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Sensor signal selection for tool wear curve estimation and subsequent 

tool breakage prediction in a drilling operation 

Tool condition monitoring systems have an important role in machining processes 

to reduce defective component and ensure quality requirements. Stopping the 

process before the tool breaks or an excessive tool wear is reached can avoid costs 

resulting from that undesirable situation. This research work presents the results 

obtained in drilling process monitoring carried out on Inconel 718. Monitoring 

systems should be light and scalable. Following this idea, multiple sensors for 

external signal acquisition are used in this work (cutting forces, vibrations, and 

acoustic emissions) and several machine internal signals are collected. With all this 

data in hand, the main objective is to evaluate the capacity of each acquisition 

source for the reconstruction of the tool wear curve and subsequently detection of 

tool breakage. Given the difficulty of using all of these signals in a real system, the 

methodology used to analyse the data makes it possible to have a comparative 

analysis of the potential of each of these sources for tool wear monitoring during 

the drilling process. The results indicate cutting forces whether they come from 

internal signals or external signals can carry out this task accurately. At the same 

time of data acquisition, detailed tool wear measurements were added.  

Keywords: Tool condition monitoring; Inconel 718; Drilling; Data mining; 

Machine learning 

1 Introduction 

Machining process monitoring has become a strong topic of study in recent years. With 

the steps being taken around industry 4.0. Data-driven models are being developed with 

a positive influence on sustainability, decision-making and increasing trend in 

production. 

In the literature, different works can be found motivated by the tool wear prediction in 

drilling  (Caggiano, Napolitano, et al. 2018), milling (Stavropoulos et al. 2016), or turning 

(Caggiano, Napolitano, and Teti 2017) processes. Roughness monitoring through 

vibration signals and singular spectrum analysis (García Plaza and Núñez López 2017) in 
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turning. Hole roundness quality inspection through vibration signals and wavelet packet 

transform based on feature extraction and artificial neural networks (Ranjan et al. 2020). 

Ad hoc process monitoring was developed by (Urbikain and López de Lacalle 2020) to 

continuously acquire and perform signal processing through NI devices with a chatter 

detection use case. However, despite the improvements observed in the last years, there 

is still a need to monitor and optimise machining processes to reduce costs and 

sustainability increasement. 

According to Dudzinski et al. (2004), turning and drilling are the main operations in the 

manufacture of discs for gas turbine engines for the aerospace industry. These parts are 

produced from Nickel-based superalloys due to their high temperatures and corrosion 

resistance. Chen and Liao (2003) reported that during drilling of Nickel-based alloys, the 

tool wear is accelerated, being the abrasion wear the mechanism that predominates in the 

initial stages. They showed how the tool coating is abraded and flank wear increases 

rapidly. After this stage, the drill was chipped on the tool periphery leading to changes in 

cutting mechanisms, producing long serrated chip morphology. At this stage, during chip 

evacuation, there is a friction increase between the chip and the generated surface, 

producing low quality holes. 

Drilling is the most productive process for hole making. It is considered one of the most 

critical processes since a poor finish can cause problems in the manufacturing chain of a 

component. This type of occurrence can be derived due to tool wear or tool breakage. The 

most common practice for tool wear or tool breakage assessment is the physical 

installation of sensors such as dynamometers, accelerometers, acoustic emissions, or 

potentiometers. Nevertheless, sometimes the installation of these devices can be intrusive 

regarding the cutting operation due to geometrical limitations, modification of the 
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machine stiffness or constant recalibration specifications. Nowadays, the machine CNC 

controllers allows the acquisition of internal variables/signals that could replace the 

sensor devices. 

The main steps to be followed in a framework for process monitoring can be seen in Fig. 

1: Acquisition of scientific and industrial variables. Processing and feature extraction to 

later apply Machine Learning (ML) for pattern recognition, select best suitable features 

according to the target and apply ML algorithms for automatic in-process prediction of 

industrial variables are the main steps to be followed. 

[Figure 1 near here] 

The main objective of the present work is to develop a system capable of monitoring tool 

wear/breakage following a methodology that seeks to identify the best sensors to achieve 

this goal. A methodology that compares the performance of different sensors on the tool 

wear/breakage estimation using ML algorithms in the drilling operation is presented. 

Following this methodology, it becomes possible to quantify the predictive capability of 

each of the deployed sensors. 

Cutting forces and temperatures in machining are generated by the high 

thermomechanical loads needed to overcome the stresses to remove the material. During 

the process, the tool becomes worn due to adhesion, abrasion, diffusion, or oxidation 

mechanisms, leading to a modification in the tool microgeometry, e.g., a tool flank wear. 

Therefore, cutting forces and, especially, feed force is increased (Rahim and Sharif 2006). 

Vibrations arise from cyclic variations in dynamic cutting forces incorporating free, 

forced, periodic and random types of vibration (Bhuiyan and Choudhury 2014). Acoustic 

emissions are formed due to the irreversible change in the working material. In the 

deformation zones, the tension is released in the form of energy, friction, residual stresses, 
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chip break, chip strike, or phase transformations are other sources of acoustic emissions 

in machining processes (Karpuschewski 2001). 

Dimla Snr. (2000) qualifies acoustic emissions as an additional method to a monitoring 

system. He concluded that cutting forces and vibration signals are the most suitable 

sensors for tool wear monitoring. However, cutting force signal measurements using a 

dynamometer may not be available in most machining applications, its use in the 

industrial environment is not widespread as it is an invasive and unpractical method. 

Stavropoulos et al. (2016) indicated that the spindle electrical current has a better 

relationship than the accelerometer to tool wear in milling processes as it is less 

vulnerable to ambient noise. This is an advantage over the use of sensors as the internal 

signals of the numerical control can now be accessed to measure spindle power or current. 

Opening a range of opportunities for a cost-effective method for tool condition 

monitoring. 

From the signals collected by the sensors, several features are usually obtained in the time 

domain, either in the frequency domain or in the time-frequency domain. In the time 

domain, these features try to explain the distribution of the acquired data in a given space 

of time. These are generally mean, median, RMS, maximum, minimum, standard 

deviation, skewness, kurtosis, variance, standard error and amplitude (Caggiano, 

Angelone, et al. 2018; Caggiano, Napolitano, et al. 2018; Elangovan et al. 2011). In the 

frequency domain, the signals are transformed into frequency components generally 

using Fast Fourier Transform (FFT) and dominant spectral peaks (Sick 2002), signal 

power in specific frequency ranges (Sick 2002), energy in frequency bands and statistical 

features of the spectrum (Teti et al. 2010) are commonly obtained. The Time-frequency 

domain is obtained by applying Short Time Fourier Transform (STFT), Wavelet 
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transforms or Hilbert Huang Transform (Lauro et al. 2014). 

The use of techniques that allow the selection and identification of the most relevant 

features for model creation is not a very common practice when it comes to tool wear 

monitoring. Only 15% of the analysed works use some procedure for the selection of 

representative features during tool condition monitoring (Teti et al. 2010; Sick 2002). 

