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Abstract

Mechanically delivered chest compressions induce
artifacts in the ECG that can lead to an incorrect
diagnosis of the shock advice algorithms implemented
in the defibrillators. This forces the rescuer to
stop cardiopulmonary resuscitation (CPR) compromising
circulation and thus reducing the probability of survival.
This paper introduces a new approach for a reliable
rhythm analysis during mechanical compressions which
consists of an artifact supression filter based on the
recursive least squares algorithm, and a shock/no-shock
decision algorithm based on machine learning techniques
that uses features obtained from the filtered ECG.
Data were collected from 230 out-of-hospital cardiac
arrest patients treated with the LUCAS CPR device.
The underlying rhythms were annotated in artifact-free
intervals by consesus of expert resuscitation rhythm
reviewers. Shock/no-shock diagnoses obtained through
the decision algorithm were compared with the rhythm
annotations to obtain the sensitivity (Se), specificity (Sp)
and balanced accuracy (BAC) of the method. The results
obtained were: 94.7% (Se), 97.1% (Sp) and 95.9% (BAC).

1. Introduction

High quality cardiopulmonary resuscitation (CPR)
and early defibrillation are the most influential factors
explaining survival from out of hospital cardiac arrest
(OHCA) [1]. Current advanced life support guidelines
state that minimum interruptions in chest compressions
(CCs) are required during CPR to improve the chances
of a successful defibrillation [1]. Unfortunately, current
defibrillators require interrupting CPR during rhythm

analysis because CCs produce artifacts in the ECG that can
lead to an incorrect shock/no-shock diagnosis.

Adaptive filtering of the CC artifact has been the
major approach to allow rhythm analysis during CCs,
ranging from filters that use additional reference signals
correlated with the artifact to simpler but less effective
filters that analyze the ECG alone [2]. Taking advantage
of the quasi-periodic nature of CC artifacts, adaptive
filters based on the multiharmonic modelling of the
artifact have also been explored [3]. Diagnosing the
filtered ECG by a commercial shock advice algorithm
(SAA) has become general practice to evaluate the
performance of these algorithms [2]. This allows the
estimation of the Sensitivity (Se) and Specificity (Sp),
that is the proportion of correctly identified shockable and
nonshockable rhythms, respectively. However, the SAAs
used were originally designed to analyze artifact-free ECG
and not to diagnose the filtered ECG.

Most rhythm analysis methods have been devoted to
manual CPR [2]. However recently methods to analyze
the rhythm during mechanical CCs delivered by piston
driven devices have been developed [4–6]. These methods
were based on the SAA of commercial AEDs [7, 8]
for the shock advise decision, and either showed poor
performance [4, 5] or involved several filtering stages and
excessive computational demands [6].

This study proposes a method for a reliable shock
advise during mechanical CCs provided by the LUCAS-2
(Physio Control/Jolife AN, Lund, Sweeden) piston driven
device. The method combines an adaptive filter based on
the recursive least-squares (RLS) algorithm to remove the
artifact and a shock/no-shock decision algorithm based on
a support vector machine (SVM) classifier to diagnose the
rhythm after filtering.
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2. Materials and methods
2.1. Materials

The data used for this study were gathered by the
emergency services of Oslo and Akershus (Norway) using
LifePak 15 defibrillators (Physio-Control Inc., Redmond,
WA, USA). ECG and thoracic impedance (TI) signals were
recorded and resampled to 250Hz (see [4] for a detailed
description of the data). The ECG was band limited to
0.5-40Hz using an order 8 Butterworth filter.

The dataset extracted from this data consisted of 1045
segments of 20 s from 230 patients, whereof 201 were
shockable rhythms and 844 nonshockable (270 asystole,
574 organized). The first 15 s of the segment included
continuous CCs and were used to develop our solution.
The last 5 s, free of artifact, were used by the expert
reviewers to annotate the patient’s underlying rhythm
as shockable/nonshockable and used as ground truth.
Figure 1 shows an example of a 20 s ECG segment
corresponding to an underlying nonshockable rhythm.

2.2. Methods
2.2.1. Filtering the CC Artifact

CC artifacts were removed from the ECG using a RLS
filter based on the multiharmonic Fourier modelling of the
artifact, the filter is described in detail in [5, 6]. In brief,
during CCs the artifact is modelled as an N -term Fourier
series with time varying coefficients (ak(n) and bk(n))
and a constant fundamental frequency, f0 = 1.694Hz
(about 101 compressions min−1), which is fixed by the
LUCAS-2:

scc(n) =

N∑
k=1

ak(n) cos(k2πf0nTs)+ (1)

bk(n) sin(k2πf0nTs) (2)

where Ts is the sampling period. The RLS filter
estimates the time-varying coefficients (ak(n) and bk(n))
and subtracts the estimated artifact from the corrupted
ECG (scor) to give the filtered ECG (ŝecg), see Figure 1.

In this paper we used the optimal configuration of
the filter as described in [6], which has two degrees of
freedom. First, a parameter to decide the number of
harmonics to be used in the method, γ = 0.0023 which
roughly corresponds to an average number of N = 23
harmonics. Second, the RLS solution’s forgetting factor,
λ = 0.9899.

