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Abstract

The demand for high-speed communications required by cutting-edge applications has put
a strain on the already saturated wireless spectrum. The incorporation of antenna arrays
at both ends of the communication link has provided improved spectral e�ciency and link
reliability to the inherently complex wireless environment, thus allowing for the thriving
of high data-rate applications without the cost of extra bandwidth consumption. As a
consequence to this, multiple-input multiple-output (MIMO) systems have become the key
technology for wideband communication standards both in single-user and multi-user setups.

The main di�culty in single-user MIMO systems stems from the signal detection stage
at the receiver, whereas multi-user downlink systems struggle with the challenge of enabling
non-cooperative signal acquisition at the user terminals. In this respect, precoding techniques
perform a pre-equalization stage at the base station so that the signal at each receiver
can be interpreted independently and without the knowledge of the overall channel state.
Vector precoding (VP) has been recently proposed for non-cooperative signal acquisition
in the multi-user broadcast channel. The performance advantage with respect to the more
straightforward linear precoding algorithms is the result of an added perturbation vector
which enhances the properties of the precoded signal. Nevertheless, the computation of the
perturbation signal entails a search for the closest point in an in�nite lattice, which is known
to be in the class of non-deterministic polynomial-time hard (NP-hard) problems.

This thesis addresses the di�culties that stem from the perturbation process in VP
systems from both theoretical and practical perspectives. On one hand, the asymptotic
performance of VP is analyzed assuming optimal decoding. Since the perturbation process
hinders the analytical assessment of the VP performance, lower and upper bounds on the
expected data rate are reviewed and proposed. Based on these bounds, VP is compared to
linear precoding with respect to the performance after a weighted sum rate optimization,
the power resulting from a quality of service (QoS) formulation, and the performance when
balancing the user rates.

On the other hand, the intricacies of performing an e�cient computation of the pertur-
bation vector are analyzed. This study is focused on tree-search techniques that, by means
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of an strategic node pruning policy, reduce the complexity derived from an exhaustive search
and yield a close-to-optimum performance. To that respect, three tree-search algorithms are
proposed. The �xed-sphere encoder (FSE) features a constant data path and a non-iterative
architecture that enable the parallel processing of the set of vector hypotheses and thus, allow
for high-data processing rates. The sequential best-node expansion (SBE) algorithm applies
a distance control policy to reduce the amount of metric computations performed during
the tree traversal. Finally, the low-complexity SBE (LC-SBE) aims at reducing the com-
plexity and latency of the aforementioned algorithm by combining an approximate distance
computation model and a novel approach of variable run-time constraints.

Furthermore, the hardware implementation of non-recursive tree-search algorithms for
the precoding scenario is also addressed in this thesis. More speci�cally, the hardware
architecture design and resource occupation of the FSE and K-Best �xed-complexity tree-
search techniques are presented. The determination of the ordered sequence of complex-
valued nodes, also known as the Schnorr-Euchner enumeration, is required in order to select
the nodes to be evaluated during the tree traversal. With the aim of minimizing the hardware
resource demand of such a computationally-expensive task, a novel non-sequential and low-
complexity enumeration algorithm is presented, which enables the independent selection of
the nodes within the ordered sequence. The incorporation of the proposed enumeration
technique along with a fully-pipelined architecture of the FSE and K-Best approaches, allow
for data processing throughputs of up to 5 Gbps in a 4× 4 antenna setup.



Resumen

La demanda de comunicaciones de alta velocidad requeridas por las aplicaciones más van-
guardistas ha impuesto una presión sobre el actualmente saturado espectro inalámbrico. La
incorporación de arrays de antenas en ambos extremos del enlace de comunicación ha pro-
porcionado una mayor e�ciencia espectral y �abilidad al inherentemente complejo entorno
inalámbrico, permitiendo así el desarrollo de aplicaciones de alta velocidad de transmisión
sin un consumo adicional de ancho de banda. Consecuentemente, los sistemas multiple-input
multiple output (MIMO) se han convertido en la tecnología clave para los estándares de
comunicación de banda ancha, tanto en las con�guraciones de usuario único como en los
entornos multiusuario.

La principal di�cultad presente en los sistemas MIMO de usuario único reside en la etapa
de detección de la señal en el extremo receptor, mientras que los sistemas multiusuario en
el canal de bajada se enfrentan al reto de habilitar la adquisición de datos no cooperativa
en los terminales receptores. A tal efecto, las técnicas de precodi�cación realizan una etapa
de pre-ecualización en la estación base de tal manera que la señal en cada receptor se pueda
interpretar independientemente y sin el conocimiento del estado general del canal. La pre-
codi�cación vectorial (VP, del inglés vector precoding) se ha propuesto recientemente para
la adquisición no cooperativa de la señal en el canal de difusión multiusuario. La principal
ventaja de la incorporación de un vector de perturbación es una considerable mejora en el
rendimiento con respecto a los métodos de precodi�cación lineales. Sin embargo, la adquisi-
ción de la señal de perturbación implica la búsqueda del punto más cercano en un reticulado
in�nito. Este problema se considera de complejidad no determinística en tiempo polinomial
o NP-complejo.

Esta tesis aborda las di�cultades que se derivan del proceso de perturbación en sistemas
VP desde una perspectiva tanto teórica como práctica. Por un lado, se analiza el rendimiento
de VP asumiendo una decodi�cación óptima en escenarios de alta relación señal a ruido.
Debido a que el proceso de perturbación di�culta la evaluación analítica del rendimiento de
los sistemas de VP, se proponen y revisan diversas cotas superiores e inferiores en la tasa
esperada de transmisión de estos sistemas. En base a estas cotas, se realiza una comparación
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de VP con respecto a la precodi�cación lineal en el ámbito de la capacidad suma ponderada,
la potencia resultante de una formulación de calidad de servicio y el rendimiento obtenido
al equilibrar las tasas de transmisión de los usuarios.

Por otro lado, se han propuesto nuevos procedimientos para un cómputo e�ciente del
vector de perturbación. Estos métodos se basan en técnicas de búsqueda en árbol que, por
medio de diferentes políticas de podado, reducen la complejidad derivada de una búsqueda
exhaustiva y obtienen un rendimiento cercano al óptimo. A este respecto, se proponen tres
algoritmos de búsqueda en árbol. El �xed-sphere encoder (FSE) cuenta con una complejidad
constante y una arquitectura no iterativa, lo que permite el procesamiento paralelo de varios
vectores candidatos, lo que a su vez deriva en grandes velocidades de procesamiento de datos.
El algoritmo iterativo denominado sequential best-node expansion (SBE) aplica una política
de control de distancias para reducir la cantidad de cómputo de métricas realizadas durante la
búsqueda en árbol. Por último, el low-complexity SBE (LC-SBE) tiene por objetivo reducir
la complejidad y latencia del algoritmo anterior mediante la combinación de un modelo de
cálculo aproximado de distancias y una estrategia novedosa de restricción variable del tiempo
de ejecución.

Adicionalmente, se analiza la implementación en hardware de algoritmos de búsqueda en
árbol no iterativos para los escenarios de precodi�cación. Más especí�camente, se presen-
tan el diseño de la arquitectura y la ocupación de recursos de hardware de las técnicas de
complejidad �ja FSE y K-Best. La determinación de la secuencia ordenada de nodos de na-
turaleza compleja, también conocida como la enumeración de Schnorr-Euchner, es vital para
seleccionar los nodos evaluados durante la búsqueda en árbol. Con la intención de reducir al
mínimo la demanda de recursos de hardware de esta tarea de alta carga computacional, se
presenta un novedoso algoritmo no secuencial de baja complejidad que permite la selección
independiente de los nodos dentro de la secuencia ordenada. La incorporación de la técnica
de enumeración no secuencial junto con la arquitectura fully-pipeline de los algoritmos FSE
y K-Best, permite alcanzar velocidades de procesamiento de datos de hasta 5 Gbps para un
sistema de 4 antenas receptoras.



Laburpena

Aplikazio abangoardistek beharrezko duten abiadura handiko komunikazioen eskaerak pre-
sio handia ezarri du dagoeneko saturatuta dagoen haririk gabeko espektruan. Komunikazio
loturaren bi muturretan antena array-en erabilerak eraginkortasun espektral eta �dagarri-
tasun handiagoez hornitu du berez konplexua den haririk gabeko ingurunea, modu honetan
banda zabalera gehigarririk gabeko abiadura handiko aplikazioen garapena ahalbidetuz. Ho-
nen ondorioz, multiple-input multiple output (MIMO) sistemak banda zabaleko komunikazio
estandarren funtsezko teknologia bihurtu dira, erabiltzaile bakarreko ezarpenetan hala nola
erabiltzaile anitzeko inguruneetan.

Erabiltzaile bakarreko MIMO sistemen zailtasun garrantzitsuena hartzailean ematen den
seinalearen detekzio fasean datza. Erabiltzaile anitzeko sistemetan, aldiz, erronka nagusiena
datu jasotze ez kooperatiboa bermatzea da. Prekodi�kazio teknikek hartzaile bakoitzaren
seinalea kanalaren egoera orokorraren ezagutzarik gabe eta modu independiente baten inter-
pretatzea ahalbidetzen dute estazio nagusian seinalearen pre-ekualizazio fase bat inposatuz.
Azken aldian, prekodi�kazio bektoriala (VP, ingelesez vector precoding) proposatu da erabil-
tzaile anitzeko igorpen kanalean seinalearen eskuratze ez kooperatiboa ahalbidetzeko. Per-
turbazio seinale baten erabilerak, prekodi�katutako seinalearen ezaugarriak hobetzeaz gain,
errendimenduaren hobekuntza nabarmen bat lortzen du prekodi�kazio linearreko teknike-
kiko. Hala ere, perturbazio seinalearen kalkuluak sare in�nitu baten puntu hurbilenaren
bilaketa suposatzen du. Problema honen ebazpenaren konplexutasuna denbora polinomi-
alean ez deterministikoa dela jakina da.

Doktoretza tesi honen helburu nagusia VP sistemetan perturbazio prozesuaren ondorioz
ematen diren zailtasun teoriko eta praktikoei irtenbide egoki bat ematea da. Alde batetik,
seinale/zarata ratio handiko ingurunetan VP sistemen errendimendua aztertzen da, beti ere
deskodetze optimoa ematen dela suposatuz. Perturbazio prozesuak VP sistemen errendi-
menduaren azterketa analitikoa oztopatzen duenez, data transmisio tasaren hainbat goi eta
behe borne proposatu eta berrikusi dira. Borne hauetan oinarrituz, VP eta prekodi�kazio
linealaren arteko errendimendu desberdintasuna neurtu da hainbat aplikazio ezberdinen ere-
muan. Konkretuki, kanalaren ahalmen ponderatua, zerbitzu kalitatearen formulazio baten
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ondorioz esleitzen den seinale potentzia eta erabiltzaileen datu transmisio tasa orekatzean
lortzen den errendimenduaren azterketa burutu dira.

Beste alde batetik, perturbazio bektorearen kalkulu eraginkorra lortzeko metodoak ere
aztertu dira. Analisi hau zuhaitz-bilaketa tekniketan oinarritzen da, non egitura sinple baten
bitartez errendimendu ia optimoa lortzen den. Ildo horretan, hiru zuhaitz-bilaketa algoritmo
proposatu dira. Alde batetik, Fixed-sphere encoder -aren (FSE) konplexutasun konstateak
eta arkitektura ez errekurtsiboak datu prozesaketa abiadura handiak lortzea ahalbidetzen
dute. Sequential best-node expansion (SBE) delako algoritmo iteratiboak ordea, distantzia
kontrol politika baten bitartez metrika kalkuluen kopurua murriztea lortzen du. Azkenik,
low-complexity SBE (LC-SBE) algoritmoak SBE metodoaren latentzia eta konplexutasuna
murriztea lortzen du ordezko distantzien kalkuluari eta exekuzio iraupenean ezarritako muga
aldakorreko metodo berri bati esker.

Honetaz gain, prekodi�kazio sistementzako zuhaitz-bilaketa algoritmo ez errekurtsiboen
hardware inplementazioa garatu da. Zehazki, konplexutasun �nkoko FSE eta K-Best algorit-
moen arkitektura diseinua eta hardware baliabideen erabilera landu dira. Balio konplexuko
nodoen sekuentzia ordenatua, Schnorr-Euchner zerrendapena bezala ezagutua, funtsezkoa
da zuhaitz bilaketan erabiliko diren nodoen aukeraketa egiteko. Prozesu honek beharrez-
koak dituen hardware baliabideen eskaera murrizteko, konplexutasun bajuko algoritmo ez
sekuentzial bat proposatzen da. Metodo honen bitartez, sekuentzia ordenatuko edozein
nodoren aukeraketa independenteki egin ahal da. Proposatutako zerrendapen metodoa eta
estruktura fully-pipeline baten bitartez, 5 Gbps-ko datu prozesaketa abiadura lortu daiteke
FSE eta K-Best delako algoritmoen inplementazioan.
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Capítulo 1

Introducción

Los canales inalámbricos multiple-output multiple-input (MIMO) han obtenido mucha aten-
ción en la última década debido a la notable mejora que ofrecen con respecto a los canales
de antena única en términos de e�ciencia espectral y �abilidad. La gran mayoría de trabajos
realizados hasta la fecha en torno a los sistemas MIMO se ha centrado en la problemática
de las comunicaciones punto a punto. Sin embargo, en los últimos años se han desarrollado
técnicas de comunicación MIMO multiusuario que consideran escenarios más complejos, pero
más realistas, con múltiples terminales que deben compartir los recursos de tiempo, espacio,
ancho de banda y potencia disponibles en una red inalámbrica.

Gran parte del esfuerzo dedicado hoy en día al estudio e innovación de técnicas multi-
antena se centra en los entornos MIMO multiusuario. Esto se debe a las ventajas inherentes
de este tipo de sistema inalámbrico frente a su precedente de usuario único. Entre los prin-
cipales bene�cios de los entornos MIMO multiusuario destacan su mayor inmunidad a varias
de las limitaciones en la propagación de los entornos MIMO de usuario único, tales como la
pérdida de rango del canal ocasionada por la correlación de las antenas. Estas propiedades
se obtienen gracias a la inherente separación entre los usuarios, y por lo tanto entre las
antenas, lo que deriva en un reducido coe�ciente de correlación. Asimismo, la propagación
de visión directa, la cual degrada en gran medida la comunicación en entornos MIMO con
multiplexación espacial, no supone un gran problema en los esquemas MIMO multiusuario.
Por último, MIMO multiusuario permite obtener una ganancia por multiplexación espacial
en la estación base sin la necesidad de que los equipos terminales dispongan de varias ante-
nas. Esto permite la implementación de dispositivos terminales pequeños y de bajo coste, ya
que la carga computacional y la complejidad de implementación se transladan a la estación
base.

Sin embargo, la utilización de esquemas MIMO multiusuario conlleva la resolución de
otros problemas inexistentes en el caso de las comunicaciones MIMO punto a punto. Gran
parte de dicha problemática reside en el canal de difusión que comprende la transmisión ori-
ginada en la estación base y dirigida a los usuarios. En este esquema de comunicaciones la
adquisición no cooperativa de los datos de los usuarios es vital para conservar la escalabilidad
del modelo. Esta tarea se lleva a cabo mediante la incorporación de técnicas de precodi�-
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cación en la estación base, para las cuales es imprescindible el conocimiento instantáneo del
estado del canal.

1.1 Motivación y Objetivos
La imposibilidad de cooperación entre terminales en la etapa de detección es la principal
causa de que la mayoría de las técnicas de detección de los entornos MIMO de usuario
único no se puedan implementar en los esquemas multiusuario. Sin embargo, al realizar
un preprocesado de la señal en la estación base, es posible que los terminales receptores
adquieran la información transmitida sin ningún tipo de cooperación o interacción entre
ellos [Joham04a]. Éste es el concepto principal de las técnicas de precodi�cación.

La etapa de precodi�cación se puede realizar de forma lineal [Peel05][Joham05b], apli-
cando un simple �ltro a la señal a transmitir, o de manera no lineal [Fischer02c][Hochwald05],
añadiendo elementos de procesamiento no lineales. Estos últimos ofrecen un mejor rendimi-
ento en términos de tasa de error, aunque su complejidad puede ser prohibitiva para ciertas
aplicaciones reales.

La precodi�cación vectorial es una técnica no lineal que mejora considerablemente el
rendimiento del sistema mediante la incorporación de un vector de perturbación en la etapa
previa al �ltrado lineal. A pesar de su excelente rendimiento, la aplicación de esta técnica
de transmisión plantea ciertas di�cultades. Por un lado, la adquisición de la señal de pertur-
bación implica la búsqueda del punto más cercano en un reticulado in�nito. Aunque a día
de hoy se han propuesto varias técnicas para la resolución de este problema, el cómputo de la
señal perturbadora sigue representando el principal cuello de botella para la implementación
de sistemas de precodi�cación vectorial. Por otro lado, el operador de módulo requerido en
los terminales para eliminar el efecto de la señal de perturbación di�culta el análisis teórico
de este tipo de sistemas no lineales. Esto se debe a que el patrón estadístico del ruido gaus-
siano blanco es modi�cado a su paso por el operador de módulo, resultando en una señal
cuya distribución no se corresponde con la bien conocida distribución gaussiana.

Estas di�cultades en la implementación y estudio teórico de los sistemas de precodi�-
cación vectorial han motivado el planteamiento de los siguientes objetivos:

• Análisis teórico del rendimiento de los sistemas de precodi�cación vectorial mediante
el estudio de las propiedades del reticulado.

• Desarrollo de algoritmos de búsqueda en árbol de baja complejidad y simple estructura.

• Implementación en hardware de baja complejidad de algoritmos de búsqueda en árbol
para precodi�cadores de alta tasa de transmisión de datos.
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1.2 Contribuciones de la Tesis
En esta sección se describen las contribuciones principales del trabajo de investigación de-
sarrollado. Asimismo, se indican las publicaciones asociadas a las diferentes aportaciones:

• Análisis y obtención de cotas superiores e inferiores para el rendimiento de sistemas de
precodi�cación vectorial en términos de tasa de transmisión de bits. Este trabajo ha
sido publicado en [Barrenechea10c] y parcialmente en [Barrenechea10b].

• Resolución de los problemas de optimización y delimitación del rendimiento de los sis-
temas de precodi�cación vectorial en aplicaciones de calidad de servicio, maximización
de la capacidad suma ponderada y equilibrado de la tasa de transmisión de los usuarios
[Barrenechea10b].

• Diseño de un algoritmo de complejidad �ja para la búsqueda en árbol del vector de
perturbación en un sistema de precodi�cación vectorial. Este trabajo ha sido publi-
cado en [Barrenechea09b] y [Barrenechea09a] para la variante de �ltro de Wiener y en
[Barrenechea09c] para la versión de inversión regularizada.

• Implementación en hardware de bajo coste de un algoritmo de búsqueda en árbol de
complejidad �ja y alto rendimiento. Los resultados de este trabajo se han publicado
en [Barrenechea10a] y [Barrenechea11b].

• Desarrollo e implementación de un enumerador complejo de naturaleza no secuencial
y gran simplicidad computacional para su uso en algoritmos de búsqueda en árbol
aplicados a sistemas de precodi�cación [Barrenechea11d].

• Diseño e implementación de un precodi�cador vectorial basado en el algoritmo de
búsqueda en árbol K-Best sin etapas de ordenamiento y con una alta velocidad de
procesamiento de datos. Este trabajo ha sido publicado en [Barrenechea11a].

• Desarrollo de algoritmos iterativos de búsqueda en árbol para una implementación de
baja complejidad en esquemas de precodi�cación vectorial. Este trabajo está pendiente
de publicación [Barrenechea11c].

1.3 Estructura de la Tesis
La memoria de la tesis está estructurada en ocho capítulos, de los cuales el primero se ha
dedicado a introducir la temática de la tesis y a presentar la motivación que ha llevado al
autor a la realización de este trabajo. Asimismo, se han descrito los principales objetivos
propuestos para el trabajo de investigación desarrollado.
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En el Capítulo 2 se resumen las principales características de las tecnologías MIMO y
MIMO multiusuario. Concretamente, se proporciona una perspectiva general de los límites
de la capacidad en sistemas MIMO punto a punto, así como un análisis similar para la ca-
pacidad de los canales de bajada y de subida de los escenarios multiusuario. Adicionalmente,
se de�ne el modelo matemático del sistema utilizado a lo largo de la tesis y se describe el
diseño de precodi�cadores lineales y no lineales, haciendo especial hincapié en el diseño de
sistemas de precodi�cación vectorial, los cuales representan el pilar principal de la temática
de esta tesis.

El Capítulo 3 se centra en la problemática de determinar el rendimiento de los sistemas
de precodi�cación vectorial. Dada la relación entre la potencia de los símbolos precodi�ca-
dos y el rendimiento del sistema, se analizan y proponen varias cotas superiores e inferiores
para este primer parámetro, con lo que se posibilita la delimitación de la capacidad suma
en los sistemas de precodi�cación vectorial. Asimismo, se plantean diversos problemas de
optimización cuya resolución es posible gracias a las cotas obtenidas previamente. Concre-
tamente, se estudian los problemas de la capacidad suma ponderada, la optimización de la
calidad de servicio y el equilibrado de las tasas de transmisión de los diferentes usuarios. Adi-
cionalmente, se plantean estos problemas de optimización para un sistema de precodi�cación
lineal. La comparación entre los resultados de este análisis y los previamente obtenidos para
la precodi�cación vectorial servirán para demostrar analíticamente la superioridad de las
técnicas de precodi�cación no lineales, así como para cuanti�car la ganancia esperada al
introducir algoritmos de procesamiento no lineales en un precodi�cador lineal.

En el Capítulo 4 se analizan diversos métodos para el cómputo del vector de perturbación
en un sistema de precodi�cación vectorial. En un primer apartado, se describen los métodos
más populares de búsqueda distribuída en árbol y se analiza la problemática de su imple-
mentación en hardware. A continuación, se propone un esquema de complejidad �ja, cuya
principal característica es la simplicidad de su árbol de búsqueda. El esquema propuesto es
comparado a continuación en términos de tasa de error de bit, complejidad computacional y
número de nodos evaluados por nivel con los algoritmos de búsqueda en árbol más notorios.

El Capítulo 5 retrata la importancia de la enumeración compleja en los sistemas de pre-
codi�cación, independientemente del tipo de búsqueda en árbol que se realice. Inicialmente,
se describe la problemática de la enumeración en el ámbito complejo y se realiza una revisión
literaria de los algoritmos de enumeración más importantes. Seguidamente, se presenta un
enumerador de naturaleza no secuencial cuya carga computacional es considerablemente
menor que la de los algoritmos presentados en la bibliografía. Para demostrar las ventajas
del enumerador propuesto, se ha llevado a cabo la implementación en hardware de todos los
enumeradores estudiados y se han analizado los resultados de ocupación y latencia de los
diferentes algoritmos.

En el siguiente capítulo, se da un paso más en la dirección de la implementación en
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hardware y se realiza el diseño de la arquitectura de dos precodi�cadores vectoriales de
complejidad �ja: uno de ellos inspirado en el algoritmo de complejidad �ja propuesto en un
capítulo anterior, y el otro basado en una variante sin etapas de ordenamiento del algoritmo
K-Best. Ambos esquemas son de naturaleza no iterativa y poseen una complejidad �ja. Al
igual que en el capítulo anterior, se realiza un estudio de los resultados de ocupación de
ambos algoritmos y, adicionalmente, se muestra el rendimiento en términos de tasa de error
de bit de los dos sistemas implementados.

El Capítulo 7 se centra en el diseño de algoritmos de búsqueda en árbol secuenciales
para el cómputo del vector de perturbación en sistemas de precodi�cación vectorial. En este
marco, se propone un esquema de estructura simpli�cada cuyo rendimiento en términos de
tasa de error de bit es similar al óptimo establecido por el codi�cador esférico. Con el objetivo
de obtener una reducción de la complejidad computacional adicional, se presenta un segundo
algoritmo basado en el cálculo de distancias alternativo y en un novedoso esquema de poda
variable. En la última sección de este capítulo, se compara el rendimiento en términos de
tasa de error de bit y de nodos computados de los esquemas propuestos con otros algoritmos
de búsqueda en árbol, tales como el codi�cador esférico y el FSE propuesto en el Capítulo
4.

Finalmente, el Capítulo 8 resume los resultados del trabajo de investigación realizado y
reúne las principales conclusiones obtenidas. Adicionalmente, se ha incluído en el Apéndice
A un listado completo de las publicaciones realizadas a lo largo del periodo de investigación.
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Chapter 2

Background and Related Work

2.1 Introduction
A lot of attention has been drawn to multi-antenna technologies in recent years. The ca-
pacity increase promised by multiple-input multiple-output (MIMO) technologies [Telatar95,
Foschini98] has enabled the implementation of cutting-edge communication applications with
an elevated rate demand without the cost of extra bandwidth consumption. After a decade of
research on MIMO technologies, the focus has shifted to multi-user environments where the
antennas at one of the ends of the communication link are no longer co-located [Gesbert07].
The non-cooperative signal acquisition at the user terminals is enabled by a pre-equalization
stage performed at the base station. This procedure, which is referred to as precoding, en-
sures that the signal at the receivers can be interpreted without the knowledge of the data
streams directed to other users or any information on the overall channel state.

The aim of this chapter is to provide a theoretical background on multi-user MIMO
precoding techniques. As a starting point, the �rst two sections will deal with the capacity
features of MIMO and multi-user MIMO technologies. Next, the main characteristics of
linear and non-linear precoding techniques will be reviewed. This latter section will set the
ground for the main research topic of this dissertation: vector precoding (VP) in multi-user
environments.

2.2 MIMO
The limited availability of radio frequency spectrum and the complex nature of the wire-
less scenario represent the limiting factors in the evolution of communication technologies.
MIMO techniques represent one of the major breakthroughs in wireless communications, as
the utilization of antenna arrays at both transmit and receive devices o�ers an increased
data transmission rate and robustness of the communication link. The core idea of MIMO is
the combination of the temporal and spatial domains, which allows to transform the usually
undesired multipath propagation into a bene�t for the user.
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Due to the multiple available subchannels, MIMO enables a �exible trade-o� between
multiplexing and diversity gains. On one hand, transmit multiplexing allows for a linear
increase in the transmitted data rate with respect to the rank of the channel for the same
allocated bandwidth and power. Spatial diversity ensures the independence of each sub-
channel, generating di�erent spatial signatures and allowing to multiplex the transmit data
symbols over the set of transmit streams. On the other hand, diversity gain can be achieved
by implementing space-time coding, therefore providing the link with an enhanced robust-
ness. Hence, depending on the transmit strategy to be used, the utilization of multiple
antennas can provide an increased data rate, higher link reliability or a combination of both
advantages.

