed or dropped, depending
on the result. First stage consists in the extraction of destination IP direction.
Packets matching the PLC destination IP direction are further processed, while
the rest are normally routed. The second stage looks for TCP port 102 and byte
traces belonging to the Connection Oriented Transport Protocol (COTP) based
on ISO 8073 which is used by the MMS protocol [17]. Each TCP packet matched
in the previous stage is checked looking for MMS request distinctive bytes in the
payload. As it has been previously described different MMS packet types can be
found in the set up, and the requestPDU type packets are isolated in this stage.
If a packet matches the previous requisite, it is processed. The DPI process looks
for the variable access address looking for anomalies. In this stage the required
bytes are extracted from the packet payload and compared to the corresponding
bytes in a licit sample packet. If the byte sequence does not match the one in
Figure 2a, the packet is dropped, preventing it to reach its destination and cause
a malfunction in the PLC or a connection reset.

3.2 Test Case 2: ICMP Flood

In this case, the performed attacks are agnostic to the process itself and the
protocols used for the normal operation of the designed (ICS). To overcome
with this test case, two attacks have been launched and a single process has
been developed to detect them.

Both attacks have been launched from the MITM machine transparently
without interfering in the normal network operation. The generated packets have
been ICMP packets with PLC IP direction as destination point and a random
IP direction from the licit subnet as source point. The first attack consists in
the launching of a ping of the death offensive. With that aim, an ICMP packet
has been created exceeding the maximum length of 65536 bytes. This has been
accomplished by creating normal Ethernet/IP/ICMP header and oversizing the
payload with “X” characters. The generated packet has been then fragmented
into diverse size packets. The obtained packets are sent to the the PLC in order
to saturate the buffer when the fragments are recomposed [20]. The second attack
consists in a traditional ICMP flood attack [21]. The key concept in this attack
is the generation of a massive quantity of ICMP request packets that are sent
to a device, aiming to collapse its network card when trying to cope with them.
With this objective, MITM machine executes a thread that generates and sends
continuously ICMP packets to the PLC until user stops the attack on demand.
This packets are sent to the PLC as they are generated, throughout the network
switch.

Referring to the detection process, the DPI performance strategy implemen-
ted in this scenario is the same as in Test Case 1, where the network switch is left
without flow rules, and all the packets are sent to the controller. The controller
inspects the packets and manages the routing process by dropping or routing
them correctly. To detect the attack an algorithms has been designed. Firstly, a



DPI for Intelligent Intrusion Detection in SDN Industrial Networks 7

filter is used to detect relevant packets. This filter inspects the header values in
search of the destination IP direction, and the IP protocol, matching the ones
which belong to ICMP. After the filtering process, the designed algorithm is
executed in order to decide whereas the detection of an ICMP packets consists
in a potential attack, or in an ordinary PING operation. It is necessary to note,
that PING requests use ICMP protocol and it is assumed that normal PING
operations must be allowed to happen, in order to check connectivity among
devices. As machines used to control and manage the PLC are Windows ma-
chines, which perform 4 ICMP requests when pinging, the maximum number of
ICMP requests has been set to 4. The developed algorithm uses two counters,
one for ICMP packets and one for other traffic type packets. When an ICMP
packet incomes, the ICMP counter is increased by one and the other counter is
set to 0. Once ICMP counter reaches 4, all the incoming ICMP traffic is dropped.
To reset this counter, at least ten packets have to income which are not ICMP
protocol. When this happens, all the counters are reset. The maximum values
for the counters have been adjusted based in the nature to the experimentation
environment and can be configured on demand with adequacy purposes.

4 Results

This section describes the results obtained in the experimentation phase, divided
into the two same sections presented in Section 3, according to each of the test
cases.

4.1 Test Case 1: MMS packet alteration

The presented approach has been able of detecting malicious request packets
satisfactorily. To test the response of the implementation, a single packet altera-
tion has been performed by the MITM machine on user demand during normal
operation of the environment. After that attack, normal condition has been re-
stored.

