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We have determined the Soret coefficient of different equimolar and non equimolar n-alkane mixtures from 

measurements of the molecular diffusion and thermal diffusion coefficients. It is shown that equimolar mixtures 

behave as isotopic-like mixtures in which only the mass effect contributes to the Soret effect. In non equimolar 

mixtures, a small linear dependence with the molar fraction is observed. Finally, we have obtained a new 

correlation, which allows the determination of the Soret coefficient of n-alkane mixtures using the data of viscosity, 

the thermal expansion coefficient of the pure components and the density of the equimolar mixture. 

 

 

I. INTRODUCTION 

When a thermal gradient is applied to a homogeneous binary liquid mixture, a transport of matter is induced, 

which causes a concentration gradient. This phenomenon is known as thermal diffusion or the Soret effect. 

According to non equilibrium thermodynamics theory, when concentration and temperature gradients are present in 

a mixture of density ρ, the mass transport of one component is given as follows: 

 

     (1) 
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where c is the mass fraction of the reference component, and D and DT are the mass diffusion coefficient and the 

thermal diffusion coefficient, respectively. In the non equilibrium stationary state, J=0 and then the resulting 

concentration gradient is 

 

      (2) 

 

Thus, the amplitude of thermal diffusion separation is determined by the following ratio ST=(DT/D), which is 

known as the Soret coefficient. In gaseous mixtures, the thermal diffusion factor (αT=ST T) is more commonly used. 

Many efforts have been made to determine the molecular parameters responsible for the Soret effect. In low-

density systems, the kinetic theory provides expressions for the thermal diffusion factor. Chapmann
1
 showed that in 

isotopic mixtures of hard spheres, αT could be expanded in powers of the relative mass difference between species. 

Kincaid et al.
2
 found that such an expansion exists for all fluid densities. More recently, Galliero et al.

3
 have shown 

from molecular dynamics simulation for isotope-like mixtures of Lennard-Jones spheres that the Chapmann 

expansion holds at any mass ratio and density. On the other hand, Debuschewitz and Köhler
4
 and Wittko and 

Köhler
5
 have experimentally shown that in isotopic mixtures of different liquids the Soret coefficient can be split 

into different additive contributions. One contribution, the so-called isotopic effect, stems from the differences in 

both masses and moments of inertia between the molecules and is independent of composition. An additional 

chemical contribution depending on concentration accounts for the chemical difference between the two species. 

Recently, Hartman et al.
6,7

 were able to experimentally show that the isotope contribution is also present in mixtures 

of different liquids. Artola and Rousseau
8
 have found from dynamic simulations in a Lennard-Jones fluid that the 

chemical contributions is due to the cross interaction between unlike molecules. Finally, Leroyer and Würger
9,10

 

derived an expression for the Soret coefficient, which accounts for several features observed in experiments. 

We focus in this work on the Soret coefficient in n-alkane mixtures. Normal alkanes are almost ideal mixtures 

with rather simple physical properties which made them appealing for thermal diffusion. In previous works
11-14

, we 

have studied the mass and the thermodiffusion coefficient obtaining empirical correlations. In the following, we 

shall show that the mass effect is the relevant contribution to the Soret coefficient in mixtures of n-alkanes. 

 

II. EXPERIMENTAL SECTION 
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All the products used in this study were purchased from Merck with purity higher than 99%. The mixtures have 

been prepared by weight using a Gram VXI-310 digital scale with a precision of 0.001 g. 

The relevant thermophysical properties of the studied mixtures were measured as follows: An Anton Paar DMA 

5000 densimeter with an accuracy of 5×10
-6

 g/cm
3
 was used to determine the density (ρ). The thermal expansion 

coefficient, α=-(1/ρ)(δρ/δT), was obtained by measuring the density of a mixture at different temperatures near the 

working temperature. Finally, the dynamic viscosity µ was measured with an Anton Paar AMVn falling ball 

microviscometer with reproducibility better than 0.1%. Some of these properties used in this work were taken from 

previous studies
11,15,16

, while the rest where measured for this work. The values of the thermophysical properties are 

shown in Table I (equimolar mixtures) and Table II (non equimolar mixtures). All measurements were done at 298 

K. 