According to Jemielniak (2019) each particular case needs a feature selection process 

without any human intervention considering as many features as possible. Applying 

feature selection can be beneficial for data comprehension, better generalisation and 

remove redundant features. (Caggiano, Angelone, et al. 2018; Caggiano, Napolitano, et 

al. 2018) used those features with a Spearman correlation coefficient greater than 0.7 to 

tool wear. Elangovan et al. (2011) compared decision tree-based feature selection and 

PCA based transformation and feature reduction showing that decision tree-based feature 

selection results in better prediction accuracy. Dheeraj Simon and Deivanathan (2019) 

compared the accuracy obtained with a different subsets for best suitable subset selection. 

However, Mehmood et al. (2012) observed that there is an interaction between the method 

and data properties.  

Two categories can be found on supervised ML, (i) classification tries to predict discrete 

values or labels, while (ii) regression tries to predict continuous values. For tool condition 

monitoring, some works try to predict the measured wear curve (Caggiano, Napolitano, 

et al. 2018; Liu, Tseng, and Tran 2019) and face the problem as a regression. Others try 

to classify different ranges of the wear curve, and several criteria can be found in this 

strategy to establish tool wear ranges. Kilundu, Dehombreux, and Chiementin (2011) 

predict 3 levels of tool wear, new, light and advanced wear together with chip stuffing 

and non-cutting pass. According to Patel and Muthuswamy (2020), given the continuous 
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nature of tool wear it is preferred to solve as a regression problem.  

The most widely known algorithm for regression is linear regression, however its limited 

ability and simplicity is often not applicable to real-life data. Therefore, the use of other 

types of algorithms capable of dealing with non-linear data should be employed. Neural 

networks are widely used for tool wear monitoring. Caggiano, Napolitano, et al. (2018) 

employed backpropagation artificial neural networks (ANN) for tool wear curve 

prediction in CFRP drilling operation, obtaining a minimum RMSE= 0.00023. They used 

time-domain features of thrust force and torque. In a similar work, Caggiano, Angelone, 

et al. (2018), in addition to the thrust force and the cutting torque they acquired the 

acoustic emissions, they applied principal component analysis (PCA) on the features with 

high correlation coefficient with tool wear curve always obtaining an RMSE<2.17E-03. 

Corne et al. (2017) compared different backpropagation algorithm performances for tool 

wear prediction in drilling Inconel 625 based on spindle power data, concluding that the 

Levenberg Marquart algorithm was the best option. Balazinski et al. (2002) made a 

comparison between three ML methods, ANN, a fuzzy decision support system (FDSS) 

and an artificial neural network-based fuzzy inference system (ANNBFIS) for tool wear 

curve reconstruction in turning process. They did not see any superior method to the rest, 

but they concluded that ANNBFIS was the most practical ML algorithm given its 

practicality. Using the same data and algorithms, Ren et al. (2010) added to the 

comparison the Takagi-Sugeno-Kang (TSK) fuzzy modelling based on subtractive 

clustering method, showing its superiority to the rest ML algorithms.  

Jaini et al. (2020) used a gap sensor for tool condition classification in the drilling process. 

By obtaining the kurtosis and skewness features of the spindle movement, they can 

classify 11 drills with different damage. Dheeraj Simon and Deivanathan (2019) used 
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time-domain features of the vibration signal to detect the presence of wear in drilling 

processes, using the K-Star algorithm. Wu et al. (2017) compared algorithms based on 

ANN, SVM and RF, showing the superiority of RF over the other methods. Ao and Qiao 

(2010) used Logistic regression (LR) and autoregressive moving average (ARMA) 

models to predict the remaining useful life (RUL). Duo et al. (2019) compared different 

algorithm (J48, LMT, IBK and NB) performances to predict different tool wear levels to 

choose the most suitable signal based on time-domain features. Table 1 summarises the 

main works consulted on the subject. 

Some works use a data partitioning method for the training and testing phase (i.e. 70% 

for training and 30% for testing) (Wang et al. 2013; Shankar, Mohanraj, and Rajasekar 

2018). This practice should be avoided as tool wear is a phenomenon that increases with 

machining time. Indirectly, data leakage is induced in the testing phase, which can lead 

to better results than those obtained in a real system overestimating the produced model. 

The testing phase should be carried out in a completely new tool to obtain adequate results 

and validate the created model. The data leakage problem for tool wear curve estimation 

is illustrated in Fig 2.  

[Figure 2 near here] 

Sensor fusion can be unpractical in industrial applications with geometrical limitations, 

sensor positioning problems or sensor constant recalibration specifications. Thus, 

machine internal signals are an alternative to sensor limitations. Feature selection should 

be applied to generate simpler and lighter models to establish an accurate relationship 

with the measured tool wear as most of extracted features are not related to measured 

monitoring unit. The continuous indirect measurement of tool wear and assessment of the 

risk of irreversible tool damage in accordance with process inherent uncertainties are 
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highly valued for more sustainable and cost-effective machining. 

In the following sections, the experimental set-up and mounted sensors are first presented. 

Then, the feature extraction method used in this work is showed and how a suitable 

feature subset was selected. After that, the algorithms employed for tool wear curve 

regression and how the risk of irreversible tool damage was assessed is presented. 

[Table 1 near here] 

2 Methodology 

2.1 Experimental set-up 

Drilling tests were carried out on a Lagun vertical milling machine tool with Fagor 

CNC8070 where the internal CNC variables may be accessed. 3 solid TiAlN coated 

carbide tools (MDS080SK) were used on Inconel 718 under the following cutting 

conditions; Vc = 15m/min, f = 0.1mm/rev, ø= 8mm and 6.5 mm depth throughout holes. 

The tool geometry can be seen in Fig. 3 a). 

[Figure 3 near here] 

During the tests, different sensors were installed to obtain signals related to the cutting 

process. In particular, an acoustic emission sensor (Kistler 8152C), a 3-component 

accelerometer (PCB J356A45) and a 4- component rotational dynamometer (Kistler 

9123) were installed. Besides, several internal CNC signals shown in table 2 were 

collected. An analogue output (ao0 of the CNC) of the machine tool was used to obtain a 

signal at the acquisition time, allowing the simultaneous acquisition of internal and 

external signals. The surface of the workpiece is at Z=0 mm, when the position of the tool 

tip is Z=1 mm, a command is given to start the simultaneous acquisition on the NI USB 

6361 and NI cDAQ 9178 acquisition cards. The experimental set-up used can be seen in 

Fig. 3 b). The internal signals of the machine were acquired at the CNC itself, while the 

external signals were acquired in an external PC. 
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[Table 2 near here] 

2.2 Data preparation and wear prediction through several stages: from S1 to 

S6 

The presented methodology follows several steps with many interdependencies and will 

follow the next steps: a) gather data on different tools and many different sensors and 

internal signals for the drilling process, adding data relative to the wear. b) Extract 

features and select the best ones using data from different tools indistinctly. c) Choose 

the best algorithm between seven of them using data from different tools indistinctly. d) 

Use knowledge from steps b and c to predict the wear curve on each tool data separately. 

e) Use knowledge from steps b and c to predict tool breakage on each tool data separately. 

