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Abstract—This paper presents the implementation and expla-
nations of a remaining life estimator model based on machine
learning, applied to industrial data. Concretely, the model has
been applied to a bushings testbed, where fatigue life tests are
performed to find more suitable bushing characteristics. Different
regressors have been compared Environmental and Operational
Condition and setting variables as input data to prognosticate
the remaining life on each observation during fatigue tests, where
final model is a Random Forest was chosen given its accuracy and
explainability potential. The model creation, optimisation and
interpretation has been guided combining eXplainable Artificial
Intelligence with domain knowledge.

Precisely, ELI5 and LIME explainable techniques have been
used to perform local and global explanations. These were used
to understand the relevance of predictor variables in individual
and overall remaining life estimations. The achieved results have
been process knowledge gain and expert knowledge validation,
assertion of huge potential of data-driven models in industrial
processes and highlight the need of collaboration between expert
knowledge technicians and eXplainable Artificial Intelligence
techniques to understand advanced machine learning models.

Index Terms—Explainable Artificial Intelligence, interpret,
Machine Learning, data-driven model, Remaining Useful Life,
prognosis, industrial process, domain knowledge

I. INTRODUCTION

Nowadays, we are in the fourth revolution denominated as
Industry 4.0 (I4.0), which is based on Cyber Physical Systems
(CPS) and Industrial Internet of Things (IIoT). Its objective
is to improve and optimise industrial processes by adapting
software, sensors and intelligent control units to meet their
requirements [1].

One of the main opportunities identified in I4.0 is the main-
tenance optimisation by applying data-driven techniques to the
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massive amount of process data. This enables predictive and
proactive maintenance strategies, knowledge discovery and
process optimisation [2]. There are three type of approaches to
address the aforementioned challenges given their underlying
technique: expert-knowledge, data-driven and hybrid.

During the last years, Artificial Intelligence (AI) and Ma-
chine Learning (ML) models usage in industry has increased
due to the increase of available data and the difficulty of
modelling industrial data and machine behaviour relying only
on expert knowledge based models, due to their variability.

Many data-driven publications in industry nowadays are
based on complex ML models given their high accuracy.
Conversely, according to Zadeh’s Principle of Incompatibility
[3]: as the complexity of a system increases, our ability to
make precise and yet significant statements about its behavior
diminishes until a threshold is reached, beyond which precision
and significance (or relevance) become almost mutually exclu-
sive characteristics, what makes these ML models difficult to
interpret.

The development of data-driven models in industry faces
several challenges non-existent in other domains. One main
challenge is the variability of machine data: real machine
behaviour varies from theoretical knowledge due to tolerances,
mount adjustments, variations in Environmental and Opera-
tional Conditions (EOC) and other factors. This makes ma-
chines built under the same specifications behave differently.

To address the stated issues, this paper presents a work
where XAI techniques have been used to guide a prognosis
ML model creation and interpretation in an industrial use-
case of bushing testbeds. First, background and related work
are briefly presented in Section II. Section III defines the
conducted research work, its limitations and development
steps. Section IV describes the use-case and dataset used to



perform the experiments of this work. Section V presents and
discusses the research results. Finally, Section VI presents
general conclusions and possible future research lines.

II. BACKGROUND AND RELATED WORK

A. Industrial models

As stated in introduction, the types of models used in
industry can be classified by their methodology [4]:

1) Expert knowledge/model-based: use system’s failure
mechanisms knowledge to build a mathematical description
of its degradation, resulting in a white-box approach that is
easy to translate to physical meaning. Conversely, they are
difficult to implement in complex systems. The following
works present two types of models. Li, Y., T. R. Kurfess, and
S. Y. Liang [5] use a stochastic prognostics for Remaining
Useful Life (RUL) prediction on rolling element bearings.
Oppenheimer, Charles H., and Kenneth A. Loparo [6] propose
a physics-based approach for diagnostics and prognostics of
cracked rotor shafts.

