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Abstract—With a growing number of embedded devices that
create, transform and send data autonomously at its core, the
Internet-of-Things (IoT) is a reality in different sectors such as
manufacturing, healthcare or transportation. With this expan-
sion, the IoT is becoming more present in critical environments,
where security is paramount. Infamous attacks such as Mirai
have shown the insecurity of the devices that power the IoT,
as well as the potential of such large-scale attacks. Therefore,
it is important to secure these embedded systems that form
the backbone of the IoT. However, the particular nature of
these devices and their resource constraints mean that the most
cost-effective manner of securing these devices is to secure
them before they are deployed, by minimizing the number of
vulnerabilities they ship. To this end, fuzzing has proved itself as
a valuable technique for automated vulnerability finding, where
specially crafted inputs are fed to programs in order to trigger
vulnerabilities and crash the system. In this survey, we link the
world of embedded IoT devices and fuzzing. For this end, we list
the particularities of the embedded world as far as security is
concerned, we perform a literature review on fuzzing techniques
and proposals, studying their applicability to embedded IoT
devices and, finally, we present future research directions by
pointing out the gaps identified in the review.

Index Terms—Embedded system, fuzzing, Internet-of-Things
(IoT), software testing, vulnerabilities

I. INTRODUCTION

THE Internet-of-Things (IoT) is the novel network-
ing paradigm where heterogeneous computing devices,

known as IoT devices, interact between them with little to no
human intervention to collaborate towards a common goal [1].
Thanks to this total inter connectivity, IoT devices can continu-
ously create and stream information that operators can leverage
and provide value-added services on top of it in areas such
as industry, smart cities/homes, security applications, health
care, etc., as it is shown in Fig. 1. Examples of such services
include predictive maintenance, precision healthcare, security
monitoring, smart crop management or advanced control of a
production process.

Since its recent inception, the IoT has undergone a near
exponential growth and by 2025, the world will have 75 billion
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IoT devices [2], if the actual grade of growth continues. In
other words, in five years time the number of IoT devices will
be doubled, effectively duplicating the size of the current IoT.

IoT devices, while heterogeneous in nature, are rather
resource-constrained when compared to general-purpose com-
puting devices, such as laptops or workstations. The reason
for this constraint is that IoT devices or things are embedded
systems based on a micro controller that can transmit and
receive information [3], mainly interacting with the physical
world using peripherals and optimizing resource usage. While
this constraint allows to build cheaper IoT devices, easing IoT
adoption, it also means that devices often lack functionalities
that are considered non essential, such as security. Moreover,
this constraint also translates in the difficulty or impossibility
of conducting frequent upgrades on the system securely [4].

IoTSmart Cities

Communications

Industry 4.0

Security ApplicationsHealth Care

Fig. 1. Internet-of-Things systems application domain

As a consequence, IoT device security is a unique challenge,
vastly different from the traditional security paradigm in the
Information Technology (IT) domain, as the devices and
systems differ in nature and capabilities. This challenge has
yet to be properly addressed, as the increasing number of
attacks that target IoT devices shows: in the first half of 2019
alone, more than 100 million smart devices were attacked [5].
These attacks range are varied in nature, ranging from physical
attacks to crypto-analytical ones [6] and their effects can be
both far-reaching, as shown by the infamous Mirai Distributed
Denial-of-Service (DDoS) attack in 2016 [7], as well as
potentially deadly, as they can target IoT devices inside critical
systems such as cardiac pacemakers [8] or cars [9]. These
attacks often exploit vulnerabilities, that is, security flaws
in the software that allow attackers to gain control of the
system through their exploitation. In their survey related to IoT
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vulnerabilities, Neshenko et al. [10] also identified the unmet
challenge of vetting deployed IoT code, posing an important
risk for IoT security as a whole. It is, thus, critical to reduce
the number of vulnerabilities to a minimum in order to hinder
exploitation.

The aforementioned particularities of embedded IoT devices
(lack of resources and difficult to update) suggest that in
order to be secured, the most cost-effective approach is to
minimize their vulnerabilities before their deployment to the
field. Therefore, it is a matter of discovering and patching as
many security vulnerabilities as possible while the system is
still under development. While many approaches for vulner-
ability discovery exist, fuzzing remains as one of the main
techniques for this endeavour. According to Manes et al. [11]
fuzzing remains popular due to its simplicity, its low barrier
to deployment, and its vast amount of empirical evidence
in discovering real-world software vulnerabilities. In essence,
fuzzing consists of repeatedly feeding deliberately malformed
inputs to a target (a device or a program) known as System
Under Test (SUT) in order to provoke crashes and finding the
vulnerabilities that cause them. It has also been defined as
one of the effective ways to identify software vulnerabilities
by testing [12]. Fuzzing has developed wide applications since
its inception in 1990, when Miller et al. [13] developed the first
fuzzing tool [14]. Since then, numerous proposals have been
developed combining different techniques for fuzzing (refer
to surveys [15], [16], [17], [11] for a wider analysis on the
topic), improving the general performance both in number of
found vulnerabilities as well as the time to do so.

Therefore, it seems natural to link fuzzing and embedded
IoT, by integrating fuzzing as part of the embedded software
development life cycle to hunt as many vulnerabilities as
possible before the system is finally released. The suitability of
this match was also pointed out by Muench et al. [18] and also
by the ISO/IEC 62443-4-1 standard, that states that fuzzing
is a necessary step for embedded product certification [19],
[20], [21]. Even if fuzzing has been used effectively on IT
systems to test traditional software and remains widely used,
its adoption has not been that widespread inside the the
IoT or embedded environments [22], [23], [24]. The main
reason for this lack of adoption resides in the differences of
embedded systems when compared to their IT counterparts,
particularly the scarcity of resources available and the lack of
informative system responses. These differences render using
general-purpose fuzzers against embedded devices difficult, as
they risk overflowing the system with a higher number of
inputs that the systems can handle. Moreover, fuzzers catered
to embedded systems need to be able to restart the SUT in
order to re-establish a clean state for the next test case [18],
which is not as simple as restarting a process as it happens
in IT systems. Early examples of real-life embedded fuzzing
include the discovery of vulnerabilities in smartphones by
fuzzing SMS messages [25], testing GSM implementations
[26], fuzzing the CAN protocol in safety-critical applications
such as in vehicles to unlock doors [27], or in payment systems
by fuzzing credit cards to exceed the limits of payments [28].
Fuzzing is a promising technique for embedded systems, as
it allows to find vulnerabilities without knowing its internal

operation and only focusing the I/O content of the device.
However, as mentioned earlier, using fuzzing to test embedded
systems and IoT devices, while promising, also presents its
own set of challenges.

This survey paper aims to provide the necessary foundation
to enable IoT device fuzzing research, by reviewing, analyzing
and discussing the existing literature on fuzzing approaches
from the point of view of the embedded and IoT world, as
well as identifying future research areas. As such, this survey
complements past fuzzing surveys ([15], [16], [17], [11])
by basing its analysis in an application field not considered
previously. In particular, the paper presents the following
contributions:

• A review of the literature on different fuzzing proposals
• A comparison and discussion of said proposals based on

their applicability to embedded systems.
• The identification of different future research lines related

to fuzzing and embedded systems.
The rest of the paper is organized as follows: Section II

introduces embedded systems and their particularities and
challenges regarding security. Section III presents fuzzing
and the different existing approaches when comparing them.
Section IV details the current necessities and challenges
of fuzzing embedded systems. Section V compares existing
fuzzing approaches and outlines the features an embedded
system fuzzer should have. Section VI draws some future
research lines evolved from the necessities identified in the
previous analysis. Finally, Section VII concludes the paper.

II. EMBEDDED SYSTEMS

While embedded or Cyber Physical Systems (CPS) are not
equivalent terms for the IoT [29], it is true that IoT devices
can be considered embedded systems [3], [30]. Furthermore,
according to the IEEE document titled Towards a definition of
the Internet of Things (IoT) [31], the main difference between
a CPS and an IoT device is that the the CPS does not have the
requirement of being connected to Internet. This is, precisely,
a key factor in terms of security when a thing is connected to
Internet, as it vastly expands its attack surface.

According to the same document [31], in order for a system
or thing to be considered an IoT device, it must contain the
following set of features (depicted in Figure 2):

• Interconnection of things
• Programmability
• Self configurability
• Connection of Things to the Internet
• Embedded Intelligence
• Uniquely Identifiable Thing
• Interoperable Communication Capability
• Sensing/Actuation Capability
• Ubiquity: Anywhere, Anytime

Depending on the complexity of the IoT scenario at hand, the
capabilities and nature of IoT devices also also range from full-
fledged computer hosts to small and very elemental embedded
devices. In this sense, embedded devices are located in the
opposite end from computer hosts which are able to perform
very complex tasks at the same time.
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Fig. 2. Features that a system must contain to be considered an IoT device

In essence, embedded systems are dedicated software and
hardware solutions that have been designed to perform a
specific function, generally interacting with the physical world
using their peripherals [32]. These systems are generally part
of a larger structure, such as the IoT, where they can be
used in a wide range of applications. It is, precisely, the
varied and specific nature of their applications what yields the
complexity of these systems when trying to classify them. On
one end, for the more simple applications, devices with low
memory and processing power are used, such as STM32 micro
controllers [33]. On the other end, for the more complex tasks,
the embedded systems that are used are not that constrained
and are nearer from IT standards, even to the point to be able
to substitute a computer in its most simple tasks, such as in
the case of the popular Raspberry Pi 4 [34]. It is necessary to
note that the hardware and software of the embedded device
is designed according to the needs and it is not oversized,
since the size, consumption and cost should be minimal to
perform the task at hand [35]. For simpler tasks, the more
constrained devices operate without an operating system (OS),
while for more complex tasks, embedded systems ship OSs
similar to the ones that can be found on desktop PCs [18].
Apart from the computing power at hand, time is also a critical
factor when considering embedded devices. Most devices
need a deterministic response to real-time events [36]. These
systems are named real-time embedded devices. Next, we
present a classification of embedded systems according to their
capabilities and specific security concerns related to this field.

