Metamorphic Testing of Autonomous Vehicles: a Case Study on Simulink

Pablo Valle
Mondragon University
Mondragon, Spain
pablo.valle@alumni.mondragon.edu

Abstract— Autonomous Vehicles (AVs) will revolutionize the way people travel by car. However, in order to deploy autonomous vehicles, effective testing techniques are required. The driving quality of an AV should definitely be considered when testing such systems. However, as in other complex systems, determining the outcome of a test in the driving quality on an AV can be extremely complex. To solve this issue, in this paper we explore the application of Quality-of-Service (QoS) aware metamorphic testing to test AVs modeled in MATLAB/Simulink, one of the predominant modeling tools in the market. We first defined a set of QoS measures applied to AVs by considering as input a recent study. With them, we define metamorphic relations. Lastly we assess the approach in an AV modeled in Simulink by using mutation testing. The results suggests that our approach is effective at detecting faults.

I. INTRODUCTION

Autonomous Vehicles (AVs) are complex Cyber-Physical Systems (CPS) whose function is to transport passengers safely from a point to another while providing the best Quality of Service (QoS) as possible to its users. While there are certain AV properties that can be easily tested (e.g., whether a car has crashed against another), it is not always easy to determine which the test outcome should be, especially those related to QoS measures. For instance, determining the time required by a car to transport a person from a place to another can be extremely complex, making it difficult to catalogue a test as a “PASS” or as a “FAIL”. The resulting inability to determine whether a test outcome is correct or not is known as the oracle problem [3]. Subsequently, a manual assessment by the test engineer is often required in order to determine the outcome of a test, something that is costly.

Metamorphic Testing (MT) [6], [19] alleviates the oracle problem by adopting a singular approach to software testing: Instead of verifying the correctness of each execution, the relationships between the inputs and outputs of different executions are tested, called Metamorphic Relations (MR). Metamorphic testing has been used in many domains, such as machine learning applications, web services, computer graphics, and compilers [7], [18]. This technique has also been successfully applied in the domain of CPSs, such as for testing wireless sensor networks [5], autonomous drones [14], self-driving cars [20] or elevators [2]. However, to the best of our knowledge, the application of metamorphic testing has never been applied to testing AVs modeled in Simulink, the predominant CPSs modeling tool. Specifically, the main contributions of this paper can be summarized as follows:

1) We apply MT to testing AVs at system level using Simulink. Simulink is the predominant CPSs modeling tools and widely used in the automotive industry. To the best of our knowledge, this is the first approach where MT is used in the context of Simulink models. In addition, the application of MT at system level would allow detecting more significant safe violations [10], such as those caused by vehicle dynamics or uncertainties in the environment (e.g., ice on the road).

2) Similar to [2], our approach uses performance (QoS metrics) as a proxy to detect functional errors. These QoS metrics have been defined by analysing the paper by Jahangirova et al. [12]. We demonstrate the effectiveness of our method using mutation testing.

3) We make our method, case study and experimental material, available for replication purposes [21].

II. BACKGROUND AND RELATED WORK

MT aims at detecting bugs by looking at the relationship among inputs and outputs of two or more executions of the program under test, called Metamorphic Relations (MRs). For example, consider an autonomous vehicle getting the following function: time(go(A,B)), which indicates the travel time from point A to point B by the shortest path. Checking if the output of the system is correct for two random input points would be difficult: this is an instance of the oracle problem. The order of the parameters should not influence the result (unless uncertain occurrences appear, e.g., an obstacle when traveling from A to B, but not from B to A). This could be expressed as the following MR time(go(A,B))==time(go(B,A)). In this relation, (A,B) is the source test case and (B,A), created by switching the inputs, is the follow-up test case. Every metamorphic relation could be instantiated into one or more metamorphic test by using specific input values and checking if the relation holds. If the relation is violated, the metamorphic test is said to have failed.

Simulink is the predominant CPSs modeling tool [8], especially in the automotive industry. Automated code generation compliant with the AUTOSAR standard is one of the reasons for this. Its wide usage has attracted the attention of researchers from the testing community to research on testing methods using Simulink [4], [11], [16], [23]. Several testing
techniques have been proposed for Simulink models, including test generation [17], test selection [1] or fault localization [9], [15]. Unlike these approaches, we propose the usage of MT to alleviate the test oracle problem in an AV case study modeled in Simulink. MT has been used to testing AVs. There are many successful studies on metamorphic testing of driveless vehicles [20], [22], [24], [25]. Their focus is on testing the controller, which is implemented through a neural network. Unlike these approaches, our technique focuses on testing AVs at system level and modeled in Simulink. To the best of our knowledge, this is the first paper that uses MT to test AVs at system level using Simulink.

III. APPROACH

We assessed several QoS metrics among the ones typically used in the domain in order to evaluate passenger experience. To do that, we carefully analysed the metrics proposed by Jahangirova et al. to develop test oracles for AVs [12]. These are the specified QoS metrics we selected for our MRs:

- **Time to destination (TD):** Time required for a vehicle to reach its destination. This is the relation between the speed and the distance to be driven.
- **Trajectory Offset (TO):** Trajectory offset is the difference of the Lateral Position (LP) from the start to the end of the driving task.