2) Data-driven: try to predict the machine state based
on sensor data. They are composed of statistical methods,
reliability functions and artificial intelligence methods. These
are composed by grey-box models as fuzzy rule-based systems
[7] or bayesian networks [8], and black-box model like Ran-
dom Forest [8], eXtra Gradient Boosting (XGBoost) or deep
learning models. These data-driven approach does not need to
understand complex system’s physics. Usually, they are more
precise than expert-knowledge based on complex systems but
their results are difficult to relate to physical meaning. The
following two works are based on this type of models. Si et.
al in [9] use a Wiener-process based degradation model with
a recursive filter algorithm to estimate the RUL. Guo, Liang,
et al. in the publication [10] use a health indicator composed
by a Recurrent Neural Network (RNN) for RUL prediction in
bearings. Pichler et al. [11] present a fault detection approach
based on autocorrelation using logistic regression and Support
Vector Machines in reciprocating compressor valves.

3) Hybrid: approach combines knowledge-based and data-
driven approaches, resulting in a grey-box methodology. Two
relevant studies that use hybrid approach are the following.
A framework that combines model-based and data-driven
methods for RUL prediction on lithium-ion batteries proposed
by Liao, Linxia and F. Kottig [4]. An integrated prognostics
method composed by a hybrid model that qualifies uncertainty
for gear remaining life prediction published by Zhao, Fuqiong,
Z. Tian, and Y. Zeng [12].

It is hard to compare performance among works given their
performance is tied to used datasets and their characteristics.
Therefore, they commonly run different models to compare
performance.

B. Explainable Artificial Intelligence

1) Background: A. Adadi and M. Berrada in the work [13]
propose a classification of eXplainable Artificial Intelligence
(XAI) techniques based on three characteristics that they have:

• Complexity: the more complex the model is, the more
difficult it is to interpret.

• Scoop: where global interpretability techniques analyse
model’s overall logic and reasoning, and local inter-
pretability techniques analyse model’s decision based on
individual data observations.

• Level of dependency where 2 types of interpretability
techniques are distinguished: model-specific take advan-
tage of the particularities of the model handling it as
white-box and model-agnostic that are general techniques
applicable to different models since they treat models as
black-box.

The work by Arrieta et al. [14] presents an overview
of XAI, gathering concepts and taxonomies, and presenting
opportunities and challenges of the field. J. M. Alonso, Ciro
Castiello, and Corrado Mencar present a bibliometric analysis
paper about XAI works [15], concluding that one third of
works belong to the fuzzy logic field. J. M. Alonso, L.
Magdalena, and S. Guillaume present a methodology to gen-
erate interpretable linguistic knowledge based on fuzzy logic;
combining expert knowledge and data-extracted knowledge
[16].

2) Common techniques: There are different XAI techniques
available, which the book by Samek et al. [17] classifies
into four groups regarding their underlying technique. Ap-
proximation using local surrogate functions samples neigh-
bours of an observation to perform local explainability as
Local Interpretable Model-Agnostic Explanations (LIME) [18]
does. Local perturbations analyse how perturbations on an
observation change model’s output, i.e. Sensitivity Analysis
feature importance technique proposed for Random Forests
[19], that was generalised afterwards [20]. Propagation-based
approaches integrate in model structure using local redis-
tribution rules based on methods as Layer-wise Relevance
Propagation (LRP) [21]. Finally, Meta-explanations use tech-
niques like Spectral relevance analysis (SpRAY) [22] and
SHapley Additive exPlanations (SHAP) [20] that aggregate
local explanations to obtain global explanations.

3) XAI in industry: industrial companies and their tech-
nicians need a tool that is accurate but at the same time
understandable to trust it and know in which cases it works
well and in which it does not.

Nowadays there are very few published works that use
explainability to understand complex and black-box data-
driven ML models in industry. Most publications lack of
XAI techniques since they are based on classifiers to classify
new data into already known failure types, which makes the
diagnosis step denominated as Root Cause Analysis (RCA)
straightforward. However, some works use XAI to explain how
these algorithms work. For instance, the publication by J.R.
Rehse, N. Mehdiyev and P. Fettke [23] presents an explain-
ability work applied to a smart factory. They implement a DL-
based Predictive Maintenance (PdM) system using Long Short
Term Memory (LSTM). They focus on post-hoc explanations
so that their experts can trust the decisions taken by the model.
As authors state, they perform a binary classification problem,



using global feature importance and local explanations for
process outcome predictions obtained by the applied deep
neural network, complemented with textual explanations. They
state that they are working on calculating saliency maps, which
shows which parts of input data have influence on model
output, and visualisation techniques on original or latent space
of stacked Autoencoders to make them more interpretable.