A. Classification of Embedded Systems

The aforementioned diversity of embedded systems makes
it difficult to designed clear classification, as different criteria
can be used to establish this. Some classifications are based
on the functional requirements of the system (real-time, stand
alone, networked, or mobile), the complexity of the micro con-
troller (small, medium, or sophisticated) [37], the application
filed (manufacturing, security, transport, etc.) or the type of the
operating system (OS) the system is running. In this paper we
will focus on the classification according to the OS proposed
by Muench et al. [18], relevant to the field of fuzzing:

• Systems running general-purpose OSs. Embedded sys-
tems with general-purpose operating system are used
to manage operator interfaces, databases and general-
purpose computing tasks [38]. These OSs are used in
some high-end embedded systems, but they need to be
customized to the corresponding hardware and maintain-
ing the main features/services of the OS. Those systems
are multi-core and they have more than a gigabyte of
RAM memory. An example of such OS is Busybox, a OS
which is based in UNIX, providing some of its utilities
in a single small executable [39].

• Systems running embedded OSs. Embedded OSs are
designed to be customized in specific hardware losing
some of the features/services. As a counterpart, the em-
bedded OS is more efficient and reliable. The hardware
features of the devices that use this kind of OS are the
following ones: between a megabyte and a gigabyte of
RAM memory and with one or two core. In addition,
the embedded OS is configurable for the needs of the
device and it is very useful when the device has limited
processing power [40]. Example of this kind of operating
systems are FreeRTOS [41] or VxWorks [42], which are
real time operating systems.

• Systems with no OS. The limitations of the hardware
such as a memory limited to a few megabytes or the
presence of single core makes impossible to use a full-
fledged OS. However, the use of a simple scheduler or
a debug monitor and the corresponding application is
enough to carry out a simple tasks. Usually these devices
have a single loop control and the peripherals trigger
interruptions [18]. Some examples of embedded devices
without operating system are WiFi cards or GPS dongles,
and sometimes the code is based on OS libraries such
as TinyOS [43], which provide OS-like functionalities
without having to ship an OS.

B. Security on Embedded Systems

Nowadays, information security is one of the main concerns
of general-purpose systems where many resources are being
invested in different technologies to protect the confidential-
ity, integrity and availability of these systems at different
layers [44]. It is easy to find technologies to protect the
perimeter, to inspect internal traffic, and also to detect malware
in the operating systems among others aspects. More recently,
the concept of zero-trust [45] is becoming more prevailing,
that is, the concept that every system should be able to
protect themselves without the help or assistance of external
security systems. The beneficiaries of these technologies are
the general-purpose systems which still have high enough
resources to integrate these technologies without any oper-
ation impact, including the capability to patch and/or update
systems. However, the landscape in embedded systems is quite
far from this situation, these systems have been traditionally
designed with functional requirements in mind and the security
has not been considered in the design process, only aspects
such as cost, performance or power have been traditionally
taken into account. Furthermore, the incorporation of security
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technologies is very limited or even impossible due to the hard-
ware constraints of the embedded systems. As a consequence,
the IoT suffers from a wide range of security vulnerabilities,
exhaustively described by Neshenko et al. [10] in their survey.

In order to increase IoT security, it is necessary to secure
the weakest link, that is, the embedded systems who lack the
proper mechanisms to mitigate security threats. For this end,
designers should consider not only new system architecture
designs with security in mind, but also complementing them
by adding security features such as hardware security modules,
cryptographic algorithms, security protocols, secure configu-
rations and the latest secure and stable versions of software
libraries, kernels, etc. The inclusion of these new features also
requires the inclusion of the corresponding maintenance tasks
as well as the management ones during the lifetime of the
device. This represents a challenge in terms of the market.
Whatever advance in the development of secure products
represents an advantage in commercial terms.

In this sense, one of the most consuming tasks in the
development life-cycle is the testing process due to the dif-
ficulty of finding misconfiguration, bugs or vulnerabilities.
Therefore, it is natural to find “low-hanging-fruit” vulnerabil-
ities, i.e. vulnerabilities that are easy to find and exploit due
to insufficient testing. As a consequence, traditional testing
methodologies (functional tests and safety-related tests) are
being complemented with new testing approaches that are
being able to find more vulnerabilities in shorter time, and
fuzzing is one of the most suitable technologies for this
task [18]. Indeed, according with the standard IEC 62443-
4, in particular “IEC 62443-4 Practice 5, SVV-3 Vulnerability
testing”, the application of fuzzers should be carried out in
external interfaces without additional information the section
of the standard corresponding to the component development
considers the fuzzing as mandatory step in every new devel-
opment.

However, when facing a constrained environment such a
embedded system, the only viable manner to find vulnerabili-
ties remains external, out-of-device testing, as it is not possible
to run extra security resources on top of the device. Therefore,
fuzzing presents itself as an interesting alternative, where it
has the ability of testing an embedded SUT without needing
to run extra software on the device nor knowing its internal
workings. However, the specific nature of embedded systems
makes fuzzing more complex, less efficient and prone to errors
than in classical general-purpose systems. There are three
main resources general-purposes have and embedded systems
generally lack that impact fuzzing performance directly.

Firstly, classical fuzzing systems rely on the ability to detect
crashes. In general-purpose IT systems, the OS provides joint
security mechanisms that prevent a program to perform an
invalid operation (e.g. trying to access a memory address not
belonging to the same process), resulting in a crash. Some of
these mechanisms are:

• Address Space Randomization (ASLR). This mecha-
nism arranges at random the address space positions of
data areas, including the base of the executable and the
positions of the stack, heap and libraries. In this way, the
classical computation of memory addresses by malware

TABLE I
HARDWARE PROTECTION MECHANISMS BY HARDWARE FAMILIES [46]

Hardware Family MPU MMU DEP CFI
ARM 1 to ARM 7 é é é é

ARM Cortex R Ë é é é
ARM Cortex M ∼ 1 é Ë é

PIC 10 to PIC 24 é é é é
Intel MCS-51 é é é é

Infineon XC88X-I é é é é
Infineon XC88X-A é é é é
1 Supported by some micro controllers of the family

pieces does not produce the desired effect, that is, to
exploit a vulnerability in very precise way.

• Code Integrity Guard. It controls the arbitrary code gen-
eration by reinforcement signature constraints for loading
binaries. This technique is primarily supported by cryp-
tographic mechanisms, particularly, digital signatures.

Secondly, the hardware that is present in general-purpose
systems also provides security mechanisms that jointly with
the OS prevent programs to perform invalid operations (e.g.
trying to execute memory pages that should contain data).
Some of these mechanisms are:

• Control Flow Integrity (CFI). This technique instru-
ments the code by adding lightweight security code with
the aim of controlling the validity of the origin of the call.
An implementation example is the Control Flow Guard
present from Windows 8.1.

• Data Execution Prevention (DEP). This is a system-
level protection feature that enables the system to mark
pages of memory as non-executable. This mechanism
prevent the execution of code from the marked memory
pages making harder the exploitation of buffer overflows.

• Memory Management Unit (MMU). It performs the
translation of virtual memory addresses to physical ad-
dresses that jointly with the operating system can pre-
vent the access to specific pages corresponding to other
privileged processes.

• Memory Protection Unit (MPU). This mechanism pre-
vents a process from accessing memory that has not been
allocated to it. The MPU also allows to define access
permissions and attributes to specific regions of memory,
monitoring any kind of access to these and triggering an
access violation exception when is detected.

Finally, general-purpose systems’ hardware has enough re-
sources to support maintained load without being affected,
which means that the fuzzer can operate at full performance
without affecting primary functions of the device.

All these characteristics facilitate the use of fuzzers in
general-purpose IT systems. However, these mechanisms are
not commonly found in embedded systems as a consequence
of their constrained environment. As an example, Table I
shows the availability (or lack thereof) of hardware-based
protection mechanisms in different micro-controller families.

As a consequence, when a program running on an embedded
device crashes, the behaviour of the system as a whole can
vary abruptly, ranging from an increase in response time to a
full crash of the whole embedded system, leaving it completely

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2021.3056179

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS INTERNET OF THINGS, VOL. X, NO. X, X 2020 5

unresponsive. Such uncertainty hinders the ability of a external
fuzzer to infer a particular type of error.

III. FUZZING

Fuzzing or, fuzz-testing, is the method that finds vulner-
abilities and bugs by inserting specially crafted inputs into
a target, named System Under Test (SUT) [47], [48]. These
specially crafted inputs trigger non-expected behavior in the
SUT, and allow to find bugs such as faulty memory violations,
assertion violations, incorrect null handling, deadlocks, infi-
nite loops, undefined behaviors or incorrect managements of
other resources. When compared to other vulnerability finding
strategies such as code inspection or reverse engineering,
fuzzing has the advantage that can be performed at large-scale
and unattended, as the fuzzing process is usually automated.
This process is classically divided in the following phases:

Target
Identification

Input Format
Identification

Fuzz Data
Generation

Execution

Analysis

Finish?

Bugs Report

Feedback

Input

Output

Preparation

Monitoring

SUT

Fig. 3. Phases of the fuzzing process

Preparation. This is the first phase and it is focused on the
identification and specification of the format of the inputs
and the outputs of the SUT. Based on this specification
is possible to reduce the possibility of generating initial
invalid fuzz data and create valid and precise inputs.

Fuzz data generation. In this phase, the input data of the
SUT are generated, taking into account the input format

identified in the previous phase. Usually, the generation of
the data is done by altering specific data. Firstly, a seed
(i.e. original input) is selected; next, the fuzzer creates
new fuzz data by inserting small modifications into the
seed. This generation is a critical aspect in fuzzing, as the
performance on vulnerability search is directly related to
the quality of these inputs [11], [15], and particularly, the
choice of the initial seed [49].