Nevertheless, the superior performance of MIMO technologies comes at the cost of an
increased complexity of the channel estimation and detection algorithms, which need to
process several data streams simultaneously. Furthermore, the amount of required hardware
resources is also multiplied, which derives in an increased economic cost of the communication
link.

The block diagram of a MIMO system with M transmit and N receive antennas is
depicted in Figure 2.1. The input-output relationship of the narrowband system for a symbol
period can be described by the following equation

y = Hx + w,

where y ∈ CN×1 and x ∈ CM×1 represent the received and transmitted signal vectors,
respectively. The channel response is contained in the matrix H ∈ CN×M , where the element
hn,m represents the channel gain between transmit antenna m and receive antenna n. The
entries of the channel matrix are assumed independent and identically distributed (i.i.d.) with
zero-mean circularly symmetric complex Gaussian distribution and E[|hn,m|2] = 1. Finally,
the complex additive white Gaussian noise (AWGN) vector added at the receiving antennas
is represented as w ∈ CN×1.

2.2.1 Channel Capacity

The capacity of a channel determines the theoretical limit of the amount of data bits that can
be transmitted over the communication link with no error. The capacity of single antenna
narrowband memoryless channels was �rst derived in [Shannon48] and is represented by the
following equation:

C = log2

[
1 + µ|h|2] b/s/Hz,

where µ stands for the signal-to-noise ratio (SNR) and h represents the normalized complex
gain of the wireless channel. The extension to the multi-antenna case was provided in
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Figure 2.1: Block diagram of an N ×M MIMO system where M stands for the number of
transmit antennas and N represents the number of receive antennas.

[Telatar95], where the capacity expression of a �at deterministic MIMO channel for a given
transmit power constraint ETr was derived:

C = max
Tr(Cx)≤ETr

log2

[∣∣IN + Cw
−1HCxHH

∣∣] b/s/Hz,

with Tr(A), |A| and AH denoting the trace, determinant and conjugate transpose of ma-
trix A, respectively. The covariance matrix of vector z is represented by Cz = E[zzH ],
being E[·] the expectation operator. Finally, note that IN stands for the N × N identity
matrix. Based on this expression, the capacity growth with respect to the number of trans-
mit and receive antennas in MIMO systems was proven to scale linearly with min(M,N) in
[Telatar95][Foschini98].

It is particularly noteworthy the in�uence of the transmit covariance matrix Cx on the
achievable capacity. If the channel is unknown to the transmitter, the best transmit strategy
is to distribute all the available power equally among the transmission streams [Telatar99].
However, if some feedback from the receiver side of the communication is available, and
therefore, the transmitter is aware of the channel conditions, a water�lling solution can be
adopted [Tse05]. By following such an approach the strongest subchannels are assigned the
most power, which leads to an overall increase in the performance of the MIMO system.

2.3 Multi-user MIMO
With the advent of new communication technologies, the interest in MIMO has recently
evolved towards the development of multi-user schemes which consider more complex albeit
realistic scenarios with multiple terminals sharing the time, space, bandwidth and power
resources available in a wireless network. Consequently, a great part of the latest research on
innovative wireless multi-antenna technologies has been focused on multi-user MIMO (MU-
MIMO) environments.
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Figure 2.2: Multi-user MIMO broadcast channel with M transmit antennas and N single-
antenna user terminals.

A multiple antenna and multi-user system provides a set of advantages over point-to-
point MIMO transmissions. One of the main features of MU-MIMO is its greater immunity
to propagation shortcomings derived from antenna correlation. Being the antennas hosted at
scattered users, the correlation coe�cients are inherently low, which allows to overcome the
usual problems related to channel rank loss. Another interesting property of MU-MIMO is
that direct line of sight propagation, which greatly degrades the quality of the communication
link in single-user MIMO systems with spatial multiplexing, does not pose a problem in a
multi-user setup. Furthermore, MU-MIMO enables the obtaining of a spatial multiplexing
gain at the base station without the requirement of multi-antenna receivers. This allows for
the implementation of small, low-cost and low-power terminal devices as the computational
load is transferred to the base station.

Nevertheless, the multi-user setup also poses a set of problems that do not exist in the
single-user model. For example, the lack of interaction between the users forces the base
station to acquire instantaneous knowledge of the channel in order to allow for independent
detection of each user's information stream. Additionally, the independence between the
receive antennas may also incur in an outage situation if the subchannel directed to a single-
antenna user undergoes severe fading. Such a situation in MIMO system can be overcome
with simple diversity techniques.

Generally speaking, the multi-user MIMO environment is composed of two channels that
communicate the base station with the user terminals: the multiple access channel (MAC),
also known as the uplink channel, covers the communication from the terminals to the base
station, whereas the broadcast channel (BC), or downlink channel, carries the transmissions
that stem from the base station and end at the user terminals, as is shown in Figure 2.2.
Hitherto, MU-MIMO techniques for the uplink channel have been widely studied as the
detection problem in such systems is equivalent to that of a MIMO channel with multi-user
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Figure 2.3: Capacity region of the two-user MAC.

detection [Verdú98]. However, the study of the downlink channel entails a greater complexity.
In the following sections the capacity regions of the uplink and downlink multi-user MIMO
channels will be shortly reviewed.

2.3.1 Capacity Region of the Multiple-Access Channel
Unlike in single-user MIMO systems, where the research focuses on the optimization of the
total sum rate, a special attention must be paid to the individual rates of the users in multi-
user environments. Therefore, the analysis of the theoretical transmission capabilities of the
channel is performed via the capacity regions.

The shape of the capacity region of the MAC is determined by the user decoding approach.
If a joint-decoding strategy is followed, the capacity region of the MAC with two single-
antenna users is shaped as an irregular pentagon [Goldsmith03]. An illustrative example of
the pentagon-shaped capacity region is provided in Figure 2.3(a), being R1 and R2 the rates
of users 1 and 2, respectively. The achievable capacity region is therefore bounded by the
single users' upper bounds and the sum rate upper bound. Note that since each user hosts a
single antenna, the transmit covariance matrix is a scalar that equals the transmitted power
ETr. If the users are equipped with various antennas, there are several possible approaches
to conform the transmit covariance matrix. This way, for a certain power constraint, the
capacity region is composed of the union of all the pentagons derived from the set of all
possible covariance matrices. Figure 2.3(b) depicts the resulting capacity region of the
MAC with two multi-antenna users. For illustrative purposes, the pentagon-shaped capacity
regions of three particular transmit covariance matrices are additionally shown in dashed
lines. As one can notice, the boundary of the capacity region is curved in most areas except
for the sum rate line between points A and B.
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2.3.2 Capacity Region of the Broadcast Channel

The achievable rate region for the BC with single-antenna users was presented in [Caire00]
and was later extended to the scenario of multi-antenna users in [Yu01]. The achievable
rate region in this latest research work was obtained by means of coding by non-causally
known interference, a technique also known as dirty paper coding (DPC) [Costa83]. DPC
establishes that if the transmitter has non-causal knowledge of the interference in the channel,
the resulting capacity region can be equal to that of the channel without the interference
if proper coding is employed. Nevertheless, the expressions for the rate derived by the
DPC approach are neither convex nor concave functions of the transmit covariance matrices
[Goldsmith03], which greatly hinders the computation of the DPC capacity region. A sample
DPC region for two single-antenna users is depicted in Figure 2.4. The capacity region in
this �gure is upper bounded by the Sato bound presented in [Sato78] for the capacity region
of general broadcast channels.

The duality between the MAC and BC for constant and scalar channels was �rst presented
in [Jindal01] and later extended to multiple-antenna setups in [Vishwanath02]. The duality
theorem states that all achievable rates in the dual MIMO MAC are also achievable in the
MIMO BC as long as the sum of the power constraints in the former equals that of the
latter. Hence, the capacity region of the BC is equal to the union of the capacity regions of
the dual MAC, where the union is taken over all the individual power constraints that sum
up to the BC power constraint. This way, the computation of the achievable capacity region
in broadcast scenarios can be simpli�ed by solving an equivalent problem in the dual MAC.
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Figure 2.5: Block diagram of a generic precoding system with M transmit antennas and N
single-antenna users.

2.4 Precoding Techniques

The lack of cooperation between the terminals at the signal detection stage is the main cause
that prevents those well-known detection techniques designed for single-user schemes from
being applied into multi-user environments. However, if a preprocessing stage is performed
at the base station, it is possible to pre-substract the interference among the transmitted
data streams and enable non-cooperative signal detection at the receivers. This technique,
which is referred to as precoding, can follow a linear or non-linear approach.

The block diagram of a generic precoding system is shown in Figure 2.5. The user
data symbols s ∈ CN×1 are processed by the precoding module and transmitted after a
power scaling factor β−1 is applied. This scaling stage aims at ensuring that the power of
the precoded symbols ESE = E[qHq] does not exceed the preset power quota ETr. Hence,
by applying a scaling factor of β−1 =

√
ETr/ESE the average power of the transmitted

vector complies with the established transmit power constraint, namely E[xHx] = ETr. The
computation of this parameter depends on the power constraint strategy to be used, being
usually calculated only once per transmit information block.

At the user terminals the received signal is scaled by β again before the detection process
begins. The receivers can gain knowledge of the power control factor by means of training
symbols sent from the base station or through a low-rate control channel. The detection stage
is usually carried out by means of a nearest-neighbor quantizer Q(x) = argminc∈A |x − c|2
which provides hard decisions on the transmitted data symbols:

ŝ = Q(Hq + βw). (2.1)

From this equation, one can notice that in the event of ESE > ETr, or equivalently
β > 1, an increase in the power of the noise vector is experienced at the receivers, which
will greatly deteriorate the error-rate performance of the system. In this respect, note that
the detection SNR experienced at the receivers is subjected to the value of the power scaling
factor β, or equivalently to the channel realization and the implemented precoding strategy.
Consequently, the SNR will be de�ned as ETr/Tr(Cw) for the simulation results presented
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Figure 2.6: Block diagram of a linear precoding system with M transmit antennas and N
single-antenna users.

in this dissertation.
Additionally, a unit transmit power constraint per transmit antenna, i.e. ETr = M , and

an uncorrelated noise vector, namely Cw = σ2IN , are considered for all simulations. As an
additional remark, the information data streams are extracted from a quadrature amplitude
modulation (QAM) constellation of P symbols A , {a+jb : a, b ∈ α{±1,±3, . . . ,±√P−1}}
where α is selected so as to ensure unitary average symbol power.

2.4.1 Linear Precoding
Linear precoding techniques aim at pre-equalizing the signal to be transmitted by means of
a simple linear transformation, as is shown in Figure 2.6. The precoding �lter applied at the
base station P ∈ CM×N can be designed following di�erent criteria, such as a zero forcing
(ZF) formulation (ZF precoder) or a minimum mean squared error (MMSE) optimization
(WF precoder).

2.4.1.1 Zero-Forcing Precoding

If a ZF approach is followed, the removal of all the interference between the transmitted data
streams is required. The constraint imposed by the design criteria states that the cascade of
precoding �lter and channel matrix ful�ls HP = IN , which clearly leads to the precoding
matrix being equal to the inverse of the channel matrix [Peel05]. More speci�cally, the right
pseudoinverse of the channel is utilized to allow for systems with M > N , as shown by the
following equation

P ZF = HH
(
HHH

)−1
. (2.2)

The main drawback of this straightforward approach is the considerable increment in the
power of the precoded signal q, specially in the event of ill-conditioned channels. As a conse-
quence of this, a substantial noise enhancement and a poor detection SNR are experienced at
the receivers, as already shown in (2.1). This problem is aggravated in the fully-loaded, i.e.
M = N , antenna setup, in which case the precoding matrix in (2.2) is reduced to P = H−1.
The average power of the linearly precoded signal in such scenario is in�nite, as already
demonstrated in [Peel05]. Consequently, the characteristic linear growth in the capacity of
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multi-antenna systems is unfeasible in fully-loaded ZF linear precoding schemes, being the
diversity order equal to that of a single Rayleigh channel in this case. Nevertheless, a certain
diversity order increase can be obtained by deploying more antennas at the transmitter side,
as the slope of the bit error rate (BER) vs SNR curve in linear ZF precoding systems equals
M −N + 1.

2.4.1.2 Wiener-Filter Precoding

One of the main disadvantages of the linear ZF precoding technique stems from the requi-
site to completely null out the interference or crosstalk between the di�erent user streams,
which potentially leads to a considerable noise boost under certain antenna setups. Hence,
by allowing for some interference among the subchannels it is possible to improve the perfor-
mance of the linear precoder. The optimum crosstalk parameter was derived in [Joham05b]
following an MMSE problem formulation. The resulting Wiener-�lter precoding matrix has
a regularized inverse structure with a regularization parameter that is dependant on the
noise covariance matrix and the transmit power constraint ETr:

PWF = HH

(
HHH +

Tr(Cw)

ETr
IN

)−1

. (2.3)

Having an optimized mean squared error (MSE) the Wiener �lter (WF) achieves a bet-
ter BER performance than other linear precoders [Joham05b]. However, given the SNR-
dependency of the crosstalk parameter, the diversity order of the linear WF precoder is
equal to that of the ZF precoder. This fact is shown in Figure 2.7, where the performance
of the linear approaches revised in this section is depicted. Speci�cally, the setups of a
completely loaded system, namely M = N , and a system with M > N are analyzed. The
performance loss of the linear precoders in the M = N setup is noticeable from the provided
BER results.

2.4.2 Non-linear Precoding
A considerable performance improvement over linear precoding techniques can be achieved
by including non-linear signal processing algorithms at both ends of the communication
link. Nevertheless, the enhanced performance comes at the cost of an increased complexity,
which may be prohibitive for real-time practical systems. This is the case of the well-known
and capacity achieving DPC technique. Despite its relevance in the theoretic assessment of
the capacity of multi-user broadcast channels [cf. Section 2.3.2], Costa's scheme does not
provide a practical approach to achieve such bene�t. This has led to the development of
other non-linear precoding algorithms, such as Tomlinson-Harashima precoding (THP) or
VP, that aim at achieving a similar performance with a more reasonable complexity. These
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Figure 2.7: BER performance of the ZF and WF linear precoding techniques in the 4 × 4
and 4× 6 antenna setups with 16-QAM modulation.

algorithms are considered to be suboptimal as they do not code the data sequence in time
as opposed to DPC [Yu01].

2.4.2.1 Tomlinson-Harashima Precoding

One of the most noteworthy methods of non-linear precoding is THP, which was originally
developed in [Tomlinson71] and [Harashima72] to mitigate the e�ect of intersymbol interfer-
ence and was later adapted for transmission over MIMO channels in [Fischer02c]. Unlike the
aforementioned linear precoding techniques, THP processes the information data sequen-
tially with the aim of successively removing the interference among the transmitted data
streams. The interference cancelation is performed in a similar way to the decision-feedback
equalization (DFE) method used in the point-to-point MIMO signal detection process. Nev-
ertheless, the symbol constellation is distorted when performing the interference cancelation
yielding a higher power of the precoded symbols. To overcome this problem, a modulo op-
erator is inserted in the data processing loop, o�ering the precoder extra degrees of freedom
to select the signal that incurs in the lowest ESE.

The block diagram in Figure 2.8 shows the main features of a THP system, namely,
the modulo operators, the interference cancelation loop, which includes the feedback �lter
F ∈ CN×N , and the signal shaping matrix or feedforward �lter T ∈ CM×N .

The modulo operator can be equivalently described as the addition of integer multiples of
the modulo constant τ , in such a way that the input signal is mapped into the fundamental
Voronoi region of the lattice τCZ, where CZ = Z+jZ represents the set of Gaussian integers.
The fundamental Voronoi region of this particular lattice is a square of side τ centered at
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Figure 2.8: Block diagram of a THP system.

the origin, namely VM , {x + jy|x, y ∈ [−τ/2, τ/2)}. The symbols in this equivalent region
require a smaller transmit power, and hence their transmission generates a better detection
SNR. The modulo operator works independently on the real and imaginary components of
the data signal as shown by the following equation:

Mod(d) = d−
⌊<(d)

τ
+

1

2

⌋
τ − j

⌊=(d)

τ
+

1

2

⌋
τ,

being <(d) and =(d) the real and imaginary components of the complex-valued signal d,
with b·c denoting the �ooring operation. Note that Mod(d + f) = Mod(d) holds if f ∈ τCZ
and Mod(d) = d is satis�ed if d ∈ VM. The value of the τ parameter depends on the type of
modulation and is set to τ = 2cmax +∆, where cmax is the absolute value of the constellation
symbol with the largest magnitude in the real or imaginary axis, and ∆ is the minimum
spacing between constellation points. The provided expression for the modulo constant yields
values of 2

√
2, 8/

√
10, and 16/

√
42 for quadrature phase shift keying (QPSK), 16-QAM and

64-QAM modulation alphabets, respectively. This choice of τ ensures that A ∈ VM, as is
illustrated in Figure 2.10(a) for the particular case of QPSK modulation. The mapping
procedure needs to be reversed for signal detection, and can be simply performed by adding
a modulo operator at the receivers.

The successive cancelation process is enabled by the feedback �lter F whose triangular
structure with zero main diagonal ensures that only those data symbols that have already
been processed are fed back to the interference-cancelation loop. This property of the feed-
back �lter is often referred to as spatial causality [Joham05a]. Considering a lower triangular
matrix F , the user data streams are processed sequentially as i = 1, . . . , N . This way, the
signal prior to applying the shaping matrix T is computed as

vi = Mod
(

si + eT
i

i−1∑
j=1

f jvj

)
,

where ei represents the ith column of the N × N identity matrix and f j stands for the
jth column vector of the feedback matrix F . Hence, the �rst data symbol is transmitted
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unaltered, namely v1 = s1 since A ∈ VM, while the second data symbol is modi�ed according
to the interference produced by the �rst symbol, and so on. Therefore, the data stream of
the last coded user is transmitted taking into account the interference of all the other users,
and therefore experiences no interference at all, while the rest of the users are subjected to
the interference of the users precoded in the subsequent stages.

The performance of the successive interference cancelation procedure is strongly related
to the order in which the user streams are precoded. The user permutation scheme is de�ned
by the tuple O = {o1, . . . , oN} with oi ∈ {1, . . . , N}, which establishes that the othi user is
precoded at the ith step. This process is compactly represented by the permutation matrix
Π which is computed as

Π =
N∑

i=1

eie
T
oi
,

where (·)T represents the matrix/vector transpose operator. Note that Π is a unitary matrix
by construction, i.e. ΠT = Π−1.

Once the interference cancelation procedure has been carried out, the data is shaped by
the feedforward �lter P prior to transmission. The design of both feedback and feedforward
�lters is performed jointly and can be subject to a variety of constraints. The two most
noteworthy variants of THP �lters are built by following a ZF or MMSE criterion, yielding the
so-called THP-ZF [Fischer02a][Joham04b][Joham05a] and THP-WF [Joham04b][Kusume05]
[Joham05a] solutions, respectively. The expressions for the feedback and feedforward �lters
of the aforementioned variants of THP are summarized here for completeness. Note that
A† stands for the Moore-Penrose pseudoinverse of matrix A and that the projection matrix
Υi = IN − ∑N

j=i+1 eoj
eT

oj
is used to null out the rows of the channel matrix belonging to

receivers which will be precoded at a later step.

P ZF =
N∑

i=1

HHΥT
i

(
ΥiHHHΥi

)†
eoi

eT
i

F ZF = IN −ΠHP ZF

PWF =
N∑

i=1

HHΥi

(
ΥiHHHΥi +

Tr(Cw)

ETr
IN

)−1

eoi
eT

i

FWF =
N∑

i=1

(
ΠΥiΠ

T − IN

)
ΠHHHΥi

(
ΥiHHHΥi +

Tr(Cw)

ETr
IN

)−1

eoi
eT

i

THP precoding schemes o�er a signi�cant performance improvement with respect to
simple linear precoding techniques due to the interference cancelation procedure performed
on the user information streams. Nevertheless, since the �rst data stream undergoes linear
pre-equalization only, the average BER curve will show the same diversity order as if no
feedback loop were present, that is M −N + 1 [Windpassinger04].
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Figure 2.9: Block diagram of a VP system.

2.4.2.2 Vector Precoding

As has been shown in the previous sections, the performance gap between the optimum albeit
intractable DPC solution and the linear precoding approaches can be reduced by means of
non-linear precoding techniques such as THP. Nevertheless, it is still possible to draw
closer to the optimum performance with a reasonable complexity. VP, which resembles the
method known as shaping without scrambling for dispersive channels [Fischer02b][Fischer03],
is considered to be one of the most promising non-linear precoding approaches due to its
close-to-optimum performance.

If the modulo operator at the transmitter side of a THP system is equivalently represented
as the addition of an auxiliary vector a′ and moved outside the feedback loop, it is possible
to combine the feedback and feed-forward �lters into a single matrix P ′ = T (IN −F )−1 and
compute the signal prior to the scaling stage as q = P ′(s + a′). This derives in the system
model shown in Figure 2.9, which represents the block diagram of a VP system.

The concept of VP was originally developed in [Hochwald05] and has been a topic of
extended research ever since, e.g. [Schmidt05][Callard06][Boccardi06]. By perturbing the
signal prior to transmission as shown in Figure 2.9, it is possible to reduce the average power
of the signal before the scaling stage, namely ESE = E[||q||2], and therefore improve the
overall system performance. The modulo operator at the receivers provides the transmitter
with additional degrees of freedom to choose the perturbation vector that is most suitable.
This process is illustrated in Figure 2.10, where the in�nite repetition of the modulation
constellation before and after precoding in shown. Note that the proper selection of the
modulo constant allows for the extensions of the modulo alphabet in the complex plane to
be centered around τCZ [Dietrich08]. The congruent constellations in Figure 2.10(a) are
distorted after the precoding procedure, as is shown in Figure 2.10(b). For some cases, such
as the one depicted in this �gure, there exists a symbol in one of the congruent constellations
whose power is smaller than that of the precoded symbol Ps. Hence, the transmission of
the equivalent P (s+a) symbol incurs in a smaller value of the power scaling factor β, which
ultimately results in a better SNR at the receivers. Note that the perturbation signal must
be composed of integer multiples of the modulo constant τ , namely a ∈ τCZN , so that it can
be removed at the receivers by means of a simple modulo operation. This feature enables
the receivers to eliminate the perturbation signal without the knowledge of the particular
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Figure 2.10: Illustration of the in�nite repetition of the modulation constellation before
precoding (a) and after (b). Figure (b) shows that it is possible to transmit the same symbol
with a smaller power if a perturbation vector is added to the user data stream.

perturbation vector of choice.

Unlike THP, where the interference cancelation is performed successively, VP optimizes
the perturbation signal a directly. This way, the successive precoding procedure in THP
only takes into account previously precoded symbols but fails to include those precoded
at later stages, whereas VP performs the optimization considering all transmit symbols.
Consequently, THP is considered a constrained type of VP, and therefore, it will always be
outperformed by the latter as long as the same criteria is used for the �lter design.

The design of the precoding �lter P can be based on di�erent criteria. If the goal is to
completely cancel out the interference between the users, a ZF approach should be followed
[Hochwald05][Schmidt05]. The requisite of null distortion established by the ZF formulation
requires that HP = IN , which clearly results in the precoding �lter given by Equation (2.2).
The perturbation signal should then be selected so as to minimize the transmit power prior
to applying the power control factor β−1:

aZF = argmin
â∈τCZN

∥∥∥P ZF(s + â)
∥∥∥

2

2
. (2.4)

As is the case with the linear precoding approaches, the performance of the VP system
can be further enhanced by regularizing the inverse involved in the de�nition of the precoding
�lter in (2.2) so that a smaller value of ESE can be achieved [Hochwald05]. This new system
formulation represents the so-called regularized VP solution (VP-Reg) shown in Equations
(2.5) and (2.6).

P Reg = HH
(
HHH + ξRegIN

)−1 (2.5)
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Figure 2.11: BER performance of non-linear and linear precoding schemes.

aReg = argmin
â∈τCZN

∥∥∥P Reg(s + â)
∥∥∥

2

2
(2.6)

No closed-form expression for the regularization factor or crosstalk parameter ξReg was
provided in the aforementioned research work. Nevertheless, experimental values of ξReg

were given for some antenna setups, e.g., ξReg ≈ Tr(Cw)/(5NETr) for N = 4. Similarly
to the linear precoding case, the regularized solution of the precoding �lters for VP always
outperforms the ZF solution in terms of BER.

In [Schmidt05] and [Schmidt08] a novel approach for VP �lter design was proposed.
Instead of aiming for a minimum power of the precoded symbols, the aforementioned ap-
proach achieves the optimum compromise between noise enhancement and residual interfer-
ence, yielding the MMSE solution for VP (VP-WF). Given that this approach minimizes the
MSE, it is clear that VP-WF outperforms all the other variants of VP presented hitherto.
The precoding matrix resulting from the aforementioned optimization problem is given by
(2.3). As opposed to the other VP techniques, the matrix involved in the cost function
evaluated to select the optimum perturbation vector is not equal to the precoding matrix
[see (2.4) and (2.6)]. In this case, any matrix U that ful�ls

UHU =

(
HHH +

Tr(Cw)

ETr
IN

)−1

(2.7)

is used to compute the perturbation vector, which gives

aWF = argmin
â∈τCZN

∥∥∥U (s + â)
∥∥∥

2

2
. (2.8)
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The matrix decomposition in (2.7) can be performed by means of the Cholesky decom-
position of

(
HHH + ξIN

)−1, with ξ = Tr(Cw)/ETr or by the QR factorization of the
augmented matrix H̃ = [H

√
ξIN ]H , with U = R−H , for example. These two matrix de-

composition methods yield triangular U matrices, whose special structure can be exploited
to ease the closest-point lattice search in (2.8).

It is worth pointing out that, unlike the rest of the precoding techniques studied so
far, with the exception of the computationally-intractable DPC, VP is the only precoding
approach that can achieve full-diversity order. This fact was proven for VP systems us-
ing lattice-reduction techniques in [Taherzadeh05, Taherzadeh07], and for di�erent transmit
power constraints in [Jaldén08].