The thermal diffusion coefficient was determined using the thermogravitational column (TGC) technique
11,17

. The 

working principles of a TGC are as follows: The combination of horizontal separation by thermal diffusion with 

vertical convection currents produces a separation of the components between the column ends. The theory for 

TGC
18

 establishes a relationship between the stationary separation and the thermal diffusion coefficient DT. In the 

following we shall take as the reference component the heavier one that will be denoted by subindex 1. In n-alkane 

mixtures, DT>0 for this component. Then, this relation can be written as follows: 

 

      (3) 

 

where c is the mass fraction difference between the bottom and the top of the column, Lz is the height of the 

TGC, Lx is the gap of the TGC, c0 is the mass fraction of the reference component in the initial homogeneous binary 

mixture,  the thermal expansion coefficient,  is the kinematic viscosity and  is the acceleration due to gravity. 

For a summarized explanation see Refs. 11 and 17. 

The TGC used in this work was a stainless steel concentric tube column closed at both ends. The geometrical 

parameters of the column were the height Lz=0.5±0.001 m and a gap Lx=1× 10
-3

 ± 5×10
-6

 m. The temperature 

difference across the column was 10 K with an average temperature of 298 K. 

To experimentally determine the mass separation between the column ends, a preliminary calibration is carried 

out, that relates the mass fraction with a physical property of the mixture: density in the present case. The calibration 

is made, measuring the density of several mixtures of known composition near the one of the standard mixture. A 
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linear relation between the density and the mass fraction is obtained in all the cases. Thus, the mass fraction with a 

deviation around ±0.01wt% is determined. 

For the determination of the molecular diffusion coefficient, the sliding symmetric tubes (SST) technique, which 

has been validated with the experimental data of several binary mixtures, was used
14,19

. This method consists of 

several sets of two identical vertical tubes, each containing a mixture with a slightly different mass concentration. 

The denser mixture is placed in the lower tube in order to eliminate convection. At the beginning of the experiment, 

the sets in their separated configuration are placed in a water bath until they all reach the working temperature. The 

sets are then changed to the faced configuration, allowing the diffusion to start. At different times, they are changed 

one by one back to the separated configuration to stop the mass transfer. The densities of the mixtures are measured, 

and the average concentration inside each tube is determined from a calibration curve. Thus, the change in average 

concentration with time is obtained for both tubes and, consequently, the molecular diffusion coefficient can be 

calculated from the solution of the equations of approach to equilibrium. The procedure has been described in detail 

in earlier publications
14,19

. 

 

III. RESULTS AND DISCUSSION 

A. Soret coefficient for equimolar mixtures 

In this work 29 n-alkane equimolar mixtures corresponding to the following series have been considered: 

 nC6-nCi with i=10, 11, 12, 13, 14, 15, 16, 17, 18; 

 nC10-nCi with i=5, 7, 14, 15, 16, 17, 18; 

 nC12-nCi with i=5, 7, 8, 9, 16, 17, 18; 

 nC18-nCi with i=5, 7, 8, 9, 11, 13. 

Table I summarizes the values of the measured mass diffusion coefficients at 298 K for the equimolar mixtures 

considered. Table I also shows the values of the thermal diffusion coefficient for these mixtures. The values for the 

systems nC6-nC11, nC6-nC12, nC6-nC13, nC6-nC15, nC6-nC17, nC10-nC14 and nC12-nC16 have been measured in this 

work. DT values for the other systems have been taken from Ref. 11. With the values of D and DT, the Soret 

coefficient (ST=DT /D) of the mixtures has been determined, which is also detailed in Table I. 
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The kinetic theory provides expressions that adequately describe the behaviour of the thermal diffusion factor in 

the case of low-density systems. Thus, it is found that in isotopic mixtures of hard spheres αT exhibits a relative 

simple dependence on (M1/M2), where M1 and M2 are the masses of components of the mixture. Chapman
1
 showed 

that for equimolar mixtures and in the Boltzman limit it is possible to expand αT in powers of relative mass 

difference, δM=(M1-M2)/(M1+M2). 