Execution. In this phase the previously generated data are
sent to the the SUT, by using the specified media
(communication packet, input file, environment variable,
analog input etc.).

Monitoring. In this phase the outputs of the SUT as well as
the behaviour are monitored in order to detect unexpected
outputs or crashes that could be related to triggering a
vulnerability. This is one of the core basis of fuzzing,
an absence of a monitoring functions may result in poor
results in terms of vulnerabilities findings.

Analysis In this phase, the crashes and the provided inputs
from the monitoring phase are analyzed with the aim
of determining which test cases cause vulnerability or
abnormal behaviour triggering.

Bug reporting. Finally, when the fuzzing process is finished,
the vulnerabilities that are found in the monitoring phase
and are later analysed are reported. In addition, the
triggering test cases are saved in order to repeat the
test and reproduce the crash, allowing to analyze the
vulnerability more deeply.

Figure 3 shows the process of fuzzing. The process consists
of six different stages and, in order to perform them the fuzzers
needs to formed by at least three elements or subsystems:
Fuzz Data Generator Based on the knowledge of the SUT,

this subsystem generates the fuzz data that will be sent
to the SUT. The effectiveness and accuracy of this
subsystem will depend on two main factors, the prior
information of the SUT and the feedback received from
the SUT after conducting a test.

Protocol interface It collects the data that the generator has
created and to be sent to the SUT to be executed.

Monitor It receives the outputs of the SUT with the purpose
of finding unexpected outputs that could relate to vulner-
abilities.

Although these three elements are the bare minimal compo-
nents that all fuzzers have, more complicated setups can also
add more elements depending the task on hand, such as SUT
instrumentation or result analyzer.

A. Fuzzing Taxonomy

The classification of fuzzers can be performed according to
their behavior in each of the fuzzing phases: prior knowledge
of the target and their input (Preparation), data generation ap-
proaches (Fuzz data generation), data generation intelligence
based on testing feedback (Analysis and Fuzz data generation),
the exploration strategy (Analysis and Monitoring) and the
used technique (Execution). In the following sections, we
outline several criteria used for fuzzer classification. However,
it is important to note that a single criterion is not enough to
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identify and characterize a fuzzer, but rather a combination of
all of them (e.g. a black-box, mutation-based fuzzer).

1) Black-box, White-box or Grey-Box fuzzing: This criteria
considers the prior knowledge available regarding the SUT,
based on this the fuzzing techniques can be divided into three
main categories:

• Black-box testing refers to the case where the fuzzer has
no access to the source code nor the internal logic of the
SUT [24]. Most frequently, black-box fuzzers use random
mutation limited by some rules, aimed to create valid
inputs that the SUT will accept [50]. If those inputs were
to be generated in a completely random manner, the SUT
would discard the majority of the generated inputs and
the performance of the test would decrease, as most of the
inputs would fail to even run [16]. The main advantage
of black-box testing is that no source code is needed,
therefore, it can be applied against virtually any target.
However, it is difficult to determine the code coverage and
they are not use to find errors caused by complex attacks.
Initially, all fuzzers were black-box, because to use those
fuzzers was not necessary to know the source code and
the internal working of the SUT [11]. One representative
black-box fuzzing tool is zzuf [51].

• White-box testing makes use all of the information about
the internal logic, that is, the source code [15][24].
The main advantage of white-box testing is that it can
cover the code completely, as the source code and the
internal logic is known to the fuzzer [16], it can infer
which part of the code has been executed. In addition,
before started the testing it is necessary to analyze all
the information, and techniques such as instrumentation
are usual, for this reason is more difficult than black-
box testing to start with the testing. Nevertheless, white-
box fuzzers require code access, which is not available
in many cases (e.g. when auditing third-party software)
and are also known to cause false positives [14]. Guided
coverage and the dynamic symbolic analysis [50] are the
most used methods in white-box fuzzing. SAGE [52] and
Dowser [53] are two popular fuzzing white-box tools.

• Grey-box testing has partial access to the internal logic
of the SUT. Its execution logic is similar is similar to
black-box fuzzers, but it can leverage some limited infor-
mation (often gathered through instrumentation) about the
SUT to improve fuzzing performance and coverage [16],
[11]. Nowadays, grey-box testing is the most widespread
method, as it does not require full source-code access but
it is able to infer information that makes it more efficient
than black-box testing [14], [47]. The most well known
grey-box fuzzer is the American Fuzzy Lop (AFL) [54].

2) Input generation: As stated previously, fuzz data gen-
eration has a central role in the performance of fuzzing, as it
is directly related to the quality of the test. According to this,
fuzzing approaches can be grouped in two main categories:

• Mutation-based approaches generate the new inputs
from the previously generated test cases. The first time
it is necessary to provide a seed to generate the next
test cases, that are created by tweaking the original seed.

Each tweak is named as mutation. The selection of the
seed will condition the quality of the test cases and,
thus, the code coverage. A better seed will yield a wider
coverage. For this generation strategy, it is not necessary
to know the specifications of the input data or protocol,
as mutations alter the original seed without checking
whether it complies with a specific syntax. Therefore, this
method is particularly useful when input specifications
are complex and data collection is accessible, as it is
possible to form a seed from a wide range of recorded
inputs specifying its format. When using mutation, there
are two key decisions that can alter its performance: how
to perform the mutation and which of the newly created
values are used for the next mutation. In the first case,
the mechanism to perform the mutation decreases the
efficiency of the fuzzer when is blind, that is, no feedback
has been considered and it is not possible to know
whether the mutation strategy is the correct one [15].
The second factor is strongly related with the first one,
because the absence of feedback information does not
provide any clues to select a candidate fuzz data or other.
Moreover, mutation is a never-ending process, requiring
the fuzzer to also specify when to stop the test, which
is not a simple task. There are different strategies for
input mutation, and improving mutation performance is
an active research field [55], [56], [15], [11]. One of
the main performance problems of this method is that
the seed size increases continuously, since the previous
samples are joined to create the new test cases; bigger
seeds cause the fuzzer to slow down. Some well-known
mutation-based fuzzers are AFL [54], Angora [57] and
VUzzer [47].

• Generation-based method uses the a set of specifications
on the SUT inputs to generate new fuzz test data. In
contrast to mutation-based generation, it is necessary to
know the syntax of the SUT inputs, including their format
and used protocol. Generation-based fuzzers are used
when it is vital to provide valid input for a successful test
(i.e. when the input format is constrained and random mu-
tation would render most of the created test cases useless).
On the one hand, generation-based fuzzers are faster than
their mutation-based counterparts, because their seed size
does not increase over multiple executions. On the other
hand, modelling complex or unknown input protocols in a
set of specifications might prove a challenging endeavour,
and mutation-based counterparts are better suited for this
task. Sulley [58] and Peach [59] are two of the most
well-known generation-based fuzzers.

3) Fuzzer intelligence: The fuzzer’s intelligence is related
to its ability to generate new input data taking into account the
feedback it receives after an execution of a test. The feedback
helps to improve the new input generation, because can be
used to decide which part of the test case should be modified,
and how to modify it. In other words, it serves to generate
more inputs that trigger new execution paths in the SUT [60].
According to their implemented intelligence, fuzzers can be
defined either as smart or dumb [15].
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• Smart fuzzers adapt the generation of test cases depend-
ing on the information they receive from the output and
behaviour of the SUT, by first learning the behavior of the
SUT (what is the output, has there been a crash etc.) how
the test case has affected this behavior and then deciding
how to generate the new test cases [61]. The smart fuzzers
are more effective in detecting vulnerabilities [15], [62] as
they require to execute fewer test cases. Learn&Fuzz [63],
IoTFuzzer [64] and Peach [59] are examples of smart
fuzzing.

• Dumb fuzzers do not consider feedback from previous
executions as inputs for new data generation. As they do
not have to receive feedback, analyze it and act based
on it, dumb fuzzers are faster test executors than their
smart counterparts, but less effective when considering
vulnerability search [15]. A popular example of dumb
fuzzing is zzuf [65].

4) Exploration strategy: Code exploration strategy refers to
the method fuzzers use to maximize the covering of different
parts of the code. The code coverage of the fuzzer is dependent
on this strategy [15], so it is an important criterion for
performance. It is important to note, that only white and grey
box fuzzers can be classified according to their exploration
strategy, as having information about the SUT and program,
even partially is needed to be able to define a strategy.
Therefore, white-box and grey-box fuzzers are divided in two
main categories:

• Covered-based fuzzers maximize code coverage with the
support of analysis techniques. The fuzzers with high
coverage find more bugs and they try to maximize as
many execution paths as possible with the minimum
number of inputs [47], [12], [66]. Therefore, covered-
based fuzzing is an efficient and effective method, as
fewer test cases have to be executed [15]. One of the
well-known covered-based fuzzers is SAGE [67], [52].

• Directed fuzzers aim to audit specific parts of the code
and paths of the SUT. With this type of fuzzers, it is
possible to direct the fuzz test to relevant parts of the SUT
(e.g. code changed in a update, or critical parts of the
application) allowing to gather faster results [68], [66].
Directed fuzzers allow to redirect test execution to avoid
repeating paths and cover all the code, if necessary [15].
Most directed fuzzers are usually white-box fuzzers based
on symbolic execution and oriented to generate test
inputs [69]. Dowser is an example of directed fuzzer [70].

B. Fuzzing Techniques

As we have described in the previous section, the processing
structure of a fuzzer involves many stages. Since the concep-
tion of the fuzzer different approaches have been focused in
increasing the performance of the fuzzer by improving specific
phases in the search of vulnerabilities. This motivated a new
line of research in security for evolving every aspect of the
fuzzer that began in 1990.