The full diversity order of VP techniques can be appreciated in the BER vs SNR curve
provided in Figure 2.11, where the error rate performance of the addressed non-linear ap-
proaches has been assessed for a 4×4 antenna setup with 16-QAM modulation. Speci�cally,
the THP-ZF and THP-WF algorithms as described in Section 2.4.2.1 are considered, along
with the recently reviewed VP-ZF, VP-Reg and VP-WF techniques. The performance results
of the linear algorithms reviewed in Section 2.4.1 have been also included for completeness.
The simulation results depicted in Figure 2.11 show that the incorporation of non-linear sig-
nal processing techniques results in a substantial error-rate performance improvement when
compared to the linear precoding schemes. However, note that both THP and the addressed
linear precoders yield the same diversity order, as already discussed in Section 2.4.2.1. More-
over, the WF variants of all the precoders yield better BER performance results than their
ZF counterparts. Due to the use of modulo arithmetics and an MMSE-optimized model,
VP-WF is the precoding scheme that achieves the best error-rate performance among the
addressed precoding approaches. Consequently, VP-WF will be the precoding method of
choice in the remainder of this thesis (we shall refer to it as simply VP), with the excep-
tion of Chapter 3 where the VP-ZF variant will be used instead for the sake of analytical
simplicity.

Note that the computation of the perturbation signal in all the VP variants, namely
(2.4), (2.6) and (2.8), entails the search for the closest-point in an in�nite lattice, which
is known to be in the class of non-deterministic polynomial-time hard (NP-hard) problems
[Grötschel93]. Hence, the addition of the perturbation vector poses two main challenges:
on one hand, the e�cient and low-complexity computation of the perturbing signal, and on
the other hand, the analytical assessment of a precoding system in�uenced by a signal that
represents the result of a computationally complex process and whose statistical properties
are unknown. The work presented in this thesis will try to address this issues by proposing
low-complexity algorithms for the computation of the perturbation signal and by presenting
useful bounds to overcome the initially complex performance assessment of VP techniques.
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2.5 Chapter Summary
This chapter has reviewed the main features of MIMO and multi-user MIMO techniques.
More speci�cally, a brief overview of the capacity limit of single-user MIMO systems has been
provided, along with a similar analysis for the uplink and downlink channels of multi-user
environments.

On a more practical scope, the key features of linear and non-linear precoding algorithms
have been described in the last section. Starting from the more straightforward linear pre-
coding techniques, it has been shown that the performance of ZF �lters can be enhanced by
loosening the constraint of null interference among user streams. Next, several non-linear
precoding approaches that make use of modulo arithmetics, such as THP and VP, have been
reviewed. Due to the power-limiting capacity of the modulo function, non-linear precoders
have shown a considerable performance improvement with respect to their linear counter-
parts. However, since at least one of the users' data streams is only linearly transformed in
the THP model, the diversity order yielded by this non-linear technique remains the same
as that of the linear precoders. VP o�ers an additional error-rate performance enhancement
and diversity order increase over THP by replacing the successive interference cancelation
by a direct optimization procedure. Provided simulation results show the superior perfor-
mance of VP techniques and their potential to reach the full diversity order of multi-antenna
systems.
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Chapter 3

Asymptotic Sum Rate Analysis and
Rate Optimizations for VP

3.1 Introduction

Despite its enhanced performance, the analysis of VP systems from an information-theoretic
point of view is hindered by the e�ect of the perturbation vector on the unnormalized trans-
mit power ESE. This parameter, which represents the power of the precoded symbols prior
to the power scaling stage, is pivotal when determining the performance of any precoding
system as it determines the e�ective noise power present at the detection stage. Closed-
form expressions for ESE have not been derived for VP so far, which has led to an increased
interest in developing useful bounds.

The �rst lower bound on this parameter was proposed in [Hochwald05] for an arbitrary
number of user terminals and constellation sizes. The presented bound on ESE was given
as a function of the perturbed data and the eigenvectors of the precoding matrix, and
hence, required numerical evaluation. The approaches in [Müller08, Zaidel08] introduce
lower bounds on the unnormalized transmit power in the limit of the system, e.g. N,M →
∞, by analyzing the process of data perturbation from a statistical physics perspective.
Nevertheless, the bounds provided in the aforementioned publications require a number of
assumptions and are given as a function of �xed-point integrals which need to be numerically
evaluated. These facts limit the insight given by these lower bounds into the ESE value.

Recently, a lower bound on ESE has been derived using a lattice-theoretic approach which
has enabled the establishment of an upper bound on the achievable sum rate capacity of VP
systems with ZF precoding [Razi09][Ryan09]. This work has been extended to precoding
systems with WF �ltering in [Razi11] by estimating the entropy of the data symbols at the
output of the modulo receiver. However, an upper bound on ESE is still missing to be able
to de�ne the performance range of VP systems.

In this chapter, several upper and lower bounds on the unnormalized transmit power will
be discussed and introduced. By means of these bounds, it will be possible to completely
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delimit the performance of VP-ZF. Additionally, based on the derived bounds, three di�erent
optimizations with respect to the rates will be investigated: weighted sum rate maximization,
quality of service (QoS) optimization and rate balancing. Finally, ergodic expressions and
simulation results on the performance gap between VP and linear precoding will be provided
for the aforementioned applications.

Given the lattice-theoretic nature of the derived bounds, an introductory section that
summarizes the basic features of lattice theory will be presented �rst with the aim of setting
a theoretic foundation for the subsequent analysis.

3.2 Concepts of Lattice Theory
Every lattice of dimension n is generated by the linear combination of a set of linearly
independent vectors {b1, . . . , bn} that represent the basis of the lattice. This basis is not
unique, so di�erent sets of basis vectors can represent the same lattice. Given a set of basis
vectors, the generator matrix of the lattice can be represented as M = [b1, . . . , bn]. The rest
of the vectors in the lattice are generated from the matrix M as linear combinations of the
form pM , where p ∈ Zn. The lattice generated from a certain generator matrix M will be
denoted as ΛM .

The volume is one of the most representative features of a lattice as it remains unchanged
even if an equivalent set of basis vectors is utilized. The volume of a lattice is directly related
to its generator matrix and is computed as [Conway98][Ryan09]:

Vol (ΛM ) =

{
|M | for M ∈ Rn

|MHM | for M ∈ Cn.
(3.1)

The volume of the lattice is actually equal to the volume of any of its congruent Voronoi
regions. These regions are composed of those points in the Euclidean space that are at least
as close to Λi as they are to any other Λj, where Λi and Λj represent any two points of the
lattice. The Voronoi cells are therefore convex polytopes whose union is the whole Euclidean
space. These regions were originally described in [Dirichlet50][Voronoi07] and have been
extensively studied thereafter [Conway82][Conway84]. The shape of the Voronoi regions
depends on the lattice structure. This way, the Voronoi cells of the integer lattice Zn are
n-dimensional cubes, while in the case of the 2-dimensional hexagonal lattice (also known
as the A2 lattice) they are shaped as regular hexagons. A certain Voronoi cell can therefore
be uniquely described in terms of the generator matrix of the lattice and the lattice point at
the center of the cell, namely V(ΛM , Λi). The Voronoi cell with Λi = 0 is also known as the
fundamental Voronoi region and is often used as a representative of all the other congruent
cells. In Figure 3.1 some congruent Voronoi regions of an arbitrary 2-dimensional lattice are
depicted.
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%

Figure 3.1: Congruent Voronoi regions and covering radius % of an arbitrary lattice.

The longest distance from the vertices of the Voronoi region with respect to Λi is known
as the covering radius %, which also represents the radius of the smallest sphere that cir-
cumscribes the Voronoi region, as is shown in Figure 3.1. Hence, n-dimensional overlapping
spheres of radius % centered at each point of the lattice will cover the whole Euclidean space,
and no smaller radius will do. The problem of �nding the covering radius is in the class of
NP-hard problems [vanEmde Boas81].

This leads us to the well-known covering problem, which deals with �nding the most
economical way of covering the whole n-dimensional Euclidean space with equal and over-
lapping spheres [Conway98]. Clearly, the best covering strategy will be the one that allows
for the smallest amount of overlapping between the spheres. Consequently, the assessment of
the quality of a covering strategy is usually performed by means of the thickness or covering
density of the lattice. This measure represents the average number of spheres that contain
a point of the space, and can be computed as

Θ =
Vn%n

|M | ≥ 1, (3.2)

where Vn = πn/2/(n/2)! represents the volume of an n-dimensional sphere of unitary radius.
The quality of a certain covering strategy can also be assessed by means of the covering
e�ciency χ = %/%e�, where the e�ective radius of the covering %e� represents the radius of
a virtual n-dimensional sphere with the same volume as the Voronoi region of the lattice,
namely

Vol (ΛM ) = Vn %n
e�. (3.3)

The second moment of inertia of the Voronoi regions is also a distinctive feature of a
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lattice. It represents the average square distance of the points in V(ΛM , Λi) with respect
to Λi. Two are the most remarkable variants of this measure: the dimensionless second
moment G[V (ΛM , Λi)] and the normalized second moment I[V (ΛM , Λi)], which are given
by the following equations:

G [V (ΛM , Λi)] =
1

n
Vol[V (ΛM , Λi)]

−n+2
n

∫

V(ΛM ,Λi)

‖x− Λi‖2dx (3.4)

I [V (ΛM , Λi)] = Vol [V (ΛM , Λi)]
−1

∫

V(ΛM ,Λi)

‖x− Λi‖2dx. (3.5)

As one can notice from Equation (3.4), the normalization with respect to the number
of dimensions derives in G[V (ΛM , Λi)] being a dimensionless parameter, as stated by its
own name. The two forms of the second moment of inertia represent, in essence, the same
problem. Therefore, Equations (3.4) and (3.5) can be easily combined, yielding the following
expression:

I [V (ΛM , Λi)] = n Vol [V (ΛM , Λi)]
2
n G [V (ΛM , Λi)] . (3.6)

3.3 Bounds on the Unnormalized Transmit Power
The performance of any precoding system is closely related to the power of the signal prior
to the scaling stage. Nevertheless, the computation of ESE involves the expectation over
the result of a closest-point search problem, which hinders the assessment of the expected
performance of VP systems. However, it is possible to circumvent this problem by setting
upper and lower bounds on the unnormalized transmit power, which will eventually enable
the determination of the performance range of VP systems. To this end, the analysis of
several lower and upper bounds on ESE is performed in this section.

The VP system model described in Section 2.4.2.2 will be slightly modi�ed for the cur-
rent analysis to allow for the de�nition of optimization problems and to simplify the an-
alytical study of ESE. Hence, a VP-ZF precoding model will be used instead, since the
SNR-dependency of the precoding matrix in the VP-WF variant would greatly complicate
the analysis of the lattice features. Following the arguments in [Razi09], the user data sym-
bols will be assumed to be uniformly distributed over Q , {d : |R(d)| < 1/2, |I(d)| < 1/2}.
This latter assumption eases the tractability of the performance analysis employing modulo
arithmetics. The error introduced by assuming uniformly distributed symbols can be ne-
glected specially if higher order modulations are used, as is shown in [Ryan08]. Following
from this, the modulo constant will be set to τ = 1. At the receiver side, the re-scaling stage
performed prior to applying the modulo operator will be rede�ned to enable the de�nition of
optimization problems on the individual user data rates. This way, the kth user will weight
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Figure 3.2: Block diagram of the VP system used for the study of the unnormalized transmit
power.

the received signal yk with β b
1/2
k , where the non-negative weights {b1, . . . , bN} represent

the entries of the diagonal matrix B ∈ RN×N . Also, the elements of the AWGN vector are
assumed to be wk ∼ CN (0, 1). The block diagram of the VP model used for the current
analysis is shown in Figure 3.2.

The signal detected at the user terminals after the incorporation of the power loading
matrix into the VP system model is given by the following expression:

ŝ = Q
{
Mod

[
B− 1

2 HP (s + a) + βB− 1
2 w

]}
. (3.7)

When a ZF formulation is followed, no interference is allowed among user streams, and
therefore, the cascade of precoding matrix, channel matrix and the inverse square root of the
power loading matrix should equal the identity matrix, i.e. B− 1

2 HP = IN . This leads to
the precoding matrix being designed as P = H†B

1
2 for the VP system under study. Hence,

the power of the precoded symbols is given by:

ESE = E
[

min
a∈CZN

∥∥∥H†B
1
2 (s + a)

∥∥∥
2

2

]
. (3.8)

As it is known from lattice theory [Conway85], the encoded signal q = H†B
1
2 (s + a)

lies within the fundamental Voronoi region of the lattice rendered by the generator matrix
P = H†B

1
2 , i.e. q ∈ V(ΛP , 0), if the lattice search to �nd the perturbation vector is

performed optimally. Therefore, the magnitude of ESE equals the normalized second moment
of the Voronoi region V(ΛP , 0) [Conway85], which enables its representation by means of the
lattice parameters of ΛP .

Given that the real and imaginary components of the complex-valued signals in Figure 3.2
are considered as separate dimensions, we get n = 2N . Also, following from Equation (3.1),
the volume of the Voronoi region with complex generator matrix P equals Vol[V(ΛP , 0)] =

|W−1B|, where W = HHH is an N × N Wishart distributed matrix with M degrees of
freedom, assuming that the entries of H are i.i.d. zero-mean unit-variance complex Gaussian
distributed. Thus, the average power of the precoded symbols can be described by means of
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the lattice parameters of ΛP as shown in (3.6), which gives

ESE = 2N G [V(ΛP , 0)] |W−1B| 1
N . (3.9)

As one can notice from Equation (3.9), it is possible to delimit the operation range of ESE

by setting appropriate lower and upper bounds on G[V(ΛP , 0)]. The study and discussion
of these bounds will be performed in the following subsections.

3.3.1 Lower Bounds
In the search for the optimum quantization strategy, Zador derived the upper and lower
bounds on the second moments of inertia of the ideal quantizer (Gopt) [Zador63], which are
given by

1

(n + 2)π
Γ

(n

2
+ 1

)2/n

≤ Gopt ≤ 1

nπ
Γ

(n

2
+ 1

)2/n

Γ

(
2

n
+ 1

)
, (3.10)

where Γ(x) stands for the Gamma function, with Γ(x) = (x − 1)! if x ∈ Z. Interestingly,
both bounds converge to Gopt → 1/(2πe) in the limit, i.e. when n →∞.

In [Zador63] it was argued that no polytope or convex body of other kind attained a
smaller dimensionless second moment than the n-dimensional sphere Sn. The lower bound
given for the ideal quantizer in (3.10) therefore stands for G(Sn) and is known as the sphere
bound. This bound was used to set a lower limit to the unnormalized transmit power ESE

of a VP system in [Ryan08] yielding very promising results.
Despite the relevance of the sphere bound in the theoretical �eld, the design of a quantizer

with these features is not possible in practical systems. This is due to the fact that this lower
bound is only reached if the Voronoi regions are shaped as spheres, but no sphere arrangement
is able to reach a full coverage of the space. Motivated by this result, a signi�cantly stronger
lower bound was derived in [Conway85][Conway98] based on a geometrical argumentation
on the features of the Voronoi regions. This tighter lower bound is de�ned as

Gopt ≥ GCS =
n + 3− 2Hn+2

4n(n + 1)

{
(n + 1)(n!)4F 2

n

[
1

2
arccos

(
1

n

)]} 1
n

,

where Hm =
∑m

i=1 1/i represents the harmonic sum and Fn(·) denotes the Schlä�i's function
[Conway98] which can be recursively computed as

Fn(α) =
2

π

∫ α

ρ

Fn−2(β) dθ,

with sec(2β) = sec(2θ) − 2, ρ = 1
2
arccos( 1

n−1
) and initial values F0(α) = F1(α) = 1. As

shown in [Conway85], this bound also asymptotically converges to GCS → 1/(2πe).
Figure 3.3 depicts the dimensionless second moments of several well-known lattices, such
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Figure 3.3: Dimensionless second moment of several well-known lattices along with the sphere
bound and the GCS lower bound.

as the Leech lattice, the Barnes-Wall lattice or the An and Dn lattices along with their dual
lattices A∗

n and D∗
n, respectively. Additionally, the sphere bound and the conjectured new

lower bound (GCS) are also shown. The results depicted in this �gure show the validity of
the two lower bounds reviewed in this section. Also, note that the GCS bound represents
a signi�cantly stronger lower bound than G(Sn), and therefore, it will yield more accurate
results when employed to bound the unnormalized transmit power in (3.9).

3.3.2 Upper Bounds
Even though the aforementioned lower bounds for G [V(ΛP , 0)], and by extension lower
bounds for ESE, are very useful in order to determine the behavior of VP, it is even more
important to set an upper bound to know what minimum performance of VP systems can
be expected under ideal conditions. Clearly, by combining the aforementioned upper and
lower bounds, the performance range of VP can be determined.

As stated in [Zamir96][Krithivasan07], it is possible to upper bound the dimensionless
second moment of a polytope R in terms of the e�ciency of its covering as

G(R) ≤ G(Sn)
n + 2

n
χ2.

By combining the previous expression with Equations (3.2) and (3.3), we get an upper
bound in terms of the covering density:

G(R) ≤ Θ2/n

nV
2/n
n

. (3.11)

Furthermore, according to [Rogers58b][Rogers58a], the covering density of a lattice can
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N 2 3 4 5 6 7 8
M=N 2.068 0.126 0.225 63.80 85.38 118.2 203.5
M=N+1 1.892 0.009 0.011 4.179 7.277 51.48 11.94
M=N+2 16.44 13.42 1.481 0.246 0.076 0.056 10.06

Table 3.1: Values for (1− η)103 used in the GTB bound.

be upper bounded by Θ ≤ n log n+n log log n+5n, which leads to the following upper bound

G(R) ≤ GRog =
(n log n + n log log n + 5n)2/n

nV
2/n
n

.

Despite its validity as an upper bound, GRog does not approximate the actual value
of G[V(ΛM , 0)] tightly and derives in too pessimistic performance results for VP. This is
the reason why a tighter upper bound is proposed following the approach of [Messenger09],
where the covering density is studied for random template banks. In this case, instead of the
strict requirement of complete coverage, a certain mismatch is introduced, that is, complete
coverage is required only with a certain con�dence degree η. As stated in [Messenger09], the
covering density can be then expressed as

Θ = − log(1− η).

The values for η have been obtained by extensive simulations and are shown in Table
3.1. Plugging this latest formula into (3.11), the expression for the proposed upper bound
is obtained:

G(R) ≤ GTB =

(
log 1

1−η

)2/n

nV
2/n
n

.

Figure 3.4 provides values for ESE averaged over at least 1000000 channel realizations
and considering uniform power distribution among users, i.e. B = IN . The upper and
lower bounds discussed and presented in this section are also shown in this �gure. As one
can notice, all the bounds converge to ESE as the amount of users increases. However, the
proximity of both lower bounds to the actual ESE value is considerably higher, while the GRog

upper bound di�ers signi�cantly, specially when a reduced number of antennas is used. As
for the proposed GTB upper bound, its performance improves noticeably as more antennas
are deployed, yielding a similar average power to ESE with N = 8.

3.4 Bounded Sum Rate in VP Systems
The analysis of the sum rate and other performance-related features of VP systems entails
several di�culties. On one hand, the noise is a�ected by the non-linear modulo operation
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Figure 3.4: Unnormalized transmit power ESE along with the upper bounds (GTB and GRog)
and lower bounds (sphere bound and GCS) derived for this parameter. The provided results
are given as a function of the number of single-antenna users N .

which maps it to the region Q. On the other hand, the computation of ESE involves the
expectation over the result of a closest-point search problem. Due to these facts, the analysis
of the sum rate of VP systems has been an open issue until recently, when a closed-form
expression in terms of the unnormalized transmit power has been proposed in [Ryan09]. Due
to the relevance of this work, its main conclusions and results will be summarized here.

The mutual information between transmitted and detected symbols for each user k can
be computed by means of the following expression:

I(ŝk; sk) = H(ŝk)−H(ŝk|sk), (3.12)

where H(x) represents the entropy of the variable x and H(x|y) stands for the entropy
of x conditional on y. As discussed in [Ryan09], being ŝ uniformly distributed over a 2N -
dimensional cube, it follows that H(ŝk) = 0. Additionally, we get that H(ŝk|sk) = 2H(ς̂k|ςk),
where ςk represents the real part (or equivalently the imaginary part) of sk, that is ςk = <(sk).
From (3.7) we infer that the conditional entropy H(ς̂k|ςk) equals the entropy of the real
(or imaginary) noise component after the modulo operation, namely H(ς̂k|ςk) = H(ζk),
with ζk = <[Mod(βb

−1/2
k wk)]. Due to this non-linear operator, ζk has a Gaussian modulo

distribution with variance γk = β2b−1
k /2 given by [Razi09]

f(ζk) =





∑∞
t=−∞

1√
2πγk

e
− |t−ζk|2

2γk ζk ∈ [−1
2
, 1

2
]

0 ζk /∈ [−1
2
, 1

2
].
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Figure 3.5: Sum rate vs. SNR for asymptotic DPC, VP, and bounded asymptotic VP for an
8× 8 antenna system.

Therefore, the entropy of the noise component after the modulo operation is

H(ζk) =

∫ 1
2

− 1
2

f(ζk) log2 [f (ζk)] dζk

=

∫ 1
2

− 1
2

∞∑
t=−∞

1√
2πγk

e
− |t−ζk|2

2γk log2

( ∞∑
q=−∞

1√
2πγk

e
− |q−ζk|2

2γk

)
dζk.

By plugging this latest result into (3.12) we ultimately get the individual user rate in a
VP system:

RVP,k = I(ŝk; sk) = − log2 (2πeγk) + 2Ω(γk),

where the term Ω(γ) captures the e�ect of the modulo operation on the Gaussian noise.
This parameter is de�ned as

Ω(γ) =
log2(e)

2
+

∫ 1
2

− 1
2

∞∑
t=−∞

1√
2πγ

e−
|t−ζ|2

2γ

(
log

∞∑
q=−∞

e−
|q−ζ|2

2γ

)
dζ. (3.13)

As argued in [Razi09], Ω(γ) is an increasing function of γ, which results in Ω(γ) → 0 as
ETr →∞. As a consequence of this, the impact of the modulo-�ltered noise can be neglected
when a high-SNR analysis is carried out. Thus, the asymptotic rate for user k in the VP
system under study is simpli�ed to

RVP,k
∼= log2

(
ETr bk

πeESE

)
, (3.14)
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where a ∼= b means that limETr→∞ a− b = 0. Upper and lower bounds on this expression can
be obtained by combining this latest result with (3.9) and the bounds derived in Section 3.3.
Note that, given the position of ESE within the previous expression, the upper and lower
bounds on this parameter yield lower and upper bounds on the sum rate, respectively.

Figure 3.5 depicts the sum rate capacity of an 8× 8 antenna system with B = IN , along
with the asymptotic capacity of DPC, VP, and the upper and lower bounded asymptotic
VP. As is shown in this plot, the asymptotic VP expression yielded by the sphere and GCS

bounds is remarkably tight to the real VP sum rate. The asymptotic VP sum rate computed
by means of the GTB upper bound also closely approximates the real value of the VP sum
rate. Additionally, the provided simulation results show the small performance gap between
the theoretical upper bound set by DPC and VP when a moderate amount of antennas is
used, e.g. N = 8.

3.5 Optimization Problems for Asymptotic VP
In this section, the problem of assessing the performance of VP systems is extended to
the analysis of optimization procedures, where the transmit power assigned to each user is
determined following a certain design criterion. To that end, the upper and lower bounds
on the performance of VP systems described in Section 3.3 will be used to facilitate the
task of solving the optimization problems. More speci�cally, three di�erent optimization
procedures with respect to the user rates are investigated: weighted sum rate maximization,
QoS optimization and rate balancing. For the sake of simplicity, the high-SNR regime will
be considered for the remainder of the section, where the e�ect of the modulo-�ltered noise
(3.13) can be neglected.

In order to highlight the performance gain of non-linear precoding systems with respect to
their linear counterparts, the aforementioned optimization problems are additionally solved
for a linear precoder. In this case, an equivalent system to the one depicted in Figure 3.2 is
considered, where the signal perturbation stage and the modulo operator are removed. The
resulting linear precoding system is shown in Figure 3.6. Additionally, given that there is no
perturbation process or non-linear operators, the more conventional Gaussian signaling will
be adopted in this case.

Finally, ergodic expressions and simulation results on the performance gap between VP
and linear precoding are provided for the aforementioned applications.

3.5.1 Weighted Sum Rate
This section analyzes the weighted sum rate (WSR) maximization for VP and linear pre-
coding. The optimal matrix B and the maximum achievable weighted sum rate with non-
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Figure 3.6: Linear precoding system with power loading matrix B− 1
2 .

negative weights v = [v1, . . . , vK ]T > 0 are derived for the high-SNR region based on the
following problem formulation:

WSR = max
{bk}

N∑

k=1

vkRk s.t.: bk ≥ 0 ∀k. (3.15)

Additionally, analytical expressions for the performance gap between VP and linear pre-
coding will be provided in the framework of both the weighted and the regular sum rate
capacity.

3.5.1.1 Linear Precoding

For the linear precoding system with Gaussian signaling depicted in Figure 3.6, the achievable
rate for user k can be expressed as a function of the signal to interference-plus-noise ratio
(SINR) associated with the received signal at each user terminal, namely

yk =
1

β
b
1/2
k sk + wk.

Given that the ZF premise enforces null-interference, and considering that wk ∼ CN (0, 1),
the asymptotic rate of a certain user k in a linear precoding system can be expressed as

Rlin,k
∼= log2

(
ETr bk

ESE,lin

)
, (3.16)

where the power of the precoded symbols in computed as

ESE,lin = E
[∥∥∥H†B

1
2 s

∥∥∥
2

2

]
= Tr

[
B

(
HHH

)−1
]
. (3.17)

Hence, combining the expressions (3.16) and (3.17) the asymptotic user rate for the linear
system described in Figure 3.6 is obtained:

Rlin,k
∼= log2

(
ETr bk∑N
i=1 biαi

)
, (3.18)
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where αi represents the ith diagonal element of the matrix W−1. Note that weighting all
bk-s with the same scalar, i.e., b′k = cbk ∀k for some c 6= 0, does not change the rate in (3.18).
Consequently, and for the sake of analytical simplicity, we set

∑
i biαi = 1. Solving the

optimization problem in (3.15) for linear precoding in compliance with the Karush-Kuhn-
Tucker conditions leads to the optimal coe�cients

bk =
vk

αkV
, (3.19)

with V =
∑N

k=1 vk. Therefore, the resulting asymptotically optimum weighted sum rate for
linear precoding is derived:

WSRlin,opt = V log2

(
ETr
V

)
+ V log2

[
N∏

i=1

(
vi

αi

)vi/V
]

. (3.20)

For the case of unitary and equal weights, the solution to the weighted sum rate opti-
mization in (3.20) reduces to the asymptotically optimum conventional sum rate

SRlin,opt = N log2 (ETr)−N log2 (N)− log2

(
N∏

i=1

αi

)
.