Wireshark has been used with the appropriate filters to monitor only the
relevant MMS traffic. To achieve this, the traffic has been filtered by MMS
protocol and frame length, due to the infrequent change on the length of the
relevant frames, that increases only when ID size is exceeded. Opendaylight
controller as it has been explained in the previous sections, applies the routing
logic of the packets, so it is expected to capture an associated PACKET OUT
frame for each PACKET IN it processes, unless the packet is dropped by the
implemented logic. Figure 3 shows a graphical representation of the capture
made with Wireshark in the moment when the attack is performed, having
captured also previous and latter normal condition traffic. Each PACKET IN
frame has an immediate PACKET OUT associated response except for the fifth
frame, where the altered packet is processed and dropped due to its illicitness.
For the sake of simplicity, time units in the figure are not the same as in the
real capture, having used natural numbers in the image. Nevertheless, it can be



8 Markel Sainz et al.

appreciated that frames are captured every second with a little delay, product of
the full forwarding process. To conclude, it can be observed that the developed
environment is able of preventing malicious transmissions by dropping only illicit
packets before they reach their destination without interfering in the correct
operation of harmless transmissions.

Figure 3: MMS Request PDU match captures

To complement the results obtained by the network analyser and measure
precisely the efficiency of the developed algorithms, average elapsed times have
been obtained for different stages of the packet inspection process. Figure 4
shows a graphical representation of the numerical values present in the table. It
can be appreciated, that functions used to identify the type of a packet require
more computing time than matching the payload with the stored signature. This
is likely to happen due to the diversity of packets inspected and the necessity
of checking different parameters and specific byte values. Once a packet has
been identified as Confirmed-RequestPDU, matching it with the signature takes
less computing time. Regarding the full time of packet processing, it can be
appreciated that dropped packets involve more computing time than accepted
ones. Accepted packets are not only MMS packets, but many other type of them.
This means that many packets are just accepted due to the lack of MMS filter
match, without further processing. Dropped packets are always the same type of
MMS packet, forced to complete all the inspection process before being accepted
or rejected.

4.2 Test Case 2: ICMP Flood

The designed algorithm has been satisfactorily used to deny both attacks using
the same detection criteria. This has been achieved without interfering in the
normal network operation. In order to capture the relevant data of the test case,
Wireshark has been used.

Concerning to the impact of the attacks, although ping of death has been
traditionally used with good results [20], it has been ineffective in this imple-



DPI for Intelligent Intrusion Detection in SDN Industrial Networks 9

DPI process stages Avg time (ms)

MMS check 0,00633

PDU Type check 0,00398

Licitness check 0,00099

Full routing process 0,0963

Full dropping process 0,148

Figure 4: Elapsed time for DPI process

mentation due to the existence of required inbuilt countermeasures in the PLC.
On the other hand, ICMP Flood attack has been highly effective, collapsing
completely the network capability of the PLC and leaving it out of communic-
ation for a considerable amount of time after stopping the attack. The attack
has been able of interfering in the control communication and leaving the PLC
isolated from the OPC Server.

As for the detection process itself, the captures from Wireshark have shown
the absolute efficacy for the detection of the launched attacks. A summary table
has been created for each of the attacks with the relevant data from their cor-
responding Wireshark captures. To understand the information shown in the
tables, it has to be taken into account that if a packet is routed correctly, a
PACKET IN-PACKET OUT pair has to exist for the transmission, correspond-
ing to the income to the controller and the outgoing from this device to its
respective destination.

Table 1 corresponds to the results obtained in the Ping of Death attack.
This table shows that the first 4 packets are routed correctly and the rest of
the packets are dropped by the controller. The entries in the table show the
fragments of the large generated packets, that is why they are oversized. The
same thing happens with the ICMP Flood, as it can be seen in Table 2. In this
particular case, the packets are normal ICMP packet and their size is smaller.
In both cases it can be clearly seen that the first 4 packet pairs correspond to
accepted transmissions and the rest are dropped. This behaviour lasts as long
as the attack is kept on. Additionally, a PING request has been made from the
OPC Server to the PLC under normal conditions to test the viability of doing
such an operation, with satisfactory results.