This history of the fuzzer evolution is consistent with
the evolution of the number of Common Vulnerabilities and
Exposures (CVEs) per year as shown in Fig. 4 and the interest

in this type of approaches. Indeed, the evolution of fuzzers
is associated with the capability of automate the search of
vulnerabilities which shows that at the beginning the number
of CVEs was relatively low and the presence of fuzzers was
sporadic. However, the great of evolution of fuzzers seems to
respond to the increase of vulnerabilities published from 2005
where represented a quantitative leap compared to previous
years reaching more than 4000 vulnerabilities per year in the
best case and more than 15000 vulnerabilities per year [71].
The evolution of the fuzzers shows that these have been
integrating more complex and modern approaches such as
those based on machine learning and genetic algorithms.

In this section we will review from the first technique
proposed in 1990 to the most modern approaches that have
been incorporated in different stages to improve the results.

• Random mutation. This was the first technique used
in fuzzing that is categorized as a black-box technique
to generate fuzz data without intelligence and strategy
(see fuzz [13] and zzuf [65]). The operation of this
technique requires an initial seed, and a valid input for
the SUT. Based on this seed and the initial valid input,
the mechanism for generating new fuzz data works by
selecting at random specific field data, and then modify
this field data at random, this process is repeated in
each round of the fuzzer. The main advantages of this
technique are the simplicity for generating fuzz data, it
is not necessary to understand the data structure, and the
performance obtaining initial promising results. However,
the absence of a intelligence has a main drawback: the
low performance. This technique has a low capability to
reach complex paths which limits the power of finding
new vulnerabilities [15], [24]. This technique can be con-
sidered as baseline for assessing new fuzzing techniques
in terms of performance.

• Grammar representation. This technique is a black-box
technique to generate fuzz data without intelligence and
strategy but with a significant difference, the generation
of data follows a set of grammar rules for decreasing the
rate of invalid data at the beginning [56]. This technique
requires a seed, but instead of having an initial valid input,
the (initial) data are generated according to the grammar
rules that check that the basic data structures are fulfilled
and therefore the are no problems for beginning the
process of fuzzing. Once the process has started, in each
generation of data, the field data are selected at random
but fulfilling the grammar rules, then the candidate fuzz
data are generated at random. The result is an increase
of performance compared to a completely blind technique
such as the previous one because this can deal better with
complex structures [63]. However, this technique has also
several drawbacks such as the need to create the grammar
rules by hand which requires time and knowledge [16],
[72] and besides this it is subject human errors. On
contrary, although the use of grammar rules is beneficial
during the process has an negative impact in performance
for generating new fuzz data, and the rate of fuzz data
per second is lower than the previous technique limiting
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Fig. 4. Evolution of the adaptation of the different techniques to fuzzing

the search space. Some of the fuzzer that use grammars
are Skyfire [49], GWF [24], or Peach [59] and they use
them to fuzz complex SUTs.

• Dynamic symbolic execution. This is a black-box tech-
nique for generating fuzz data without intelligence but
with a strategy that leverages the results obtained by
symbolic execution to identify data value ranges for
creating fuzz data. In this technique an interpreter follows
the execution of the SUT from the input as a normal
execution but without requiring a value to the end of the
execution. Every time the interpreter reaches a control
statement forks the symbolic execution storing the logical
expression in terms of input variables. At the end of
the execution of the different forks, a set of logical
expressions in terms of input variables are obtained and
the range of valid values are obtained from each logical
expression. These ranges are used to seed the fuzz data
generation and explore the SUT. As a result a significant
improvement in the performance is obtained compared to
other approaches. The process of symbolic execution is
described in Fig. 5 comparing it with concrete execution.
Although this technique has a very significant potential
for exploring different paths it also has several drawbacks.
Firstly, the explosion of potential paths limits the use
in complex programs. Secondly, the scalability of the
technique is also limited due to path explosion and due to
the negative impact in memory consumption. Finally, the
environment interactions when performing system calls
may arise when execution reaches components that are
no under control of the interpreter [73], [74], [75]. This
technique is used in the context of fuzzing for facilitating

the determination of the initial seed by leveraging the
range of values provided by the symbolic execution,
the range value data for specific sections [68], or for
increasing the code coverage. This approach is commonly
used in the white-box fuzzers [76], and KLEE [77] and
SAGE [52] are two fuzzers that use it .

i=iinput
i=iinput  ;  j=-iinput
i=iinput-1  ;  j=-iinput
i=iinput-1- (-iinput)

iinput-1- (-iinput)<1
-iinput-1- (-iinput)

iinput-1- (-iinput)>=1
iinput-1- (-iinput)

i=-3          

i=-3;  j=3
i=-4;  j=3
i=-7;  j=3
i=7;  j=3

return 7    

i=2

i=2; j=-2
i=1; j=-2
i=3; j=-2

return 3 

Concrete Execution

int func1 (int i){

  int j=-i;     

  i=i--;        

  i=i-j;        

  if (i<1)      

    i=-i;

  return i;   

} 

OR

Source Code Symbolic Execution

Fig. 5. Comparison between concrete and symbolic execution

• Dynamic taint analysis. It is a black-box technique based
on checking variables modified by the user (registers and
memory contents) throughout the execution of the SUT
when a crash occurs. The process is depicted in Figure 6.
The dynamic nature of the taint analysis requires a binary
instrumentation framework with the aim of adding a
pre/post handler on each instruction. Thus, it is possible
to retrieve all the information about the instruction or
the environment (memory) revealing useful information
regarding the SUT. This information is very valuable
and it is used for generating new fuzz data [24]. The
main advantage of dynamic tainting is the improvement
in the efficiency of the fuzzer. However, it has two major
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drawbacks: under-tainting and over-tainting. The first one
indicates that there are contaminated data that have not
been marked as such. In contrast, over-tainting marks too
many values as contaminated, as a result the false positive
rate is increased. Some examples of this approach are:
Vuzzer [78], and SYMFUZZ [79] use the dynamic taint
analysis to find the input seed to mutate.

Test Cases

Tainted variables

Target Binary Memory

j=12

j=5

k=2.3

Fuzzer

Fig. 6. Fuzzing with dynamic taint analysis

• Guided covered. It is a grey-box fuzzing technique that is
based on program instrumentation to trace the execution
of the SUT identifying code sections reached by the input
provided. This information is used by the fuzzer to make
informed decisions to select which inputs to mutate in
the SUT [75], [80] as shown in Fig. 7. The main goal
of this technique is to increase the code coverage [15]
with the minimum test cases necessary [11]. Although
this technique has a good performance a priori, it is
governed by the complexity of the SUT, this is the
main enemy of this technique, the higher complexity the
lower performance [73], [81]. Some of the representative
fuzz tools which use this technique are kALF [60] and
Driller [82].

• Scheduling algorithms. It is a grey-box technique based
on a lightweight instrumentation of the SUT which
provides information of the memory. This approach is
divided in two stages: exploration stage and exploitation
stage. In exploration stage the contents of the memory
is partially tainted to observe input values in memory
when specific instructions such as compare instructions
are executed. This inspection of memory creates asso-
ciation of input values with memory states known as
configuration allowing to perform educated guesses with
regard to which values to replace. Exploitation stage takes
advantage of the previous results and exploit these to seed
the fuzzer [11]. Examples of this kind of technique are
BFF [83] and FuzzSim [24].

• Static analysis. It is a white-box technique that leverages
the results of the static analysis of the source code to
generate fuzz data with the aim of exploit the weaknesses
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Fig. 7. Process of fuzzing with guided coverage technique

located by the analysis. The main advantage is its sim-
plicity, however, the false positive rate is high and the
accuracy is low [73]. Some examples this kind of fuzzers
are Dowser [53] and BORG [84].

• Genetic algorithms. This technique can be a black-box,
grey-box, or white-box depending on the information
used for taking decisions. It is a search-based method
optimization technique based on the natural selection
aimed to find optimal solutions to difficult optimization
problems. In the area of fuzzing, the problem of finding
vulnerabilities can be seen as a optimization problem
where each candidate solution or individual represents
a candidate fuzz data and the fitness function aims to
represent the distance to a vulnerability in the SUT by
including information of different nature such as dynamic
information like warnings, execution timeouts, errors,
crashes, or others, and static information like cyclomatic
complexity among others [85], [86]. This technique rep-
resents a qualitative leap for searching new vulnerabilities
but this requires a good estimate of the SUT behaviour.
The process is represented in Fig. 8. AFL, one of the
most well-known fuzzers today uses genetic algorithms
to improve test generation [87].

• Machine learning This is not a technique, but rather a
set of techniques that can play the role of black, grey or
white-box depending on the modelling of the problem
to solve. Machine learning is a set of data analytic
techniques that allow computers to learn from data like
humans and/or animals [55]. This kind of algorithms
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Fig. 8. Process to fuzz using evolutionary algorithms

utilizes computational/mathematical models to acquire
knowledge from data without human expert intervention.
The algorithms in this field base their performance on the
quality and quantity of samples that describe the problem.
A specific subset of models in this field is the deep learn-
ing very focused in complex and heterogeneous neural
networks. Regarding fuzzing, this set of techniques have
been applied to support different stages of the process
of fuzzing such as seed generation, pre-processing of
source/binary code, test case generation, fitness function,
mutation operator, exploitability analysis, etc. [73]. In
addition to this, existing metrics have been used to assess
the performance. This is the most complete subset of
techniques with successful results. The introduction of
this kind of techniques is relatively new and a very good
source of new probed techniques in this field. However,
like the rest of the techniques there is a fundamental
drawback regarding the need of enough and representative
samples. An example of a fuzzer that use this kind of
technique is Learn & Fuzz [63].

Table II summarizes the advantages and disadvantages of
the different fuzzing techniques covered in this section.

IV. FUZZING EMBEDDED SYSTEMS

Fuzzers have evolved significantly since the creation of the
first fuzzer, demonstrating its effectiveness finding vulnerabil-
ities, although its use in embedded systems is not widespread.
Hence, it is important to analyze the reasons that limit the use
and the main characteristics that fuzzers should fulfill in order
to be applied to embedded systems.