3.5.1.2 Vector Precoding

The optimization problems presented in this section will make use of the asymptotic expres-
sion given in (3.14) for the information transmission rate of VP systems.

Similarly to the linear case, weighting all bk-s with the same scalar, i.e., b′k = cbk ∀k for
some c 6= 0, does not change the VP rate in (3.14) due to the dependence of ESE on B

[see (3.8)]. Since there is no closed-form expression for ESE, it is necessary to approximate
this value by an upper bound when performing the weighted sum rate maximization. As
all the bounds discussed in Section 3.3 lead to the unsatisfactory result that only one bk

is di�erent from zero, the ultimate upper bound for ESE will be used instead, i.e., the
unnormalized transmit power of a linear precoder ESE ≤

∑K
i=1 biαi. Solving the weighted

sum rate optimization problem in (3.15) leads to the same optimal power-loading coe�cients
as in (3.19). Combining the latter with (3.9) and (3.14) results in the following expression
for the weighted sum rate:

WSRVP,opt ≥WSRlin,opt − V log2 (ζ)

+ V log2

(
N∏

j=1

α
1/N
j

)
− V log2

(∣∣∣W− 1
N

∣∣∣
)

︸ ︷︷ ︸
Υ(H)

+ V log2

(
V

N

N∏
i=1

v
− 1

N
i

)

︸ ︷︷ ︸
Ψ(v)

, (3.21)
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with ζ = 2πeGUB, where GUB stands for an upper bound on G[V(ΛP , 0)]. This upper bound
can be replaced by any of the bounds analyzed in the previous section, although the GTB

bound is recommended for accurate results. Note that the loss term involving ζ results from
the employment of uniformly distributed symbols in the VP model.

In the particular case of vk = 1 ∀k, the expression for the conventional sum rate is
obtained, which reads as

SRVP,opt ≥ N log2

(
ETr
N

)
− log2

(∣∣W−1
∣∣)−N log2 (ζ) .

3.5.1.3 Ergodic Performance Gap

When examining the performance gap between linear precoding and VP in terms of the
weighted sum rate (3.21), one can notice that the superiority of the non-linear scheme is
subjected to the channel conditions, the transmit data signaling model and the distribu-
tion of the weights. Nevertheless, note that the terms Ψ(v) and Υ(H) are always positive
or equal to zero, and hence, they will always contribute to the performance advantage of
VP over linear precoding. More speci�cally, the gain following from di�erent weights, de-
noted as Ψ(v), is non-negative for any weight distribution, since the arithmetic mean V/N

is always larger than or equal to the geometric mean of the weights as stated by the arith-
metic mean - geometric mean (AM-GM) inequality. Additionally, the Hadamard's inequality
[Hadamard93] stipulates that for a given hermitian and semi-de�nite positive matrix G with
diagonal values gii i ∈ {1, . . . , Z} the following inequality holds:

|G| ≤
Z∏

i=1

gii,

following from which we get that Υ(H) ≥ 0.
From Equation (3.21), the performance gap between the analyzed precoding schemes

can be shown for speci�c channel conditions and design features. For example, for diagonal
channels and equal weights vj = v1 ∀j, the performance gap is reduced to

WSRVP,opt = WSRlin,opt −Nv1 log2(ζ).

The loss term Nv1 log2(ζ) stems from the use of a less advantageous signaling model by
the vector precoder. Therefore, when considering the same distribution of the user data
symbols, the performance of VP and linear precoding is equal in terms of the weighted sum
rate. This is an expected result since the perturbation vector chosen by the VP algorithm
in the event of a diagonal channel will always be the null vector, which reduces the non-
linear precoding scheme to a simple linear precoder with a modulo operator at the receivers.
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Nevertheless, this statement cannot be generalized to any other channel realization, and
therefore, the computation of the ergodic performance gap is required in order to gain some
insight into the expected performance advantage of VP over the more straightforward linear
precoding.

If the expectation of the weighted sum rate gap is taken with respect to H , the asymptotic
ergodic gain of VP can be expressed as

E[WSRVP −WSRlin] ≥ Ψ(v)− V log2(ζ) +
V

N log(2)

N−1∑
i=1

i

M − i
. (3.22)

This result follows from W being a Wishart distributed matrix of dimension N and
M degrees of freedom, namely W ∼ WN(M, IN), whose ergodic characteristics have been
widely studied. For instance, in [Tulino04] it was shown that for a Wishart distributed
matrix the following property holds

E[log |W |] =
N−1∑

`=0

ψ(M − `), (3.23)

where ψ(·) stands for the Digamma function [Tulino04], which is de�ned as

ψ(m) = −γ +
m−1∑

`=1

`−1,

being γ the Euler-Mascheroni constant. Additionally, note that the αi-s are inverse Wishart
distributed [Gupta99], namely αi ∼ W−1

1 (M −N + 1, 1), which leads to

E[log(αi)] = −ψ(M −N + 1). (3.24)

By plugging the ergodic expressions in (3.23) and (3.24) into the performance gap de�-
nition, the equation for the expected performance gap in (3.22) is obtained.

As an additional result, specializing to vk = 1 ∀k gives the ergodic sum rate gain of VP
over linear precoding:

E[SRVP − SRlin] ≥ 1

log(2)

N−1∑

l=1

l

M − l
−N log2(ζ).

3.5.1.4 Simulation Results

The results shown in Figure 3.7 represent the achievable gain range of VP with respect to
linear precoding. The bounding of the VP results has been performed by means of the GTB

and GCS bounds. Additionally, the actual value of the analyzed performance gap is plotted
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as a reference. Note that the values given for the sum rate can also be employed to compute
the gain for the weighted sum rate (for V = N), in which case the addition of the positive
factor Ψ(v) would be required.

As is shown in Figure 3.7, a better performance of VP with respect to linear precoding
can be expected for all the analyzed antenna setups. What is more, a more signi�cant
gain of VP can be achieved in those systems with the same amount of transmit and receive
antennas. This is due to the well-known performance loss experienced by linear ZF precoders
in fully-loaded systems. Additionally, the simulation results depicted in this �gure show
that the performance gain increases noticeably as more antennas are deployed, achieving a
performance gain of roughly 18 bps/Hz with just 8 transmit and receive antennas.

3.5.2 Quality of Service

This section deals with the QoS optimization, which establishes the premise that a certain
rate for each user has to be guaranteed with a minimum e�ort. In other words, the transmit
power is minimized under constraints ensuring the minimum rates ρk for all users. The QoS
optimization problem can be described by the following problem formulation:

min
{bk}

ETr s.t.: Rk ≥ ρk ∀k. (3.25)

In the following sections, the optimal matrix B and the minimum achievable transmit
power will be derived for the linear and VP precoding approaches.
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3.5.2.1 Linear Precoding

For a linear precoder with the transmit rate de�ned in (3.18), it can be shown that the
constraint in (3.25) is ful�lled for

bk = 2ρk

∑N
i=1 αibi

ETr,lin
.

Taking the sum
∑N

k=1 αkbk = ETr,lin shows that the minimum power for linear precoding
is given by

ETr,lin =
N∑

k=1

αk2
ρk . (3.26)

3.5.2.2 Vector Precoding

For vector precoding, the combination of the expression in (3.14) and the active QoS con-
straints leads to

bk =
ζN |W |−1/N |B|1/N

ETr
2ρk .

The minimum power for the VP system under study is then obtained by analyzing∏N
k=1 bk, which gives

ETr,VP ≤ ζN |W |−1/N

N∏

k=1

2
ρk
N . (3.27)

3.5.2.3 Ratio of Ergodic Powers

The analysis of the ratio of ergodic powers for any user rate ρk is hindered by the di�erent
structures of the solutions in (3.26) and (3.27). Therefore, in order to ease the evaluation
of the expected power of the precoding techniques under a QoS formulation, the particular
case of equal rates will be considered. The expression of the ratio of powers therefore reads
as

ETr,VP
ETr,lin

≤ ζ
|W |−1/N

Tr(W−1)/N︸ ︷︷ ︸
Ξ

,

which follows from
∑N

j=1 αj = Tr(W−1). Once more, due to the AM-GM inequality, the
second term in this expression is known to be Ξ ≤ 1. Consequently, the superiority of the VP
approach is subjected to the ζ term that stems from the presence of uniformly distributed
symbols in the VP model. As is the case with the weighted sum rate optimization, the e�ect
of this term can be neglected if the same signaling model is considered for both precoding
schemes.
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In any case, in the limit of the system, e.g. N → ∞, we get that ζ → 1 due to the
convergence of the upper and lower bounds discussed in Section 3.3, which indicates that
VP is able to o�er a certain QoS with a smaller transmit power than linear precoding under
such conditions.

In order to evaluate the power requirements of the linear and VP precoding models in
a more general scenario, the ratio of ergodic powers will be computed. To that end, the
following property of Wishart distributed matrices [Tulino04] will be used along with the
ergodic expression in (3.24):

E[Tr(W )−1] =
N

M −N
.

Thus, the desired ergodic power ratio reads as:

E[ETr,VP]

E[ETr,lin]
≤ ζN

(
M

N
− 1

) N−1∏

`=0

Γ(M − 1
N
− `)

Γ(M − `)
.

Note that the ratio of ergodic powers given by the above expression equals 0 for M = N .
This follows from the well-known e�ect of a fully-loaded antenna setup in linear ZF precoders
which results in E[ESE,lin] = ∞ [Peel05].

3.5.2.4 Simulation Results

The ratio of ergodic powers between the vector and linear precoding approaches is depicted
in Figure 3.8 for M = N + 1 and M = N + 2 antenna setups. The results for the upper and
lower bounds shown in this �gure have been acquired by means of the GTB and GCS bounds,
respectively.

For a small number of single-antenna users, e.g. N = 2, the proposed upper bound does
not yield very accurate results for any of the antenna setups. Nevertheless, as the amount
of users increases, both bounds converge and approach the real value of the ratio.

As for the performance of the di�erent precoding schemes, the advantage of using VP
over linear precoding is more notorious as more users are added to the system. Speci�cally,
for a M = 5 and N = 4 system con�guration, the provided simulation results show that
VP requires half of the power used by the linear approach for the same QoS constraint.
Nonetheless, the data depicted in Figure 3.8 shows that the advantage of using VP over the
more straightforward linear approach fades as the amounts of antennas at both ends of the
communication link are less balanced. Put in other words, higher power ratios are obtained
for the M = N + 2 antenna setup when compared to the M = N + 1 con�guration or the
fully-loaded system model.
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Figure 3.8: Ratio of ergodic powers of the linear and VP precoding approaches.

3.5.3 User Balancing
When trying to achieve a fair resource allocation, a rate balancing optimization can be em-
ployed to maximize the rates of the users, where the ratio with respect to some requirements
ρk ∀k is the same for all users. The problem formulation for the user balancing optimization
is as follows

max
δ,{bk}

δ s.t.: Rk = δρk ∀k.

3.5.3.1 Linear Precoding

The solution to the aforementioned optimization problem for linear precoding systems (con-
straining the total transmit power to ETr) can be found by solving the following equation:

1

ETr

N∑
i=1

αi 2δρi = 1,

where we set
∑N

j=1 bjαj = 1 without loss of generality. In order to get the value of 2δ, it is
required to solve a root �nding problem with real exponents ρi, which greatly hinders the
computation of the optimal δ. However, it is possible to obtain a closed-form solution for the
particular case of equal rate requirements, i.e. ρk = ρ ∀k. In such a scenario, the asymptotic
value of the balancing parameter is

δlin =
1

ρ
log2

(
ETr∑N
i=1 αi

)
.
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3.5.3.2 Vector Precoding

The balancing optimization problem for VP can be easily solved by combining (3.9) and
(3.14). Given that the entries of the matrix B can be scaled arbitrarily without a�ecting the
performance of the system, the product

∏K
i=1 b

1/N
i = 1 is taken, which leads to the following

optimum balancing parameter for VP

δVP ≥ N∑N
i=1 ρi

log2

(
ETr

ζN |W |− 1
N

)
.

3.5.3.3 Ergodic Performance Gap

Due to the limitation set by the linear precoding approach, only the case for ρk = ρ ∀k
will be analyzed. The performance gap for the balancing problem under such conditions is
represented as follows

δVP − δlin ≥ 1

ρ
[− log2 (Ξ)− log2(ζ)] .

As is the case with the previous optimization problems, the knowledge of Ξ ≤ 1 is insuf-
�cient to determine the superiority of the VP approach for an arbitrary channel realization.
Consequently, the expected performance gap will be computed, which reads as

E[δVP − δlin] ≥ 1

ρ

(
E

[
log2

Tr(W−1)

|W− 1
N |

]
− log2(ζN)

)
.

Unfortunately, evaluating E
{
log2

[
Tr(W−1)

]}
is di�cult. Thus, a closed-form expression

has been derived only for N = 2 and M ≥ N . For such case, the problematic ergodic
expression can be rewritten as

E
{
log2

[
Tr(W−1)

]}
= log2(e) {E [log($)]− E [log |W |]} ,

where $ = W11 +W22 is a Wishart distributed variable with 2M degrees of freedom, namely
$ ∼ W1(2M, 1). We now apply the properties of Wishart matrices described in (3.23) and
(3.24) to the equation above. The expression so obtained �nally simpli�es to

E[δVP − δlin] ≥ log2(e)

ρ

[
2M−1∑

`=M−1

`−1 − 1

2(M − 1)
− log2

(
ζN

e

)]
. (3.28)

3.5.3.4 Simulation Results

Figure 3.9 depicts the ergodic performance gap between linear precoding and VP. The data
shown in this �gure have been obtained through extensive simulation, except for the case of
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Figure 3.9: Ergodic performance gap for the user balancing optimization.

N = 2, where the expression in (3.28) has been used instead. The upper and lower bounds
have been computed by means of the GCS and GTB bounds, respectively.

The data in Figure 3.9 shows the accuracy of the upper bound for any of the antenna
setups under study. Nevertheless, the precision of the lower bound is strongly dependant on
the transmit and receive antenna con�guration. This way, more accurate results of the lower
bound can be expected for those antenna con�gurations where the amounts of transmit and
receive antennas are more balanced.

As for the ergodic di�erence of the balancing parameter, the data in Figure 3.9 shows
the conventional performance advantage of VP with respect to linear precoding in the fully-
loaded antenna setup. What is more, the performance enhancement obtained when deploying
an additional antenna at both the transmitter and the receiver side is more prominent in
the M = N antenna con�guration. Generally speaking, it can be observed that the slopes
of the E[δVP − δlin] vs. N curves depend on the excess of transmit antennas, in such a way
that the smaller the M/N ratio is, the steeper the curves are.

3.6 Chapter Summary
In this chapter, the problem of assessing the performance of VP systems has been addressed.
The main di�culties in this analysis are twofold: the addition of the perturbation signal,
which results from the evaluation of an NP-hard problem, and the modulo operators located
at the receivers, which map the received signal and the noise into a certain Voronoi region.

The performance of any precoding system is strongly related to the power of the precoded
symbols. Nevertheless, the expected power of the symbols precoded following a VP approach
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cannot be evaluated due to the data perturbation process. To overcome this issue, several
upper and lower bounds have been reviewed and proposed in order to delimit the range of
the unnormalized transmit power, and ultimately, bound the performance of VP.

Three di�erent applications have then been analyzed for the proposed bounds: the
weighted sum rate maximization, the power resulting from a QoS formulation and the perfor-
mance when balancing the rates of the users. With the aim of proving the superiority of VP
over the more straightforward linear precoding approaches, the aforementioned optimization
problems have also been solved for a ZF linear precoder. Next, the ergodic performance gap
with respect to VP has been presented and analyzed.

Simulation results on the sum rate and the ergodic performance gap with respect to linear
precoding for the analyzed optimization problems have also been provided. The results
presented in this chapter show a better performance of VP for all the applications and
antenna setups under study. The performance gain of the non-linear technique is more
prominent in those systems with a higher amount of transmit/receive antennas as well as in
fully-loaded systems, e.g. M = N .

The performance results of VP systems given in this chapter include a penalty term that
stems from a uniform symbol distribution, whereas the analysis of the linear precoder has
been carried out considering the more advantageous Gaussian signaling. In a realistic sce-
nario, where the symbols to be transmitted are taken from a �nite constellation, the linear
precoding model studied in this chapter would su�er from an added performance degrada-
tion. On the other hand, if the order of the modulation is high enough, the distribution
of transmit symbols will approach a uniform distribution, and therefore, only a slight per-
formance degradation with respect to the provided performance results of the non-linear
technique is to be expected in a practical implementation.

All in all, the gain of VP over linear precoding has been shown and documented over
several cases of study. Furthermore, due to the assumptions made when analytically assessing
the performance of the precoding techniques, the gain of VP over linear precoding is expected
to be even higher in a realistic scenario.
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The Fixed-complexity Sphere Encoder

4.1 Introduction

As it has been shown in previous chapters, VP provides a considerable performance ad-
vantage with respect to linear precoding techniques or other non-linear precoding schemes
such as THP. Nonetheless, the computation of the perturbing signal represents the main
challenge for its practical implementation. Since the publication of the �rst VP model in
[Hochwald05], many algorithms have been proposed in the literature to replace the compu-
tationally intractable exhaustive search problem posed by the cost function in (2.8).

Lattice reduction approaches have been widely used as a means to compute a subop-
timum perturbation vector with a moderate complexity. The key idea of lattice-reduction
techniques relies in the usage of an equivalent and more advantageous set of basis vectors to
allow for the suboptimal resolution of the problem in (2.8) by means of a simple rounding op-
eration. This method is used in [Windpassinger04], where the Lenstra-Lenstra-Lovász (LLL)
reduction algorithm [Lenstra82] is used to yield the Babai's approximate closest point so-
lution [Babai86]. Similar approaches can be found in [Seethaler06], [Hur07] and [Liu07].
Despite achieving full diversity order in VP systems, the performance degradation caused
by the quantization error due to the rounding operations still remains. Moreover, many lat-
tice reduction algorithms have a considerable computational complexity, which poses many
challenges to a prospective hardware implementation.

The solution to the cost function in (2.8) can also be found by searching for the optimum
solution within a subset of candidate vectors. To ease the candidate evaluation process, the
computation of the vector norms in the aforementioned expression is replaced by a distributed
distance computation model, whose structure resembles that of a tree. These approaches,
also known as tree-search techniques, perform a traversal through a tree of hypotheses with
the aim of �nding an appropriate perturbation vector.

One of the most popular tree-search algorithms is the sphere encoder (SE), which rep-
resents the adaptation of the sphere decoder (SD) approach in [Viterbo99] [Damen03] to
precoding scenarios [Hochwald05] [Schmidt08]. Despite its optimal performance, the vari-
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able complexity of the algorithm, as well as its strong dependance on the channel conditions
and the noise variance, has motivated the design of other tree-search approaches that achieve
a suboptimal performance with a bounded complexity. This is the case of the K-Best al-
gorithm [Anderson84] which was applied to VP scenarios in [Zhang05][Habendorf07]. In
spite of its �xed complexity, the required sorting stages represent the main bottleneck of the
K-Best tree traversal.

Tree-search techniques can additionally be used to alleviate the performance degradation
su�ered by lattice reduction approaches. For example, the schemes in [Airy06] and [Park08]
incorporate a SE search around the solution provided by the lattice-reduction algorithm to
improve the quality of the resulting perturbation vector.

The main focus of the present chapter is on the presentation of a tree-search algorithm
for VP that having a close-to-optimum performance is still suitable for a high-throughput
hardware implementation.

4.2 Tree-search Algorithms for VP
The distributed distance computation model for tree-search-based precoding systems will
be analyzed in this section. Additionally, two of the most widely-used tree-search schemes,
namely the SE and the K-Best approaches, will be brie�y reviewed.

Note that in the remainder of this thesis the term (Euclidean) distance will be used to
denote calculations of the form |a + s|. The strict de�nition of the distance between two
points would require the evaluation of | − a′ + s| instead, where a′ = −a. Therefore, when
referring to the distance between the variables a and s it is implied that the calculation of
|a + s| is being alluded to, and not the more conventional |s − a|. This notation has been
adopted for a better understanding of the tree-search algorithms in precoding scenarios, as
their original description contemplates the term distance in its common form.

If the matrix decomposition procedure in (2.7) is performed in such a way that a trian-
gular U matrix is obtained, it is possible to gather all the solution vector hypotheses into
an organized tree-like structure so that the search for the optimum perturbation vector is
facilitated. The nodes at the top level of this tree structure (level i = N) are referred to as
root nodes and represent each one of the possible values within the set τCZ. The next levels
of the tree are composed by expanding all the eligible nodes, namely every element in τCZ,
for each one of the nodes expanded at the previous level, which we shall refer to as parent
nodes. Additionally, a leaf node will denote any node at the bottom of the tree (level i = 1).
The path leading from a root node to a any node within the tree structure will be referred
to as a branch.

This way, the computation of the Euclidean distances in (2.8) can be distributed across
multiple stages as
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Figure 4.1: Incidence of the lattice values in the optimum solution vector for di�erent SNR
regimes.

Di = u2
ii|ai + zi|2 +

N∑
j=i+1

u2
jj|aj + zj|2 = di + Di+1, (4.1)

where the intermediate point that re�ects the previous perturbation element choices is com-
puted as

zi = si +
N∑

j=i+1

uij

uii

(aj + sj). (4.2)

Hence, the search tree is organized in such a way that the Euclidean distances in (2.8) can
be computed in a distributed fashion across the di�erent levels of the tree. Speci�cally, the
partial Euclidean distance (PED) of level i is denoted as di, while the accumulated Euclidean
distance (AED) down to level i is represented by Di. The search for the perturbation vector
is then performed by traversing the tree of N levels (each one representing a user) starting
from the root level i = N , and working backwards until i = 1. Note that, as opposed to the
point-to-point MIMO detection scenario, the amount of child nodes that stem from the same
parent node does not depend on the modulation constellation in use. Since the elements of
the solution vector belong to the expanded search space τCZ, the amount of child nodes
that originate from each parent node in the tree equals |τCZ| = ∞ in theory.

However, depending on the tree-traversal strategy to be followed, the cardinality of this
set can be reduced either arti�cially, by limiting the search space to the group L of closest
points to the origin, or by identifying the set of eligible nodes following a distance control
policy (also known as the sphere constraint). Regarding the former search set limitation
strategy, note that the lattice values that comprise the optimum solution vector in the VP
framework are more concentrated around the origin of the lattice in the low-SNR region, as
the null vector is a more probable solution in this scenario [Christensen07]. This will derive
in a low error-rate performance penalty when arti�cially constraining the search space to the
set of closest elements to the origin. On the other hand, those lattice values that are further
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Figure 4.2: E�ect of employing a reduced search set on the BER performance of VP systems.

away from the origin are more often selected as part of the optimum perturbation vector at
high SNRs. The e�ect of the SNR on the distribution of the selected perturbation elements
is shown in Figure 4.1 for an 8×8 antenna system. As one can notice, the 0 element accounts
for roughly 80 % of the vector perturbation elements at low SNR (e.g. 0 dB), whereas it is
only present in 60 % of the selected perturbation vectors in the high-SNR regime (e.g. 30
dB).

Consequently, the limitation of the search set provides a computational-complexity ad-
vantage to the structure of the tree-search algorithms. We shall de�ne the restricted search
space L as the square region centered around the origin of the lattice such that L , {x+yj :

|x|, |y| ≤ (
√
|L|− 1)/2}. The e�ect of arti�cially constraining the search space on the error-

rate performance of VP systems is shown in Figure 4.2. The data provided in this �gure
show that the limitation of the cardinality of the search set has a smaller impact on the
error-rate performance of the precoding system when a higher number of antennas are de-
ployed, e.g. 6 × 6 and 8 × 8 con�gurations. For the 4 antenna case on the other hand, a
noticeable performance degradation is only perceived when a very restricted lattice is used.
In the light of these results, a search set of cardinality |L| = 25 will be considered in the
remainder of this document, unless otherwise stated.

4.2.1 Sphere Encoder for VP Systems
Depth-�rst tree-search algorithms traverse the tree recursively in both forward and backward
directions. The main feature that identi�es this type of tree traversal is that the expansion
of the child nodes of a parent node is prioritized over the expansion of its siblings. This
way, a leaf node is visited after the �rst N node expansions allowing for e�cient pruning
techniques to be implemented based on, for example, the Euclidean distance of the �rst
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Figure 4.3: SE tree traversal example in a system with N = 3 and |L| = 3.

computed branch or statistics of the precoded symbols as proposed in [Habendorf06]. The
pruning criterion is updated every time a leaf node with a smaller AED is reached. However,
the e�cient node expansion scheme comes at the cost of a variable complexity.

One of the most noteworthy depth-�rst techniques is the SE algorithm, which restricts the
search for the perturbation vector to a set of points that lie within a hypersphere of radius R

centered around a reference signal. Therefore, the set of eligible points is restricted to those
nodes that satisfy the sphere constraint, namely Di ≤ R. The radius of the hypersphere
can be initialized to R = ∞ if the depth-�rst tree traversal is performed in such a way that
the most promising nodes are visited �rst. The good performance of the SE algorithm is
a consequence of the identi�cation and management of the admissible set of nodes at each
stage of the tree search.

An arbitrary example of the SE tree traversal through an N = 3 and |L| = 3 tree is
depicted in Figure 4.3, where the ordered sequence of node expansions is also shown. Every
time a forward iteration is performed (i → i − 1) the algorithm selects and computes the
distance increments of the nodes that ful�l the sphere constraint and continues the tree search
with the most favorable node according to the Schnorr-Euchner enumeration [Schnorr91] (the
node resulting in the smallest di), e.g. the expanded node in 2©. At each level of the tree,
those nodes that do not ful�l the sphere constraint, along with all their descendants, are
discarded or pruned from the search tree. This process is repeated until a leaf node is reached
( 3©, which will result in a radius update), or no nodes that satisfy the sphere constraint are
found. In any case, the SE will proceed with a backward iteration (i → i + 1) where a
radius check will be performed among the previously computed set of candidate points. If a
node with Di < R is found ( 4©), the tree traversal is resumed with a forward iteration. The
optimum solution has been found when the hypersphere with the updated radius contains
no further nodes.