Another application of XAI techniques in industry is the
one proposed by M. Carletti, C. Masiero, A. Beghi and G.A.
Susto [24], a feature importance evaluation approach designed
for Isolation Forest to understand the detected anomalies by
the model and perform diagnosis in unsupervised way.

The presented works show applications of ML models com-
bined with XAI techniques to meet industrial requirements.

III. CONDUCTED RESEARCH

This section explains the conducted research work and steps
to achieve the results presented in the following section.

A. Work and limitations

This work focuses on the application of a ML model to
predict the remaining useful life of fatigue tests based on
experiment characteristics and their monitored variables. Con-
cretely, the model predicts the remaining time of experiments
in each data observation, considering that components are
useful until fatigue failure happens. This model will be used
to understand which are the features that have more influence
in the experiments’ remaining time and find relations among
experiments.

Its main contribution is intended to reduce the number of
experiments necessary to categorise each tested characteristic,
helping to optimise experiment design strategy. This will re-
duce the time and resources needed to test each experimented
characteristics by only focusing on the most relevant variables.

To achieve that, the influence of variables in the duration of
experiments will be analysed to infer knowledge. This process
will combine expert-knowledge and XAI techniques to explain
model’s decisions. Furthermore, explainability techniques will
be used to analyse experiment characteristics grouped by
feature relevance.

B. Development steps

The development steps of this work are based on CRISP-
DM [25], adapted to industrial data characteristics and focused
on understanding the process, dataset and created model with
the objective of explaining its predictions.

The first stage was to understand how the physical process
works theoretically and practically, understanding its underly-
ing mechanics. This permits to learn insight about the data to
be analysed afterwards, with the objective of learning about
the variables that influence the experiments and how they are
correlated.

The second stage was to perform a preliminary data analysis
of the dataset in order to understand the data and dive into the
process combined with domain knowledge.

The third stage was generating the ML-based remaining life
estimator. Its development consisted of standard ML develop-
ment steps that are explained in the following paragraphs.

We performed preprocessing by replacing each Not Avail-
able (N/A) value with the mean of that variable in the train
dataset, encoded categorical variables and decided to not
normalise or standardise the variables because the chosen
model did not need it, so the original magnitude and distri-
bution was kept. The dataset partition for model training and
tested was performed in the following way: a 10-fold cross-
validation stage. It has been also used to analyse not only
models prediction stability through data partitions but also
analysis whether data random split stability; concretely 80%
of experiments for training and remaining 20% for testing.

After preprocessing, feature engineering was performed.
Feature selection was done to reduce the number of predictor
features because a high dimension of correlated variables adds
complexity and information redundancy. Firstly, we removed
the variables with zero variance, aka constants. After that, we
made a correlation analysis using heatmaps and, together with
expert knowledge technicians, we removed derived variables
since they were combination of other variables, selecting only
the sensor and setting variables. After that, we tested several
feature selection techniques to compare them and choose the
one that achieved best error score. Concretely, the following
techniques have been used and compared. Recursive Feature
Elimination, to remove one feature at a time using default
model feature importance. Selecting the most relevant feature
incrementally using ELI5’s [26] black-box feature importance
for the model trained with all features, starting with the highest
relevant feature, then adding the second one, and so on and
so forth until all features are selected. minimum Redundancy
Maximum Relevance (mRMR), based on mutual information
[27], that maximises the relevance of selected features to the
target feature and at the same time minimises the redundancy
among them. Selecting the k-best features according to mutual
information and ftest indicators. Finally, using Lasso and
Ridge linear regressors’ feature weights as importance for
feature selection.

Feature extraction and dimensionality reduction methods
could have also been used to reduce even more the dimen-
sionality and enhance model performance, but these new
features are more difficult to understand than original pro-
cess data. Therefore, we decided not to use this techniques,
also supported on the fact that we had already reduced the
dimensionality of the selected variables to a small subset and
afterwards we saw the model performed correctly with them.