When considering fuzzers, a wide range of different alter-
natives exist. However, one of the most popular fuzzers is
American Fuzzy Lop (AFL), which is widely used in academic
and industrial areas [54]. AFL is centered on generating

malformed input files to running processes (e.g. a PDF file to
a document reader). Moreover, the development of many other
fuzzers is based on AFL, such as, AFLFast [88], AFLGo [89],
Skyfire [49], VUzzer [78], Steelix [90] or Angora [91]. Based
on the popularity of AFL and its descendants, many of the
newest fuzzers are compared with it. In addition, other popular
fuzz tools covering other areas and also used for comparison
are Honggfuzz [92], Peach [59], KLEE [77], SAGE [52] or
Radamsa [93]. Although all of them are fuzzers, they have
a different nature, making them more suitable to apply in
different environments, particularly based on the input data
they create (files, network traffic etc.).

As covered in Section II, finding vulnerabilities in embed-
ded systems is a challenging endeavour, as the most restricted
embedded systems do not have additional security mechanisms
in place. Therefor, using fuzzing to detect vulnerabilities is
an interesting option, as it can run outside the system and it
analyzes the outputs of the SUT to find these vulnerabilities.
Even so, it should be noted that in IT systems have security
mechanisms pin place, such as MMU or MPU, that help to
detect errors. As mentioned earlier, this is not always the situ-
ation in embedded systems. In addition, it must be considered
that when an embedded system with limited resources freezes,
it will probably stop responding. In these cases, the fuzzer
will not have new data for the generation of the next inputs,
decreasing its effectiveness. For that reason, it is necessary to
find and leverage all possible methods to monitor the SUT.

With all its limitations, embedded system fuzzing has al-
ready shown some promising results in previous proofs of
concepts, such as fuzzing SMS messages [25] and the Global
System for Mobile communications (GSM) protocol [26] to
detect vulnerabilities in smartphones, fuzzing credit cards to
exceed its limit [28] and also fuzzing the Controller Area
Network (CAN) protocol of cars to unlock their doors or
disabling their lights [27].

A. Measurable characteristics in embedded fuzzing

As out-of-the-box fuzzing for embedded systems is not
viable for vulnerability and crash discovery, it is necessary
to focus on characteristics present in embedded systems that
could potentially be leveraged for vulnerability detection.
These characteristics can be grouped in four main categories:
fault types, response time, waiting time and physical response
nature.

• Fault type. This category groups all kinds of errors
related to the memory and numerical computation that
can derive in a different behaviour compared to general-
purpose IT systems.
– Stack overflow takes place when a program writes to

a memory address in the program call stack out of the
designated data structure. The usual consequence of the
stack overflow is a crash. In addition, embedded sys-
tems with fewer resources can have problems detecting
these errors. In some cases, the error is detected later
when the system stops responding to requests or it may
not have any effect, so if the memory is not corrupted
it will not have any visible effect. In more advanced
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TABLE II
SUMMARY OF THE ADVANTAGES AND DISADVANTAGES OF DIFFERENT TECHNIQUES ADDED TO FUZZING

Technique Advantages Disadvantages
Random Mutation High implementation speed and scalability Many invalid inputs
Grammar Representation Complex structure Not completely automatic
Dynamic Symbolic Execution Runs the code to monitor Limited path explosion, environment interactions
Dynamic Taint Analysis Reaches specific functions Under-tainting and over-tainting
Guided-Covered Scans many inputs efficiently Difficulties with complex checks
Scheduling Algorithm Improves black-box testing Problems in embedded devices
Static Analysis Not executed, approximate behaviour False positives and negatives
Genetic Algorithms Improve new generations Result depends on stop criteria
Machine Learning Intelligent fuzzing Needs large data quantities

embedded systems with an OS, errors can be detected
as the execution is stopped and it is usually warned by
a message or a signal [18].

– Segmentation fault appears when it is not allowed
access to specific region of the memory from the
main process. When the system throws an exception of
this class is providing clues that there is unauthorized
access to memory. However, in the worst case, when
dealing with systems with no OS, this event usually has
no effect [18], and therefore there are no observable
event, in embedded systems with an OS or embedded
OS are usually detected by an observable crash or
reboot but it is not reasonable to assume the detection
of this kind of events.

– Memory corruption takes place when the memory is
modified without an explicit assignment. It can cause
many problems such as invalid pointer values, incorrect
data or a crash of the system. On the embedded
devices the memory corruptions are less visible, what
causes a decrease on the effectiveness of the dynamic
testing techniques, so the silent memory corruptions
are habitual on this devices. All derived executions
from memory corruptions can be categorized in four
types of classes. Firstly, the system can stop responding
to requests or it can have a late crash. Secondly,
the system will start to malfunction. Thirdly, it may
continue to function in the same way and the error
will not have any effect. Fourthly, in systems with
OS, which are usually the most resourceful embedded
systems, the reaction to this type of error is usually an
observable crash [18].

– Numerical errors. In addition to the errors mentioned
above, on one hand the absence of managing typical
over/under-flow errors can take place without any
visible effect. On the other hand, the limitations of
embedded systems such as the absence of subset of
instructions for computing division may involve the
use of supplementary numerical computation libraries.
As a consequence in the most constrained devices a
numerical error can derive into a pure software error
that like in the first case can take place without any
visible effect or worse these can derive into a memory
corruption.

• Response Time. This is the elapsed time from the
reception of fuzz data until the data is finally processed
and ready to be sent back as it shows Fig. 9. Embedded

systems need much more time to respond, due to the
resources limitation as a consequence fuzzers must be
adapted to this increase of time, otherwise the rate of
false negative can increase. The response time is therefore
a measure that impact directly on the performance [94].
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Fig. 9. Response time and waiting time of the fuzzing process

• Waiting Time. It is the period of time that elapsed from
the request is launched to the SUT until its response
arrives. It is necessary to consider the possibility that
the answer could not arrive (e.g. the system is non-
responsive or has crashed). In such a case the fuzzer
has to decide whether to send another test case or to
stop testing because the device has died or it is taking
too much time to run. It can also happen that the time
between tests is less than the waiting time, in this case, it
is necessary to be careful, as responses can come mixed
as happens in Fig 10. In the case of embedded systems
it will be necessary to increase the waiting time of the
fuzzer, since if it is not adapted, it can detect an error
in the system when it is working correctly, causing an
increase in false positives.

• Physical response nature. The physical response of
a system in different situations can give valuable in-
formation about what is occurring to it. In contrast to
general-purpose IT systems, embedded systems are small
and suffer physically from increasing the temperature
of the device when the volume and the rate of fuzz
data increases, they tend to get warmer at higher loads.
Moreover, in this kind of systems the load on the system
falls only on the CPU. To prevent this, it is necessary to
measure temperature during the fuzz testing and observe
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that the temperature does not reach undesired values. The
temperature affects to the reliability of the system, but
can also affect to the operation power and cost [95].
Therefore, it can be a helpful factor to determine if there
have been any changes in the CPU.

B. Enhanced observation techniques
In order to circumvent issues related to poor monitoring and

observation abilities when fuzzing embedded software, several
approaches have been proposed to make crashes and errors
observable. These enhanced observation techniques are based
on the use of emulation, source code analysis and sanitization.

• Full emulation. Costin et al. [96] and Chen et al. [97]
have shown that under specific conditions, applications
extracted can be executed inside a generic system running
on a off-the-shelf emulator. Based on this emulator, it
is possible to collect information regarding the status
of the memory. However, the main disadvantage of this
approach is that it is not possible to test peripheral
activity. That is, when peripheral use is necessary (e.g.
to test code interacting with these peripherals), these are
not accessible to the fuzzer, as they are neither present
in the target nor emulated.

• Partial emulation. In order to overcome the drawbacks
of full emulation, some authors have extended the emula-
tion from systems without an operating systems to those
with an operating system [98] where only peripheral are
excluded from emulation and all instructions related to
the peripherals are redirected to real external peripherals.
Based on this approach Muench et al. [18] obtain signif-
icant results in detecting classical memory related errors.
However, such an approach suffers from a significant
false positive and negative rates [46].

• Source Code Availability. It has proven helpful to
increase fuzzing performance, particularly aiding explo-
ration. However, this availability is not always possible,
especially when auditing third-party software.

There are a subset of specific techniques related to the as-
sessment of the memory that can guide the fuzzer. These
techniques are based on the concept of sanitization. A sanitizer
instruments the applications by inserting checking instructions
in order to monitor all read and write operations to/from the
memory. In this sense, two kinds of sanitizers exist:

• Dynamic Binary Sanitizers. This technique allows to
instrument the application at run time. However, dynamic
sanitizers have a significant drawback in embedded de-
vices, as they cause a significant performance overhead
and require special software/hardware functionalities that
are not widely available in embedded systems. Due
to these reasons, dynamic sanitization adoption is lim-
ited [99].

• Static Binary Sanitizers. First presented by Salehi et
al. [46]. , static sanitizers have lower overhead than their
dynamic counterparts and they also yield better results
when compared to proposals based on partial emulation.
Static binary santization is a multi-stage process (depicted
in Fig. 11):
– Stage 1. Static disassembly. This is the process of

parsing the executable region of the input binary file
and decoding the content into their a human readable
format.

The process of instrumentation is typically divided into
two steps. The first one is responsible for locating every
relevant instruction of the code that needs to be instru-
mented whereas the second one is responsible for insert-
ing the instrumentation code. In this case, the process is
much more sophisticated and structured, and it is divided
into four steps: memory instruction extraction, specifi-
cation generation, binary instrumentation and mapping
generation.
– Stage 2. Memory instruction extraction. The goal of

this stage is to identify which instructions are relevant
for the next stage: the specification generation.

– Stage 3. Specification generation. This process is
in charge of creating the specification based on the
information obtained from the extracted instructions.

– Stage 4. Binary instrumentation and mapping gen-
eration. Based on the specification generated in the
previous stage, this process performs the instrumenta-
tion of the assembler code. The new segments of code
perform two tasks:
∗ Creation of a metadata structure in memory where

all out-of-bounds memory regions are controlled by
means of storing of the boundary address.