2.2.1 Feature extraction 

The features were extracted from what was considered the most stable part of the cutting 

process. From the moment the tool tip is fully inserted into the material until the tool tip 

starts to emerge. This part can be seen in Fig. 4 represented as ”steady cutting”. This task 

was carried out using the tool tip position (POS_Z). Knowing where the tool tip is and 

performing a simultaneous acquisition of all the signals, it is possible to obtain the 

segment belonging to the stable machining zone that runs through the whole hole. 

[Figure 4 near here] 

The statistical features of the raw signals were first obtained. In addition to this, to obtain 

features of different frequency bands, a 3rd level wavelet packet decomposition was 

applied to each of the segments based on the work done by (Bombiński et al. 2016) and 

(Segreto, Karam, and Teti 2017) (Fig. 5). The transformation was applied only to all 

external signals. A total of 8 wavelet packages were obtained for each of the external 

signals covering one-eighth of the signal frequency spectrum. 
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[Figure 5 near here] 

Mean, RMS, standard deviation, maximum, minimum, signal amplitude, kurtosis, 

skewness, and variance features were acquired from all the raw signals and all the 

obtained wavelet packages. [Signal name]_mean, [Signal name]_rms, [Signal name]_std, 

[Signal name]_max, [Signal name]_min, [Signal name]_peak, [Signal name]_kurt, 

[Signal name]_skew, [Signal name]_var were the names of each of the obtained feature 

to identify the feature of a specific signal. Overall, 720 features were considered. 

2.2.2 Wear target estimation 

During the machining process and for the reconstruction of the wear curve, the tool 

condition was measured on each cutting edge every 10 holes made on the tool periphery 

(Fig. 6 a)), calculating then an average of the wear on the two cutting edges. Once the 

process was finished, using those estimated wear values, a curve was adjusted employing 

a 3rd-degree polynomial fitting shown in Fig. 6 b). The first hole in which a sign of break 

was observed on the periphery of the tool was also been identified and labelled. The 

criteria to finish the test was to achieve a wear value of Vb =  0.3mm or 10 holes after 

the first breakage point was identified. 

The third-degree polynomial curve estimated from the measurements made during the 

tests is used as the target for ML algorithms. Four phases have been identified during the 

evolution of the wear curve. (i) Break-in period is the phase where the tool wears out 

quickly. At the beginning of the process, for every tool, a Vb =  0.1mm is reached after 

the first 10 holes (ii) Steady stage, the tool wear curve is smoothed and continues growing 

progressively. (iii) Failure region, where the tool suffers a breakage in the cutting edge 

(iv) Broken period, one or both cutting edges have suffered irreversible damage. 
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[Figure 6 near here] 

During the tests, it has been observed in tool 1 that the first occurrence of a broken period 

appears in hole 90, while in tools 2 and 3, the broken period was observed in hole number 

50. Even though the holes were drilled under the same cutting conditions, the tool 

periphery breakage was observed at different moments. Once the polynomial adjustment 

has been made, the datasets created with internal and external feature values and the 

estimated wear curve are joined as shown in Fig. 7 (Complete feature space) for each 

information source, including data for every tool. 

2.2.3 Feature selection 

The non-relevant or redundant features must be removed from each dataset corresponding 

to one unique sensor for predicting the wear curve. The final decision regarding feature 

selection has been carried out through a voting scheme between different methods; a) two 

embedded methods, b) a wrapper method and c) a filter was used. The methods selected 

for this step have been Elastic Net (EN), Sequential Backward Search (SBS), Random 

Forest (RF) and Information Gain (IG). Every decision on selecting (1) or not (0) of a 

feature by an algorithm is added. In this way, each feature can obtain a maximum score 

of 4 (all the algorithms considered this specific feature as a candidate for tool wear curve 

prediction) and a minimum of 0. The selected features for each one of the sensors have 

been those that would have only features that obtain a score greater than 3. Ensuring that 

different criteria have been involved in the selection of these features. The process of 

feature selection is represented in Fig. 7 and carried out per each sensor separately.  

[Figure 7 near here] 

Specific names are used for the rest of this work to specify these reduced feature spaces, 
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dynamometer reduced feature space (FC_RFS), accelerometer reduced feature space 

(ACC_RFS) and internal signals reduced feature space (INT_RFS) were obtained. 

2.2.4 Algorithm selection and wear curve prediction 

To analyse the impact of the variable selection process on the predictions made, the 

performance of some other algorithms predicting tool wear curve values was validated 

before and after the previous variable selection process using 10 fold 10 times cross-

validation. This way, the behaviour of the selected algorithms for the prediction of the 

wear curve is evaluated under different input feature space. 

The algorithms tested for the prediction of the wear curve were: (i) least absolute 

shrinkage and selection operator (LASSO), (ii) neural network (NNET), (iii) generalised 

linear model (GLM), (iv) K nearest neighbour (KNN), (v) M5 model rules (M5), (vi) 

multilayer perceptron (MLP) and (vii) Linear SVM for regression. 

At this point, data has been used to extract the best feature or choose the best algorithms, 

but an open question is if at what point, data from one tool has the power to predict the 

status of other of the wear curve in another tool. To evaluate this point, the bootstrap 

sampling method was used. This method consists of selecting a part of the data for 

training (training samples) and another part for testing (out-of-bag samples). The training 

samples belong to two of the three tools used, and the out-of-bag samples belong to the 

remaining tool. After three iterations, the prediction of the wear curve for the three tools 

used in this work were obtained. To measure the behaviour of the model fitting against 

the measured tool wear curve, mean absolute error (MAE), root mean square error 

(RMSE) and R square (R2) metrics were used, the mathematical notations of these metrics 

can be found on Table 3. 

[Table 3 near here] 
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2.2.5 Tool breakage prediction 

In this section, the selected features previously selected during the feature selection 

process have been used to detect tool periphery breakage according to the levels 

established in subsection Wear target estimation. The algorithm used to create the models 

for detecting the tool periphery breakage was the Logistic Model Tree (LMT) because of 

its simplicity of interpreting the obtained model and identifying the features that allow 

the tool breakage detection. LMT combines logistic regression models with tree 

induction. A logistic model tree is a standard decision tree structure with logistic 

regression functions in the leaves (Landwehr, Hall, and Frank 2005). Unlike conventional 

decision trees, the leaves have an associated logistic regression function instead of a class 

label. At the leaves of the LMT, the functions F(x) and −F(x) determine the class 

membership probabilities by equations 1 and 2. 