The ML model selected for the work should be a regressor
that, given an observation of experiment data predicts the
number of seconds remaining until it ends. We decided to
compare common ML regression models of State of the
Art with the exception of deep learning models, to fit the
dataset and use-case requirements. The models analysed in the
dataset have been Gaussian Naive Bayes, Linear Support Vec-
tor Regressor, K-Neighbors Regressor, Linear Discriminant
Analysis, Random Forest Regressor and XGBoost Regressor,



using their default parameters for python’s library scikit-learn.
All models have been used for supervised regression prob-
lems and use different techniques to predict the target class.
Despite the last two models are tree-based algorithms, their
differences have effect on model explainability. Random Forest
Regressor is a bagging ensemble method, which underlies
on the combination of less precise uncorrelated models to
improve the precision and generalisation in an assembled
model. It aggregates many random Regressor Trees trained
with different features and data subsets, forming a forest. The
regressions are done by averaging trees’ regressions. XGBoost
Regressor works similarly to Random Forest, ensembling trees
to create a forest. Conversely, this is a boosting ensemble
method, which aggregates new trees to fix the errors generated
by existing trees based on gradient boosting method.

After that, we chose the evaluation metrics for the model
to measure the overall performance of the model. Then, we
run the model, analysed its accuracy ranking using the chosen
score, analysed the explainability and iterated in these steps
until an acceptable model was obtained.

The explainability of this model was computed and inter-
preted using local and global explainability methods. Con-
cretely, ELI5’s global explanations were used to analyse the
global influence of each variable in model predictions together
with expert knowledge. This technique was chosen since it
removes a variable, concretely it shuffles attribute values to
randomise the chosen variable, and analyses model’s perfor-
mance decrease. Local explanations were also calculated using
the library LIME, where the contribution of each predictor
to model’s output is calculated. This is done by measuring
how each variable contributes either positively or negatively
to the prediction, fitting a linear regression to its neighbour
observations. The reason why linear models are used is that
these are inherently interpretable, so they are used to analyse
the behaviour of small perturbations in the observations.

The fourth and last stage takes as reference the final model
developed in the previous step, adapting it to fit the data
grouped by experiments of similar characteristics. First, we
chose by which experiment characteristics we were interested
to group the data based on similarity. Afterwards, one model
was created for each group. The objective was to create a
model to analyse how features’ relevance varied among models
of different experiment groups, to find groups that shared
patterns. For that, the Agglomerative Clustering model was
chosen to rank features using the feature importance calculated
using the library ELI5, the same global explainability method
used to rank features in the previous stage. Agglomerative
Clustering is an unsupervised technique to group the data
into the selected k number of clusters. It uses a distance
function to calculate the distance among observations in the
feature space. It first assigns a cluster to each observation
and then it recursively merges the clusters that are near
given their observations, reducing the number of clusters
while augmenting their size. This procedure is continued until
there only remain the selected k number of clusters. One
advantage of this algorithm is that it allows to visualise the

Fig. 1. Bushing testbed.

distance among observations and clusters in a hierarchical
scheme named dendrogram. In addition, it enables to select
the number of clusters automatically: by selecting the distance
limit in height to stop merging the clusters when visualising
the dendrogram.

Model explanations were analysed together with expert
technicians, taking into account the theoretical and experimen-
tally inferred mechanical knowledge from the use-case in order
to test whether they were comparable or not, validating that
knowledge using real data.

IV. APPLICATION DATA

A. Bushings testbed

The data collected for the research of this work is based on
a set of experiments performed in a fatigue testbed. Their aim
is to find the characteristics under which bushings are able to
tolerate the biggest accumulated load, which equals to seeking
characteristics that make experiments last longer. The discov-
ered optimal operational characteristics will be extrapolated to
real machines in order to improve their components’ working
life. This is the reason why testbed’s EOCs are similar or
proportional to real ones.

The testbed consists of a hydrodynamic journal bearing and
a shaft that is rotating inside it. This system is used to reduce
friction between moving and static parts; with applications
in switching between rotary and linear motion in big load
operation environments. The gap between them is lubricated
with oil, enabling the hydrodynamic state. Fig. 1 contains a
picture of the testbed. The PhD dissertation by Hassasin [28]
presents the underlying theory of this type of bushings and
uses a testbed to apply High Frequency Vibration Analysis
techniques for PdM.