∗ The access control to out-of-bound memory ad-
dresses by consulting the metadata structure.

– Stage 5. Reassembling. Based on the previous instru-
mentation, the source code is re-assembled in order to
create a new binary.

Once this process has finished and starts executing, a
specific region in memory is created called the metadata
region which contains the boundary address of every
memory value facilitating the control of any access to
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address out of the bounds. As a result invisible errors
become observable. All this process has been depicted
in Figure 11. This technique has reduced the false and
positive errors obtained with previous techniques without
requiring a full/partial emulation.

Although these mechanisms partially circumvent the dif-
ficulties posed by embedded systems, it is still necessary
to increase the performance of fuzzers by different reasons.
Firstly, it is necessary to reduce the false positive rate, the
response time, the waiting time and the fault type can affect
negatively to this rate. Secondly, it is necessary to reduce the
false negative rate by improving the detection of some type
of fault types. Finally, an improvement of the test rate, it is
necessary an improvement in the capability of generating more
test data while maintaining the false positive and negative
rate low without manipulating or modifying the binary or the
source code and without overflowing the embedded system.

V. DISCUSSION

In this section we will provide a review of the existing
fuzzing techniques summarized in Table II, as well as a
review of the features of these techniques that are required
in embedded systems summarized in Table III. A discussion
on the evolution and motivation of these techniques will be
provided with a special focus on the application in embedded
systems.

A. Fuzzing Trends

A fuzzer is a method that aims to find vulnerabilities by
sending specially crafted data and analyzing the feedback re-
ceived. The first fuzzers did not take into account the feedback
of the SUT to generate the data, the only relevant information
used was the successful findings of new vulnerabilities. As
a consequence the results were very poor compared to any
recent approach. The next leap in evolution was to consider a
proper mechanism to generate crafted inputs but this was still
without considering the feedback, this change only represented
a small improvement not a major one.

The next great qualitative leap in evolution of the fuzzers
begins by considering the information provided from the SUT
in order to improve aspects such as the generation of crafted
data. At this point, the fuzzers improve the capability to detect
vulnerabilities. This represented a clear division between smart
and dumb fuzzers where no information is used. The Table III
shows that the majority of the fuzzers are smart and few of
them are dumb.

From this point, the nature of the information considered
to improve the fuzzer makes the difference between the two
main families of fuzzers: black-box and white-box. The first
family ignores the information based on the source code,
considering only the binaries in the best case. Whereas the
second family takes into account the information based on
the source code. The source code is instrumented to provide
additional information jointly with response of the SUT when
the fuzzer is operating.

A white-box strategy represents the most used techniques
because this provides the maximum possible information.

However, this is not always possible which limits the use in
specific situations. As a consequence, some fuzzers do not
make use of the complete information but they use partial
information and the instrumentation to operate. Table III shows
that the proportion of strategies is close to one third.

The use of information used represented a clear difference
between the different families of fuzzers. Now, the next
qualitative leap was in the technique that best makes use of
this information according to the family. The initial techniques
made use of the instrumentation whereas the last ones are
based on evolutionary approaches that can take advantage of
different sources of information. In this sense, there has been
a displacement in the last years from less flexible techniques
to the most modern approaches based on machine learning.
Consequently, the use of machine learning represents a clear
advantage in any of the approaches.

B. Embedded Fuzzing

The evolution of fuzzers represents a priori a significant
and promising technique for finding weaknesses in embedded
systems. However, the nature of these systems imposes several
constraints that limit the use of a great number of the fuzzers
as we will show. In this section we will show a different
taxonomy of fuzzers according to a set of more suitable
features for embedded systems such as: Source Code, Fault
Types, Instrumentation, Support of the operating system, and
the Target (see Table IV) as well as an analysis of the impact
of these features.

Firstly, the availability of the source code in embedded
systems is not always possible. In many cases, the manu-
facturer imposes their software developing kit for developing
applications limiting the possibilities of using tools. In addition
to this, according to the standard “IEC 62443-4 Practice
5, SVV-3 Vulnerability testing”, the application of fuzzers
should be carried out in external interfaces without additional
information. This reduces possible candidate fuzzer numbers
by 25%, that is, decreasing the number of eligible fuzzers from
41 to 31.

Secondly, the capability of detection of fault types plays
a significant role in embedded systems as we have depicted
previously in Section IV. The behaviour of an embedded
system when a failure takes place does not correspond to
the expected behaviour as in standard systems. In embedded
systems, a failure can involve that the system can continue
operating with wrong values because there is no a Memory
Management Unit or the system can stop completely. As a
consequence the number of fuzzers that are able to detect
different kind of failures is very low.

Thirdly, as a consequence of the first point, the possibility of
instrumenting the source code is not possible due to the same
constraints but in very constrained embedded systems there is
no user interface, or shell to interact which makes impossible
any collection. This involves that is necessary to discard 17
additional fuzzers representing a reduction of a 65% of the
total.

Fourthly, embedded systems can operate with/without the
support of an operating system, so it is not always possible to
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Fig. 11. Static Binary Sanitization for embedded systems

assume the support of this to carry out the fuzzing process.
This may be the primary factor for discarding many fuzzer
techniques reducing the remaining 14 fuzzers to 4 fuzzers.

Finally, in contrast to classical fuzzers, the target in em-
bedded systems is much more limited than general-purpose
systems. In some embedded systems makes no sense to target
file-systems because there is no such possibility, and therefore
it is not realistic to assume this. As a consequence, all
remaining fuzzers focused in this class of targets that involves
the presence of a file-system should be discarded.

In summary, the mere fact of imposing some limitations
such as the use of source code, or the instrumentation has
a significant impact on the availability of fuzzers. If we add
additional constraints such as the participation of the operating
system depicts an overview where is necessary to invest more
resources to create specific fuzzers for embedded systems.

C. Embedded System Fuzzing Qualities
Previous sections has shown a broad range of fuzzing

techniques but also the challenge that poses to choose/design
a suitable fuzzer for embedded systems when specific features
are taken into account in contrast to general-purpose systems.

Embedded systems impose some constraints, but the most
important factor is the limitation of feedback information from

the embedded system. As we have explained previously, the
information from the SUT is essential to find weaknesses in
the source code, and it is precisely the lack of information what
characterises the nature of embedded systems. The difficulties
for obtaining or instrumenting source code involves that it
is not possible to obtain more information from the SUT
requiring the use of black-box approaches, that is, the most
difficult approach.

As a consequence, a suitable fuzzer for embedded sys-
tems should compensate this lack of information with more
intelligence jointly with the most advanced techniques as
primary requirements. The fuzzer should only deal with the
response of the SUT without taking into account the source
code/instrumentation, that is, without any additional help. This
involves that it is necessary to use advanced techniques such
as those based on machine learning for learning from the all
available information.

In addition to this, it is also relevant and significant the
consideration of the behavior of each type of failure. A specific
type of failure in a embedded system does not behave in the
same way as in general-purpose system which can impact in
the operation in two aspects. Firstly, the first situation is when
a failure is not detected and the fuzzer continues operating
normally, this involves a false negative. The second situation
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TABLE III
COMPARISON OF FUZZ TOOLS TAKING ACCOUNT THE FEATURES OF FUZZERS TO DISTINGUISH EACH OTHER

Methods
Type

1 2 3

Input Generation
1 2

Intelligence
1 2

Exploration Strategy
1 2

Techniques
1 2 3 4 5 6 7 8 9

1. White-Box
2. Grey-Box
3. Black-Box

1. Mutation
2. Generation

1. Smart
2. Dumb

1. Covered
2. Directed

1. Random Mutating
2. Grammar Representation
3. Dynamic Symbolic Execution
4. Dynamic Taint Analysis
5. Coverage Guided
6. Scheduling Algorithms
7. Static Analysis
8. Genetic Algorithms
9. Machine Learning

AFL [16], [100] � � � � � � � � � � � � � � � � � �
AFLFast [66], [88], [89] � � � � � � � � � � � � � � � � � �
AFLGo [66] � � � � � � � � � � � � � � � � � �
Angora [57], [101] � � � � � � � � � � � � � � � � � �
BFF [83], [102] � � � � � � � � � � � � � � � � � �
BORG [84] � � � � � � � � � � � � � � � � � �
BUZZFUZZ [103] � � � � � � � � � � � � � � � � � �
Dowser [53], [70] � � � � � � � � � � � � � � � � � �
DrE [104], [105] � � � � � � � � � � � � � � � � � �
Driller [82] � � � � � � � � � � � � � � � � � �
FIE [106] � � � � � � � � � � � � � � � � � �
Frankenstein [107] � � � � � � � � � � � � � � � � � �
fuzz [13] � � � � � � � � � � � � � � � � � �
FuzzSim [83] � � � � � � � � � � � � � � � � � �
GWF [50] � � � � � � � � � � � � � � � � � �
Honggfuzz [92] � � � � � � � � � � � � � � � � � �
IoTFuzzer [64] � � � � � � � � � � � � � � � � � �
kALF [60] � � � � � � � � � � � � � � � � � �
KLEE [77] � � � � � � � � � � � � � � � � � �
Learn&Fuzz [63] � � � � � � � � � � � � � � � � � �
libfuzzer [11], [108], [109] � � � � � � � � � � � � � � � � � �
MoWF [110] � � � � � � � � � � � � � � � � � �
PAFL [111] � � � � � � � � � � � � � � � � � �
Peach [17], [59], [112] � � � � � � � � � � � � � � � � � �
QuickFuzz [113] � � � � � � � � � � � � � � � � � �
Radamsa [93] � � � � � � � � � � � � � � � � � �
RedQueen [11], [114] � � � � � � � � � � � � � � � � � �
S2E [115] � � � � � � � � � � � � � � � � � �
SAGE [52], [116] � � � � � � � � � � � � � � � � � �
Skyfire [49] � � � � � � � � � � � � � � � � � �
SLF [117] � � � � � � � � � � � � � � � � � �
SmartFuzz [65] � � � � � � � � � � � � � � � � � �
SPIKE [17], [22] � � � � � � � � � � � � � � � � � �
Steelix [90] � � � � � � � � � � � � � � � � � �
Sulley [58], [118] � � � � � � � � � � � � � � � � � �
SYMFUZZ [72] � � � � � � � � � � � � � � � � � �
Syzkaller [119], [120] � � � � � � � � � � � � � � � � � �
TaintScope [121] � � � � � � � � � � � � � � � � � �
T-Fuzz [80], [122] � � � � � � � � � � � � � � � � � �
VUzzer [78] � � � � � � � � � � � � � � � � � �
zzuf [65] � � � � � � � � � � � � � � � � � �

is when the failure is detected much more later, and the fuzzer
learns from incorrect information, generating incorrect inputs.
As a conclusion, the fuzzer should be able to detect at least
some of these situations and learn correctly from the original
input and not from later inputs.