A test input in our case is composed by four inputs: (1) P_A and (2) P_B relate to the initial and destination points of the ego car in the map, (3) SP is the nominal speed and (4) OB is the number of obstacles that the car will have in its way during the simulation. We implemented a script that takes this as inputs and automatically executes a test, note that environment and road conditions are the same for all tests. As a test output, the above-mentioned QoS metrics are returned once the test case finishes its execution.

Following these QoS metrics and the test input we propose different relations for each of the metrics. For each Metamorphic Relation a Metamorphic Relation Input Pattern (MRIP) has been defined, which describes an input relation between the source and a follow-up test case exploited in different MRs. Specifically, we define the following MRIPs:

MRIP$_1$ – Increasing the nominal speed: This pattern represents those relations where the follow-up test case is constructed by increasing the nominal speed. When this happens the time to destination (TD) of the follow-up test case should be similar or lower to the source test case, represented as follows:

$$TD(\text{move}(P_A, P_B, SP, OB)) \lesssim TD(\text{move}(P_A, P_B, SP_s, OB)) \quad (\text{MR}1_{TD})$$

We can also define a similar relation for the Trajectory Offset (TO). When the speed is increased the TO might increase because the car becomes more difficult to be controlled, having the following MR:

$$TO(\text{move}(P_A, P_B, SP, OB)) \gtrsim TO(\text{move}(P_A, P_B, SP_s, OB)) \quad (\text{MR}1_{TO})$$

MRIP$_2$ – Including an obstacle in the path: In this pattern, the follow-up test case is constructed with an extra obstacle inside the vehicle’s path. When this happens the Time to Destination should increase, having the following MR:

$$TD(\text{move}(P_A, P_B, SP, OB_i)) \gtrsim TD(\text{move}(P_A, P_B, SP, OB)) \quad (\text{MR}2_{TD})$$

Conversely, the TO metric shall not change because the object detection implementation of our AV under test makes the ego-car to stop. Thus, the MR is defined as follows:

$$TO(\text{move}(P_A, P_B, SP, OB_i)) \simeq TO(\text{move}(P_A, P_B, SP, OB)) \quad (\text{MR}2_{TO})$$

MRIP$_3$ – Swapping initial and destination points: This pattern represents those MRs where the initial and destination positions are swapped in the test input. When this happens this should not affect neither the Time to Destination (TD) nor the Trajectory Offset (TO). This relations could be represented as follows:

$$TD(\text{move}(P_A, P_B, SP, OB)) \simeq TD(\text{move}(P_b, P_A, SP, OB)) \quad (\text{MR}3_{TD})$$

$$TO(\text{move}(P_A, P_B, SP, OB)) \simeq TO(\text{move}(P_b, P_A, SP, OB)) \quad (\text{MR}3_{TO})$$

IV. EVALUATION AND RESULTS

We evaluated our approach in an AV modeled in MATLAB/Simulink. We randomly generated 20 source test cases. For each source test case, its follow-up test cases were generated based on their MRIP. To assess the fault revealing capability of the defined metamorphic relations, mutation testing was used as it has been demonstrated to be a good substitute of real faults [13]. We generated a total of 8 mutants. The amount of mutants was not large because each test takes a long time to execute. Notice that, however, the amount of mutants is similar to those used in other testing studies where Simulink models are used [1]. The case study and the experimental material is available for replication purposes [21].

Table I shows the obtained mutation scores for each MR, each MRIP and the combination of all MRs. By combining all the MRs we were able to detect all the mutants. MRIP1 had the lowest mutation score, killing 5 out of 8 mutants (i.e., 63% of mutants), whereas MRIP2 and MRIP3 killed 7 out of 8 mutants. As for the QoS metrics, the TD metric showed a higher mutation scores with MRIP2 and MRIP3, whereas TO obtained a higher score with the MRIP1. The results show that the combination of the defined six MRs were able of killing all the seeded faults. This suggests that the combination of multiple MRs can kill different types of faults.

<table>
<thead>
<tr>
<th>Metamorphic Relation</th>
<th>Mutation Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRIP1</td>
<td>50% 63% 100%</td>
</tr>
<tr>
<td></td>
<td>MR1$_{TD}$ 50%</td>
</tr>
<tr>
<td></td>
<td>MR1$_{TO}$ 63%</td>
</tr>
<tr>
<td></td>
<td>MR2$_{TD}$ 88%</td>
</tr>
<tr>
<td></td>
<td>MR2$_{TO}$ 75%</td>
</tr>
<tr>
<td></td>
<td>MR3$_{TD}$ 88%</td>
</tr>
<tr>
<td></td>
<td>MR3$_{TO}$ 50%</td>
</tr>
</tbody>
</table>

V. CONCLUSION

We have proposed a technique based on QoS-aware metamorphic testing applied to testing AVs modeled in Simulink. The experimental results suggest that the technique is effective at detecting faults.
REFERENCES