The radius reduction strategy, along with the tracking of potentially valid nodes at each
level of the algorithm, prevents unnecessary distance computations, but ultimately results
in a rather complex system architecture.
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Figure 4.4: K-Best tree traversal example in a system with N = 3, |L| = 3 and K = 4.

4.2.2 K-Best Tree Traversal for VP

Breadth-�rst tree-search algorithms traverse the tree without performing any backward iter-
ations, in such a way that all the eligible nodes are expanded at every level. These algorithms
bene�t from a high data processing throughput that stems from the parallel processing of
the branches during the tree traversal. However, the strict application of the breadth-�rst
tree-search concept derives in a high computational load that results from the evaluation
of all the perturbation vector hypotheses. Therefore, it is a common practice to bound the
complexity of the breadth-�rst algorithms by restricting the amount of nodes considered at
each level.

As one can guess from its name, the K-Best precoder selects the K best branches at each
level of the tree regardless of the sphere constraint or any other distance control policy. The
K-Best tree traversal strategy is illustrated in Figure 4.4 for a system with N = 3, |L| = 3

and K = 4. The parallel branch-processing nature of the algorithm is re�ected in the equal
node expansion sequence of all the nodes at a certain level of the tree. At each stage i

of the K-Best tree search, an ordering procedure has to be performed on the eligible K|L|
candidate branches based on their AEDs down to level i. After the sorting procedure, the K

paths with the minimum accumulated distances are passed on to the next level of the tree.
Once the �nal stage of the tree has been reached, the branch with the minimum Euclidean
distance is selected as the K-Best solution.

Even though only K branches are considered as potential solutions at the �nal stage of
the algorithm, the amount of calculated distance increments that need to be computed is
remarkably higher than KN and depends strongly on the sorting approach implemented at
each stage. Sorting algorithms for K-Best-based VP systems are out of the scope of this sec-
tion and will be analyzed in a forthcoming chapter. Additionally to the unnecessary distance
computations, the full-sorting procedures performed at every level contribute to a consider-
able resource occupation and power consumption of a K-Best hardware implementation.
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4.3 The Fixed-complexity Sphere Encoder
The proposed �xed-complexity sphere encoder (FSE) algorithm has been designed with the
objective of providing an implementation-friendly tree-search algorithm for VP. This novel
scheme aims at overcoming the two main drawbacks of the SE, namely the variable com-
plexity and the sequential nature of the tree search, along with the major bottleneck of the
�xed-complexity K-Best, that is, the computationally-intensive sorting stages. The proposed
scheme is based on the �xed-complexity sphere decoder (FSD) presented in [Barbero06b] for
the detection of single-user MIMO systems.

The main di�erence of the proposed FSE with respect to the optimum albeit sequential
SE is that the search is not constrained only to those nodes whose PEDs are within a
certain distance from a reference signal. To the contrary, the search is performed in an
unconstrained fashion in terms of distance control. The tree-search structure is de�ned by a
tree con�guration vector n = [n1, . . . , nN ] instead, which speci�es the number of child nodes
to be evaluated at each level (ni). Therefore, only ni PEDs are computed per parent node
at each level, yielding a total candidate branch count of nT =

∏N
i=1 ni. The selection of the

expanded nodes is performed based on the Schnorr-Euchner enumeration [Schnorr91], hence
avoiding the intricate sorting stages required by the K-Best tree search.

The tree is therefore traversed from level i = N down to level i = 1, expanding only
the most promising ni nodes at each stage. When the bottom of the tree is reached, that
is i = 1, the path with the smallest AED among the tree branches considered during the
FSE tree traversal is selected as the solution. A sample representation of an FSE tree search
is depicted in Figure 4.5 for a N = 3 user system with a constrained lattice of |L| = 3

elements and n = [1, 2, 2]. Note that, as is the case with the K-Best tree traversal, all the
node expansions with the same sequence number can be computed simultaneously.

The proposed tree-search algorithm therefore features two main concepts: on one hand,
the ordering strategy, which determines the order in which the users' data streams are visited
during the tree traversal, and on the other hand, the tree con�guration vector n which
shapes the structure of the search tree. These two characteristics of the FSE algorithm will
be analyzed in the following sections.

4.3.1 Matrix Preprocessing for the FSE Tree Search

The close-to-optimum performance of the original FSD algorithm proposed for the single-
user MIMO detection scenario is due to a unique combination of an unconventional ordering
strategy and an optimized tree-search structure. The key factor of the FSD ordering approach
is that, in order to minimize the probability of a wrong decision, the weakest stream is placed
at the top of the tree, where all possible nodes are considered for expansion. However, this
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Figure 4.5: FSE tree traversal example in a system with N = 3, |L| = 3 and tree con�gura-
tion vector n = [1, 2, 2].

approach is not applicable in precoding scenarios as the set of candidate nodes at the top
level of the tree does no longer have a �nite number of elements. This fact, along with the
inherent di�erences between decoding and precoding scenarios, motivates the implementation
of a di�erent ordering strategy for the FSE algorithm.

The introduction of a certain user ordering strategy O into the VP system model derives
in the following reformulated expressions for the matrix decomposition procedure in (2.7)
and the optimum perturbation vector computation in (2.8):

UHU = ΠO

(
HHH + ξIN

)−1
ΠT

O

a = ΠT
O argmin

â∈τCZN

∥∥∥U (ΠOs + â)
∥∥∥

2

2
. (4.3)

The quality of the pruning process in a K-Best tree search can be enhanced by placing
the most reliable streams at the top of the tree, so that a better solution can be found in
the subsequent node selection stages. This ordering approach has been reported to achieve
good error-rate performance results when applied to precoding scenarios. More speci�cally,
the sorted QR matrix ordering (OSQR) presented in [Wübben01] has been used along with
the K-Best �xed-complexity tree-search scheme in [Habendorf07].

A more suitable ordering strategy can be used for the FSE by exploiting the similarities
between the VP and THP schemes. After all, the VP system model is transformed into the
THP precoding scheme if an FSE tree traversal with n = [1, . . . , 1] is used to obtain the
precoding vector. Hence, the THP solution is always contained within the set of candidate
branches considered by the FSE regardless of the tree con�guration vector in use. In a K-
Best system however, such an statement cannot be made as the THP solution vector may
be dropped out during any of the sorting stages of the algorithm. The following section
summarizes the main features of the preferred ordering for THP systems.
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4.3.1.1 Ordering Strategy for THP (Best-last Rule)

THP can be regarded as the precoding counterpart of DFE, where a successive interference
cancelation procedure is performed on the received signal vector. With the aim of minimizing
the error propagation through each detection step, the spatial streams in a DFE approach
are ordered following a best-�rst rule [Kusume07]. This ordering strategy states that the
strongest data stream is detected �rst while the worst stream is left for the �nal detection
stage.

Nevertheless, the picture is di�erent in precoding scenarios. In a THP system for example,
the �rst data stream is transmitted unaltered (only the channel shaping matrix T is applied
to this signal), whereas the last precoded signal has to avoid interfering all the previous data
streams. Hence, the task of precoding the last user is much more arduous. Consequently,
following a best-last rule instead and precoding the best stream last is a sensitive decision,
as this data stream has less degrees of freedom. This reversed ordering approach represents
the optimum ordering strategy for THP systems (OBL) [Joham04b].

Once the strategy of the ordering procedure has been de�ned, we shall focus on the
criteria used to select the best/worst stream at each iteration. Unlike in point-to-point
MIMO detection, where the ordering was determined based on the SNR associated with
each transmitted stream, the MSE of the perturbed symbols in a block transmission will be
the parameter used to establish the optimum user permutation strategy for VP. Note that,
the perturbation vector in (2.8) is computed so as to minimize the MSE for a given block of
data symbols. Consequently, the best user stream will be the one that contributes the least to
the MSE, or equivalently the one with a smaller diagonal value of the Ψ = (HHH + ξIN)−1

matrix.
Table 4.1 shows the pseudocode for the joint user order determination and triangular

matrix computation. The reverse direction in which the matrix preprocessing (from i = 1 to
N) and the tree traversal (from i = N down to i = 1 since U is upper triangular) are carried
out is noticeable from the algorithm displayed in this table. The calculation of the triangular
matrix in (2.7) is performed following the computationally-e�cient Cholesky factorization
with symmetric permutation method presented in [Kusume05] [Kusume07], whose complexity
is similar to that of a sorted QR decomposition.

4.3.1.2 Performance of the FSE with Di�erent Ordering Strategies

The performance of the proposed FSE tree search is depicted in Figure 4.6 for a 4×4 antenna
system and a tree con�guration vector n = [1, 1, 2, 5]. The triangular matrix used for the
�xed-complexity tree traversal has been rearranged following the aforementioned OSQR and
OBL ordering strategies. The BER performance curve of the unordered FSE tree search
has additionally been included for completion. The bene�ts of performing an appropriate
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Ψ =
(
HHH + ξIN

)−1

Π = IN

for i = 1, . . . , N

q = argmin
q̂∈{i,...,N}

Ψ (q̂, q̂)

Ξ = Ĩ
(i,q)

N

Π = ΞΠ

Ψ = ΞΨΞT

D(i, i) = Ψ(i, i)

Ψ(i : N, i) = Ψ(i : N, i)/Ψ(i, i)

Ψ(i + 1 : N, i + 1 : N) = Ψ(i + 1 : N, i + 1 : N)

−Ψ(i + 1 : N, i)Ψ(i + 1 : N, i)HD(i, i)

end
L = lower triangular part of Ψ

U = D1/2LH

Table 4.1: Computation of the upper-triangular matrix U with best-last (OBL) ordering.

preprocessing stage on the triangular matrix are clearly visible from the data displayed in
this �gure. As one can notice, a performance gain of 5 dB at a BER of 10−5 can be attained
by simply rearranging the order in which the users are processed within the search tree. The
data displayed in this �gure also show that a similar BER performance is obtained by the
FSE at the low-SNR range with any of the considered ordering strategies. Nevertheless, the
FSE with the OSQR ordering su�ers a considerable error-rate performance degradation in
the high-SNR regime.

Considering the similar computational complexity and notable performance di�erence
between the aforementioned ordering strategies, the OBL ordering scheme is proposed for an
FSE-based VP system.

4.3.2 FSE Tree Con�guration Vector
The tree con�guration vector of the FSE provides a �exible error-rate performance and
complexity trade-o�. Heuristically, one can argue that the higher the number of calculated
paths is, the better the performance of the overall system will be, and viceversa. This fact
is generally true, as an extended set of candidate vectors increases the probability of �nding
the optimum solution vector. Nevertheless, it should be noted that, for a given non-prime
nT value, several tree con�guration vectors can be de�ned, where each one will provide a
certain error-rate performance.

In the original description of the algorithm, namely the FSD technique for signal de-
tection, the use of the n = [1, 1, . . . , nT ] tree con�guration vector was recommended in
consideration of the speci�c features of the FSD ordering strategy. Nevertheless, due to the
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Figure 4.6: BER performance of the proposed FSE algorithm with n = [1, 1, 2, 5] and order-
ing strategies OSQR and OBL. Additionally, the unordered case is included for completion.

key di�erences between MIMO detection and multi-user precoding scenarios outlined in Sec-
tion 4.3.1, the guidelines for the design of the optimum tree con�guration vector presented
in [Barbero06b] are not valid for the current application of the sort-free �xed-complexity
tree search.

However, there are several lessons to be learned from the tree-search structure of the
FSD. For example, by distributing the values within the tree con�guration vector such that
n1 ≤ n2 ≤ . . . ≤ nN , a broader range of eligible values can be achieved at the top of the tree,
which enables the selection of more suitable perturbation values at the rest of the levels of
the tree. Additionally, n1 should be set to 1 as setting a higher value for this element would
not provide any error-rate improvement if the Schnorr-Euchner enumeration is followed.

We shall refer to the set of W factoring prime integers of nT asW , {η1, η2, ..., ηW} with∏W
j=1 ηj = nT . For a given value of nT , the set of eligible tree con�guration vectors can be

represented as

NnT
= {[1, . . . , 1, nT ]

[1, . . . , η1, nT /η1]

[1, . . . , η2, nT /η2]

...
[1, . . . , η1, η2, nT /(η1η2)]

...
[1, . . . , η1, η2, . . . , ηW ]} .
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Figure 4.7 shows the BER performance curves of FSE-based VP systems in the 6×6 and
8 × 8 antenna setups considering the tree con�guration vector candidate sets N12 and N24,
respectively. The data depicted in these �gures show that the tree con�guration vectors of the
type n = [1, . . . , nT ] achieve the worst performance among the eligible vectors in the set NnT

for both antenna setups. Moreover, those tree structures with more dispersedly distributed
values of ni achieve the best performance, being the performance gap with respect to other
tree con�guration vectors with higher values of ni more noticeable in the 8 antenna case.
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Figure 4.7: BER performance of the FSE with di�erent tree con�guration vectors in a 6× 6
(a) and an 8× 8 (b) antenna setup.

Apart from the impact on the error-rate performance of the FSE, the implementation
of a certain tree con�guration vector also a�ects the computational complexity of the tree
traversal. As already stated, all the candidate tree con�guration vectors in NnT

yield the
same amount of total computed branches or AEDs. Nevertheless, this does not imply that the
amount of computed PEDs is equal for all the considered con�guration vectors. Therefore,
the selection of the tree con�guration vector will determine the computational complexity
of the FSE, as most of its computational load is due to PED calculations. The amount of
required PED calculations (CPED) for a given FSE tree structure is given by the following
formula:

CPED =
N∑

i=1

N∏
j=i

ni. (4.4)

Additionally to the Euclidean distance computations, the number of intermediate point
calculations should also be taken into account when assessing the computational complexity
of a certain tree-search structure, as the high volume of complex-valued multiplications
involved in their computation represents an important part of the computational load of the
FSE tree traversal. Therefore, the amount of intermediate points to be computed (CIP) can
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be calculated as:

CIP =
N−1∑
i=1

N∏
j=i+1

ni. (4.5)

Clearly from equations (4.4) and (4.5), those tree con�guration vectors with reduced
values of ni at each level will render the smallest computational complexity among the can-
didate vectors in NnT

. To better support this argument, the number of PED computations
and zi calculations has been computed for all the tree con�guration vectors with nT = 24 in
an N = 8 user system. Additionally, the total number of operations has been calculated for
each one of this cases, where for the sake of simplicity, all the arithmetic operations (multi-
plication, addition and substraction) have been considered to have the same weight on the
�nal operation count. The results of this study are depicted in Figure 4.8. As already an-
ticipated, the provided data re�ects the dependency between the computational complexity
of the FSE tree traversal and its tree-search structure. More speci�cally, those tree-search
architectures with a greater amount of expanded nodes at the top levels require a higher
number of operations than those with a more distributed node expansion scheme.
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n Figure 1:Figure 4.8: Number of PED computations (CPED) and zi calculations (CIP) required for
several tree con�guration vectors with nT = 24. Additionally, the total amount of operations
is depicted for each one of the FSE tree-search structures.

However, when it comes to hardware implementation, the multiplication count of a certain
design is a factor of mayor importance as the embedded multipliers are a scarce resource in
�eld-programmable gate array (FPGA) devices. In this case too, the structure of the tree
search will determine the amount of required multiplication units, as is shown in Figure 4.9.
The results shown in the aforementioned �gure have been obtained by considering that 3

multipliers are required for the product of two complex variables. This has been achieved by
rearranging the terms involved in the computation of the complex multiplication from the
most straightforward approach structured as (a+jb)(c+jd) = (ac−bd)+j(ad+cb), where 4
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multiplication operations are performed, to a more computationally-e�cient method, namely
(a + bj)(c + dj) = [a(c − d) + d(a − b)] + j[b(c + d) + d(a − b)], that reduces the number
of required multipliers due to the repeated factor d(a − b) [Barbero06a]. The data shown
in Figure 4.9 re�ect the diverse computational complexity of the tree con�guration vectors
in the set N24. The tree con�guration vectors that expand more nodes at the higher levels
of the tree search require more intermediate point computations and PED calculations, as
already seen in Figure 4.8, which ultimately results in a high volume of allocated multipliers.
Hence, by selecting the most disperse tree con�guration vector within the candidate set N24,
the amount of required embedded multipliers can be reduced in a 42% when compared to
the originally proposed n = [1, . . . , 1, nT ] tree structure.
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n Figure 1:Figure 4.9: Amount of required multipliers for di�erent tree con�guration vectors in an FSE
tree search.

In the light of the error-rate performance and computational complexity results, it is
concluded that the optimum tree con�guration vector for the precoding scenario is obtained
by factorizing the amount of desired computed branches nT and arranging the resulting
values such that n1 ≤ n2 ≤ . . . ≤ nN . Hence, if the tree traversal is performed starting from
i = N and working backwards until i = 1, the tree con�guration vector is set as

ni =

{
max W(i) for N − i < W

1 otherwise
,

where W(i) represents the set of factoring prime integers that have not yet been selected at
level i.

During the development of this research work, an alternative precoding version of the
FSD has been published in [Mohaisen11]. The presented algorithm, also referred to as
FSE, deals with the parallel computation of the branches in a �xed-complexity tree search.
Nevertheless, the di�erences with respect to the algorithm presented in this chapter are
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numerous. First, no guidelines for the con�guration of the �xed-complexity tree search are
provided. Additionally, the approach in [Mohaisen11] features a real-valued decomposition
(RVD) model, with the consequent double length of the tree search, and does not consider
the use of a matrix preprocessing method to enhance the error-rate performance of the
system. Due to these facts, the approach in [Mohaisen11] achieves a considerably worse
BER performance than the FSE scheme proposed in this dissertation. More speci�cally,
an error-rate performance degradation of 2.5 dB at a BER of 10−4 with respect to the K-
Best approach in [Zhang05] is reported, whereas the scheme here proposed achieves a better
performance than the aforementioned K-Best precoder when a reasonably similar number of
candidate branches are considered, as it will be shown in forthcoming sections.

4.4 Simulation Results
The complexity and error-rate performance of the reviewed and presented tree-search tech-
niques will be assessed in this section. Note that, the provided results depict the performance
of fully-loaded VP systems, namely M = N , with 16-QAM modulation. Furthermore, a
constrained search set of |L| = 25 elements has been considered for both the error-rate
simulations and the complexity analysis.

4.4.1 Computational Complexity
Two main factors contribute to the computational complexity of a certain tree search algo-
rithm: on one hand, the amount of node expansions performed during the tree traversal,
and on the other hand, the number of operations required to determine which nodes are to
be considered at each level.

4.4.1.1 Number of Evaluated Nodes

The amount of nodes to be visited during the tree traversal is given by design parameters
in �xed-complexity tree-search techniques, that is, K and n for the K-Best and FSE algo-
rithms, respectively. The choice of these design parameters for the current analysis has been
performed so as to yield a close-to-optimum performance of the �xed-complexity schemes
[see Figure 4.13]. Nevertheless, for the recursive SE algorithm, this complexity measure is
not only subjected to design features such as the user ordering strategy, but also to environ-
mental factors, i.e. the SNR.

The SNR-dependant regularization factor in (2.7) causes the diagonal values of the tri-
angular matrix U to be more sparse at high SNRs. As a consequence to this, the di�erence
between the PEDs of the nodes closer to the root and the initial sphere constraint results
in a very lenient pruning and consequently, in a high volume of expanded nodes during
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Figure 4.10: 90-percentile of the number of node expansions for the SE, FSE and K-Best
tree-search algorithms in an 8× 8 antenna system. The amount of expanded nodes per level
is given in (a), whereas the total amount of evaluated nodes vs. SNR is considered in (b).

the SE tree traversal. This fact is represented in Figure 4.10(a), where the 90-percentile of
the number of evaluated nodes per level is shown for di�erent tree-search techniques. As is
shown in this �gure, the run-time of the SE algorithm is considerably longer in the high-SNR
range (20 dB), specially in the middle part of the search tree where the advantages of the
node-pruning policy are yet unnoticeable.

Additionally, the di�erent level-wise node distribution patterns for the iterative and non-
iterative schemes can be observed in the aforementioned �gure. The SE undergoes an es-
calating node expansion phase in the upper half of the tree due to the high amount of
nodes that ful�l the sphere constraint at the early stages of the tree traversal. Nevertheless,
there is a decrease in the evaluated nodes per level in the subsequent stages due to the
implemented pruning strategy. On the contrary, due to of the lack of sphere constraint, the
�xed-complexity techniques yield a constant node distribution pattern, with the exception of
the ramp-up phase in the initial stages of the FSE tree search where the amount of computed
partial branches n

(i)
T =

∏N
j=i nj is smaller that nT .

On a more general perspective, the dependency between the total amount of visited nodes
and the SNR is depicted in Figure 4.10(b). As one can notice, the complexity of the SE in
terms of volume of expanded nodes is noticeably higher than that of the FSE and K-Best
approaches, specially in the high-SNR regime.

4.4.1.2 Number of Operations

Apart from the number of evaluated nodes per level, the amount of operations to be per-
formed in order to select the set of nodes that will be visited during the tree traversal is also
an important complexity measure that needs to be taken into account. Hence, the node se-
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Figure 4.11: Total number of operations for the SE, K-Best and FSE tree-search approaches
in an N = 8 user system.

lection procedure performed by each tree-search strategy will dictate the amount of excessive
PED computations and the computational load derived from possible sorting procedures.

For example, if a SE tree traversal is implemented, every time a forward iteration is
performed, the PED of the node to be expanded is computed along with the PEDs of the
nodes that ful�l the sphere constraint in that level. These nodes and their associated PEDs
compose the candidate list of a certain tree level. Hence, if the sphere search is �nished
after the �rst N node expansions, that is, only a single branch is computed, the amount
of PED calculations will be signi�cantly higher than N . For the case of the K-Best on the
other hand, the selection procedure requires that the PEDs of all possible K|L| nodes are
computed and subsequently sorted in order to select the K nodes to be expanded at a certain
level. Therefore, the additional distance computations and the sorting stages should also be
taken into account when assessing the computational complexity of this algorithm. When
traversing an FSE tree, the nodes to be expanded can be selected based on their distance to
the intermediate point when ni > 1, or by a simple rounding operation when ni = 1.

With the aim of assessing the overall computational complexity of the di�erent tree-search
approaches, the number of arithmetic (addition, substraction, multiplication, division) and
logical (comparison, swapping, branching) operations has been measured. This way, not
only the computational complexity of the PED calculations is re�ected in the �nal operation
count, but also the complexity due to the sorting and node-selection stages. All the afore-
mentioned operations are considered to have the same weight in the �nal operation count.
The computational complexity analysis that is shown in Figure 4.11 has been performed on
an N = 8 tree search with a constrained grid of |L| = 25 elements. The data displayed in
this �gure show the high computational complexity of the SE approach when compared to
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Figure 4.12: BER performance curves of the FSE applied to VP systems in 4× 4, 6× 6 and
8× 8 antenna setups. The total amount of evaluated branches has been set to 10, 12 and 24
for the aforementioned antenna con�gurations, respectively.

the �xed-complexity schemes. This result is due to two main factors: on one hand, the SNR-
dependant node expansion process discussed in Section 4.4.1.1, and on the other hand, the
high computational cost derived from maintaining the candidate lists required to implement
the sphere constraint.

As for the �xed-complexity approaches, the K-Best performs a considerably higher num-
ber of operations when compared to the FSE, even though the amount of expanded nodes for
the former is more reduced, as already seen in Figure 4.10(b). The complexity gap between
the K-Best scheme and the FSE approach is such that it requires an FSE tree search with
nT = 72 À K = 8 to yield a similar operation count. This is mainly due to the excessive
distance computations required by the selection algorithm and the sorting stages performed
at each level in the K-best tree-search model.

The amount of computed distances and computational complexity of the selection stages
required for all the tree-search techniques can be reduced by using an appropriate node
enumeration technique. This issue will be the main topic of the upcoming Chapter 5.

4.4.2 BER Performance
First of all, we shall focus on the BER performance of the proposed �xed-complexity scheme.
Figure 4.12 depicts the BER performance curves for the FSE applied to fully-loaded VP
systems of dimension N = 4, N = 6 and N = 8, where the total amount of branches to be
evaluated has been set to nT = 10, nT = 12 and nT = 24, respectively. The performance gap
between the FSE and the optimum SE is negligible in all the antenna con�gurations under
study. More speci�cally, a small performance loss of 0.2 dB can be achieved by the FSE at
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Figure 4.13: BER performance of the SE, the FSE with nT = 12 and nT = 24 and the
K-Best with K = 7 and K = 8 in an 8× 8 VP system.

an uncoded BER of 10−4.

It is noteworthy that the FSE achieves a close-to-optimum performance by evaluating a
considerably smaller amount of branches than the original algorithm designed for single-user
MIMO detection. As documented in [Barbero06a], the computation of 16 (n = [1, . . . , 1, P ])
and 256 (n = [1, . . . , P, P ]) branches is required for a quasi-ML performance of the FSD
algorithm with 16-QAM modulation (P = 16) in 4×4 and 8×8 antenna setups, respectively.
The data in Figure 4.12 show that the proposed �xed-complexity tree search can also achieve
a close-to-optimum performance under the same system parameter considerations by means
of the evaluation of just 10 and 24 branches, respectively. What is more, the modulation-
dependant tree-search structure of the FSD algorithm contributes to the poor scalability
of the model with respect to the size of the modulation in use (4096 branch computations
are required for an 8 level tree search with 64-QAM modulation), whereas the tree-search
structure of the FSE remains unaltered in the event of a change of modulation order.

In order to showcase the main performance di�erences between the FSE and K-Best
�xed-complexity approaches, a broader error-rate analysis will be performed, where lower
BER values will be targeted. As is shown in Figure 4.13, the BER performance of the FSE
and K-Best �xed-complexity approaches for a fully-loaded N = 8 user system is close to
the optimum set by the SE in the low and mid-SNR range. Nevertheless, the slope of the
BER vs SNR curve of the K-Best schemes degrades severely for high SNR values. Moreover,
note that the performance of the FSE with nT = 12 is considerably better than that of the
K-Best with K = 8 in the high-SNR regime, even if the complexity of the FSE in terms of
total operation count has been shown to be remarkably smaller than that of the K-Best [see
Figure 4.11].

63



Chapter 4. The Fixed-complexity Sphere Encoder

4.5 Chapter Summary
This chapter addresses the problem of an e�cient computation of the perturbation vector
in VP systems. Several tree-search techniques have been proposed in the literature to solve
the selection of the perturbation vector, being the SE one of the most widely used tree-
search techniques due to its optimum error-rate performance. The good performance of the
algorithm is a consequence of the identi�cation and management of the admissible set of
nodes at each stage of the tree search, which ultimately leads to a variable complexity of the
algorithm and a rather intricate hardware architecture of the tree traversal.