5 Research challenges and future work

The extracted data in this work points to the possibility of exploiting the tech-
nology with security purposes to develop solutions that may require less invest-
ment due to the lack of necessity of adhoc hardware equipment and even in some



10 Markel Sainz et al.

TS IPsrc-IPdst Size OF tag

1.300
172.17.84.131-
172.17.84.124

1598 P IN

1.301
172.17.84.131-
172.17.84.124

1604 P OUT

1.304
172.17.84.131-
172.17.84.124

1598 P IN

1.304
172.17.84.131-
172.17.84.124

1604 P OUT

1.305
172.17.84.131-
172.17.84.124

1598 P IN

1.306
172.17.84.131-
172.17.84.124

1604 P OUT

1.307
172.17.84.131-
172.17.84.124

1598 P IN

1.307
172.17.84.131-
172.17.84.124

1604 P OUT

1.310
172.17.84.131-
172.17.84.124

1598 P IN

1.310
172.17.84.131-
172.17.84.124

1598 P IN

1.314
172.17.84.131-
172.17.84.124

1598 P IN

Table 1: Ping of death attack

TS IPsrc-IPdst Size OF tag

1.149
172.17.84.131-
172.17.84.124

626 P IN

1.150
172.17.84.131-
172.17.84.124

632 P OUT

1.151
172.17.84.131-
172.17.84.124

626 P IN

1.151
172.17.84.131-
172.17.84.124

632 P OUT

1.152
172.17.84.131-
172.17.84.124

626 P IN

1.152
172.17.84.131-
172.17.84.124

632 P OUT

1.154
172.17.84.131-
172.17.84.124

626 P IN

1.154
172.17.84.131-
172.17.84.124

632 P OUT

1.155
172.17.84.131-
172.17.84.124

626 P IN

1.161
172.17.84.131-
172.17.84.124

626 P IN

1.164
172.17.84.131-
172.17.84.124

626 P IN

Table 2: ICMP Flood attack

cases, reusing existing compatible network elements. Anyway, further research
is needed and will be done in order to prove the viability of developing intelli-
gence on top of the DPI modules using artificial intelligence approaches. This
section presents some thoughts and future tasks focused on the continuation of
the transmitted research.

Regarding the actual implementation, improvement strategies can be de-
signed. It is necessary to have in mind that it has been developed in an scaled
real environment with physical equipments, with the limitations that this fact
may impose. In this particular case, the DPI process occurs entirely in the con-
troller, with the need of routing all traffic through it. The topology designed is
composed of a single switch and two hosts, with no excessive traffic and com-
plexity. It has been demonstrated that efficiency has not been a problem but it
must be considered that increasing inspection process and topology complexity
will lead to a penalization in efficiency. The increase on the amount of traffic that
the controller will have to manage in the actual implementation is proportional
to the number of OpenFlow devices attached to it, due to the lack of installed
flow rules on them. Moreover, developing intelligent algorithms based in for ex-
ample, machine learning, would slow down the packet processing time and as a
consequence, the full forwarding process. Research in the subject has conducted
the team to the discovery of possible enhancements that could be applicable.



DPI for Intelligent Intrusion Detection in SDN Industrial Networks 11

One of the main problems stands in the fact that all the traffic is processed
and has to pass through a single node, in this case, the controller. This may
suppose not only a congestion bottleneck but also a threat vector, because if
controller got compromised, the network would go down. Some solutions found
in the literature such as [9] [8] [10] use an external IDS that warns the controller
in case an anomaly is detected in order to update forwarding rules in affected
switches. Approaches such as the one proposed by Braga et al. [14] use OpenFlow
statistics collected from the forwarding counts in the installed flow rules to detect
anomalies. Both kind of previously mentioned solutions are able of detecting
network intrusions but they are not able of responding just in the moment when
an illicit packet is detected.

A substantial contribution can be done in the research of different packet
inspection strategies using available technology. Firstly, as it has been presented
in this work, DPI can be implemented directly on top of the controller with no
installed flow rules on forwarding devices, forcing all the traffic to pass through
the controller node. A better implementation of this would combine the use of
flow rules in network switches with the ability of them to clone every packet
and send it to the controller. This way, intrusion detection can be performed
without interfering in the normal operation of the network, and still act as fast
enough to stop an attack if necessary. Other solutions differ from the actual
one in terms of the node that processes the traffic, delegating this task to the
switches themselves or to specific adhoc devices. The distribution of detection
logic throughout various network switches seems to be a promising research area
also [22].