2.2.2. Feature extraction

A set of 59 shock/no-shock decision features were
extracted from the filtered ECG. Only the interval from
4 s to 12 s (see the highlighted interval in figure 1) was
used for feature extraction. First 4 s were left out to
avoid RLS filtering transients. These features have been
comprehensively studied and described [9–11] to classify
OHCA rhythms. The features are:
• Time domain features. TCI, TCSC, Exp, Expmod,
MAV, count1, count2, count3, x1, x2 and bCP [9].
• Spectral domain features. vFleak, M, A1, A2, A3, x3,
x4, x5, bWT and bW [9]; FuzzEn [11, 12].
• Wavelet domain features. IQR (d3-7), Var (d3-7), first
quartile of d3-7 (FQ (d3-7)), IQR (s(n)), IQR (ṡ(n)),
IQR (s̈(n)), µ2-4,s, µ3-4,ṡ, a1-4 and σ2

v [10]; Li feature [9].
• Complexity features. CM, CVbin, abin, Frqbin, Kurt,
PSR, HILB and SamEn [11, 12].

2.2.3. Architecture of the model and evaluation

A 10-fold cross-validation (CV) architecture was
used for feature selection and model optimization and
assessment. Folds were partitioned patient-wise and
ensuring that the rhythm prevalences matched (to at least
90%) the prevalences for shockable and nonshockable

Figure 1. Example of a 20 s episode of the database. The top panel shows the ECG of a patient with a nonshockable
organized rhythm (OR): the first 15 s are corrupted by the CC artifact, and the last 5 s are free of artifact showing the
patient’s underlying rhythm. The bottom panel shows the filtered ECG which reveals the patient’s rhythm during CCs.
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rhythms seen in the whole dataset (quasi-stratified). The
main classifier used for the shock/no-shock decision was
optimized using the most relevant subset of k features
selected in the training data and used to classify the
test segments. These diagnoses were compared with the
ground truth to obtain the performance of the solution in
terms of Se, Sp and BAC (the mean value of Se and Sp).

2.2.4. Feature selection
We used the ReliefF [13] feature selection method

to choose the k features used in the main classifier.
This supervised filter-based method is an extension of
the well-known Relief [14] for multiclass and regression
problems. The key idea of Relief is to estimate the
relevance of features according to how well their values
distinguish between the instances of the same and different
classes that are near to each other (neighbours). Whereas
Relief only relies in a single neighbour to calculate
the importance of the features, RefliefF considers the
contribution of several neighbours, making the algorithm
more robust dealing with noisy data. In this study the
number of neighbours was fixed to 50. Feature selection
was performed for k = 1, ...59 so as to find which value
of k offered the best compromise between dimensionality
and performance.

2.2.5. Shock/no-shock classification algorithm

Support Vector Machine (SVM) classifier with a
gaussian kernel was used for the shock/no-shock decision.
Selecting an optimal SVM model involves selecting two
parameters: γ andC, the width of the Gaussian Kernel and
the flexibility of the decision boundary, respectively [15].
The values of C and γ that maximized the BAC were
determined in the 10-fold CV loop doing a 25x25
logaritmic grid search in the ranges 10−1 < C < 101.5

and 10−3 < γ < 10. The procedure was repeated 50 times
to estimate the statistical distributions of the performance
metrics and the optimal parameters of the SVM model.
These distributions will be reported as mean (95% CI,
confidence interval).

3. Results

Figure 2 shows the mean values of Se, Sp and BAC
obtained in the 50 random repetitions as a function
of the number of features (k) selected in the training
data. The best compromise between model simplicity
and performance was obtained for k = 24 as the mean
BAC slightly increases for a greater value of k. In this
working point (k = 24), the mean value of the optimal
configuration (C/γ) of the SVM classifier was 10.62/0.02
obtaining a Se, Sp and BAC of 94.7% (93.5-95.6), 97.1%

(95.5-97.8) and 95.9% (95.4-96.5), respectively. This is
a considerable improvement over using the RLS filter
followed by a commercial SAA [7, 8], which resulted in
a Se, Sp and BAC of 98.1%, 87.0%, 92.5% respectively.
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Figure 2. Mean values of the performance metrics as a
function of the number of features (k) used in the classifier.

However, as shown in Figure 2, American Heart’s
Association’s (AHA) requirements for a reliable rhythm
diagnosis (Se>90% and Sp>95%) are met with as few as
5 features. In fact, the distributions of Se, Sp and BAC for
k = 5 were: 93.1% (90.5-95.5), 95.1% (94.1-95.9) and
94.1% (92.7-95.4). Table 1 shows the 10 features selected
in the 50 random repetitions of the 10-fold CV for k = 5:

Feature N Feature Nf

x1 500 A1 169
vfleak 494 IQR (d3) 86
x2 491 count3 75
x4 414 IQR (d2) 24
FQ (d3) 246 IQR (d1 ) 1

Table 1. The features selected in 50 random repetitions
ranked by the number of times (Nf ) they were selected for
k = 5.

4. Discussion

This work introduces a new method for a reliable rhythm
analysis during mechanical CCs. It consists of an adaptive
RLS filter designed to remove the CC artifact and a
shock/no-shock decision algorithm using multiple ECG
features and a state of the art machine learning classifiers.
The results show that the best trade-off between model
dimensionality and performance was obtained using 24
features, obtaining a BAC of 95.9%. However, AHA
compliant performance was obtained with only 5 features.
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In our previous work [6] a single filtering stage followed
by a commercial SAA yielded Se, Sp and BACs of 98.1%,
87.0% and 92.5% in this same dataset. By using a machine
learning approach we were able to boost the BAC by
3.4 points with an increase in Se and Sp of -3.4 and
10.1 points respectively. This shows that it is possible
to accurately decide whether to shock the patient during
mechanical CCs using a single filtering stage. In the past
we obtained AHA compliant results using 2 filtering stages
and 3 decision stages [6], with lower BAC and higher
computational demands.

In conclusion, the method presented in this paper is, to
the best of our knowledge, the computationally cheapest
method for a reliable rhythm analysis during mechanical
CCs, according to AHA recommendations.
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