Due to the simplicity of its architecture and the possibility of parallel processing, the
�xed-complexity K-Best algorithm has been regarded as a prominent candidate for an e�-
cient and high-speed hardware implementation of vector precoders. Despite its non-iterative
nature, which greatly simpli�es the tree traversal, the sorting stages required to select the
candidate branches contribute to the high computational complexity of the algorithm. With
the aim of overcoming the main shortcomings of the K-Best precoder, a sort-free �xed-
complexity algorithm has been proposed in this chapter. The presented FSE scheme tra-
verses the tree in a non-iterative fashion, where the selection of the nodes at each level is
dictated by a tree con�guration vector. This design parameter o�ers a �exible trade-o� be-
tween error-rate performance and complexity of the algorithm. Furthermore, the optimum
combination of matrix preprocessing strategy and structure of the FSE tree search that re-
sults in a minimum computational complexity and best error-rate performance of the FSE
structure has been introduced.

The complexity in terms of evaluated nodes and total operation count has been assessed
for the aforementioned tree-search schemes. The SNR dependency of the iteration complexity
of the optimum SE, along with the continuous radius checks performed during the tree
traversal, contribute to the high computational load of this recursive scheme. The provided
results on the amount of evaluated nodes and total operation count show a reduced and
constant complexity of the non-iterative approaches. Moreover, the lack of sorting stages
in the FSE tree-search architecture derives in a considerable complexity reduction when
compared to the K-Best or SE approaches.

On the whole, the proposed FSE scheme has been shown to achieve a close-to-optimum
error-rate performance with a remarkably small and constant complexity. Hence, the perfor-
mance degradation su�ered by the proposed technique can be neglected considering the great
computational savings that are achieved when compared to the optimum SE algorithm.
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Complex-plane Enumeration for
Precoding Systems

5.1 Introduction

Many of the algorithms proposed in the literature to solve the closest-point search problem for
VP systems resort to a distributed distance computation model. The resulting equivalent
system can be subsequently solved by traversing the tree of candidate nodes following a
variety of strategies, as already discussed in the previous chapter.

The identi�cation of the set of most favorable nodes plays a vital role in the way the
tree is traversed regardless of the tree-search approach to be followed. The aforementioned
task can be performed by means of the Schnorr-Euchner enumeration strategy [Schnorr91],
which states the order in which a certain set of child nodes is to be visited.

The incorporation of an adequate enumeration approach will a�ect the features of the
VP system di�erently depending on the nature of the tree traversal. For example, in a
VP system based on the SE algorithm, a more e�cient radius reduction, and therefore a
shorter run-time of the algorithm, can be achieved by expanding the more probable nodes
�rst rather than visiting them based on a pre-de�ned order as established by the Fincke-
Pohst enumeration approach [Fincke85]. On the contrary, bounded breadth-�rst algorithms
bene�t from a constant processing time, and therefore, the advantages of implementing a
suitable enumeration strategy are re�ected on other features of the tree search. For instance,
the incorporation of an Schnorr-Euchner enumerator can greatly simplify the architecture
of a K-Best tree search as it enables the implementation of distributed sorting strategies,
such as the ones described in [Wenk06] and [Mondal08], to overcome the computationally
expensive sorting stages performed at every level. These techniques take advantage of the
ordered sequence of nodes given by the Schnorr-Euchner enumeration to greatly simplify the
task of selecting the K most promising branches. On a di�erent note, the alternative sort-
free structure of the FSE algorithm is enabled by the incorporation of a Schnorr-Euchner
enumerator which selects the nodes to be expanded at every level.
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Figure 5.1: Schnorr-Euchner ordered sequence of nodes in a real-valued model (a) and in the
complex plane (b).

The intricacy of the complex-plane enumeration has led to the selection of real-valued
equivalent models as the preferred approach when designing the hardware architecture of
tree-search algorithms in the literature. Nevertheless, the simplicity of the enumerator comes
at the cost of an expanded tree, whose depth is twice that of the original. This derives in
a higher resource occupation and longer delays, which may also a�ect the �nal throughput
of the system. Furthermore, the bene�ts of working directly on the complex signals in VP
systems has been recently reported in [Müller08], whereas the advantages of performing the
tree search in the complex-plane were outlined and studied in [Burg05] and [Barbero06a].

This chapter deals with the e�cient implementation of complex-plane enumeration al-
gorithms applied to precoding systems. As an starting point, a background study of the
most prominent Schnorr-Euchner enumeration algorithms will be performed, followed by
the presentation of a novel non-sequential complex-plane enumerator. Additionally, and
with the aim of showcasing the simple architecture of the presented enumerator, the fully-
pipelined high-throughput implementation of the proposed algorithm and other state-of-the-
art complex-plane enumerators will be carried out in the following sections.

5.2 Schnorr-Euchner Enumeration
The Schnorr-Euchner enumeration principle states the order in which a certain set of child
nodes is to be visited according to their distance to the intermediate point zi (4.2). This
results in the nodes being expanded in ascending order of their associated PED.

When a real equivalent model is used, the ordering of the child nodes is a simple task as
the nodes just need to be visited in a zig-zag fashion, as is shown in Figure 5.1(a). However,
Figure 5.1(b) depicts that such an straightforward scheme cannot be followed if complex-
valued signals are utilized. The provided illustrative example clearly shows the non-triviality
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of the enumeration process.
The exhaustive computation of the PEDs of all children nodes and their subsequent

sorting is a simple approach to determine the ordered sequence of most favorable nodes.
Nonetheless, this procedure derives in a great amount of hardware resources dedicated to
computing the distance increments of the |L| child nodes. What is more, the sorting stage
entails a great data movement, which ultimately results in an increased power consumption.
With the aim of avoiding the high complexity and resource demand of full-sorting enumera-
tion, several complex-plane enumeration algorithms have been proposed in the literature. In
the following subsections, a brief overview of the main complex-plane enumeration strategies
will be performed.

5.2.1 Enumeration by Identi�cation of the Admissible Set
A novel approach for complex-plane enumeration based on trigonometric calculations was
presented in [Hochwald03]. The proposed scheme was originally developed to determine the
admissible interval of constellation points taking into account the sphere constraint set by
the sphere decoder (R). The proposed approach can easily be adapted to precoding scenarios
by arranging the lattice symbols in concentric circles whose intersection with the search disk
centered at zi = r̂eiθ̂ is identi�ed as the admissible set. More speci�cally, if the elements
of the lattice L are represented as rpe

iθp , where rp represents the radius of each one of the
concentric circles, the admissible interval of θp for each circular set is given by the equation
⌈
|L|
2π

(
θ̂ − cos−1

[
r2
p + r̂2 − R̄2

2rpr̂

])⌉
≤ |L|

2π
θp ≤

⌊
|L|
2π

(
θ̂ + cos−1

[
r2
p + r̂2 − R̄2

2rpr̂

])⌋
, (5.1)

with R̄ = R/ui,i. Once the boundaries have been established, the symbols are visited in a
zig-zag fashion within each concentric circle. An illustration of the admissible set of points
within L is depicted in Figure 5.2 for arbitrary values of zi and R̄.

One of the main issues with this enumeration approach is its applicability to bounded
breadth-�rst systems where the search is performed in an unconstrained way, i.e. the PEDs
of the eligible nodes do not comply with any sphere constraint. Additionally, the complex
trigonometrical computations in (5.1) render it unsuitable for an e�cient hardware imple-
mentation.

5.2.2 Enumeration by Node Arrangement in Circular Subsets
The intricacies of performing the highly complex trigonometrical calculations required by
(5.1) motivated the work in [Burg05], where an implementation-friendly version of the ideas
in [Hochwald03] was presented. Figure 5.3 illustrates the procedure for complex enumeration
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Figure 5.2: Identi�cation of the admissible set of candidates by means of the sphere con-
straint.

for a restricted lattice of |L| = 25 elements. Note that, since the lattice of precoding symbols
also includes null components, the parameters of the algorithm in [Burg05] have been slightly
modi�ed to adjust to the VP case. Therefore, in the system under study, the symbols are
arranged in PS = 6 subsets were the 0 element is the unique member of one of the subsets.

As an starting point, the value of zi is mapped into the �rst quadrant to reduce the amount
of decision boundaries to be checked. Consequently, all the enumerated values will have to be
mapped back to their original quadrants once the enumeration process is �nished. Next, the
initial symbols within each concentric circle are chosen. According to the original description
of the algorithm in [Hochwald03], the preferred child node within a certain circular set is the
one with the minimum phase di�erence with respect to the intermediate point, namely the
node that yields a smaller |θ̂− θp| value. Nevertheless, given the structure of the lattice, the
selection of the most favorable node within each set can be easily performed by checking the
position of zi with respect to the bisector line spanned between the real and imaginary axis
(x = y boundary line) when needed, as is shown in Figure 5.3.

Once all the initial symbols have been identi�ed (nodes with a double circle in Figure
5.3), their PEDs are computed and subsequently compared, which results in the selection of
the node associated with the smallest distance increment as the starting point for the enu-
meration (a(1)

i ). The process is continued by selecting the following symbol that minimizes
the phase di�erence with respect to zi within the subset of a

(1)
i . This local enumeration

procedure is performed in a zig-zag fashion, where the direction of the enumeration is de-
termined by an additional set of boundary conditions (3x = y, 3y = x and x = y). Next,
the PED of the newly enumerated symbol is computed and compared to the previously cal-
culated PS − 1 distance increments, which leads to the selection of the second enumerated
value (a(2)

i ). The algorithm proceeds accordingly until no more symbols need to be evaluated
or all the subsets are empty.
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Figure 5.3: Boundaries and node arrangement for the Schnorr-Euchner enumeration by
circular subsets.

Note that PS incremental distance calculations need to be performed at the initial stage
of the algorithm and just one PED computation for each one of the following enumerated
points. This implies that PS − 1 redundant distance calculations need to be performed
in order to identify the set of ρ preferred nodes. Furthermore, the node selection process
requires ρ minimum-search units (MSUs), being each one of them carried out by PS − 1

compare-and-select blocks.
If a sphere constraint is implemented, the amount of subsets to be considered can be

reduced by adapting the approach presented in [Chen07] to precoding scenarios. The al-
gorithm in [Chen07] is based on identifying the group of active circular subsets based on
the noise variance and certain signal statistics. After all, for a given search radius R̄, only
certain circle sets have eligible candidates in them, as is shown in Figure 5.2, and therefore,
the number of PED computations can be greatly reduced by considering only these for the
enumeration procedure.

5.2.3 Enumeration by Node Arrangement in Unidimensional
Subsets

A similar approach to the one in [Burg05] is proposed in [Hess07] , where the arrangement of
nodes in di�erent subsets is performed based on their real (or equivalently imaginary) part,
as is shown in Figure 5.4. This allows for a smaller amount of subsets (PS = 5), specially
for high values of |L|. More speci�cally, the di�erence in the number of subsets scales with
the number of elements in the lattice as 1

8
(|L| − 4

√
|L| + 3) ≥ 0. Additionally, the local

enumeration is performed based on the imaginary (or equivalently real) part of the lattice
elements, and hence, the same zig-zag pattern can be shared among all subsets.

69



Chapter 5. Complex-plane Enumeration for Precoding Systems

τ

τ

2τ

2τ

zi

Figure 5.4: Node arrangement for the Schnorr-Euchner enumeration by unidimensional sub-
sets.

5.2.4 Enumeration by Neighbor Expansion
This novel approach [Shabany08b] uses the simple zig-zag enumeration in the real and imag-
inary components of the lattice symbols as a mean to determine the order for the complex
Schnorr-Euchner enumeration. Therefore, the �rst step of the algorithm is to independently
order the elements in the real and imaginary axis according to their proximity to zi. This
process is depicted in Figure 5.5, where the elements {a1

R, a2
R, a3

R} and {a1
I, a

2
I, a

3
I} represent

the ordered sequence of nodes in the real and imaginary axis, respectively. Clearly, the initial
value in the Schnorr-Euchner sequence (a(1)

i ) will be a combination of the �rst enumerated
values in the real and imaginary axes, namely a

(1)
i = a1

R + a1
Ij. To determine the rest of the

values, a candidate list C needs to be de�ned.
The process of node selection and candidate identi�cation is depicted in Figures 5.5(a)

and 5.5(b) for the �rst two nodes in the ordered sequence. After the initial enumeration point
has been selected, the two adjacent symbols according to the unidimensional enumeration
are added to the list of candidates. Therefore, the symbols a2

R+a1
Ij and a1

R+a2
Ij are included

in C and their corresponding PEDs are computed. The one with the smallest PED is selected
as a

(2)
i and its two adjacent symbols are added to the candidate list, namely a3

R + a1
Ij and

a2
R + a2

Ij for the provided example. Note that a single new symbol will be included in C if
one of the adjacent symbols has previously been selected. This derives in a variable length
of the candidate list, whose number of elements cannot be determined beforehand.

5.2.5 Other Suboptimum Enumeration Techniques
The enumeration techniques presented so far deal with obtaining the ordered sequence of
child nodes as dictated by the Schnorr-Euchner enumeration. Nevertheless, it is possible to
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Figure 5.5: Schnorr-Euchner enumeration by neighbor expansion.

obtain a certain complexity reduction by relaxing the requirement of perfect enumeration.
The provided hardware resource saving and added performance degradation will strongly
depend on the tree-search type that these enumeration techniques are implemented upon.
In this subsection, several suboptimum enumeration approaches (with respect to the accuracy
of the resulting ordered set) are reviewed.

In [Mennenga09] an approach for search sequence determination based on geometrical
considerations was presented. The proposed scheme works by dividing the area around the
�rst enumerated value and storing a prede�ned search sequence for each region. The selection
of the enumerated values is then performed by determining the region where the value of zi

lies and retrieving the corresponding search sequence from look-up table (LUT)s. The main
drawback of the proposed scheme is its poor scalability, as both the length of the sequence
to be stored and the number of di�erentiated regions grow with the amount of enumerated
values. For instance, a total of 71 bounded regions need to be considered to obtain the
search sequence of the preferred 16 nodes. Due to the asymmetrical nature of the bounded
areas, the selection of the region corresponding to a given value of zi is a highly complicated
matter.

The ideas in [Mennenga09] inspired the work in [Wenk10b], where the incorporation of
the approximated norm l∞̃ provides the system with the scalability and simple architecture
that was missing in the original work. In the updated structure, only 8 regions need to
be de�ned regardless of the amount of child nodes to be enumerated. Due to the non-
accumulative feature of the approximated norm in use, many of the nodes that share the
same real or imaginary component yield an equal l∞̃ distance with respect to the intermediate
point. This represents the main advantage of the proposed enumeration technique, as all the
l∞̃-equidistant nodes form unidimensional subsets that can be easily sequenced following a
zig-zag approach.
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5.3 The Puzzle Enumerator
Most of the enumeration techniques that have been published so far in the literature follow
a sequential scheme, that is, the closest node to zi is obtained �rst, then the second closest
point is computed and so on. The dependency on the past enumerated values in order to
select a certain point within the ordered sequence comes as a logical way of proceeding,
but incurs in a great latency of the enumeration algorithm and a signi�cant throughput
reduction. Moreover, in high-throughput fully-pipelined architectures, long delays incur in
an extended device occupation due to the high amount of required pipeline registers.

With the aim of overcoming the issues of sequential enumeration, a novel complex-plane
enumeration technique is presented in this chapter. The proposed puzzle enumerator allows
for the independent computation of the nodes within the ordered sequence. Since the in-
formation on the previously selected ρ − 1 symbols is not required in order to obtain the
ρth most favorable node, the latency of the presented enumeration unit is not increased as
the enumeration process progresses. Moreover, the selection of the symbols is performed
without the computation of their associated distances, which results in a low computational
complexity of the enumeration process.

5.3.1 Initial Considerations

When implementing a non-linear VP system the designer has the �exibility to select the
number of lattice elements to be considered during the tree search. If a restricted grid with
a minimum of |L| = 25 elements is used, the BER performance of the VP system is barely
degraded in the SNR range of interest (<20 dB), as has already been shown in Section 4.2.
In order to allow for a more simpli�ed structure of the proposed puzzle enumerator, the
restricted search set L used in the previous chapters of this thesis will be extended to yield
the more favorable set Lext. In this section, a simple procedure to determine the minimum
cardinality of the extended search set will be presented.

As opposed to the detection problem, where all the constellation symbols are equally
probable, those lattice points that are closer to the origin are more likely to be part of the
solution vector in VP systems. As a consequence to this, the values of zi are concentrated
around the origin of the lattice forming a circle of radius Rz that expands with the SNR.
Figure 5.6 depicts an illustrative example of the intermediate points generated during a SE
tree search for di�erent SNR values. As one can notice, the intermediate points are more
densely concentrated around the origin of the lattice in the low-SNR range as the probability
of having a null perturbation vector is higher in this scenario [Christensen07]. However, as
the SNR increases, the values of zi are more sparsely distributed but still follow a circular
pattern.

72



Chapter 5. Complex-plane Enumeration for Precoding Systems

From the point-of-view of hardware implementation, the value of the Rz radius in the
working SNR range is a parameter of major interest as it conditions the quantization ac-
curacy. Therefore, its value will have to be estimated beforehand by means of extensive
simulations. Additionally, it can be used to set the minimum dimension of the constrained
lattice that will result in an error-free puzzle enumeration.

Figure 5.6: Distribution of the intermediate points for several SNR values.

The size of the search set to be used along with the proposed enumerator has to be chosen
carefully so that the unidimensional enumeration in the real and imaginary components of
the lattice can be performed following a strict zig-zag pattern. If |Lext| is too small, there
will be zi = zR +zIj values lying in the vicinity of the lattice border, and therefore, the local
enumeration in the real and/or imaginary components will not result in an ordered zig-zag
sequence. This derives in undesired border e�ects which require extra hardware resources
and boundary checks to be solved. Hence, the minimum amount of points of the extended
set Lext will depend on both Rz and the length of the sequence to be determined (ρ), which
gives

|Lext| =





[2 (dRz/τc+ 1) + 1]2 for ρ ∈ [2, 7]

[2 (dRz/τc+ 2) + 1]2 for ρ ∈ [8, 19]

[2 (dRz/τc+ 3) + 1]2 for ρ ∈ [20, 37]
... ... .

5.3.2 Low-complexity Enumeration Procedure
Once the lattice parameters have been set, the proposed low-complexity algorithm proceeds
by performing a simple unidimensional enumeration in the real and imaginary axis. This
local enumeration procedure is necessary as the elements in the resulting Schnorr-Euchner
ordered set are given as a combination of the sequenced real and imaginary symbols, namely
a

(ρ)
i = ap

R + aq
Ij. The procedure of unidimensional enumeration has already been described

as part of the node sequencing approach in [Shabany08b][see Figure 5.5]. Nevertheless, even
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if a larger search set is considered in the proposed strategy, only a few values need to be
sequenced locally as opposed to the full axis sequencing performed in the approach presented
in [Shabany08b]. This way, 2 values need to be enumerated for ρ ∈ [2, 3], 3 for ρ ∈ [4, 7], 4

for ρ ∈ [8, 11], and so on.
The initial value of the enumeration process, namely a

(1)
i , is selected as a1

R+a1
Ij, as already

proposed in [Shabany08b]. In order to the determine the rest of the sequence, a set of simple
and pre-de�ned boundary checks needs to be performed. These border lines are built by
pairing-up the possible candidate a

(ρ)
i points and spanning the bisector line between them.

The group of candidate points is created by selecting only those lattice elements that are
feasible values for the current enumerated point. This procedure is performed by discarding
the elements that have already been selected as an early solution in the enumerated sequence
with all certainty. For example, the child node a1

R + a2
Ij will not be considered for the

enumeration of the seventh element in the sequence as it must have been selected as the
second or third most promising node regardless of the particular value of zi. A further
candidate discarding procedure can be carried out among the remaining elements in Lext by
considering the nodes ax

R + ay
Ij as unviable solutions if the element az

R + ay
Ij with x > z is

present in the candidate list.
This way, a series of regions are delimited in the area T , {0 ≤ ∆R < τ/2, 0 ≤ ∆I <

τ/2}, with ∆R = |zR−a1
R| and ∆I = |zI−a1

I|, each of which is linked to a certain candidate
node. Hence, the selection of the ρth node in the sequence is performed by identifying the
region corresponding to the value of zi within the puzzle de�ned in T for that speci�c position
in the ordered sequence. Note that since the absolute value is taken when computing the
unidimensional distance increment in ∆R and ∆I, there is no need to map zi into the �rst
quadrant or the lower triangular part of the �rst quadrant as performed in [Burg05] and
[Mennenga09], respectively.

Figure 5.7 shows the decision regions and the boundary lines (Bx) for the �rst thirteen
enumerated values. Note also that several boundary lines are common for various ρ values,
and hence, the computed boundary expressions can be heavily reused during the enumeration
process. The mathematical expressions for the border lines shown in Figure 5.7 are depicted
in Table 5.1. As one can notice, the simplicity of the boundary expressions is a bene�cial
fact that will greatly favor the implementation of this enumeration technique.

5.3.3 Unordered Puzzle Enumerator
For the case of an FSE precoder, any of the aforementioned enumerators can be utilized to
select the ni nodes that will be expanded at each level of the tree traversal. However, since
no ordering procedure is performed on the selected nodes, it is su�cient to merely identify
the set of the ni closest symbols. This way, a further simpli�cation on the proposed puzzle
enumerator can be performed by combining the regions of the puzzles from ρ = 2 up to
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Figure 5.7: Fundaments of the proposed puzzle enumerator for (a) ρ = 2, (b) ρ = 3,(c)
ρ = 4,(d) ρ = 5,(e) ρ = 6,(f) ρ = 7, (g) ρ = 8, (h) ρ = 9, (i) ρ = 10, (j) ρ = 11, (k) ρ = 12
and (l) ρ = 13.
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ρ ≤ 3 Bα : ∆R = ∆I

ρ ≤ 5
Bδ : 2 ∆R + ∆I = τ/2
Bγ : 2 ∆I + ∆R = τ/2

ρ ≤ 7
Bε : 2 ∆I−∆R = τ/2
Bη : 2 ∆R−∆I = τ/2

ρ ≤ 8
Bκ : 3 ∆I−∆R = τ
Bλ : 3 ∆R−∆I = τ

ρ ≤ 9
Bζ : 3 ∆R + ∆I = τ
Bθ : 3 ∆I + ∆R = τ

ρ ≤ 11
Bϑ : 3 ∆R + 2 ∆I = 3τ/2
Bµ : 3 ∆I + 2 ∆R = 3τ/2

ρ ≤ 12

Bν : 3 ∆R + 2 ∆I = τ/2
Bξ : 3 ∆I + 2 ∆R = τ/2
Bπ : 2 ∆R− 3 ∆I = τ/2
B$ : 2 ∆I− 3 ∆R = τ/2

ρ ≤ 13

B% : 3 ∆R = ∆I

Bσ : 3 ∆I = ∆R

Bς : 4 ∆R + ∆I = τ/2
Bυ : 4 ∆I + ∆R = τ/2

Table 5.1: Boundary lines to be evaluated for the �rst 13 nodes in the Schnorr-Euchner
sequence.

ρ = ni. If the union of the ni − 1 regions that correspond to a particular symbol spans over
the whole T area, that symbol is unequivocally part of the set of best ni nodes. Otherwise,
a boundary check procedure will have to be carried out to determine whether that certain
symbol belongs to the set of preferable nodes.

The set of unordered enumerated values is shown in Table 5.2 for several values of ni. The
candidate nodes yet to be determined, e.g. Cx

i , can be obtained by checking the boundary
conditions within a single puzzle. The bounded regions for Cx

i with i ∈ {3, · · · , 11} are
depicted in Figure 5.8.

5.4 Implementation of Complex-plane Enumerators
Several complex-plane algorithms for the precoding scenario have been reviewed and pro-
posed in the previous section. Despite the fact that all of the studied approaches yield
the Schnorr-Euchner ordered sequence of nodes, there are great di�erences between the
enumeration approaches in terms of computational e�ort and resource occupation of the
hardware architecture. With the aim of assessing the amount of hardware resources dedi-
cated to the task of enumeration in a high-throughput system, the implementation of the
most relevant enumeration algorithms has been performed following a rapid-prototyping
methodology. Speci�cally, fully-pipelined architectures of the full-sort enumerator, the ap-
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Figure 5.8: Fundaments of the proposed unordered puzzle enumerator to be used along with
the FSE for (a) ni = 4, (b)ni = 5,(c) ni = 6,(d) ni = 7,(e) ni = 8,(f) ni = 9, (g) ni = 10 and
(h) ni = 11.
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ni Set of most favorable nodes (in no particular order)
3 {(a1

R + a2
Ij), (a2

R + a1
Ij)}

4 {(a1
R + a2

Ij), (a2
R + a1

Ij), C1
4}

5 {(a1
R + a2

Ij), (a2
R + a1

Ij), C1
5 , C2

5}
6 {(a1

R + a2
Ij), (a2

R + a1
Ij), (a2

R + a2
Ij), C1

6 , C2
6}

7 {(a1
R + a2

Ij), (a2
R + a1

Ij), (a2
R + a2

Ij), (a1
R + a3

Ij), (a3
R + a1

Ij), C1
7}

8 {(a1
R + a2

Ij), (a2
R + a1

Ij), (a2
R + a2

Ij), (a1
R + a3

Ij), (a3
R + a1

Ij), C1
8 , C2

8}
9 {(a1

R + a2
Ij), (a2

R + a1
Ij), (a2

R + a2
Ij), (a1

R + a3
Ij), (a3

R + a1
Ij), (a3

R + a2
Ij), (a2

R + a3
Ij), C1

9}
10 {(a1

R + a2
Ij), (a2

R + a1
Ij), (a2

R + a2
Ij), (a1

R + a3
Ij), (a3

R + a1
Ij), (a3

R + a2
Ij), (a2

R + a3
Ij), C1

10, C
2
10}

11 {(a1
R + a2

Ij), (a2
R + a1

Ij), (a2
R + a2

Ij), (a1
R + a3

Ij), (a3
R + a1

Ij), (a3
R + a2

Ij), (a2
R + a3

Ij), C1
11, C

2
11, C

3
11}

Table 5.2: Unordered sequence of preferred children for di�erent values of ni.
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Figure 5.9: Block diagram of the full-sort enumerator.

proaches in [Burg05], [Hess07], [Shabany08b] and the proposed puzzle enumerator have been
implemented for the sequencing of the 8 most favorable nodes.