Finally, many approaches require the intervention of the OS
to support the fuzzer, in the case of embedded systems, the
fuzzer should operate without any help from the operating
system, the limitations of some embedded systems make this
not recommendable. Thus, the design of a fuzzer specialized
for embedded systems should not be based on the operating
system of the SUT.

VI. FUTURE DIRECTIONS

In this paper different fuzzing tools have been categorized
and classified showing the relevance and usefulness of the
fuzzing approach to find weakness in software with indepen-
dence of the target and the strategy used. However, this survey
has also shown several flaws in the design of fuzzers when
applied to embedded systems as well as in the methods used
for measuring the performance of these. Therefore, there are
several open issues that could lead to future research directions
in the field of fuzzing and IoT and embedded devices. We
have grouped such directions in two main categories: fuzzer
evaluation, enhanced embedded fuzzing architecture, and IoT
and embedded fuzzing algorithms.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2021.3056179

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS INTERNET OF THINGS, VOL. X, NO. X, X 2020 16

TABLE IV
COMPARISON OF FUZZERS CONSIDERING NECESSARY FEATURES TO FUZZ EMBEDDED SYSTEMS

Methods
Source Code

1 2

Fault Type
1 2 3 4

Work with OS
1 2 3

Instrumentation
1 2 3

Target Support
1 2 3 4 5 6 7 8 9

1. Yes
2. No

1. Stack Overflow
2. Segmentation Fault
3. Memory Errors
4. Other

1. Yes
2. No
3. Not specified

1. Yes
2. No
3. Not specified

1. File
2. Library
3. Firmware
4. OS Kernel
5. Network Protocol
6. Applications
7. General-Purpose
8. Embedded Systems
9. Web browser

AFL [16], [100] � � � � � � � � � � � � � � � � � � � � �
AFLFast [66], [88], [89] � � � � � � � � � � � � � � � � � � � � �
AFLGo [66] � � � � � � � � � � � � � � � � � � � � �
Angora [57], [101] � � � � � � � � � � � � � � � � � � � � �
BFF [83], [102] � � � � � � � � � � � � � � � � � � � � �
BORG [84] � � � � � � � � � � � � � � � � � � � � �
BUZZFUZZ [103] � � � � � � � � � � � � � � � � � � � � �
Dowser [53], [70] � � � � � � � � � � � � � � � � � � � � �
DrE [104], [105] � � � � � � � � � � � � � � � � � � � � �
Driller [82] � � � � � � � � � � � � � � � � � � � � �
FIE [106] � � � � � � � � � � � � � � � � � � � � �
Frankenstein [107] � � � � � � � � � � � � � � � � � � � � �
fuzz [13] � � � � � � � � � � � � � � � � � � � � �
FuzzSim [83] � � � � � � � � � � � � � � � � � � � � �
GWF [50] � � � � � � � � � � � � � � � � � � � � �
Honggfuzz [92] � � � � � � � � � � � � � � � � � � � � �
IoTFuzzer [64] � � � � � � � � � � � � � � � � � � � � �
kALF [60] � � � � � � � � � � � � � � � � � � � � �
KLEE [77] � � � � � � � � � � � � � � � � � � � � �
Learn&Fuzz [63] � � � � � � � � � � � � � � � � � � � � �
libfuzzer [11], [108], [109] � � � � � � � � � � � � � � � � � � � � �
MoWF [110] � � � � � � � � � � � � � � � � � � � � �
PAFL [111] � � � � � � � � � � � � � � � � � � � � �
Peach [17], [59], [112] � � � � � � � � � � � � � � � � � � � � �
QuickFuzz [113] � � � � � � � � � � � � � � � � � � � � �
Radamsa [93] � � � � � � � � � � � � � � � � � � � � �
RedQueen [11], [114] � � � � � � � � � � � � � � � � � � � � �
S2E [115] � � � � � � � � � � � � � � � � � � � � �
SAGE [52], [116] � � � � � � � � � � � � � � � � � � � � �
Skyfire [49] � � � � � � � � � � � � � � � � � � � � �
SLF [117] � � � � � � � � � � � � � � � � � � � � �
SmartFuzz [65] � � � � � � � � � � � � � � � � � � � � �
SPIKE [11] � � � � � � � � � � � � � � � � � � � � �
Steelix [90] � � � � � � � � � � � � � � � � � � � � �
Sulley [58], [118] � � � � � � � � � � � � � � � � � � � � �
SYMFUZZ [72] � � � � � � � � � � � � � � � � � � � � �
Syzkaller [119], [120] � � � � � � � � � � � � � � � � � � � � �
TaintScope [121] � � � � � � � � � � � � � � � � � � � � �
T-Fuzz [80], [122] � � � � � � � � � � � � � � � � � � � � �
VUzzer [78] � � � � � � � � � � � � � � � � � � � � �
zzuf [65] � � � � � � � � � � � � � � � � � � � � �

A. Fuzzer evaluation

This subsection covers the current challenges for accurate
comparison of fuzzers in general and, particularly, in the
embedded field.

1) Evaluation methodology: The survey shows that there is
no a standardized or consensual methodology to perform an
assessment of the performance of any fuzzing tool according
to a predefined set of key performance indicators [79]. Even
it is not an standard evaluation methodology, it is necessary
to measure the performance of any fuzzer in terms of quality
and quantity in the most objective and fair way. The quality
of a fuzzer should be measured by using standardized metrics
such as Accuracy, the False Discovery Rate, or other classical
metrics found in statistics and machine learning that can reflect

with more objectivity the quality. In this sense, only a small
portion of the authors use subsets of these metrics to assess
the performance and the majority of them use their own
mechanisms in a specific context to show the advantages, so
nowadays, it is not possible to compare the fuzzers only ana-
lyzing the literature. The quantity, on the other hand, it is also
a key performance indicator specially relevant in embedded
systems due to the limitations of these, and it should measure
the capability to perform a number of valid fuzz tests in a
period of time without exhausting the resources of the system.
The combination of both set of key performance indicators can
provide a more accurate view of the performance of any fuzz
tool and this should be a future direction in the design of
fuzzers.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2021.3056179

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS INTERNET OF THINGS, VOL. X, NO. X, X 2020 17

Hence, the use of a clear and standardized methodology to
measure the performance could represent a significant advance
in measuring the performance of fuzzers, but it is no less
important to have standardized test data to measure the per-
formance. In this context, the test data should represent a set
of well defined programs that implements known weaknesses.
The availability of data sheets of this nature could help when
comparing results, with standarize data it would be easier
to compare the quality of different fuzzers. In addition to
this, it is necessary to implement these vulnerabilities under
different levels of complexity in terms of control structures.
This could provide insights of the capacity of the fuzzer under
different levels of complexity present in the real world, from
low hanging fruits to complex vulnerabilities.

Therefore, before developing a new fuzzer algorithm it will
be necessary to define a evaluation methodology specifying
the metrics for measurement and the data to perform the
evaluation. In addition, it is necessary to set the experimental
conditions.

2) Means of evaluation: Data and program availability:
One of the main issues when aiming to compare results from
different embedded fuzzing techniques is the necessity of a
common benchmark and resources that can aid in interpreting
results and choosing the best alternative. Such resources can
be grouped in three main types:

• Vulnerable SUT targets. This refers to targets that contain
specific and/or undiscovered bugs and, when necessary,
bugs present only in specific types of devices. In this
sense, the scientific community have used as two kinds
of data:
– Artificially injected vulnerabilities in existing libraries

and applications. The most popular example for this
purpose is LAVA [123] that injects vulnerabilities in
GNU/Linux applications.

– Existing open source applications and libraries with
known and unknown vulnerabilities. In this case, pro-
grams of different nature have been used ranging
from classical tools in Linux (such as tcpdump [124],
jasper [125], objdump [57], uniq,...) to NIST Juliet
test suite [126] for C/C++ or even utilities present in
embedded systems such as mbedTLS [127], [128] and
expat [129], [18].

While there are some tools at the disposal of the research
community, there is still a wide range to cover: no LAVA-
like framework [130] exists for embedded and IoT vulner-
ability addition and the public availability of embedded-
only binaries with well known vulnerabilities (found or
induced) is still scarce. The creation of such data sheets
and binaries would greatly benefit the community as a
whole.

• Fuzzers and tools source code. Source code availability
is necessary to be able to build fuzzers on top of differ-
ent platforms and architectures. This would ease result
reproducibility across different environments. Therefore,
it would be necessary to publish the source code of
fuzzers, the required toolchains, as well as the instruction
to configure, compile and run the fuzzers, instrumentation

tools, emulation environments. A short list of available
tools is as follows:
– Algorithms: AFL [54], AFLFast [88], AFLGo [131],

Angora [91], Driller [132], Frankestein [107], Hong-
gfuzz [92], QuickFuzz [133], Radamsa [93], Smart-
Fuzz [134], Syzkaller [119], Vuzzer [135]

– Emulation environments: QEMU [82], [136], QEMU
STM32 [137], Unicorn [138], [107], hal-fuzz [139],
Surrogates [140]

– Sanitizers [141]: AddressSanitizer [142], ThreadSani-
tizer [143], MemorySanitizer [144], UndefinedBehav-
iorSanitizer [145], DataFlowSanitizer [146], LeakSan-
itizer [147]

– Binary Instrumentation: Valgrind [148], Pin [149], Dy-
namoRio [150], Dyninst [151]

Again, while researchers have a wide plethora of public
tools at hand, it is necessary to enrich the embedded
fuzzing ecosystem to further develop the field.