 

      (4) 

Later Kinkaid et al. 
2
 found that this expansion is valid at all fluid densities. 

More recently, Galliero et al.
3
 analysed the validity of Eq. (4) for the thermal diffusion factor using molecular 

dynamics simulations for isotopic-like mixtures of Lennard-Jones spheres, which differ only in the mass between 

species. They found that this expression holds for all the studied conditions, with the coefficient α0 depending 

strongly on density and weakly on temperature. 

Even if n-alkanes are long and flexible molecules far from being spherical, it has been shown that the thermal 

diffusion results using Lennard-Jones spheres present a similar trend to those obtained with more realistic models. 

Hence in what follows we shall take the relative mass difference and the density as the relevant parameters to 

analyse the experimental results of the Soret coefficient. On the other hand as it has been pointed out by Polyakov et 

al.
20

, in n-alkanes it is difficult to separate the contribution of the mass and moment of inertia because the moment 

of inertia increases almost linearly with the chain length (i.e. with the molecular mass). 

Assuming, as suggested in Ref. 3, a fourth-power density dependence for α0, we have plotted in Fig.1 the obtained 

values of the Soret coefficient for equimolar mixtures versus the product ρ
4
δM. As can be seen, the data fits well to a 

quadratic curve given by 

 

    (5) 

 

where the density is expressed in g/cm
3
. The second factor in this equation amounts to a correction of a few 

percent for the mixtures considered. 
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FIG. 1. Experimental Soret coefficient in function of the ρ
4
δM factor, for binary equimolar mixtures 

 

According to Eq. (5), ST increases with density and relative mass difference. The difference between the ST values 

calculated from Eq. 5 and the experimental ones are in all the cases small, and lower than the experimental error. 

Therefore Eq. 5 permits the quantitative determination of the Soret coefficient of an equimolar mixture of n-alkanes 

from the density measurements of the mixture. 

Taking typical values for densities of the considered mixtures of =0.70 g/cm
3
, the values obtained from Eq. (5) 

for 0 is 0=3.3 ( 0=0.0464
4
T), which is of the same order as the one calculated by Galliero et al

3
 in the liquid-

state region. 

From the above results, we can conclude that equimolar n-alkane mixtures behave as isotopic-like mixtures with 

the mass effect being the sole contribution to the Soret coefficient. 

 

B. Dependence of the Soret coefficient on concentration 

In addition, this work has been completed by studying the systems nC12-nC6, nC12-nC7, nC12-nC8 and nC10-nC5 at 

the following concentrations: 

 nC12-nC6 (x1=0.10, 0.30, 0.34, 0.50, 0.70, 0.90); 

 nC12-nC7 (x1=0.10, 0.30, 0.37, 0.50, 0.70, 0.90); 

 nC12-nC8 (x1=0.07, 0.31, 0.40, 0.50, 0.73); 

 nC10-nC5 (x1=0.10, 0.20, 0.34, 0.50, 0.64, 0.80). 

where x1 is the molar fraction of the heavier component. 
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Table II shows the measured values of D and DT at 298 K and different concentrations for the four systems 

considered. The mass diffusion coefficient for the system nC10-nC5 and some of the thermal diffusion coefficients 

for nC12-nC6 and nC12-nC8 were measured in this work. The remaining values of D and DT were taken from Refs. 

11-13, 15 and 16. From the values of D and DT, we determined the Soret coefficient of the different mixtures. We 

have plotted in Fig. 2 these values of the Soret coefficient at different composition for the four systems. 

 

FIG. 2. Soret coefficient in function of the molar fraction of the heavier component, x1, for the systems “○” nC12-

nC6, “●” nC12-nC7 and “Δ” nC12-nC8 and “▼” nC10-nC5 at 298 K. The solid straight lines indicate values for the 

Soret coefficient calculated from Eq. 17 as described in the text, the symbols represent experimental results from 

this work. The label on the right axis corresponds to the mixture nC10-nC5. 

 

In previous works
12,14

, we have shown that both the molecular diffusion and the thermal diffusion coefficients 

vary linearly with the mass fraction in n-alkane mixtures, being this variation strong. However, in the following we 

shall show that the Soret coefficient presents a small linear dependence with the molar fraction. This behaviour has 

also been seen in other works
21

. 