It is necessary to gather information about existing network operating sys-
tems in the market that can be installed in switches, providing both, OpenFlow
forwarding capabilities, and DPI engines. Last mentioned solution can be also
achieved using Network Function Virtualization. This technology allows to de-
velop virtual networking devices on top of common IT hardware such as hosts
or servers, providing higher computing power and extended capabilities [23].
Virtualized Network Functions (VNFs) are implemented in hardware and are
managed by an SDN controller, with whom they can exchange data of the res-
ults obtained from packet inspection. It is evident that a deep research must be
done in order to enlighten what can be done with existing technology and how
to use it for intrusion detection purposes.

6 Conclusions

Software Defined Networks are gaining recognition in research community and
are increasingly being implanted in many IT environments. On the other hand,
the adoption of the technology in industrial scenarios is being slower. This work
has firstly analysed the potential distinctive features of both, industrial net-
works and SDN technology and the benefits of using them in conjunction for the
creation of intelligent security solutions. Related with the previous assertion, a
pilot experiment has been carried out in order to test the technology’s viability



12 Markel Sainz et al.

in performing DPI for Intrusion Detection in an scaled industrial environment,
obtaining satisfactory results.

The experimental set up proposed in this paper has demonstrated the viab-
ility of performing DPI on top of an SDN controller to detect malicious network
packets satisfactorily. However, the current implementation has been designed
having as a reference an small ICS with reduced network traffic. Presumably, this
implementation may not scale correctly for bigger network scenarios, so future
research path will be focused on the deployment of more efficient DPI performing
architectures and detection strategies, by testing distributed machine learning
based approaches.

Acknowledgements Iñaki Garitano is partially supported by the INCIBE
grant “INCIBEC-2015-02495” corresponding to the “Ayudas para la Excelencia
de los Equipos de Investigación avanzada en ciberseguridad”. This work has been
developed by the intelligent systems for industrial systems group supported by
the Department of Education, Language policy and Culture of the Basque Gov-
ernment. It has been partially funded by SEKUTEK project. This project has
received funding from the Department of Economic Development and Infrastruc-
tures under the grant agreement KK-2017/00044. Moreover, it has been partially
funded by the POSIC project, funded by the Gipuzkoa Provincial Council under
the grant agreement 93/17.

References

1. R. Mitchell and I.-R. Chen, “A survey of intrusion detection techniques for
cyber-physical systems,” ACM Computing Surveys, vol. 46, no. 4, pp. 1–29, mar
2014. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2597757.2542049

2. M. Krotofil and D. Gollmann, “Industrial control systems security: What
is happening?” 2013 11th IEEE International Conference on Industrial
Informatics (INDIN), no. July 2013, pp. 670–675, 2013. [Online]. Available:
http://ieeexplore.ieee.org/document/6622964/

3. S. Karnouskos, “Stuxnet worm impact on industrial cyber-physical system secur-
ity,” in IECON 2011-37th Annual Conference on IEEE Industrial Electronics So-
ciety. IEEE, 2011, pp. 4490–4494.

4. J. Graham, J. Hieb, and J. Naber, “Improving cybersecurity for Industrial Con-
trol Systems,” IEEE International Symposium on Industrial Electronics, vol. 2016-
Novem, pp. 618–623, 2016.

5. M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “Software-defined network-
ing security: Pros and cons,” IEEE Communications Magazine, vol. 53, no. 6, pp.
73–79, 2015.

6. M. Sainz, M. Iturbe, I. Garitano, and U. Zurutuza, Software defined networking
opportunities for intelligent security enhancement of industrial control systems,
2018, vol. 649.

7. M. Wan, J. Yao, Y. Jing, and X. Jin, “Event-Based Anomaly Detection for
Non-Public Industrial Communication Protocols in SDN-Based Control Systems,”
vol. 55, no. 3, pp. 447–463, 2018. [Online]. Available: www.techscience.com/cmc

http://dl.acm.org/citation.cfm?doid=2597757.2542049
http://ieeexplore.ieee.org/document/6622964/
www.techscience.com/cmc


DPI for Intelligent Intrusion Detection in SDN Industrial Networks 13

8. T. Ha, S. Kim, N. An, J. Narantuya, C. Jeong, J. Kim, and H. Lim,
“Suspicious traffic sampling for intrusion detection in software-defined networks,”
Computer Networks, vol. 109, pp. 172–182, nov 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128616301645

9. A. F. Murillo Piedrahita, V. Gaur, J. Giraldo, A. A. Cardenas, and S. J. Rueda,
“Leveraging Software-Defined Networking for Incident Response in Industrial
Control Systems,” IEEE Software, vol. 35, no. 1, pp. 44–50, jan 2018. [Online].
Available: http://ieeexplore.ieee.org/document/8239925/