Expert technicians can perform general approximate rea-
soning and predict when the experiment will end just few
seconds before failure occurs, by monitoring sensor variables
and analysing them based on domain knowledge. However,
they do not understand the influence of each variable in their
remaining time and neither they can predict the remaining life
until last observations.



B. Dataset description

The dataset consists of 576 experiments and 97 EOC
variables. Some variables are time-series data collected with
a sampling rate of 1 sample per second. The remaining are
process variables composed of experiment characteristics and
identifiers, so they are constant for each experiment.

The collected time-series variables are from sensors related
to speed, load, temperature and lubrication. Furthermore, ma-
terial quality has been measured using testers.

Given the industrial nature of data, the same characteristics
tested in different experiments have different results. This
happens due to differences in components’ manufacturing
tolerances, environmental conditions, assembly adjustments
etc.

The experimenting procedure consists of first choosing
which characteristics to test in a set of experiments. After
that, several experiments are performed using the chosen
characteristics and average duration is calculated to abstract
from components’ manufacturing variability.

The dataset lacks of incorrect or unfinished experiments
because expert technicians have removed them.

V. RESULTS AND DISCUSSION

A. Results

The visual and analytical analysis of the dataset helped
understand and identify data characteristics and how fatigue
experiments were performed. Moreover, a summary data dic-
tionary was created in a table of 97 rows and 6 columns. Its
columns contained the following information of the recorded
variables: name, type, unit, type of feature, meaning and
comments, and each row contained the information of each
recorded variable.

There is the need to measure the performance of the
developed models for any ML task, in order to measure the
precision with which the models perform the desired task,
allow comparisons among different models and assist in model
optimisation in architecture selection and parameter setting.

Two common techniques to evaluate regression models are
Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE). MAE is the normalised sum of all the absolute errors
between the real and predicted values (1). RMSE is the square
root of the normalised sum of all the squared errors between
real and predicted values (2).

MAE =

∑n
i=1 |yi − ŷi|

n
(1)

RMSE =

√∑n
i=1(yi − ŷi)2

n
(2)

In the aforementioned equations, i indicates the number
of observation, yi is the real value of the variable in the
observation i and ŷi is the predicted value for the variable
in the observation i.

The MAE metric is more intuitive to understand given that
it indicates the absolute error performed by the model on

TABLE I
MODEL COMPARISON BEFORE FEATURE SELECTION PROCESS.

Algorithm RMSE MAE
mean std mean std

Gaussian Naive Bayes 450.39 16.82 331.59 16.56
Linear Support Vector Re-
gressor

421.14 208.67 300.69 137.16

K-Neighbors Regressor 258.57 20.65 163.44 13.20
Linear Discriminant Analy-
sis

106.54 18.12 69.94 5.67

XGBoost Regressor 53.96 12.33 36.10 5.11
Random Forest Regressor 61.64 12.97 36.29 5.43

observations on average. In contrast, RMSE is more sensible
to outliers than MAE, being interesting for some use-cases.
Therefore, RMSE has been chosen as a metric to train models
so that they are more robust for outliers. For model ranking,
both metrics are analysed and for model overall performance
evaluation MAE is chosen, given it is easier to interpret and
understand even for domain technicians.

Table I shows the aforementioned machine learning regres-
sion algorithms performance of 10-fold cross-validation using
the MAE and RMSE metrics.

The models that obtained best results were the tree ensemble
ones, aka Random Forest and XGBoost. On average, XGBoost
obtains better RMSE and slightly better MAE than Random
Forest. However, given their standard deviation, we used t test
to analyse whether there is enough statistical evidence for
models’ performance being different or not along 10 folds
given MAE and RMSE metrics. The results show there is
not statistical evidence on performance metrics and therefore,
the criteria for choosing one model above the other was
chosen to be explainability facility, another objective for the
created model. Thus, Random Forest Regressor was picked
over XGBoost Regressor given it is simpler and provides naive
feature explanation by feature importance, which makes it is
easier to interpret.

Then, the chosen Random Forest model’s robustness was
analysed by executing it with 20 random initialisation seeds
over the mentioned 10 folds cross validation. The results show
it is stable along different folds with a average mean of 35.89
and standard deviation of 5.70, given experiments duration
is several hundreds of seconds and domain technicians can
only estimate remaining life in experiments latter observations.
Based on this results, we split the dataset in a random subset
of 80% for training and 20% for testing to iterate over feature
selection and rank models much faster.