According to Refs. 12 and 14, the coefficients D and DT can be written as follows:  

     (6) 

 

where D1
0
, D2

0
, DT1

0
 and DT2

0
 are the corresponding infinite dilution values, which are defined by 

 

     (7) 
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Accordingly, the Soret coefficient, ST=DT/D, expressed in terms of molar fractions x1 and x2 is: 

 

 

     (8) 

 

In Ref. 14, we have shown that the ratio D1
0
/D2

0
 is equal to the ratio of molecular masses, M1/M2. Thus, 

 

      (9) 

 

Therefore, Eq. (11) can be written as 

 

     (10) 

 

where ST1
0
 and ST2

0
 are the limiting Soret coefficients given by 

 

      (11) 

 

Eq. (10) shows that the Soret coefficient in n-alkane mixtures is indeed a linear function of the molar fraction. In 

Fig. 2, the Soret coefficient for the nC12-nC6, nC12-nC7, nC12-nC8 and nC10-nC5 systems is represented as a function 

of the molar fraction of the heavier component. As one can see, the Soret coefficient for each system fits well to a 

straight line in accordance with Eq. (10). A linear dependence also occurs in isotopic mixtures of hard spheres
2
. 

Eq. (10) can be written more conveniently in terms of the Soret coefficient of the equimolar mixture that we shall 

denote by ( ) and the difference ST=(ST1
0
-ST2

0
)/2. Then we have, 

      (12) 

 

The coefficient λ is 

 

      (13) 
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which, taking into account Eqs. (9) and (11) , can be written as 

 

      (14) 

 

where DT1
0
 and DT2

0
 can be calculated from the expressions obtained in Ref. 12: 

 

    (15) 

    (16) 

 

where αi and µi are the thermal expansion coefficient and the dynamic viscosity of the pure components, 

respectively. The subindexes 1 and 2 refer to the heavier and lighter components of the mixture, respectively. Table 

III displays the values obtained for DT1
0
, DT2

0
 and λ using Eqs. (14), (15) and (16) for the binary systems considered. 

The values of the Soret coefficient calculated with Eq. (17) for the different concentrations appear in Table II. As 

can be seen, the agreement with the corresponding experimental values is excellent. Therefore, the dependence of ST 

on concentration is determined by the thermophysical properties α and µ of the pure components and their molecular 

mass. Eq. (17) shows that this dependence is governed by the factor λ, which is a positive number smaller than unity 

on the order of 10
-1

. Therefore, ST decreases with the increasing molar fraction of the heavier component. 

Furthermore, large values of λ mean a strong dependence of ST on concentration. For example, for the system nC10-

nC5 λ=0.040, indicating that ST is practically independent of composition. However, for the nC12-nC8 system λ takes 

the value 0.171, pointing out a higher dependence of ST on the molar fraction. These results are corroborated by our 

experimental results (see Fig. 2). 

In any case, λ being small, ST changes little with composition. According to Hartmann et al.
7
, this means that the 

so-called chemical contribution to ST is small corresponding to the chemical similarity of the molecules. The main 

contribution to ST comes, in n-alkane mixtures, from the mass differences between the molecules. 

 

IV. CONCLUSIONS 
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In the first part of this work, we determined the Soret coefficient of 29 equimolar mixtures of n-alkanes from 

measurements of thermal diffusion and molecular diffusion coefficients. We showed that a quadratic relation 

between the Soret coefficient and the relative mass difference exists, with the coefficient depending strongly on 

density. Thus, equimolar n-alkane mixtures behave as isotopic-like mixtures in which only the mass effect 

contributes to the Soret coefficient. 

In the second part, we determined the Soret coefficient of four binary systems in the whole range of 

concentrations. It was showed that the Soret coefficient presents a small linear dependence on the molar fraction, 

decreasing with the concentration of the heavier component. A correlation is derived that allows the quantitative 

determination of the Soret coefficient of a mixture of n-alkanes at any concentration from the viscosity, the thermal 

expansion coefficients of pure components and the density of the equimolar mixture. 
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TABLE I. Experimental values of ρ, α, µ, D, DT and ST at 298 K for equimolar mixtures. δM is the relative mass 

difference, ST (cc) stands for ST calculated from Eq. (5) and Δ is the relative difference between ST and ST (cc). 