10. B. Mantur, A. Desai, and K. S. Nagegowda, “Centralized Control Signature-
Based Firewall and Statistical-Based Network Intrusion Detection System
(NIDS) in Software Defined Networks (SDN),” in Emerging Research in
Computing, Information, Communication and Applications. New Delhi: Springer
India, 2015, pp. 497–506. [Online]. Available: http://link.springer.com/10.1007/
978-81-322-2550-8{ }48

11. J. Medved, R. Varga, A. Tkacik, and K. Gray, “Opendaylight: Towards a model-
driven sdn controller architecture,” in A World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2014 IEEE 15th International Symposium on. IEEE,
2014, pp. 1–6.

12. N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey on SDN
based network intrusion detection system using machine learning approaches,”
Peer-to-Peer Networking and Applications, pp. 1–9, jan 2018. [Online]. Available:
http://link.springer.com/10.1007/s12083-017-0630-0

13. Q. Niyaz, W. Sun, and A. Y. Javaid, “A Deep Learning Based DDoS Detection
System in Software-Defined Networking (SDN),” nov 2016. [Online]. Available:
http://arxiv.org/abs/1611.07400http://dx.doi.org/10.4108/eai.28-12-2017.153515

14. R. Braga, E. Mota, A. P. L. C. N. (LCN), and undefined 2010, “Lightweight DDoS
flooding attack detection using NOX/OpenFlow,” ieeexplore.ieee.org. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/5735752/

15. A. Abubakar, Pranggono, and Bernardi, “Machine learning based intrusion
detection system for software defined networks.” [Online]. Available: http:
//shura.shu.ac.uk/16558/

16. K. Emulab, “Network Emulation Testbed Home.”
17. Jan Tore Sørensen and Martin Gilje Jaatun, “An Analysis of the Manufacturing

Messaging Specification Protocol,” vol. 6905, no. May, 2011. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-23641-9

18. P. Biondi, “Scapy: explore the net with new eyes.” [Online]. Available:
http://secdev.org/conf/scapy{ }T2.pdf

19. G. Combs, “Wireshark-network protocol analyzer,” Version 0.99, vol. 5, 2008.
[Online]. Available: https://www.emulab.net/

20. E. Luiijf, “Threats in Industrial Control Systems.” Springer, Cham, 2016, pp. 69–
93. [Online]. Available: http://link.springer.com/10.1007/978-3-319-32125-7{ }5

21. S. Hansman and R. Hunt, “A taxonomy of network and computer attacks,” Com-
puters and Security, vol. 24, no. 1, pp. 31–43, 2005.

22. H. Li, H. Hu, G. Gu, G.-J. Ahn, and F. Zhang, “vNIDS: Towards Elastic Security
with Safe and Efficient Virtualization of Network Intrusion Detection Systems,”
in Proc. of the 25th ACM Conference on Computer and Communications Security
(CCS’18). New York, New York, USA: ACM Press, 2018, pp. 17–34. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3243734.3243862

23. Yong Li and Min Chen, “Software-Defined Network Function Virtualization:
A Survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/7350211/

https://www.sciencedirect.com/science/article/pii/S1389128616301645
http://ieeexplore.ieee.org/document/8239925/
http://link.springer.com/10.1007/978-81-322-2550-8{_}48
http://link.springer.com/10.1007/978-81-322-2550-8{_}48
http://link.springer.com/10.1007/s12083-017-0630-0
http://arxiv.org/abs/1611.07400 http://dx.doi.org/10.4108/eai.28-12-2017.153515
https://ieeexplore.ieee.org/abstract/document/5735752/
http://shura.shu.ac.uk/16558/
http://shura.shu.ac.uk/16558/
http://link.springer.com/10.1007/978-3-642-23641-9
http://secdev.org/conf/scapy{_}T2.pdf
https://www.emulab.net/
http://link.springer.com/10.1007/978-3-319-32125-7{_}5
http://dl.acm.org/citation.cfm?doid=3243734.3243862
http://ieeexplore.ieee.org/document/7350211/

	Deep Packet Inspection for intelligent Intrusion Detection in Software Defined industrial networks: A proof of concept 