Pr(Without failure) = eF(x)eF(x) + e−F(x) 

Pr(Tool failure) = e−F(x)eF(x) + e−F(x) 

 

[1] 

 

Where F(x) is a linear model for the leave with the next form, 

F(x) = a0j + ∑ avkj · vkm
k=1  

[2] 

 

Where a0j  is the intersection and avkj
 is the coefficient of vk feature. 

−F(x) determines the probability of a tool failure (label =1), while F(x) determines the 

probability of a tool without failure (label=0). When F(x) has a high value, the probability 

of belonging to class 0 ”without failure” is higher. When F(x) is closer to 0, the 

probability of belonging to one class or another is more doubtful, so this is the critical 
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area or failure region, where a tool can go from an ”without failure” (label:0) to a ”tool 

failure” (label:1) state. feasibility 

Before the final model is created to predict the presence of breakage, several previous 

stages are used to impute values on unknown data that gradually control the uncertainty. 

A description of these stages can be seen in Fig. 8. 

[Figure 8 near here] 

S1 The first strategy only considers those instances that have been correctly labelled 

for one unique tool. That is, without considering the transition zone where the tool 

is known to have suffered substantial and irreversible damage. This allows us to 

observe that the created model is effective to differentiate a bad state from a good 

state of the tool. 

S2 The second strategy is to use all the instances of all the tools together to do the 

same as in the first strategy.  

S3 The third strategy is to train the models with the well-labelled instances of a single 

tool and to test them in the instances belonging to the transition stage. In this way, 

the labels obtained in this step are imputed to the transition area.  

S4 The fourth strategy is to do the same as in the third strategy by considering all the 

instances of all the tools. This will also help in attributing the appropriate labels 

to the instances in the transition area. 

S5 With all the instances labelled, the models obtained are generalised, training in 

70% of the data and testing in 30% on tools 2 and 3. To ensure the early detection 

of tool breakage the first instances have been introduced in the test partition. 
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S6 With all the instances labelled, the models obtained are generalised, training in 

70% of the data and testing in 30% on tools 1, 2 and 3. This last strategy will 

allow comparing the models created by introducing the data of one more tool. 

There are more holes not presenting a break in the periphery of the tool than those that 

are performed with tool breakage, resulting in an imbalanced data problem. Having a few 

instances that belong to the tool failure class it is more difficult for the algorithm to learn 

what the decision boundary is. The training data has been balanced using the Synthetic 

Minority Oversampling Technique (SMOTE). It chooses two neighbouring minority 

instances and creates a new minority instance based on selected ones (Chawla et al. 2002). 

This allows the models to better generalise in terms of the minority class, in this case, the 

class that indicates tool failure. According to (Luque et al. 2019) for this type of 

imbalanced classification, the best evaluation metric results in the use of the Matthews 

correlation coefficient (MCC) since it takes into account the equilibrium ratios of the four 

categories in the confusion matrix (TP: true positives, TN: true negatives, FP: false 

positives, FN: false negatives) as seen in equation 3. The value of this metric is distributed 

from -1 to 1, being -1 the total disagreement between the predicted and the real value, 0 

means random predictions and 1 the total agreement between the predicted and the real 

value. 

MCC = TP · TN − FP · FN√(TP + FP)(TP + FN)(TN + FP)(TN + FN) 

 

[3] 

 

3 Results and discussion 

3.1 Tool wear curve reconstruction 

The reconstruction of the wear curve has been carried out with the features of each of the 
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sensors separately. The results obtained with the acoustic emission signal have not been 

presented since they do not show any predictive capacity concerning tool wear curve. 

Different algorithms have been compared for each of the sensors used in this study. The 

models obtained were compared using the Complete Feature Space (CFS) and the 

Reduced Feature Space (RFS) for each of the sensors. In the case of the accelerometer, 

the reduced feature space is ACC_RFS, these features are those obtaining a score greater 

or equal to 3 during feature selection process. 

ACC_RFS= [WP5_ACCx_rms, WP5_ACCx_max, WP7_ACCx_rms, WP8_ACCx_rms, 

WP2_ACCy_rms, WP4_ACCy_kurt, WP3_ACCz_rms, ACCx_max, ACCx_skew, 

WP2_ACCx_rms, WP2_ACCx_max, WP2_ACCx_peak, WP4_ACCx_rms, 

WP6_ACCy_rms, WP7_ACCy_mean, WP3_ACCz_max, WP7_ACCz_kurt, 

WP8_ACCz_max, WP8_ACCz_peak] 

The complete feature space obtained from the accelerometer was of 243 features. Once 

the process of feature selection was applied, this number was reduced to 19 features. 

In the case of the features obtained from the dynamometer, the feature space was reduced 

from 324 to 10 features (FC_RFS). Thus, having a considerable feature reduction.  

FC_RFS= [WP2_Fy_rms, Fx_mean, Fx_kurt, Mz_mean, WP2_Fy_min, WP2_Fy_skew, 

WP2_Fy_peak, WP2 Mz_rms,WP2_Mz_kurt, WP2_Mz_skew]  

The internal signals, from 81 feature space, it was reduced to 16 as seen in INT_RFS 

feature vector.  

INT_RFS= [TV50_mean, TV50_max, TV50F_std, TV51_max, TV2_mean, TV2_min, 

Vz_std, Vz_skew, TV50F_max, TV2_max, Vz_rms, Vz_max, JERKx_kurt, TV3_max, 

TV3_min, CV3_min] 
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Table 4 summarize the results for each tested algorithm in the complete feature space and 

the reduced feature space of each sensor. The green square indicates the best result 

achieved with each sensor-algorithm pair in the complete feature space. The blue square 

points to the algorithm-sensor pair with the best result in the reduced feature space and 

the dashed line blue square are those with the same mean in accuracy as the best result 

achieved.  

[Table 4 near here] 

Considering the complete feature space of accelerometer, the KNN algorithm obtained 

the best case. Once the feature space was reduced the best result was obtained with the 

NNET algorithm. KNN, M5 and MLP obtain the same mean in accuracy with a p-value 

> 0.05 indicating that there is not a statistically significant difference between the results 

obtained by each of these algorithms. All of them outperforms the KNN algorithm in the 

complete feature space.  

With the dynamometer signals better results were obtained in the reduced space using the 

FC_RFS features. The best result is obtained with the reduced space of features using the 

NNET algorithm, KNN and M5 algorithms show similar behaviour, as they do not show 

a statistically significant difference. 

Internal signals do not require installing any sensor and it is, therefore, the most practical 

option for creating tool condition monitoring systems. In the case of internal signals, the 

KNN algorithm is the one that obtains the best results for the reconstruction of the wear 

curve in the reduced space of the features INT_RFS with a similar behaviour obtained by 

the M5 and NNET algorithms.  