As has been previously stated, all the enumerators with the exception of the proposed
puzzle enumerator, base the selection of a certain enumerated symbol on the PEDs of the
symbols in a candidate set. Even if the purpose of an enumerator is solely to identify a certain
set of points in the vicinity of zi, some of the calculated PEDs can be later reused by the
tree-search algorithm. Therefore, for the sake of a fair comparison between enumeration
units, ρ = 8 metric computation units (MCUs) have been added to the output of the
puzzle enumerator. This way, the occupation and delay results shown in this section re�ect
the implementation of enumeration units that output both the selected symbols and their
associated distance increments.

The block diagram of the fully-pipelined full-sort enumerator is shown in Figure 5.9.
The architecture is mainly composed of MSUs that select the node associated with the
minimum PED. The set of distance increments is reduced by a unit at every stage of the
algorithm, being it composed of the PEDs of all the nodes in L at the initial stage, namely
{d(1)

i , d
(2)
i , . . . , d

(|L|)
i }.

The rest of the enumeration approaches, with the exception of the puzzle enumerator,
perform the sequencing of the nodes by selecting a few candidate nodes from L and searching
for the desired enumerated value within this set (S). Every time a node is selected, it
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Figure 5.10: Block diagram of the enumeration strategies where the sequencing of the nodes
is based on the management of a candidate set S.

is extracted from the candidate set S and replaced by one or two other candidate nodes
depending on the enumeration approach in use. This process is depicted in the block diagram
in Figure 5.10. As is shown in this �gure, the selection of a certain enumerated value a

(ρ)
i

is followed by the identi�cation of the next node to enter the set of candidate nodes and
the computation of its corresponding PED. Note that, for the approaches in [Burg05] and
[Hess07], the number of elements in the candidate subset S is constant, whereas a variable
length candidate list is used for the enumeration strategy in [Shabany08b].

Note also that it is a common practice to scale the lattice elements and the modulation
constellation symbols so that a smaller quantization error can be achieved. Thus, after the
application of a 2/τ normalization factor, the normalized constrained search set will be of
the form L̃ = τ̃CZ, where τ̃ = 2 represents the modulo constant in this equivalent system.
Following from this, the real and imaginary components of the constrained lattice of |L̃| = 25

symbols will be extracted from the more convenient χ̃ = [−4,−2, 0, 2, 4] set, without having
any e�ect whatsoever on the �nal performance of the tree-search algorithm. The application
of the normalization factor also a�ects other values involved in the tree traversal. In the
remainder of this section, the distance increments, intermediate points and other parameters
that have been computed using the normalized lattice will be identi�ed with the mark (̃·).

5.4.1 E�cient Distance Computation in State-of-the-art
Enumerators

Depending on the architecture of the enumerator, di�erent strategies can be implemented in
order to reduce the number of costly operations when computing the distance increments.
For the full-sort and the precoding version of the algorithm in [Burg05], the resource sharing
distance computation procedure described in the latter will be used. This way, the PED
computation in Equation (4.1) will be reformulated as a function of the arc ν and the real
and imaginary components of the lattice symbols, which gives:

d̃i(ν, χ̃p, χ̃q) = u2
i,i

[|z̃i|2 + R2
ν + 2(z̃Rχ̃p + z̃Iχ̃q)

]
, (5.2)
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where Rν represents the radius of arc ν and χ̃p stands for the pth element of the set χ̃.
Following the approach in (5.2), the amount of required multipliers at the MCUs can be
reduced when compared to the independent distance computation procedure, as |z̃i|2 needs
to be computed only once and the values for the di�erent R2

ν can be stored as constants.
Moreover, due to the characteristics of the elements in χ̃, the result for the multiplications
of the form z̃Rχ̃x can be performed by means of inexpensive bit shifting and negators.

The resource sharing approach in (5.2) can be slightly reformulated to better �t the
requirements of the MCUs for the enumerators in [Hess07] and [Shabany08b], where the
nodes are arranged in columns and rows instead of in concentric circles. The distance
increments are therefore given by the elements in the real and imaginary axis, namely:

d̃i(χ̃p, χ̃q) = u2
i,i

[
(z̃2

R + χ̃2
p + 2χ̃pz̃R) + (z̃2

I + χ̃2
q + 2χ̃qz̃I)

]
. (5.3)

In this case too, the values of z̃2
R and z̃2

I are only computed once per enumerated sequence,
while the squared values of the elements in χ̃ are stored as constants.

5.4.2 Implementation of the Puzzle Enumerator
As has already been discussed, the initial step in the setup of the puzzle enumerator is the
determination of the cardinality of the set L̃ext. Guided by the simulation results on the
zi values provided in Figure 5.6, a value of R̃z = 5 has been considered su�cient for the
SNR range of interest (<20 dB). This results in a minimum size of the extended lattice of
|L̃ext| = 81, where the extended real and imaginary axis are composed of elements from the
set χ̃ext = {−8,−6,−4, . . . , 6, 8}.

The ability of the proposed algorithm to select the most favorable nodes in an independent
way re�ects positively on the simplicity of its implementation. As already stated in the
description of the puzzle enumerator, the evaluation of the boundary lines summarized in
Table 5.1 represents the only computational e�ort of the proposed node sequencing strategy.
These boundary conditions, which are structured as A ∆̃R ± B ∆̃I = Cτ̃ , can be easily
computed by means of adders and constant multiplication modules. What is more, in the
case of A = 2x or B = 2x with x ∈ Z, it is possible to equivalently replace the constant
multiplication module by a computationally-inexpensive bit shifting approach. Additionally,
the computation of the absolute distance increments ∆̃R and ∆̃I incurs in virtually no
hardware usage as they can be easily obtained by means of simple signal slicing if 2k <

|z̃R| < 2k +1 with k ∈ Z, and by negation and subsequent slicing if 2t+1 < |z̃R| < 2t where
t ∈ Z. This property is applicable as the minimum distance between elements in the real
and imaginary axes after the normalization procedure equals τ̃ = 2.

The so-called boundary bits identify each one of the two regions separated by their
corresponding boundary line. For example, the boundary bit bα associated with the boundary
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line Bα will be set to '1' when ∆̃R > ∆̃I and '0' otherwise. In order to determine which puzzle
region corresponds to a certain value of z̃i, it is su�cient to logically combine the required
boundary bits and to select the candidate lattice point accordingly by means of a multiplexer.
Examples of the circuitry employed to determine the sequence of most favorable nodes can
be seen in Figure 5.11. As one can notice, the selection of all the depicted enumerated values
can be performed simultaneously, as there is no data dependency between them.
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Figure 5.11: Hardware implementation model of the proposed complex enumerator for the
�rst eight enumerated values.

As for the distance computation model used for the MCUs, it should be noted that the
previously presented resource sharing approaches yield an excessive computational cost when
implemented on the extended grid L̃ext. This is due to, on one hand, the increased number
of arcs that can be de�ned based on the model in (5.2), and on the other hand, the higher
amount of χ̃p

extz̃R and χ̃q
extz̃I combinations that need to be computed for both distance

calculation approaches in (5.2) and (5.3). These facts have motivated the design of an
incremental distance computation model that will be used along with the puzzle enumerator.
This way, the distance to a certain lattice point ãp

R + ãq
Ij will be given in terms of the

unidimensional distance increment with respect to the �rst enumerated value in the real
and imaginary axis. Two new parameters are introduced, namely ΞR = (ãp

R − ã1
R) and

ΞI = (ãq
I − ã1

I) with p, q ∈ {2, 3, 4} as only 4 values need to be locally enumerated in the
real and imaginary axis in order to determine the ordered sequence of 8 nodes. The value
of |ΞR| equals 2 for p ∈ {2, 3}, whereas its value is set to 4 whenever p = 4. However, the
sign of ΞR will vary depending on the particular location of z̃R within the real axis χ̃ext, as
is shown in Figure 5.12. The same rationale applies to the increment in the imaginary axis.

Hence, the PED corresponding to the �rst enumerated value is computed following the
approach in (5.3), whereas the rest of the distances are calculated as

81



Chapter 5. Complex-plane Enumeration for Precoding Systems

2 4

χ̃ext 0
−2−4−6−8

6 8

˜Rz−
˜Rz

2

−2

4

2

−2

4

2

−2

4

2

−2

4

2

−2

4

−2

2

−4

−2

2

−4

−2

2

−4

−2

2

−4

−2

2

−4

p = 2

p = 3

p = 4

{ΞR, ΞI

Figure 5.12: Values of the ΞR and ΞI increments for di�erent regions of the χ̃ext axis for the
2nd, 3rd and 4th closest nodes in the real axis.

d̃i(ΞR, ΞI) = u2
i,i

{[
δR + Ξ2

R + 2ΞR

(
ã1

R + z̃R

)]
+

[
δI + Ξ2

I + 2ΞI

(
ã1

I + z̃I

)]}
, (5.4)

with δR = (z̃R + ã1
R)2 and δI = (z̃I + ã1

I)
2. This distance computation structure reduces

the complexity of the PED calculation for the nodes ρ > 2 as most of the terms in (5.4)
are either reused from previous computations or are stored as constants. For example, the
values for δR and δI have already been calculated for the PED of a

(1)
i , namely u2

i,i(δR + δI).
Additionally, the multiplications of the form 2ΞRx can be carried out by means of simple
bit shifting and negators due to |ΞR| ∈ (2, 4) [see Figure 5.12], whereas Ξ2

R and Ξ2
I can be

stored as constants.
Additionally, note that the enumeration areas depicted in Figure 5.7 are symmetrical with

respect to the diagonal ∆R = ∆I. Hence, it is possible to reduce the amount of decision
regions and border lines by mapping the intermediate point zi to the region ∆R > ∆I.
Nevertheless, exploiting the symmetry of the puzzles to reduce the enumeration process
to the lower-most triangle is a counterproductive measure for small values of ρ, as the
gain derived from having a smaller amount of decision regions does not compensate for the
hardware required to map the signal into the desired region and subsequently demap the
result of the enumeration process. Consequently, the puzzles shown in Figure 5.7 have been
used as originally described for the current implementation of a ρ = 8 node enumerator.

5.5 Comparative Analysis
Several features of the complex-plane enumerators under study will be analyzed in this
section. First, the complexity in terms of average number of PED computations of the SE
tree search when incorporating di�erent enumeration approaches will be assessed. Next,
the e�ect of implementing a di�erent enumeration approach on the candidate node memory
size during a SE tree traversal will be analyzed. Finally, the e�ciency of the fully-pipelined
implementation of the complex-plane enumerators will be studied, where the main focus will
be on the latency of the enumeration process and the resource occupation on the targeted
FPGA.
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5.5.1 Average Number of PED Computations
The amount of distance computations performed by the enumerator is a characteristic of
major importance as it can greatly impact the e�ciency of the tree-search architecture.
For example, in a bounded breadth-�rst system, a high amount of distance calculations
during the enumeration process derives in an exorbitant cost in hardware resources. On the
other hand, in a depth-�rst system such as the SE, the problem of an increased amount of
calculations does not a�ect the area occupation so severely, as the implemented architecture
is reused at every iteration. However, the longer run-time of the SE in the high-SNR range
causes a considerable increase in the number of unnecessary computations performed by the
enumerator, i.e. distance increments of nodes that are not visited during the tree traversal,
which derives in an excessive power consumption.

This e�ect is shown in Figure 5.13, where the average number of distance computations
performed by several enumeration techniques during an 8× 8 SE tree traversal is depicted.
The data in this �gure re�ects the overwhelming complexity in terms of computed nodes of
the full-sorting approach, which is considerably higher and scales faster with the SNR than
the rest of the enumeration techniques. The computational saving achieved by reducing the
number of candidate subsets from PS = 6 [Burg05] to PS = 5 [Hess07] is more noticeable in
the high-SNR range. This comes as a consequence of the null vector being a more probable
solution at low SNRs [Christensen07], which results in the early emptying of the subset
containing solely the 0 element in [Burg05]. Therefore, the number of e�ective subsets
in the circular enumerator is reduced to 5 during most of the node sequencing process,
and consequently, the number of distance computations is virtually identical to that of
the approach in [Hess07]. The other two enumeration strategies under study, namely the
neighbor expansion technique and the proposed puzzle enumerator, require a considerably
smaller amount of distance computations to perform the sequencing of the most favorable
nodes. The data displayed in this �gure shows that the proposed puzzle enumerator requires
the smallest amount of distance computations among all the enumeration approaches under
study.

5.5.2 PED Cache Memory Size in Depth-�rst Systems
The e�cient pruning strategy of the SE algorithm is based on the tracking of potentially
valid nodes at each level of the tree search. From the point of view of hardware implemen-
tation, this entails the incorporation of a PED cache, whose size will depend strongly on
the enumeration strategy to be used. If a full-sorting enumeration approach is followed, a
(N − 1) × (|L| − 1) memory is required to enable an e�cient SE tree traversal, while only
(N − 1) × PS candidate PEDs need to be stored if the subset enumeration approaches in
[Burg05] and [Hess07] are implemented. The variable length of the candidate list C em-
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Figure 5.13: Average number of distance computations required by di�erent enumeration
techniques in an 8× 8 SE tree traversal.

ployed by the approach in [Shabany08b] greatly hinders the sizing of the required PED
cache. If an optimum performance of the SE is to be guaranteed, the safest choice is to
dimension the memory size for the worst-case scenario. This results in the implementation
of a (N − 1) × (|L| − 1) candidate PEDs memory, as setting a limit on the length of C
may result in a faulty enumeration sequence. On the contrary, if the SE implementation is
performed using the proposed puzzle enumerator, a reduced memory with only (N − 1)× 1

stored candidate PEDs is required.

5.5.3 Latency of the Enumeration Process
The data in Table 5.3 shows the latency resulting from the enumeration process when imple-
mented on an FPGA device. Speci�cally, the amount of clock cycles (ϕ) required in order
to select the ρth enumerated value and compute its corresponding PED are depicted.

The sequential nature of the full-sort scheme and the algorithms in [Burg05],[Hess07] and
[Shabany08b] is re�ected in the provided results. Usually, an initial delay of around 10 cycles
is required to select the candidate nodes and compute their corresponding distances. After
the selection of the initial value of the enumeration, the rest of the nodes in the sequence and
their PEDs are outputted a few clock cycles apart. For the full-sorting scheme, for example,
5 clock cycles are necessary to perform the compare-and-select stages required to �nd the
node with the minimum PED among the |L| − ρ candidate nodes after the (ρ − 1)th value
has been identi�ed. The schemes in [Burg05] and [Hess07] manage a considerably smaller
list of candidates, which allows for the minimum-search process to be performed in just 3

clock cycles. Nevertheless, the selection and PED computation of the next best sibling node
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derives in 2 extra clock cycles per enumeration stage for the approach in [Burg05], whereas
only a single cycle is required for the unidimensional subset enumerator due to the simpler
sequencing of the nodes within each candidate subset. Additionally, note that ϕ(ρ)−ϕ(ρ−1)

gradually increases with ρ in the neighbor expansion model in [Shabany08b]. This is a
consequence of the variable length of the candidate list C, which has been dimensioned to
�t the worst-case scenario for the current implementation. This way, every time a node
is extracted from the candidate list C, two additional nodes are considered to be included.
The higher dimension of the candidate list at the later stages of the enumeration algorithm
derives in more clock cycles being required in order to perform the search of the minimum
PED.

The latency of the enumeration procedure for the proposed puzzle enumerator shown in
Table 5.3 re�ects the non-sequential nature of the algorithm. The constant latency achieved
by the proposed approach is considerably smaller than that of the other enumeration schemes.
Additionally, note that most of the latency is due to the PED computation as the sole
enumeration procedure can be carried out in just two clock cycles.

Enumeration + MCUs Enum. only
Full sort [Burg05] [Hess07] [Shabany08b] Puzzle Puzzle

ϕ(1) 14 12 11 8 8 1
ϕ(2) 19 17 15 9 9 2
ϕ(3) 24 22 19 12 9 2
ϕ(4) 29 27 23 16 9 2
ϕ(5) 34 32 27 21 9 2
ϕ(6) 39 37 31 26 9 2
ϕ(7) 44 42 35 31 9 2
ϕ(8) 49 47 39 37 9 2

Table 5.3: Amount of clock cycles required to obtain the ordered sequence of child nodes.

5.5.4 Resource Occupation
The fully-pipelined architectures of the proposed enumerator along with the state-of-the-art
enumerators reviewed in this chapter have been implemented on a Virtex-5 XC5Vlx30-3
FPGA. The device occupation results and the maximum clock frequency value shown in
Table 5.4 for the di�erent designs have been obtained by means of the place and route tool
included in the System Generator for DSP software.

The considerably smaller hardware resource usage of the proposed scheme is noticeable
from the data shown in this table. The total gate equivalent (GE) count of the puzzle
enumerator is roughly 15 times smaller than that required by the approaches in [Burg05],
[Hess07] and [Shabany08b], while the slice occupation is around 5 times smaller. When
compared to the more straightforward full-sorting approach, the proposed enumeration unit
yields a notably lower slice occupation and a 30 times smaller GE count. As for the un-
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Enumeration + MCUs
Full sort [Burg05] [Hess07] [Shabany08b] Puzzle Puzzleθ

Number of occupied slices 4243 2198 1735 1922 455 297
Number of slice LUTs 11652 5602 4295 4883 900 696
Number of DSP48Es 10 10 10 10 10 10
Total gate equivalent count 573 K 351 K 268 K 288 K 18 K 13 K
Maximum clock frequency(MHz) 300 200 278 270 300 370

Table 5.4: Device occupation and maximum achievable frequency for di�erent complex enu-
merators with MCUs in a fully-pipelined scheme.

ordered enumeration unit presented in Section 5.3.3 (Puzzleθ), an additional resource saving
is achieved due to its simpli�ed structure.

Additionally, the device occupation results for the puzzle enumerator core without the
MCUs are provided in Table 5.5 for completion. Resource usage results show the low com-
plexity of the proposed enumerator, which can be implemented with just 3K GE and without
the allocation of any costly multiplier units.

Enumeration only
Puzzle Puzzleθ

Number of occupied slices 111 71
Number of slice LUTs 299 209
Number of DSP48Es 0 0
Total gate equivalent count 3 K 2 K
Maximum clock (MHz) 360 385

Table 5.5: Device occupation and maximum achievable frequency for the proposed complex
enumerators in a fully-pipelined scheme.

5.6 Chapter Summary
This chapter has dealt with the design and implementation of a parallel complex-plane
Schnorr-Euchner enumerator for its application to VP systems. As opposed to other enu-
meration algorithms found in the literature, where the symbols are selected in a sequential
fashion, the proposed puzzle enumerator performs an independent identi�cation of the sym-
bols within the ordered sequence. This way, the selection of the �rst ρ symbols according to
the Schnorr-Euchner enumeration can be performed simultaneously, which reduces the delay
of the enumeration process to a great extent, specially for high values of ρ. When used in a
SE tree traversal, the ability of the proposed scheme of independently selecting the values in
the enumerated sequence derives in a reduced amount of distance calculations and a smaller
size of the PED candidate cache when compared to other enumeration approaches.

Additionally, the fully-pipelined and high-throughput implementation of the proposed
algorithm and other state-of-the-art complex-plane enumerators has been carried out. Com-
parative results on the device occupation, multiplier utilization, delay and maximum achiev-
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able frequency of the di�erent enumerators has shown that the proposed approach is able
to perform the enumeration task at a higher symbol frequency with minimum latency and
hardware resource occupation.

The puzzle enumerator is specially useful for fully-pipelined high-throughput precoders
where a �xed amount of symbols need to be enumerated. Nevertheless, the proposed enu-
meration unit can also be used in recursive systems, such as the SE, if a limited enumeration
sequence is employed.
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Chapter 6

Implementation of Fixed-complexity
Algorithms for VP

6.1 Introduction

As it has been detailed previously in Chapter 4, several algorithms have been proposed for
the closest-point lattice search problem in VP systems hitherto. Nevertheless, the optimal-
ity of these algorithms has been assessed mainly in terms of error-rate performance and
computational complexity, leaving the hardware cost of their implementation an open issue.
In this chapter, the problem of designing and implementing a high-throughput tree-search
algorithm for VP systems will be addressed.

So far, the amount of published work related to the implementation of precoding algo-
rithms has been very limited. The �rst very-large-scale integration (VLSI) implementation
of a lattice reduction-aided VP system on an application-speci�c integrated circuit (ASIC)
is described in [Burg07]. The implemented algorithm avoids the search for the optimum
perturbation vector by performing a simple rounding operation on an equivalent lattice-
reduced version of the precoding matrix. However, the error introduced by the quantization
and rounding operations leads to a suboptimum BER performance. Another noteworthy
research work on the �eld of implementation was presented in [Bhagawat08], where the �rst
hardware implementation of a simple variant of DPC on a Xilinx Virtex-II FPGA device is
described. Despite the novelty of the proposed precoding structure, the throughput of the
algorithm is of just 51 Mbps for a considerable resource usage. Additionally, the implemen-
tation design of a THP precoder used to tackle multiple-access interference in multi carrier
code division multiple access schemes has been described in [Lin06]. However, implementa-
tion results on low-complexity and high-throughput vector precoders are still missing in the
open literature.

Despite the lack of published research in the area of hardware architectures for pre-
coding algorithms, the implementation issues of tree-search schemes in MIMO detection
scenarios have been widely studied. For example, the FPGA implementation of the FSD
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detector has been analyzed in [Barbero06d, Barbero06c, Barbero08], whereas the hard-
ware architecture of the K-Best tree search considering a real equivalent model was re-
searched in [Wong02, Wenk06, Li06, Guo06, Shabany08a, Shen10]. Moreover, the implemen-
tation of a K-Best detector with suboptimum complex-plane enumeration was performed in
[Chen07, Mahdavi10]. The adaptation of these tree-search schemes to precoding systems
implies many variations with respect to the original description of the algorithms. Even if
many lessons can be learned from the hardware architecture of tree-search techniques for
point-to-point MIMO systems, the peculiarities of the precoding scenario render the results
of the aforementioned publications inadequate for the current research topic.

Thus, this chapter will address the high-throughput implementation of �xed-complexity
algorithms for VP systems. The K-best and FSE tree-search algorithms for the 4× 4 anten-
nas setup will be implemented on a Xilinx Virtex VI FPGA following a rapid-prototyping
methodology. In order to comply with the high-throughput requirement, both schemes will
operate in the complex-plane and will be implemented in a fully-pipelined fashion providing
one output per cycle. In the case of the K-Best, this entails the utilization of the puzzle
enumerator introduced in Chapter 5.

6.2 General Architecture Overview
Both tree-search schemes share the same general distance computation structure, as can be
seen in Figure 6.1. The lack of loops in the hardware architecture of the �xed-complexity
tree-search techniques enables a high-throughput and fully-pipelined implementation of the
data perturbation process.

The AEDs of the candidate branches are computed by accumulating the PEDs calculated
at the local distance processing units (DPUs) to the AEDs of the previous level. This
way, the AEDs down to level i corresponding to the considered candidate branches, namely[
D

(1)
i , . . . , D

(ψi)
i

]
, are passed on from DPU i to DPU i− 1. The parameter ψi stands for the

number of candidate branches at each level of the tree search, being it ψi = K ∀i for the
K-Best and ψi =

∏N
j=i nj for the FSE model.

Two input memory blocks, named Data Memory and Channel Memory, have been in-
cluded to store the data symbols and the values of the triangular matrix U , respectively. The
o�-diagonal matrix coe�cients are stored as uij/uii, whereas the diagonal values are in the
form of u2

ii to simplify the calculation of (4.1) and (4.2). Note that the matrix preprocessing
stage required by the FSE and K-Best approaches has not been included in the hardware
design. The computation of the intermediate points zi requires the values of all previous
δj = aj + sj. To avoid redundant calculations, the set of values

[
δ
(1)
j , . . . , δ

(ψj)
j

]
for all j > i

is transferred to DPU i, as is shown in Figure 6.1.
The hardware architecture of the �rst DPU is common in both schemes. The computation
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Figure 6.1: General hardware architecture of the �xed-complexity tree-search techniques for
an N = 4 user system.

of the Euclidean distances in this level does not involve any data from previous levels, and
therefore, the only operation to be performed is to select the ψN lattice values closest to
sN and to compute the corresponding PEDs. Given that the position of the modulation's
constellation within the complex lattice is known beforehand, and considering the symmetries
of the complex lattice, it is possible to select the nodes to be passed on to the next level
without performing any extra distance calculations and sorting procedures. Additionally,
the hardware structure of the last DPU is also equal for both algorithms, as only the most
favorable child node that stems from each one of the ψ2 parent nodes needs to be expanded
at this level. Such a task can be performed by simply rounding the value of z1 to the position
of the nearest lattice point.

The main and crucial di�erences between the FSE and K-Best tree-search algorithms
rely on the DPUs of levels 1 < i < N . In the following sections, the hardware architecture
of the DPUs for the K-Best and FSE schemes will be studied.

6.3 DPU for the K-Best
The di�culty of performing the sorting procedure in the complex plane, where the amount of
nodes to be considered is higher, and the intricacy of complex-plane enumeration have led to
the dominance of RVD as the preferred technique when implementing the K-Best tree search.
Nevertheless, direct operation on the complex signals is preferred from an implementation
point of view as the length of the search tree is halved, and hence, the latency and critical
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Figure 6.2: Block diagram of the K-Best and FSE DPU.
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path of the design can be shortened.

6.3.1 Structure of the Sorting Stage
Regardless of the domain of the signals to be used, the bottleneck in this type of systems
is usually the sorting stage performed at each tree level. The number of child nodes that
stem from the same parent node will be de�ned as B, being its value B = |L| for the
complex-plane model, whereas B =

√
|L| will be required for the RVD scheme. The PED

calculation and subsequent sorting procedure on the KB child nodes at each level is a
computationally expensive process that compromises the throughput of the whole system.
With the aim of alleviating the burden of the sorting stage, the use of the Schnorr-Euchner
ordered sequence of child nodes and the subsequent merging of the sorted sublists is proposed
in [Wenk06]. Even if the proposed scheme is implemented on an RVD model due to the
simplicity of the local enumeration, it is possible to extend it to the complex-plane if a low-
complexity enumerator, such as the puzzle enumerator presented in Chapter 5, is utilized.
Additionally, a fully-pipelined RVD architecture of the sorted sublists algorithm is proposed
in [Tsai10] for high-throughput systems. By dividing the real axis into 2B regions and storing
the corresponding enumeration sequences in LUTs, the algorithm is able to determine the
child node order by means of a simple slicing procedure. Nevertheless, this technique is
advantageous only when operating with RVD symbols as the amount of data to be stored
and the quantity of non-overlapping regions grow remarkably when complex-valued symbols
are utilized. In any case, the use of the sublist merging approach reduces the amount of
PED computations at each level to K2 ≤ KB.