 

Mixture 
ρ 

(g/cm
3
) 

δM 
α / 10

-3
 

(K
-1

) 

µ / 10
-3

 

(Pa·s) 

DT / 10
-12

 

(m
2
/sK) 

D / 10
-9

 

(m
2
/s) 

ST / 10
-3

 

(K
-1

) 

ST(cc) / 10
-3

 

(K
-1

) Δ(%) 

 Set 1: nC6-nCi 

nC10-nC6 0.698508 0.24556 1.159 0.538 6.08
a
 2.53 2.40 2.47 -2.8 

nC11-nC6 0.706712 0.28918 1.124 0.623 6.40 2.14 2.99 2.97 0.7 

nC12-nC6 0.713777 0.32808 1.094 0.711 6.69 1.93 3.46 3.43 0.9 

nC13-nC6 0.720307 0.36290 1.068 0.831 6.61 1.67 3.96 3.84 3.1 

nC14-nC6 0.726124 0.39431 1.047 0.945 6.68
a
 1.54 4.34 4.21 3.1 

nC15-nC6 0.731762 0.42277 1.025 1.108 6.47 1.48 4.37 4.56 -4.2 

nC16-nC6 0.736556 0.44868 1.009 1.260 6.38
a
 1.26 5.06 4.86 4.1 

nC17-nC6 0.741007 0.47200 0.991 1.432 6.32 1.24 5.10 5.13 -0.6 

nC18-nC6 0.745086 0.49407 0.976 1.715 5.90
a
 1.12 5.27 5.38 -2.0 

 Set 2: nC10-nCi 

nC10-nC5 0.689961 0.32705 1.203 0.486 8.78
a
 2.86 3.07 3.04 1.0 

nC10-nC7 0.706677 0.17354 1.122 0.608 3.90
a
 2.07 1.88 1.87 0.5 

nC14-nC10 0.745410 0.16470 0.976 1.410 1.84 0.88 2.09 2.17 -3.7 

nC15-nC10 0.749433 0.19774 0.960 1.582 2.15
a
 0.78 2.74 2.61 4.7 

nC16-nC10 0.752850 0.22827 0.952 1.762 2.23
a
 0.72 3.10 3.01 3.0 

nC17-nC10 0.756111 0.25652 0.939 2.009 2.29
a
 0.70 3.27 3.38 -3.3 

nC18-nC10 0.759213 0.28279 0.928 2.255 2.38
a
 0.61 3.90 3.77 3.4 

 Set 3: nC12-nCi 

nC12-nC5 0.706503 0.40492 1.126 0.671 8.81
a
 2.20 4.00 3.94 1.5 

nC12-nC7 0.720338 0.25926 1.066 0.807 4.74
a
 1.64 2.89 2.89 0.0 

nC12-nC8 0.726279 0.19717 1.043 0.892 3.23
a
 1.45 2.23 2.33 -4.3 

nC12-nC9 0.731708 0.14096 1.021 0.992 2.15
a
 1.26 1.71 1.76 -2.8 

nC16-nC12 0.759300 0.14141 0.930 2.113 1.16 0.58 2.00 2.02 -0.1 

nC17-nC12 0.759557 0.17029 0.922 2.389 1.29
a
 0.54 2.39 2.40 -0.4 

nC18-nC12 0.761665 0.19813 0.909 2.665 1.33
a
 0.48 2.77 2.77 0.0 

 Set 4: nC18-nCi 

nC18-nC5 0.740784 0.55824 0.991 1.592 7.38
a
 1.24 5.95 5.74 3.7 

nC18-nC7 0.749065 0.43502 0.963 1.735 5.00
a
 0.95 5.26 4.99 5.4 

nC18-nC8 0.752698 0.38053 0.948 1.875 3.94
a
 0.85 4.64 4.58 1.3 

nC18-nC9 0.756092 0.32985 0.939 2.045 3.00
a
 0.69 4.35 4.16 4.6 

nC18-nC11 0.762256 0.23902 0.920 2.445 1.78
a
 0.52 3.42 3.27 4.6 

nC18-nC13 0.767535 0.15982 0.906 2.945 0.98
a
 0.43 2.28 2.35 -3.0 

a
 Values of DT taken from Ref. 11. 
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TABLE II. Experimental values of D, DT and ST at 298 K for non equimolar mixtures. ST (cc) stands for ST 

calculated with Eq. (17) and Δ is the relative difference between ST and ST (cc). 