It is possible to reconstruct the wear curve both by using external signals of vibrations 
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and cutting forces and the machine internal signals. Slightly worse results were obtained 

with the accelerometer, although acceptable for environments that do not have the 

possibility of collecting internal signals or installing a dynamometer. Although several 

works show the ability of acoustic emissions to monitor tool wear, in this work, no trend 

has been observed that would allow good results to be obtained with this sensor. Once 

the comparison of the different algorithms has been made, it has been decided to use the 

NNET algorithm for the reconstruction of the wear curve. The process has been carried 

out by training with two of the tools and testing on the remaining tool. Table 5 shows the 

results obtained for each of the repetitions carried out. The wear curves obtained for each 

of the cases can be consulted in Appendix A.  

[Table 5 near here] 

Comparing the three cases, the best result is obtained by the dynamometer, since the 

lowest average error is obtained among the three tools. The internal signals tend to obtain 

a similar result with slightly higher errors. The accelerometer is in this case the one that 

obtains the worst result with the highest error. However, in general terms, good results 

are obtained in all cases and all options are valid for a tool wear curve reconstruction 

system. 

3.2 Tool periphery breakage 

Once the wear curve has been reconstructed, the breakage of the tool periphery must also 

be detected not to damage or damage the minimum number of components possible. 

During the first and second strategy (S1 and S2), it was not difficult to predict the state of 

the tool. In all cases it has been successfully tested that the models created from the 

features of any of the sensors are successful in differentiating a tool in good condition 
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from a tool in bad condition so the results have been satisfactory in 100% of the cases. 

In the transition phase, where it is unknown at what point the tool has suffered irreversible 

damage, so the breakage or non-breakage label must be attributed on the pre-breakage 

and post-breakage labels. The S3 and S4 (3rd and 4th strategies) aim to assign labels to 

the instances in the transition area. Table 6 shows the label imputations made with each 

of the sensors. There can be seen the labels obtained with S3 and S4, the third strategy 

consists on training an algorithm with the features of each of the tools separately and the 

imputation was made based on each of the tools. The 4th strategy involves training the 

algorithm with both tools together and use the data of the holes from the transition area 

as testing.  

[Table 6 near here] 

The labels were imputed through an agreement between the different results. Thus, the 

results labels are those from the imputation row.  

After allocating the labels corresponding to each of the tools, models were created using 

all the labels corresponding to tool 2 and tool 3 (those with a comparable tool life). 70% 

of the data was used to train the models and 30% to test them, the confusion matrices are 

shown in Fig. 9.  

[Figure 9 near here] 

Only considering tools 2 and 3, which have a comparable tool life and are broken in the 

same failure region, 100% accuracy is achieved with dynamometer and internal signals. 

The accelerometer sensor has the greatest difficulty for tool breakage detection.  

Up to now, only the second and third tools have been tested for tool periphery breakage 

automatic detection. To see how the behaviour of the created models is altered, the 



21 

 

instances of tool 1 have been introduced in S6. Given the limited data available, training 

with two of the tools and testing with the remaining one is not possible as not all the 

variability of the data was collected. Given this situation, 70% of the data has been 

separated to train the model and 30% of the data to test it.  

The results obtained with each sensor can be seen in Fig. 10. It shows the confusion matrix 

together with the wear curves indicating the correctly and incorrectly classified instances 

for each of the classes. False positives are those instances in the ”without failure” zone 

that are classified as ”tool failure” while false negative are those instances in the ”tool 

failure” zone classified as ”without failure”.  

[Figure 10 near here] 

The models obtained in S5 and S6 (strategies 5 and 6) can be consulted in Appendix B. 

Introducing a slightly different tool (with different life expectancy) more complicated 

models are obtained in which a greater number of features are involved. In the case of the 

dynamometer, the signal with the greatest impact with the highest weight coefficient is 

Mz mean for both strategies (S5 and S6). It can also be seen that in both models the same 

features are involved, however in S6 a greater number of features are present. In the case 

of the accelerometer the models obtained are not comparable, although the variables of 

strategy 5 appear in the model of strategy 6 the obtained models are of great complexity. 

Thus, it has little ability to generalise about the employed data. In the case of internal 

signals, they present the best results. The variable with the highest weight in the model in 

both cases is TV2_mean and it is remarkable that in the S6 only 7 features participate 

obtaining a good generalisation to testing data.  

Finally, the results obtained by each of the sensors have been statistically compared. A 

sampling (70%-30%) was done 30 times and a t-test was applied between the results 
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obtained with each of the sensors. Table 7 shows the mean values of MCC of the models 

and the p values. 

[Table 7 near here] 

The results show that the internal signals can detect tool breakage with the best mean in 

MCC. Both the dynamometer and the accelerometer have significantly different averages 

with a p-value < 0.05.  

The logistic regressions shown in the Appendix B belong to class 0 ”without failure” 

(F(x)). The logistic regressions for class 1 ”tool failure” are therefore the opposite of those 

shown (-F(x)). Simpler and more interpretable expressions were obtained with the 

dynamometer and the internal signals. The coefficients represent the effect of the variable 

per one unit of change in the predictor feature. Below is an example of the model achieved 

with the S6 for internal signals. Specifically, it is obtained the probability that the tool is 

not broken in holes 49 and 50 made with tool 2. It is in these holes where the tool has 

passed from ”without failure” to ”tool failure” state. 

The model for internal signals and S6 shown in Appendix 2 is given by equation 4. F(x) = 10.59 +  TV50mean · (−14) + TV51max ·  0.61 + TV2mean· (−18.88) + Vzstd ·  1.42 +  Vzskew ·  2.41 + TV50max· (−5.78)  + TV3max · (−1.82) 

[4] 

 

Substituting the values of the features by the normalised values (µ=0, σ=1) of hole 49 

the expression is as follows, Fhole49 = 10.59 +  0.13 · (−14) + (−0.28) ·  0.61 + 0.4 · (−18.88) + 0.39 ∗  1.42 +0.07 ·  2.41 + 0.10 · (−5.78)  + (−0.40) · (−1.82) = 1.4 

And the probability that in hole 49 the tool has not suffered a breakage is, 
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Pr ("without breakage")hole49 = e1.4e1.4 + e−1.4 =0.94 

In hole 50, in the same way, making the substitution of the values the expression is, Fhole50 = 10.59 +  0.758 · (−14) + 0.097 ·  0.61 + 1.194 · (−18.88) + (−0.561)  ∗  1.42 + (−1.431) ·  2.41 + 0.654 · −5.78 + 0.317 · (−1.82)= −31.13 

And the probability that in hole 50 the tool has not suffered a breakage is, 

Pr ("without breakage")hole50 = e−31.13e31.13 + e−31.13 =9.137e − 28 

Seeing these results, when F(x) starts to get close to 0, the process should be stopped for 

premature tool change before the tool breaks. 