• Embedded device data sheets. Having public information
about different embedded devices, their properties and
specific models is of utmost importance to enable and
compare any hardware-oriented research to perform any
kind of comparison. There is no such information nowa-
days.

In general, while a basic shared knowledge exists for embed-
ded system fuzzing, it is true that when compared to general-
purpose systems, the absence of these aspects difficulties not
only the development of new fuzzes but the fair comparison of
existing and new approaches. Thus, it is extremely important
the presence of such a repository.

B. Enhanced embedded fuzzing architecture

As stated previously, the main problem when dealing with
fuzzing and embedded devices is the total or partial absence
of observability. That is, when a failure takes place, embedded
systems have low or non-existent capability to show that
abnormal situation has happened.

With the aim of overcoming this problem, it is necessary
to explore or to develop new mechanisms that allow detecting
failures in embedded systems. Moreover, it is also necessary
to focus in the improvement of other stages of the fuzzing
process. With this idea in mind, a possible enhanced embedded
fuzzing architecture (shown in Fig. 12) is proposed with the
following modules:

• Generator. This mechanism is responsible for generating
new fuzzed data but in contrast with traditional generators
the generator should be both SUT-independent and agnos-
tic. As a consequence, this opens the door for integrating
new approaches from other fields such as those from
artificial intelligence or advanced statistics among others.

• Learning from all collected data. New, enhanced
fuzzers should be adapted to deal with data of different
nature to take advantage of all information and explore
the space of potential vulnerabilities more efficiently.

• Fusion & Analysis. This module is focused in prepro-
cessing the information obtained from the SUT, meaning
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that it should be able to process the following types of
responses:
– Data Response. It is the response caused by a specific

input, it is the traditional response collected by fuzzers.
– Physical response. Using physical responses as a novel

information source for the embedded fuzzer would
allow to infer when a fault is triggered. The physical
responses that can be obtained from a SUT are varied
(time, electromagnetic signals etc.). These variables
can help detect the state of the system, and they can be
measured externally without influencing the system and
they can provide information regarding its behavior.

– Hardware status monitoring. Apart from the system
physical response, it is also promising to find addi-
tional sources for SUT monitoring. One example of
such additional source is the Joint Test Action Group
(JTAG) interface. The JTAG is a standard interface
for testing to debugging embedded systems, and it is
available in a wide range of devices. Therefore, using
the JTAG would allow to monitor the internal status
of the embedded software without instrumentation nor
emulation.

Moreover, if the fuzzers needs to process different types of
signals and responses, it is necessary to develop a translator
that is able to convert incoming data to a standard set of
features that the fuzzer monitor can use for examination. This
translator could later be reused by other similar fuzzers.

Finally, through the use of binary sanitization, particularly
the more promising static variant, would allow embedded
fuzzers to have yet another information source to also infer
memory violations caused by malformed inputs. Further re-
search into binary static sanitization techniques, with lower
overhead, coverage for other types of software faults and
signal communication with the fuzzer would vastly improve
the fuzzer’s ability to detect errors in the running binary.

Response
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Fig. 12. Enhanced fuzzing architecture for embedded systems

C. IoT and embedded fuzzing algorithms

The embedded system particularities mentioned in Sec-
tion II, mean that it is necessary to maximize fuzzer perfor-
mance against the constraints of embedded systems, as well
as being able to fuzz the embedded system through additional
communication channels.

1) Constraint-aware fuzzers: Embedded fuzzers must be
aware that the waiting time between sending a message and
receiving its response is generally longer in embedded systems
than in general-purpose ones. Additionally, it is possible for
different tests to have different waiting times. As a conse-
quence, responses from the SUT can overlap or come in
different order. In this case, discerning what is the response
from a specific input is not a trivial task. Minimizing response
confusion while maximizing testing rate is an open research
area that would maximize fuzzing performance.

Moreover, even with testing rate maximization, in some
cases it might not be viable to fuzz the embedded system for
an indeterminate time length to find as much vulnerabilities
as possible. Embedded system testing time normally comes
defined by the shipping deadline. Therefore, embedded fuzzing
algorithms must thrive to find as much vulnerabilities as pos-
sible in this testing stage, before the product is deployed. As
a consequence, it is necessary to continue improving fuzzing
algorithms to optimize seed generation and mutation strategies.
That includes using and further developing techniques such as
static analysis, grammar representation or genetic algorithms.
This research direction goes hand in hand with improvements
in general fuzzing research.

2) Wireless fuzzing: While fuzzing in general-purpose sys-
tems is generally performed locally or over fast wired con-
nections when remote, an holistic stance of fuzzing embedded
IoT devices requires to consider additional communication
channels. While Frankenstein [107] is a example of Bluetooth
fuzzing, it is necessary to extend fuzzing to wireless proto-
cols such as Bluetooth Low Energy [152], LoRaWAN [153],
ZigBee [154] and Z-Wave. These protocols are widespread
in different IoT use cases and are known to have security is-
sues [155]. Nevertheless, the scope can be extended to virtually
any IoT wireless communication protocol by using Software
Defined Radio [156], opening a new research field on its
own. Developing novel fuzzing approaches through wireless
channels would open the possibility of fuzzing devices that
lack other types of external communication, as well as testing
the robustness of software drivers that enable this type of
communication in devices that support it.

VII. CONCLUSION

With the increase of the attacks towards IoT devices it is
necessary to find and solve the vulnerabilities before bringing
the product to the market. In this way, new testing techniques
have been sought to find new vulnerabilities more effectively.
Fuzzing is one of such options that could be applied for this
end. However, the particularities of IoT devices, embedded
systems with limited computing power, presents a unique
challenge to general-purpose fuzzers, designed to work against
traditional IT targets.
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The variety on embedded systems causes difficulties to fuzz
some of them, particularly the most resources constrained
ones. Those systems does not have an OS to trigger a signal
when an error occurs, usually they do not detect the error
and they continue with the execution. In addition, they do not
usually have any additional hardware protection element, this
will complicate the monitoring of the SUT during fuzzing. So
they will need other data to detect any change in the state of
the SUT, as the physical response to detect them.

In this review paper, we have described the particularities
of the embedded systems, listed different fuzzing techniques
and tools and classified them according to different criteria.
We have also covered the constraints fuzzers should meet
in order to be used against embedded systems and reviewed
existing proposals according to these constraints. Finally, we
have listed a set of qualities that any embedded software fuzzer
should meet and identified a set of future research lines in the
field.

In conclusion, the major problem to fuzz an embedded
system is the monitoring. The lack of hardware protection
elements or an operating system difficult the early detection
of errors, so when testing those systems is necessary to
consider it. However, most of the fuzzing techniques that are
used nowadays do not consider it, sin they are developed for
general-purpose systems.
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less protocols,” in 2017 25th Telecommunication Forum (TELFOR).
IEEE, 2017, pp. 1–4.

[156] D. Sinha, A. K. Verma, and S. Kumar, “Software defined radio:
Operation, challenges and possible solutions,” Proceedings of the 10th
International Conference on Intelligent Systems and Control, ISCO
2016, no. November, 2016.

Maialen Eceiza received the degree of electronic
and automatic industrial engineering in 2017 and
the master of embedded systems in 2019 from the
University of Basque Country. She is currectly doing
the PhD at Ikerlan Technology Research Center in
the Cybersecurity in Embedded System team.

Jose Luis Flores is a researcher at Ikerlan Tech-
nology Research Center and he is currently part of
the Cybersecurity in Embedded System team. He
holds a MSc in Robotics and Advanced Control
from the University of the Basque Country. His
main interest is related to Artificial Intelligence and
Cybersecurity. As such, the main lines he works on
in each organization are Embedded System security
at Ikerlan, Machine Learning and Optimization at
the university.

Mikel Iturbe is a lecturer and researcher at Mon-
dragon Unibertsitatea and he is currently part of
the Data Analysis and Cybersecurity research group.
He holds a PhD from Mondragon Unibertsitatea,
where he worked on data-driven intrusion detection
in industrial networks and a MSc in ICT Security
from the Open University of Catalonia. His main
research interest is related to cybersecurity, primarily
in the industrial sector. As such, the main lines he
works on are Industrial Control System security,
Embedded Security and Software Security. He also

works in exploring novel data-driven applications for cybersecurity.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JIOT.2021.3056179

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual
https://github.com/google/sanitizers/wiki/MemorySanitizer
https://github.com/google/sanitizers/wiki/MemorySanitizer
https://github.com/llvm-mirror/clang
https://github.com/llvm-mirror/clang
https://clang.llvm.org/docs/DataFlowSanitizerDesign.html
https://clang.llvm.org/docs/DataFlowSanitizerDesign.html
https://clang.llvm.org/docs/LeakSanitizer.html
http://web.stanford.edu/class/cs343/resources/valgrind.pdf
http://web.stanford.edu/class/cs343/resources/valgrind.pdf
https://www.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/develop/articles/pin-a-dynamic-binary-instrumentation-tool.html
https://github.com/DynamoRIO/dynamorio
https://github.com/DynamoRIO/dynamorio
https://github.com/dyninst/dyninst
https://github.com/dyninst/dyninst
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch01.html
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch01.html
https://lora-alliance.org/about-lorawan
https://lora-alliance.org/about-lorawan
https://zigbeealliance.org/solution/zigbee/