Mixture x1 
ρ 

(g/cm
3
) 

α / 10
-3

 

(K
-1

) 

µ / 10
-3

 

(Pa·s) 

DT / 10
-12

 

(m
2
/sK) 

D / 10
-9

 

(m
2
/s) 

ST / 10
-3

 

(K
-1

) 

ST(cc) / 10
-3

 

(K
-1

) 
Δ(%) 

nC12-nC6 0.10 0.671330 1.240 0.360 9.14 2.48 3.69 3.70 -0.3 

 0.30 0.695112 1.174 0.524 8.02 2.24 3.58 3.56 0.5 

 0.34 0.698780 1.158 0.563 7.67 2.13 3.60 3.54 1.6 

 0.50 0.713777 1.094 0.711 6.69 1.93 3.46 3.43 0.9 

 0.70 0.728268 1.035 0.940 5.79 1.72 3.36 3.21 4.6 

 0.90 0.740650 0.990 1.255 4.85 1.51 3.21 3.15 1.9 

nC12-nC7 0.10 0.689767 1.202 0.475 6.34
a
 2.09 3.03 3.22 -5.9 

 0.30 0.706600 1.124 0.611 5.30
a
 1.84 2.88 3.05 -5.6 

 0.37 0.711000 1.102 0.682 5.08
a
 1.70 2.99 2.99 0.0 

 0.50 0.720338 1.066 0.807 4.74
c
 1.64 2.89 2.89 0.0 

 0.70 0.731471 1.023 1.004 3.86
a
 1.48 2.61 2.72 -4.0 

 0.90 0.740949 0.990 1.234 3.35
a
 1.37 2.45 2.55 -3.9 

nC12-nC8 0.07 0.703400 1.146 0.555 4.34 1.70 2.55 2.67 -4.5 

 0.31 0.717320 1.101 0.734 3.62 1.56 2.32 2.48 -6.5 

 0.40 0.721960 1.060 0.807 3.39
d
 1.49 2.28 2.41 -5.4 

 0.50 0.726279 1.043 0.892 3.23
c
 1.45 2.23 2.33 -4.3 

 0.73 0.735870 1.022 1.105 2.64 1.25 2.11 2.15 1.9 

nC10-nC5 0.10 0.637718 1.495 0.277 11.90
b
 3.75 3.17 3.14 1.0 

 0.20 0.652835 1.399 0.333 10.36
b
 3.36 3.08 3.12 -1.3 

 0.34 0.670325 1.297 0.403 9.37
b
 3.03 3.09 3.08 0.3 

 0.50 0.689961 1.203 0.486 8.76
c
 2.96 2.96 3.04 -2.6 

 0.64 0.700261 1.150 0.586 7.56
b
 2.48 3.05 3.01 1.3 

 0.80 0.711864 1.098 0.690 6.92
b
 2.20 3.15 2.97 6.0 

a
 Values of DT taken from Ref. 12; 

b
 Ref. 13; 

c
 Ref. 11; 

d
 Ref. 16. Values for D coefficient have been taken from Ref. 

14 with the exception of the values of nC10-nC5 system, measured in this work. 
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TABLE III. Values of the limiting values of D
0

T1, D
0
T2 and λ of nC10-nC5, nC12-nC6, nC12-nC7 and nC12-nC8 

mixtures. 

Mixture 
DT1

0 
/ 10

-12
 DT2

0
 / 10

-12
 

λ 
(m

2
/sK) (m

2
/sK) 

nC10-nC5 13.65 6.37 0.041 

nC12-nC6 10.46 4.34 0.100 

nC12-nC7 7.06 3.11 0.144 

nC12-nC8 4.56 2.18 0.171 
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