Fig 11 shows the function F(x) obtained based on INT_RFS as a function of the holes 

drilled, the plot on the right margin shows the density plot of F(x) for each tool. The 

minimum value among the maximum of F(x) between the 3 tools before the breakage is 

-17 (the most conservative value), while the maximum value is -13. As can be seen, tools 

2 and 3 have a similar tool life, while tool 1 has allowed a more significant number of 

holes to be drilled. This is because the inherent variability of the process, material 

properties, variability in tool manufacture or the degree of effectiveness of the coolant in 

reaching the cutting zone can cause these variabilities. The figure also shows the 

polynomial fit of each of the curves. In the equations obtained, it can be seen that as the 

first coefficient increases, the tool has a shorter life. Under the same conditions, there 

may be situations where the tool is prematurely changed in the hole 40 when double the 

number of holes could have been made. Therefore, the use of techniques to assess the 

condition of the tool based on the signals collected during the process is essential to avoid 

these situations. 
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[Figure 11 near here] 

4 Conclusions 

Three drilling repetitions were performed on Inconel 718 under fixed cutting conditions. 

The deployed set-up results in the use of different sensors for tool wear monitoring and 

subsequent tool periphery breakage detection. A methodology based on data mining and 

ML techniques allowed to select the most suitable sensor for tool wear monitoring, on the 

one hand, the reconstruction of the wear curve is addressed using features obtained from 

each of the sensors separately and comparing different algorithm performances. On the 

other hand, tool breakage is detected automatically using a methodology for the 

imputation of unknown tool breakage labels. The major contribution of the present work 

is the comparison of the predictive capability of four data sources (dynamometer, 

accelerometer, acoustic emissions and internal signals), each one individually, for the 

prediction of tool wear and the estimation of the risk that a tool may suffer irreversible 

damage. The feasibility of each of the sensors lies in (i) the implementation of the sensor 

in the work environment, (ii) the amount of data generated by each of the sensors, (iii) 

the cost of installing the sensor in the work environment and (iv) the prediction capacity 

provided. The following conclusions can be drawn: 

• The external sensors could be replaced by internal signals without compromising 

the reliability of the predictions made. Thus, showing potential applications for 

big and small industries where a cost effective solution is required. In addition, 

the installation of sensors can lead to geometrical limitations or changes in the 

mechanical stiffness of the machine. 

• In authors experience, the most practical signals for monitoring the tool condition 

are those provided by the machine itself (Internal signals). No sensor installation 

is required, the highest sampling frequency is 250Hz so it does not generate a 
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large amount of data and provides good predictive capabilities in terms of tool 

wear, both for the reconstruction of the wear curve and for the detection of tool 

breakage. In cases where it is not possible to collect internal signals, the most 

practical option is the accelerometer, as it results in a cheaper sensor than a 

dynamometer and less invasive. Nevertheless, the accelerometer doesn’t give the 

capacity of detecting tool breakage, or at least in the feature space analysed in this 

work. 

• The approach allowed both to select a subset of variables and to impute values to 

the unknown observations to later develop a possible solution for timely tool 

replacement. Strategy 6 (S6) involves 7 features in the models created with the 

dynamometer and the internal signals, allowing the creation of simpler models. 

Besides, the tool breakage detection method used in this work allows to stablish 

a threshold before tool breakage occurs even for tools with different tool lives. 

• It has been observed that the same tool geometry under the same cutting 

conditions in the same material can vary in terms of tool life. It is therefore a 

challenge for the modelling of the wear curve. The LMT algorithm made it 

possible to observe from the beginning of the process that tool 1 would last longer 

than tool 2 and tool 3. For timely replacement of the cutting tool, both the 

estimation of the wear curve and the detection of a possible tool breakage are 

indispensable. 

• In the present work the cutting conditions have been kept fixed. For a wider use 

of the proposed methodology and to obtain more robust models it is necessary to 

carry out a larger number of tests and obtain a larger amount of data.  
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Appendix A: Tool wear reconstruction results for each case 

This appendix shows the results obtained from the bootstrapping process with each of 

the sensor for predicting the wear curve. 

a)  b)  

MAE= 0.0069; RMSE= 0.0078; R2= 0.996 MAE= 0.0066; RMSE= 0.0074; R2= 0.995 

c)  

MAE= 0.0076; RMSE= 0.0092; R2= 0.989 

Fig A. 1 Tool wear reconstruction for all the tools using the reduced space features FCRFS and NNET algorithm 

a) training samples from 2 and 3 tools and 1st tool wear curve reconstruction b) training samples from 1 and 3 tools 

and 2nd tool wear curve reconstruction c) training samples from 1 and 2 tools and 3rd tool wear curve reconstruction 

  

MAE= 0.011; RMSE= 0.013; R2= 0.992 MAE= 0.0056; RMSE= 0.0067; R2= 0.998 
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MAE= 0.0071; RMSE= 0.0098; R2= 0.989 

Fig A. 2 Tool wear reconstruction for all the tools using the reduced space features INTRFS and NNET algorithm 

a) training samples from 2 and 3 tools and 1st tool wear curve reconstruction b) training samples from 1 and 3 tools 

and 2nd tool wear curve reconstruction c) training samples from 1 and 2 tools and 3rd tool wear curve reconstruction 

 

a)  b)  

MAE= 0.0136; RMSE= 0.0159; R2= 0.985 MAE= 0.0137; RMSE= 0.0155; R2= 0.955 

c)  

MAE= 0.0178; RMSE= 0.0210; R2= 0.955 

Fig A. 3 Tool wear reconstruction for all the tools using the reduced space features ACCRFS and NNET 

algorithm a) training samples from 2 and 3 tools and 1st tool wear curve reconstruction b) training samples from 1 and 

3 tools and 2nd tool wear curve reconstruction c) training samples from 1 and 2 tools and 3rd tool wear curve 

reconstruction 
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Appendix B: Models obtained in strategy 5 and 6 

This appendix shows the models obtained from strategies 5 and 6 respectively. 

Cutting forces 

S5 F(x)=13.11 + [Fx_mean] * 3.22 +[Mz_mean] * -15.75 +[WP2_Fy_peak] * 

0.9  

S6 F(x)=5.42 + [WP2_Fy_rms] * 3.58 +[Fx_mean] * 1.1  +[Mz_mean] * -

17.53 +[WP2_Fy_min] * -0.23 +[WP2_Fy_peak] * 0.56 +[WP2_Mz_rms] 

* 1  +[WP2_Mz_skew] * -1.77 

 

Accelerometer 

S5 WP2_ACCx_rms <= -0.337507: LM_1:1/2 (31) 

WP2_ACCx_rms > -0.337507 

|   WP4_ACCx_rms <= -0.677682: LM_2:1/3 (12) 

|   WP4_ACCx_rms > -0.677682: LM_3:1/3 (38) 

 

LM_1: 

F(x)= 1.24 + [WP3_ACCz_max] * -0.19 

 

LM_2: 

F(x)= -0.55 + [WP2_ACCy_rms] * -1.43 +[WP4_ACCx_rms] * 0.47 

+[WP3_ACCz_max] * -0.3 

 