After performing feature selection using expert knowledge
and evaluation of feature importance for the model, the result
was a Random Forest Regressor model executed on a subset of
10 original features that obtains a MAE of 41.29 on new split
test data. Concretely, five setting features, four sensor features
and an operational feature were selected. Fig. 2 shows the
performance of the model during an average experiment. Table
II shows the same experiments as Table I after performing
feature selection, using the same 10-fold cross validation and
metrics for evaluation. Given the results are similar for last



TABLE II
MODEL COMPARISON AFTER FEATURE SELECTION, SELECTING THE 10

MOST RELEVANT FEATURES.

Algorithm RMSE MAE
mean std mean std

Gaussian Naive Bayes 299.25 20.50 215.83 13.28
Linear Support Vector Re-
gressor

954.88 1332.73 770.48 1066.45

K-Neighbors Regressor 264.12 21.98 193.80 16.58
Linear Discriminant Analy-
sis

187.56 15.86 140.57 12.71

XGBoost Regressor 52.54 9.68 36.29 4.32
Random Forest Regressor 58.36 11.86 38.25 4.80

Fig. 2. Stage three’s final model remaining life prediction on an average
fatigue test. x axis indicates the number of observation whereas y axis
indicates the remaining time in seconds. The blue line indicates the real
remaining life and the red indicates the predicted one by the model.

two models, the selected 10 feature subset keeps representative
information from the original data, simplifying the problem
and thus facilitating explainability.

Global explanations have been used to guide feature selec-
tion process and also to understand overall model performance
by analysing feature importance. This enables feature ranking
and analysis of contribution to model prediction. Moreover,
this enabled to contrast model’s overall performance with do-
main technicians conclusions given their expertise and analysis
of experiment’s results, which turned out to be similar. Like-
wise, local explanations are used to analyse model behaviour
by explaining predictions of several experiments observations.
Domain technicians have found local explanations application
on analysing how target variable is influenced by changes
in selected features. This could be used for experiments
setting optimisation to achieve better results. Conversely, local
explainability results could be improved given linear models
may not be able to model non-linear data correctly.

Local explanations have been extracted from the previous
model using the library LIME. Fig. 3 shows how each feature
affects model’s estimation given an experiment observation.
On the top part, model’s prediction for the recorded data
instance is shown; in this case it is estimated to be 836. The

Fig. 3. Local explanation of a remaining life prediction in an experiment
observation. The prediction equals the real value: 836 seconds.

Fig. 4. Global explanation of remaining life predictor model. It shows
feature importance ordered from highest to lowest. The relevance magnitude
is indicated in x axis.

Feature list shows names of predictor features in current obser-
vation ordered by importance. The bottom left graphic shows
how each feature of previous table affects the aforementioned
estimated value. The features are ordered by local importance
top to bottom, where value indicates how much influence each
has on current prediction and the color indicates in which
direction its change affects model’s prediction.

Fig. 4 shows the feature importance calculated on the afore-
mentioned model based on ELI5. Global explanations were
obtained using feature permutation technique, which consists
of randomly shifting only the values of one feature and
not modifying the rest. Then, model score changes between
original and this data are analysed for each predictor shifting,
being an objective way to analyse which features are more
important for the model.

According to the figure, the first 5 variables concentrate
most of the information the model needs, while remaining 5
have less importance.

To the already mentioned model of 10 features, automatic
data-driven feature selection techniques were applied with the
objective to select only the most relevant variables that still
achieve an acceptable performance on the model. The feature
selection techniques and their results are summarised in Table



TABLE III
FEATURE SELECTION TECHNIQUES.

Algorithm 5 features
MAE

10 to 3 fea-
tures mean
MAE

Recursive Feature Elimination,
model default feature importance,
step=1

45.74 57.37

Select most relevant incrementally,
ELI5 feature importance, step=1

45.74 57.58

mRMR, using MIQ, reduce step=1 109.67 78.67
kbest, mutual info 112.02 103.16
kbest, ftest 191.46 127.36
select lassoCV 176.63 146.07
select ridgereg 218.13 176.38
Feature selection techniques tested to reduce dimensionality
of model from 10 to 3 features using sklearn, mRMR and
XAI-based methods

Fig. 5. Dendrogram of clustering feature importance score of models trained
with data grouped by process variables.