LM_3: 

F(x)= 0.71 + [ACCx_max] * -0.45 +[WP4_ACCx_rms] * 0.47 

+[WP3_ACCz_max] * -0.3 

 

S6 WP2_ACCy_rms <= 0.719511 
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|   WP2_ACCy_rms <= -0.814449: LM_1:41/123 (31) 

|   WP2_ACCy_rms > -0.814449 

|   |   WP4_ACCx_rms <= -0.68583: LM_2:38/161 (35) 

|   |   WP4_ACCx_rms > -0.68583: LM_3:41/164 (80) 

WP2_ACCy_rms > 0.719511: LM_4:36/77 (29) 

Number of Leaves  :  4 

Size of the Tree :  7 

LM_1: 

F(x)= 24.96 + [WP7_ACCx_rms] * -0.33 +[WP8_ACCx_rms] * -0.54 +[WP2

_ACCy_rms] * -0.55 +[WP4_ACCy_kurt] * -1.02 +[WP3_ACCz_rms] * 7.5

6 +[ACCx_max] * 0.16 +[ACCx_skew] * -262.45 +[WP2_ACCx_rms] * -2.

4 +[WP2_ACCx_max] * 0.27 +WP2_ACCx_peak] * -6.32 +[WP4_ACCx_r

ms] * 0.84 +[WP6_ACCy_rms] * -0.39 +[WP7_ACCy_mean] * 1.54 +[WP

3_ACCz_max] * -1.08 +[WP7_ACCz_kurt] * -57.62 +WP8_ACCz_max] * 

1.87 

 

LM_2: 

F(x)= -5.18 + [WP5_ACCx_rms] * 0.57WP5_ACCx_max] * -2.68 +[WP7_A

CCx_rms] * -0.33 +[WP8_ACCx_rms] * -1.26 +WP2_ACCy_rms] * 0.3  +[

WP4_ACCy_kurt] * -1.2 +WP3_ACCz_rms] * 1.78 +[ACCx_max] * 0.16 +

[ACCx_skew] * -101.13 +WP2_ACCx_rms] * -0.35 +[WP2_ACCx_max] * 

15.74 +[WP2_ACCx_peak] * -0.03 +WP4_ACCx_rms] * 0.95 +[WP6_ACC

y_rms] * -0.45 +[WP7_ACCy_mean] * -0.19 +[WP3_ACCz_max] * -1.17 +

WP7_ACCz_kurt] * 33.87 +[WP8_ACCz_max] * -0.2 +[WP8_ACCz_peak] 

* 0.13 
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LM_3: 

F(x)= 12.04 + [WP5_ACCx_rms] * 0.57 +[WP5_ACCx_max] * -3.12 +[WP7

_ACCx_rms] * -0.33 +[WP8_ACCx_rms] * -1.26 +[WP2_ACCy_rms] * 1 +

[WP4_ACCy_kurt] * -2.9 +[WP3_ACCz_rms] * 2.58 +[ACCx_max] * 0.16 

+[ACCx_skew] * -160.26 +[WP2_ACCx_rms] * -0.64 +[WP2_ACCx_max] 

* 0.12 +[WP2_ACCx_peak] * -0.75 +[WP4_ACCx_rms] * 1.89 +[WP6_AC

Cy_rms] * -0.97 +[WP7_ACCy_mean] * -0.48 +[WP3_ACCz_max] * -1.17 

+[WP7_ACCz_kurt] * 3.33 +[WP8_ACCz_max] * -0.2 +[WP8_ACCz_peak

] * 0.13 

 

LM_4: 

F(x)= 21.16 + [WP7_ACCx_rms] * -0.47 +[WP2_ACCy_rms] * 0.34 +[WP3

_ACCz_rms] * 1.1  +[ACCx_max] * -0.1 +[ACCx_skew] * -30.22 +[WP2_

ACCx_rms] * -0.38 +[WP2_ACCx_max] * 0.27 +[WP2_ACCx_peak] * 0.1  

+[WP4_ACCx_rms] * 0.43 +[WP6_ACCy_rms] * -0.39 +[WP7_ACCy_me

an] * -0.08 +[WP3_ACCz_max] * -0.61 +[WP7_ACCz_kurt] * 1.53 +[WP8

_ACCz_max] * -0.2 +[WP8_ACCz_peak] * 0.01 

 

Internal signals 

S5 F(x)= 0.56 + [TV2_mean] * -0.72 

S6 F(x)= 10.59 + [TV50_mean] * -14 +[TV51_max] * 0.61 +[TV2_mean] * -

18.88 +[Vz_std] * 1.42 +[Vz_skew] * 2.41 +[TV50F_max] * -5.78 

+[TV3_max] * -1.82 
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Table 1 Drilling tool wear monitoring works based on machine learning algorithms  

Ref. Sensor Proces

s 

Input Method Output Feature 

selection 
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(Caggiano, 

Napolitano, et 

al. 2018) 

x    

 

  x  x   • ANN x    

Spearman 

correlation 

(Caggiano, 

Angelone, et al. 

2018) 

x x   

 

  x  x   • ANN x    

Spearman 

correlation 

(Elangovan et 

al. 2011) 
  x  

 
   x x   • C4.5   x   

PCA-decision 

tree  

(Wang et al. 

2013) 
x        x x   

• Regression 

•  model 
x    - 

(Abu-Mahfouz 

2003) 
  x  

 
  x  x x  • ANN   x  

- 

(Jaini et al. 

2020) 
    

 
x  x  x   • MLP   x   

- 

(Shankar, 

Mohanraj, and 

Rajasekar 2018) 

x    x    x    • ANN x    - 

(Dheeraj Simon 

and 

Deivanathan 

2019) 

  x  

 

  x  x   • K star  x   

Training with 

different 

subsets 

(Krishnakumar, 

Rameshkumar, 

and 

Ramachandran 

2015) 

  x  

 

   x x   
• J48 

• ANN 
 x   

J48 

(Kilundu, 

Dehombreux, 

and Chiementin 

2011) 

  x  

 

   x  x  

• Bayesian 

network 

• KNN 

• Decision 

tree 

• ANN 

 x   

Discriminant 

analysis 

(Wu et al. 2017) x x x  

 

   x x   

• ANN 

• SVM 

• RF 

x    

- 

(Ao and Qiao 

2010) 
   x 

 
  x    x 

• LR 

• ARMA 
   x 

Discriminant 

analysis 

(Mohsen et al. 

2020) 
x    

 
   x x   • ANFIS x    

- 

(Duo et al. 