III. The results are ordered by lowest to highest MAE of the
chosen model with selected 5 features.

Finally, these are the experiments performed in the fourth
stage of the work, using the data grouped under same char-
acteristics of setting variables. First, the calculated model
importance scores were used as new variables to identify
the groups. Using this data, an agglomerative clustering was
performed. Its results were analysed by cutting the dendrogram
of Fig. 5 into different cluster sizes, from 2 to 10.

The dendrogram shows that two or three clusters could be
clearly distinguished, by setting the maximum cluster distance
to 100 and 60 respectively. To understand the clusters in a
visual way, we created a plot using two representative variables
for experiments’ results. Fig. 6 shows the results of choosing
a cluster size of 3.

The image shows that, in the chosen plot, the clusters are
disperse. We expected to assign groups that were near to the
same cluster and the ones that were far to other clusters, but
this does not happen.

B. Discussion

This section discusses the results obtained after performing
experiments of stages three and four of this work.

Table III discusses the outcome of comparing feature selec-
tion algorithms:

Fig. 6. Results of clustering experiments. x axis shows a feature related to
fatigue and y axis shows a experiment setting variable. Each ball represents
a group of experiment data and its color indicates the cluster assigned by
the algorithm. The coloured lines that join these balls identify experiment
characteristics.

1) The algorithms that obtain the best results are based on
regression algorithm’s importance metrics.

2) After them, mRMR obtains the best results.
3) Linear models are not an accurate feature selection

algorithm for this problem because they are unable to
model data’s non-linearity.

The selected subset of variables is suitable given that the
developed model is accurate. Its performance has also been
visualised using plots of each experiment in test data, enabling
models’ performance visual analysis. After analysing the top
selected features’ performance, the most relevant features are
setting variables. The reason is that four out of five most
relevant belong to this type, and the remaining five have much
less importance.

Regarding the results of applying XAI techniques to models,
this paragraph discusses their suitability. Global explanations
are fair because the model performs a random shift of feature
values. However, local explanations might be unfair given
that there are categorical variables, whose change can have
high impact on model’s output. Even so, global and local
explainability work accordingly, weighting feature importance
in a similar way.

On one hand, the third stage’s model works well. Its aim is
to optimise the process of fatigue tests reducing the number
of experiments and inferring knowledge about which are the
variables that influence remaining life the most. The next
step will be its industrialisation by deploying it into the
Programmable Logic Controller (PLC) of bushing testbed so
technicians are able to see the predicted remaining life in real
time for new fatigue tests. After that, the evolution of model’s
performance will be tracked and a retraining strategy will be
defined.

On the other hand, the models generated for each group
of experiments in fourth stage have not improved their per-
formance over the previous general model. A possible reason
could be that there is much less data available for training each
of them, which makes the model difficult to generalise. More-
over, these models cannot be grouped by feature importance
because, as the clustering model has shown, the generated



groups do not show any clear relation.

VI. CONCLUSIONS

All in all, the result of this work is a ML model that predicts
accurately remaining life of experiments and gives global and
local explanations in order to understand its predictions, being
industrial process knowledge crucial for both accuracy and
understandability goals.

Therefore, data scientist mindset and expert knowledge
combination is the path to integrate complex data-driven
models into industrial companies, resulting in hybrid models.
This can be achieved by combining models with XAI tech-
niques, taking advantage of expert knowledge to guide: model
creation, interpretation and optimisation, in order to link its
predictions with physical meaning. This will enable global and
local understanding of model predictions, even in the case of
black-box ML models.

Moreover, future research is promising to integrate explain-
able machine learning models to optimise, automatise and
assist knowledge discovery in industrial processes based on
data. This would bring the reduction in maintenance costs and
improve machines availability, performance and quality.

With the mentioned objectives in mind, future research in
this field could move towards obtaining an interpretability-
accuracy trade-off. Accordingly, models should be accurate
enough to perform the selected task and at the same time
interpretable. Thus, expert technicians could infer knowledge,
perform diagnosis and finally trust their predictions.
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