2019) 
x x x x 

 

  x  x   

• J48 

• LMT 

• IBK 

• NB 

 x   

- 
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Table 2 Acquired signals, sampling frequency and sensor details 

Source Signal ID Description Units Range Sensitivity Fs 

(Hz) 

Internal 

TV50 

Spindle 

motor power 

feedback 

W ±2147483647  

250 

TV51 

Active 

power 

supplied by 

the drive 

W ±100000 W  

TV2 

Z-axis 

motor 

torque 

N ±1000 % of 

the stall 

torque of the 

motor 

 

TV3 

Power 

percentage 

used with 

respect to 

the 

maximum 

power 

available in 

the servo 

system 

 0..3276.3%  

POS_(X-Y-Z) 
Tool tip 

position 

mm   

V_(X-Y-Z) 
Tool tip 

speed 

mm·s-1   

ACCEL_(X_Y_Z) 
Tool tip 

acceleration 

mm·s-2   

JERK_(X_Y_Z) Tool tip jerk mm·s-3   

SREAL 
Spindle 

speed 

rpm   

FREAL 
Feed rate mm·m-

1 

  

Kistler 9123 

F(x-y-z) 

Cutting 

force in 

three axes 

N ±20e3 N 0.5 mV/Ibf 

10e3 

Mz 
Torque N·m ±200 N·m 0.5 mV/N 

cm 
10e3 

PCB J356A45 ACC_(x-y-z) 
Vibration in 

three axes 

m·s-2 ±50 g pk 100 mV/g 
25.6e3 

Kistler 8152C AE 
Acoustic 

emissions  

v 10 dB 48 dBref 

1Vs/m 
1e6 

LeicaDMS1000 Vb Tool wear mm    
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Table 3: Model evaluation metric used for regression 

MAE 1n ∑ |yj − yĵ|nj=1  

RMSE √1n ∑ (yj − yĵ)2nj=1  

R2 1 − ∑(yj − yĵ)2∑(yj − yj̅)2 
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Table 4 Results of algorithms using each sensor signals applying 10 folds 10 times 

cross-validation in complete feature space (CFS) and reduced feature space (RFS). The 

green square indicates the best result achieved CFS. The blue square indicates the best 

result achieved with the RFS and the dashed line blue square indicates those algorithms 

with the same mean in results to the best algorithm (p-value>0.05). 

  Accelerometer Dynamometer Internal signals 

  MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 

L
A

S
S

O
 CFS 0.112 0.319 0.393 0.039 0.049 0.581 0.034 0.058 0.605 

RFS 0.028 0.040 0.678 0.013 0.0155 0.941 0.019 0.024 0.844 

N
N

E
T

 CFS 0.029 0.040 0.645 0.018 0.022 0.870 0.022 0.027 0.808 

RFS 0.024 0.030 0.747 0.011 0.014 0.945 0.188 0.023 0.859 

G
L

M
 CFS 6.870 15.821 0.0922 0.804 0.993 0.103 0.057 0.119 0.463 

RFS 0.028 0.039 0.612 0.012 0.015 0.94 0.019 0.024 0.846 

K
N

N
 CFS 0.027 0.034 0.676 0.016 0.021 0.894 0.020 0.028 0.811 

RFS 0.024 0.031 0.734 0.011 0.015 0.941 0.016 0.021 0.882 

M
5
 

CFS 0.034 0.048 0.480 0.012 0.017 0.915 0.016 0.021 0.879 

RFS 0.023 0.033 0.740 0.011 0.015 0.940 0.017 0.022 0.877 

M
L

P
 CFS 0.032 0.040 0.606 0.031 0.038 0.683 0.026 0.033 0.732 

RFS 0.025 0.031 0.760 0.013 0.016 0.936 0.020 0.025 0.838 

S
V

M
 CFS 0.076 0.097 0.519 0.094 0.097 0.867 0.082 0.086 0.793 

RFS 0.047 0.061 0.588 0.074 0.076 0.931 0.055 0.061 0.836 

 

  

‘ h 
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Table 5 Results obtained from bootstrapping process for each tool and the mean 

value.  

 FC_RFS ACC_RFS INT_RFS 

 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 

Tool 1 0.0069 0.0078 0.996 0.0136 0.0159 0.985 0.011 0.013 0.992 

Tool 2 0.0066 0.0074 0.995 0.0137 0.0155 0.955 0.0056 0.0067 0.998 

Tool 3 0.0076 0.0092 0.989 0.0178 0.0210 0.955 0.0071 0.0098 0.989 

Mean 0.0070 0.0081 0.993 0.0150 0.0174 0.965 0.0079 0.0098 0.993 
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Table 6 Label imputation for transition phase during tool breakage a) 3rd strategy (S3) 

b) 4th strategy (S4). H2 correspond to the labels imputed to the transition phase of the 

2nd tool while H3 corresponds to the 3rd tool. 

a) H2 H3 

FC_RFS 0000000001 0001110111 

ACC_RFS 0000000000 0001111111 

INT_RFS 0000000000 0111111111 

[FC_RFS, ACC_RFS, INT_RFS] 0000000000 0111111111 

b) H2 H3 

FC_RFS 0000000101 0101111101 

ACC_RFS 0000000000 1001000000 

INTR_FS 0000000001 0111111111 

[FC_RFS, ACC_RFS, INT_RFS] 0000000001 0111101111 

Imputation 0000000001 0111111111 
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Table 7 Mean in MCC for each of the sensors and p values of t-test results.  

 MCC Internal 

signals 

Dynamometer 

Internal signals 0.9807   

Dynamometer 0.8818 7.796e-08  

Accelerometer 0.3899 2.2e-16 2.2e-16 
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Fig 1 Process monitoring framework and different approaches for tool condition 

monitoring 
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Fig 2 Data leakage problem in tool wear prediction 
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a)  b)  

Fig 3 Cutting tool used in experiments and experimental setup a) Flank face b) 

experimental set-up 
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a)  

b)  

Fig 4 Acquired external and internal signals and applied segmentation a) External 

signals b) Internal signals 
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Fig 5 Decomposition wavelet tree up to the third level. S original signal (Segreto, 

Karam, and Teti 2017)  
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a)  

b) 

Fig 6 Tool wear curve a) Tool wear measuring point on Vcmax section b) Tool wear 

measurements and third-degree polynomial for each repetition and tool breakage 

measured hole for each repetition 
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Fig 7 Feature selection process 
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Fig 8 Followed methodology for tool periphery breakage detection 
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a)  

 
b)  

 
c)  

Fig 9 Confusion matrices for each sensor for S5 (strategy 5). a) FC_RFS b) ACC_RFS 

c) INT_RFS 
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a) Confusion matrix with FC_RFS 

 

d) Wear curve/breakage prediction with FC_RFS 

 

b) Confusion matrix with ACC_RFS 

 

e) Wear curve/breakage prediction with ACC RFS 

 

c) Confusion matrix with INT_RFS 

 

f) Wear curve/breakage prediction with INT_RFS 

Fig 10 Results obtained in S6 (strategy 6) for each of the sensors in testing subset 
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Fig 118: Logistic model function based on INT_RFS. On the horizontal axis are marked 

the holes where tool breakage has been observed for each tool. On the vertical axis are 

marked the F(x) values at which tool breakage has been observed 

 