6.3.1.1 The Winner Path Extension Algorithm

The number of costly distance computations can be further reduced by implementing the
winner path extension (WPE) selection approach presented in [Mondal08]. The proposed
scheme selects the K most favorable branches in K iterations by performing just 2K − 1

PED computations. An illustrative example of the WPE algorithm is depicted in Figure 6.3
for a system with B = 4 and K = 3. The child nodes at a certain tree level i are tagged
as a

(x,y)
i , where x represents the index of the parent node and y denotes the position of that

certain node within the ordered Schnorr-Euchner sequence of child nodes.
The WPE sorting procedure is based on the generation and management of a node

candidate list A. This way, the child node corresponding to the kth most favorable branch
is extracted from the candidate list of the kth sorting stage Ak. The initial values in the
candidate list are comprised of the AEDs down to level i of the best child nodes that stem
from each one of the K parent nodes, which gives A1 =

{
a

(1,1)
i , . . . , a

(K,1)
i

}
. The winner

branch in the initial sorting stage, or equivalently the �rst of the K most favorable branches,
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Figure 6.3: Illustrative example of the WPE distributed sorting algorithm for a system with
K = 3 and B = 4.

is selected as the branch with the smallest AED within A1. The PED of the second most
favorable child node that stems from the same parent node as the latest appointed winner
branch is computed (a(3,2)

i in the example illustrated in Figure 6.3) and the AED of the
resulting tree branch is added to the candidate list A2. The algorithm proceeds accordingly
until the K required branches have been identi�ed.

6.3.2 Structure of the K-Best DPU
The structure of the proposed K-Best DPU is depicted in Figure 6.2 for a system with K = 3.
The branch selection procedure is carried out in K fully-pipelined sorting stages following
a modi�ed version of the WPE algorithm presented in [Mondal08],[Tsai10]. First of all, the
computation of the intermediate points is performed for each one of the K branches that are
passed on from the previous level. The set of best child nodes that stem from each parent
node can be computed by simply rounding o� the value of the intermediate point to the
nearest lattice point. The distance increments for those K best children are computed by
K MCUs and are accumulated with their corresponding Di−1 values. These distance values
and their corresponding branches comprise the candidate list Λ1. The minimum AED within
Λ1 is found at the MSU by simple concatenation of compare-and-select blocks. The MSU
also outputs the index of the �rst winner branch α1 ∈ {1, . . . , K} so that the appropriate
value of zi can be selected for the local enumeration procedure.

At the second stage of the sorting procedure, the a
(α1,2)
i node needs to be identi�ed for

any parent node index α1. This task is performed by the E2 block, which comprises a
puzzle enumerator that outputs the second most favorable node given a certain value of zi.
However, in the subsequent stages of the algorithm, the enumeration procedure will depend
on the index of the previously appointed winner branches. Hence, if α1 = α2, the third most
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Figure 6.4: Puzzle enumeration unit with selectable sequence index %.

promising child node will need to be expanded, namely a
(α1,3)
i , whereas the second most

favorable node in the α2 branch (a(α2,2)
i ) will be required if α1 6= α2. Consequently, the new

candidate branch to be included in the Ak candidate list at the kth sorting stage, will require
the expansion of the %th most favorable child node, where % may take any value within the
set {2, 3, . . . , k}.

The enumeration approach at each sorting stage k has been carried out by means of a
puzzle enumerator unit capable of ascertaining the sequence of the �rst k child nodes. The
desired child node in the ordered sequence is determined by an additional input variable
which keeps track of the amount of already expanded child nodes for each parent node. The
structure of the proposed enumeration unit is depicted in Figure 6.4. The puzzle enumerator
has been selected as the enumeration scheme to be used along with the WPE due to its lower
hardware resource demand and non-sequential nature, as already discussed in Section 5.5.

6.4 DPU for the FSE
The intricate node ordering and selection procedure required by the K-Best algorithm is
replaced by a simple Schnorr-Euchner enumerator in the FSE tree-search model. This derives
in a considerably simpler DPU architecture of the FSE scheme.

Figure 6.2 depicts the structure of the FSE DPU, where the block diagram for n
(i)
T =∏i−1

j=1 nj = 3 and ni = 1 is represented. First of all, the data of the {δi+1, . . . , δn} values
transferred from level i+1 are used to compute the intermediate value zi for each one of the
parent nodes. Afterwards, the node selection procedure is performed by means of a simple
rounding operation when ni = 1, as depicted in the illustrative example in Figure 6.2, or
by means of the unordered puzzle enumerator presented in Chapter 5 for the cases where
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ni > 1. The PEDs of the selected nodes are then computed by n
(i)
T MCUs and accumulated

to the AEDs from the previous level.

6.5 Design Considerations
This section addresses the design parameter selection for the �xed-complexity algorithms to
be implemented in hardware. Additionally, the impact of applying an approximate norm for
the computation of the distance increments is studied from an error-rate performance point
of view.

6.5.1 Choice of the Design Parameters
The con�gurable parameters K and n o�er a �exible trade-o� between performance and
complexity for the K-Best and FSE encoders, respectively. These con�guration parameters
establish the shape of the search tree, which in turn determines the amount of hardware mul-
tipliers required for its implementation. Embedded multipliers are scarce in FPGA devices
and are considered an expensive resource in ASIC designs. Thus, the number of multiplica-
tion units required by the tree-search algorithm has been regarded as the critical factor in the
current hardware architecture design. For the sake of a fair comparison, the con�guration
parameters of the �xed-complexity tree-search methods have been selected so as to yield a
similar amount of allocated embedded multipliers.

The amount of embedded multipliers required for the K-Best tree search with a WPE
sorting scheme depends strongly on the enumeration approach used to create the ordered
sequence of child nodes. Despite the fact that the puzzle enumerator has already been
selected as the preferred node sequencing scheme for the K-Best structure due to its low
complexity, the current analysis on the multiplier allocation volume will be performed on a
more general scope. The rationale for this is twofold; on one hand, it will enable the study of
the amount of allocated multipliers in a �xed-complexity tree-search structure with di�erent
enumeration techniques, and on the other hand, the provided analysis will better showcase
the bene�ts of the proposed enumerator when implemented upon a non-iterative tree-search
scheme.

Considering that 3 multipliers are used for the multiplication of two complex terms, the
number of multiplication units required for the K-Best tree-search structure can be computed
as

NMUL,KB = 6K + 3(N − 2) [PSK + PC(K − 1)] + 3K

[
N(N − 1)

2

]
,

where the parameters PS and PC are related to the enumeration strategy used to select the
child nodes to be expanded. The number of locally-enumerated subsets that are de�ned
during the enumeration procedure is represented by the parameter PS . This way, the puzzle
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enumerator and the neighbor expansion scheme [Shabany08b] require a value of PS = 1,
whereas the circular subset scheme [Burg05] and the unidimensional subset enumerators
[Hess07] work with values of PS = 6 and PS = 5, respectively. The parameter PC, on the other
hand, represents the amount of nodes that are added to the candidate list after enumerating
the latest child node. The puzzle enumerator, the circular subset enumeration approach and
the unidimensional subset enumerator give values of PC = 1. For the neighbor expansion
scheme however, the worst-case scenario has been contemplated, which gives PC = 2.

The e�ect of the enumeration unit on the structure of the FSE is more reduced as most
of the tree levels consider the expansion of a single node. Nevertheless, for those levels i 6= N

with ni > 1, the choice of complex-plane enumerator will determine the amount of allocated
hardware resources. The total amount of embedded multipliers for an FSE tree structure
can be computed as

NMUL,FSE =
N∑

i=1

N
(i)
MUL,FSE,

where the number of multipliers for each individual tree search level is given by

N
(i)
MUL,FSE =





3
∑N

j=i+1 n
(j)
T + 3n

(i)
T for i = N or ni = 1

3
∑N

j=i+1 n
(j)
T + 3n

(i+1)
T [PS + PC(ni − 1)] otherwise.

(6.1)

The number of required embedded multipliers for the K-Best and FSE tree-search tech-
niques is shown in Figure 6.5 for a system with N = 4 single-antenna users. The amount of
multiplier units is given as a function of the number of candidate branches, namely K and
nT for the K-Best and FSE approaches, respectively. The data in this �gure show that the
amount of hardware resources in the K-Best tree-search model grows linearly with K. The
multiplier demand growth rate is more elevated for the circular and unidimensional subset
enumeration approaches due to the higher number of de�ned candidate subsets PS . The
smaller amount of initial PED computations required in the single-subset schemes (PS = 1)
derives in a smaller multiplier occupation for the neighbor expansion and puzzle enumeration
approaches. Among the latter, the puzzle enumerator is the node sequencing scheme that
requires the smallest multiplier count as only a single new candidate node is considered for
each enumeration stage, i.e. PC = 1.

The complexity of the tree search in terms of allocated multipliers does not grow linearly
with nT for the FSE case, as is shown in Figure 6.5. This is due to the ni values being
di�erently distributed through the tree con�guration vector depending on the divisibility of
nT . Hence, for a prime nT value, there is no need for the implementation of a complex-plane
enumerator as the only tree level with ni > 1 is located at the top of the tree, where the
nodes can be sequenced straightforwardly. This is re�ected in the multiplier count expression
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Figure 6.5: Number of required multipliers for the K-Best and FSE tree-search techniques
as a function of the number of candidate branches.

in (6.1), where the amount of embedded multipliers for systems with a prime nT value can
be computed without considering the enumerator dependant PC and PS parameters. For
the rest of the nT values, namely divisible values of nT , the e�ect of implementing di�erent
enumeration techniques is not very signi�cant either, as is shown in Figure 6.5. The reason
for this is that the e�ect that a certain enumerator has on the hardware complexity of the
FSE tree search is only limited to those tree levels i 6= N where ni > 1.

In order to assess the hardware resource occupation required for the the implementation
of the di�erent tree-search algorithms, the design parameter values K = 7 and nT = 10

have been selected for the K-Best and FSE models, respectively. This choice of parameters
ensures a similar multiplier occupation for both schemes and o�ers a signi�cantly better
error-rate performance than other lower K and nT pairs, e.g. K = 6 and nT = 9.

The BER vs SNR curves of the implemented �xed-complexity schemes are depicted
in Figure 6.6. As one can notice, the error-rate performance of the implemented models
is close to the optimum set by the SE in the low-to-mid SNR range. However, a slight
performance degradation of 0.5 dBs is noticeable for the FSE model at high-SNRs, whereas
the performance gap of the K-Best structure increases with the SNR, reaching up to 3 dBs
at a BER of 10−6.

6.5.2 Implementation of an Approximate Norm
A signi�cant portion of the hardware resources in the implementation of any tree-search
algorithm is dedicated to computing the `2 norms required by the cost function in (2.8) (or
equivalently in (4.3) for ordered tree traversals). Additionally, the long delays associated
with squaring operations required to compute the PEDs account for a signi�cant portion
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Figure 6.6: BER performance of the implemented FSE and K-Best tree-search structures.

of the latency of the �xed-complexity tree-search architectures. It is possible to overcome
these problems by using an alternative norm that prevents the use of the computationally-
expensive squaring operations.

The application of the modi�ed-norm algorithm (MNA) [Burg04] entails two main ben-
e�ts: on one hand, a simpli�ed distance computation scheme that immediately reduces
silicon area and delay of the arithmetic units can be performed, and on the other hand,
a smaller dynamic range of the PEDs is achieved. The key point of the MNA is to com-
pute the square root of the accumulated and partial distance increments, namely Ei =

√
Di

and ei =
√

di, respectively. Hence, the accumulation of the distance increments in this
equivalent model gives Ei =

√
E2

i+1 + e2
i . An approximate norm can now be applied to

get rid of the computationally-expensive squaring and square root operations, such that
Ei ≈ f(|Ei+1|, |ei|). This way, the distance accumulation and computation in (4.1) can be
reformulated as

Ei = Ei+1 + ei, (6.2)

with
ei = ui,i (|R(ai + zi)|+ |I(ai + zi)|) (6.3)

for the `1̃-norm variant of the algorithm. The norm approximation can also be performed
following the `∞̃-norm simpli�ed model, in which case the following expressions should be
considered

Ei = max (Ei+1, ei) , (6.4)

with
ei = ui,i [max (|R(ai + zi)|, |I(ai + zi)|)] .
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Figure 6.7: BER performance degradation introduced by approximating the `2 norm by the
simpli�ed `1̃ and `∞̃ norms in the FSE (nT = 10) (a) and K-Best (K = 7) (b) tree-search
approaches.

The implementation of an approximate norm impacts the error-rate performance of the
VP system di�erently depending on the tree-search strategy used in the perturbation process.
This fact is shown in Figure 6.7, where the BER performance degradation introduced when
approximating the `2 norm by the suboptimum `1̃ and `∞̃ norms is depicted for the FSE
and K-Best tree-search approaches. For the FSE case depicted in Figure 6.7(a), the use
of an approximate norm only a�ects the accumulated distances related to the candidate
branches, but not the branches themselves. This is due to the fact that the nodes expanded
at each level where ni ≤ 2 are the same regardless of the norm used to compute the distance
increments to zi. In the K-Best model, on the other hand, the node selection procedure is
solely based on previously computed distances, and therefore, the introduction of a simpli�ed
norm will noticeably alter the structure of the candidate branches. Consequently, a higher
error-rate performance degradation of the K-Best algorithm with an approximate norm can
be expected when compared to the norm-simpli�ed FSE model.

The implementation of the approximate `1̃ norm yields a high-SNR performance loss
of 0.22 dB and 0.25 dB for the FSE and K-Best �xed-complexity algorithms, respectively.
Due to the worse approximation of the Euclidean distances performed by the suboptimum
`∞̃ norm, the performance gap with respect to the optimum FSE and K-Best structures
is widened in this case. This way, a performance loss of 0.45 dBs is experienced by the
simpli�ed `∞̃-FSE model, whereas an error-rate degradation of 0.85 dBs is su�ered by the
K-Best in the high-SNR regime. In any case, the implementation of an alternative norm
does not alter the diversity order of the VP scheme.

The computational complexity reduction yielded by both norm approximation approaches
is similar, whereas the performance is slightly better for the `1̃ norm approximation. Con-
sequently, the `1̃ norm-simpli�ed model will be considered for hardware implementation.
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K-Best FSE K-Best `1̃ FSE `1̃

Number of Occupied Slices (39,360) 25 % 10% 26% 10 %
Number of Slice Registers (314,880) 10 % 5 % 10% 4%
Number of Slice LUTs (157,440) 20 % 7 % 20% 7%

used as logic 11 % 6 % 11% 6 %
used as memory 27 % 2 % 27% 2%

Number of DSP48e1s (576) 40 % 40 % 31 % 29%
Q (Gbps) 5.52 5.63 5.34 5.62

Table 6.1: Hardware resource occupation and throughput of the tree-search architectures
under study.

6.6 Implementation Results
The proposed tree-search architectures have been implemented on a Xilinx Virtex VI FPGA
(XC6VHX250T-3). The occupation results have been obtained by means of the place and
route tool included in the System Generator for DSP software.

Table 6.1 depicts the device occupation summary of the implemented vector precoders.
Even if the FSE and K-best models use a similar amount of embedded multipliers (DSP48e1),
the device occupation in terms of slices is considerably higher for the latter. This is due to
the longer latency of the K-best architecture caused by the distributed sorting procedure,
which ultimately results in a great amount of data being stored in several pipeline stages.
As a consequence to this, around 27% of the slice LUTs are used as memory in the K-best
implementation, as opposed to the 2% utilized by the FSE for the same purpose. As already
anticipated, the utilization of the approximate `1̃ norm yields a notable reduction in the
amount of allocated embedded multipliers for both �xed-complexity tree-search models.

The maximum throughput of the implemented architectures in terms of processed gigabits
per second is also shown in Table 6.1. For a system with N users and a constellation of P

elements, the throughput for fully-pipelined architectures can be computed as

Q = Nfclock log2(P ),

where fclock represents the maximum working frequency of the design as given by the Post-
Place & Route Static Timing Report. Both tree-search algorithms achieve a very high data-
processing throughput (in the range of 5 Gbps) due to the loop-less structure that enables
the processing of a new data vector at every clock cycle.

6.7 Chapter Summary
This chapter has addressed the issues of a fully-pipelined implementation of the FSE and
K-Best tree-search approaches for a 4 × 4 VP system. The sorting stages required by the
K-best scheme have been performed by means of the WPE distributed sorting strategy along
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with the puzzle enumerator presented in Chapter 5. The latter has also been incorporated
into the FSE structure to determine the child nodes to be expanded in those tree levels
i < N where ni > 1. The design parameters that establish the performance-complexity
trade-o� of these non-recursive tree-search approaches have been set so as to yield a similar
count of allocated embedded multipliers. Additionally, the use of an approximate norm to
reduce the computational complexity of the PED calculations has been contemplated. The
complexity reduction achieved by both norm simpli�cation models `∞̃ and `1̃ is similar,
whereas the achieved error-rate performance is slightly better for the latter. Consequently,
the `1̃ approximate norm model has been considered for hardware implementation.

Provided performance results have shown a close-to-optimal performance and very high
achievable throughput for both techniques. Nevertheless, the error-rate performance of the
FSE has been shown to considerably outperform the K-Best in the high-SNR range. Ad-
ditionally, the provided FPGA resource occupation results have demonstrated the greater
e�ciency of the FSE architecture when compared to the K-Best �xed-complexity structure.

Due to the good performance, occupation results and simplicity of implementation, it is
concluded that the FSE is best suited for the practical implementation of �xed-complexity
and high-throughput vector precoders.
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Chapter 7

Low-complexity Sequential Tree-search
Algorithms for VP

7.1 Introduction

The so-far addressed K-Best and FSE bounded breadth-�rst techniques represent a low-
complexity alternative to the widely-used SE algorithm. The advantages of a non-iterative
tree traversal, such as the �xed-complexity of the tree search and the high data processing
throughput, have been presented and analyzed in previous chapters of this thesis. Never-
theless, the branch pruning strategy in bounded breadth-�rst schemes also presents other
shortcomings.

Given that the selection of the nodes at each stage is performed based on the PEDs or
AEDs up to that level and not the Euclidean distance associated with the entire branch,
the validity of the pruning is not certain until the bottom of the tree is reached. This
speculative pruning strategy results in a great amount of unnecessary distance computations
and an excessive power consumption. Consequently, many of the PED calculations performed
during a bounded breadth-�rst tree search, along with the corresponding allocated hardware
resources and power usage, can be spared by traversing the tree in both forward and backward
directions.

The depth-�rst model of an originally breadth-�rst algorithm is presented in this chap-
ter for the computation of the perturbation vector in VP systems. The tree-search struc-
ture of the proposed sequential best-node expansion (SBE) scheme is inspired by the so-
called conditioned ordered successive interference cancelation (COSIC) detector introduced
in [Hess07][Wenk10a]. The presented tree-search approach also features a novel user ordering
strategy that provides a good trade-o� between error-rate performance and complexity of
the algorithm in terms of amount of visited nodes.

With the aim of further reducing the complexity of the SBE tree search, a simpli�ed
version of the proposed tree traversal strategy is presented. The low-complexity SBE (LC-
SBE) algorithm uses an innovative system of �exible run-time constraints along with an
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approximate distance computation model to allow for an e�cient implementation of a vector
precoder at the cost of a negligible performance loss.

7.2 The SBE Algorithm
The proposed scheme features two main concepts: a tree traversal architecture where only
the most promising nodes are expanded and an innovative matrix preprocessing strategy.
The former is based on the COSIC tree search described for signal detection in MIMO
scenarios in [Hess07][Wenk10a], while the latter has been specially designed to yield a good
trade-o� between performance and run-time of the SBE algorithm.

7.2.1 SBE Tree-search Architecture
The tree structure of the SBE is a depth-�rst implementation of an originally breadth-�rst
algorithm, which enables the usage of a sphere constraint for additional pruning. This way,
the Euclidean distance related to the �rst computed branch is considered as the initial radius
R, which is updated every time a leaf node with a smaller AED is reached.

The main motivation for the change of tree traversal strategy is the reduction of the
unnecessary distance computations performed in the fully-parallel scheme. As a consequence
of adopting a sequential scheme, the complexity of the tree search is no longer �xed. However,
by avoiding a speculative node-expansion policy, an overall smaller computational e�ort is
required when compared to parallel branch-processing approaches.

The tree-search architecture under consideration uses di�erent node expansion policies
throughout the tree traversal:

1. On-demand sibling node expansion

This node expansion approach is only performed at the root level of the tree, namely
i = N . In the initial step of the algorithm, the best node according to the Schnorr-
Euchner enumeration is selected and passed on to the next level. When the algorithm
returns to the root of the tree, the next most favorable node is expanded only if its
PED is smaller than R. Note that the ordered child node sequence at this level can be
obtained without performing any PED calculations and subsequent sorting procedures.

2. Single node expansion

A single child node is expanded per parent node in levels i < N , being a radius check
performed at each one of these levels . This way, if a node with Di > R is reached, all
its descendants are discarded and the algorithm returns to the root level. Otherwise,
the tree traversal is resumed. When a leaf node with D1 < R is found, the branch
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Figure 7.1: Example of a SBE tree search in a 3 user system with |L| = 3.

leading to that node is stored as a candidate solution and the search radius is updated
accordingly.

The sequential nature and the radius reduction procedure allow for an e�cient pruning of
undesired branches. Additionally, the single node expansion policy provides a more regular
data path than that of the SE and removes the need for tracking candidate sibling nodes
throughout the tree traversal.

An example of a SBE tree search is shown in Figure 7.1 for a 3 user system with a
restricted search set of |L| = 3 elements. The branches discarded due to the single node
expansion policy are represented by the thinner lines, whereas the branches that have been
pruned due to the radius reduction procedure are illustrated in dashed lines. Finally, the
straight thick lines depict the tree traversal performed by the SBE algorithm.

7.2.1.1 Implementation Considerations

Following the inherent sequential nature of the SBE algorithm, the implementation of the
tree search can be carried out by concatenating N single-branch DPUs and iterating through
the architecture as necessary. This implementation approach derives in a modest hardware
usage and a more e�cient pruning, but also yields a reduced and variable throughput.
Nevertheless, the former disadvantage can be alleviated by running several DPU instances
in parallel, hence processing various vector symbols at the same time.

The data processing throughput of the SBE algorithm can be enhanced by relaxing the
premise of an strictly sequential tree traversal. This way, the architecture of the SBE tree can
be parallelized to some degree by employing several single-branch DPUs to simultaneously
process various branches within the same search tree. This approach results in a higher
data processing throughput derived from an earlier shrinking of the sphere radius, but also
involves a less computationally-e�cient tree search.
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Ψ =
(
HHH + ξIN

)−1

Π = IN

for i = 1, . . . , N

4: if i = N − 1

5: q = argmax
q̂∈{i,...,N}

Ψ (q̂, q̂)

6: else
q = argmin

q̂∈{i,...,N}
Ψ (q̂, q̂)

8: end
Ξ = Ĩ

(i,q)

N

Π = ΞΠ

Ψ = ΞΨΞT

D(i, i) = Ψ(i, i)

Ψ(i : N, i) = Ψ(i : N, i)/Ψ(i, i)

Ψ(i + 1 : N, i + 1 : N) = Ψ(i + 1 : N, i + 1 : N)

−Ψ(i + 1 : N, i)Ψ(i + 1 : N, i)HD(i, i)

end
L = lower triangular part of Ψ

U = D1/2LH

Table 7.1: Computation of the upper-triangular matrix U with OSBE ordering.

7.2.2 Matrix Preprocessing for the SBE

The rearrangement of the user streams in the search tree has a great impact on the amount
of nodes that are visited during an iterative tree traversal. In systems where there is some
sort of limitation on the number of nodes to be processed, such as the K-Best or the FSE,
the procedure of user ordering solely a�ects the error-rate performance of the algorithm.
Due to the special pruning strategy performed in the SBE algorithm, the rearrangement of
the user streams will impact both its performance and run-time.

As is the case with the FSE, the �rst evaluated branch during the SBE tree search, which
is associated with the initial sphere constraint, corresponds to the solution of the successive
precoding procedure performed by THP. Consequently, the ordering strategy used in this
type of systems will be the starting point for the design of the SBE matrix preprocessing
approach.

When generating the upper-triangular matrix following a best-last ordering strategy,
higher values of the uN,N element are obtained when compared to the unordered matrix
decomposition due to the worst stream being precoded at the last stage. This results in
higher PEDs of the nodes at the root level, which in turn derives in very few nodes satisfy-
ing the radius constraint (di < R). Therefore, most of the root nodes are pruned and the
SBE tree search is �nished after just a few iterations. Certainly, a reduced run-time is a
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Figure 7.2: BER performance of the SBE with di�erent ordering strategies (a) and the CDF
of the nodes expanded at the root level during a SBE tree traversal (b).

bene�cial property for any sequential algorithm. However, by intentionally increasing the
amount of evaluated nodes for the �rst precoded stream, it is possible to �nd more suitable
perturbation elements for the rest of the streams.

With this statement in mind, a new ordering approach is proposed to be used along with
the SBE tree traversal (OSBE). The novel ordering strategy consists of following a best-last
approach when determining the user order in levels i < N − 1. Therefore, the ordering
procedure starts by selecting the best data stream at the bottom level of the tree, namely
i = 1, and proceeds equally through the rest of the levels until i = N − 2. Once the second
level of the tree is reached (i = N − 1), the worst stream is selected instead. By shifting the
position of the worst user from the top of the tree to the next level, smaller PEDs associated
with the root nodes can be attained since uOBL

N,N > uOSBE
N,N . This allows for the SBE to perform

a more lenient pruning at the top level of the tree, which leads to a slightly longer run-time
of the algorithm along with a better error-rate performance.

The pseudocode for the joint user order determination and triangular matrix computation
of the OSBE strategy, shown in Table 7.1, has been obtained by appropriately modifying the
algorithm description given in Table 4.1 for the OBL approach.

7.2.3 Performance Results
Figure 7.2(a) depicts the BER performance of the SE and the SBE algorithms for a 4×4 an-
tenna system with 16-QAM modulation. More speci�cally, the error-rate performance of the
SBE tree search with the presented OBL and OSBE ordering strategies is depicted. Addition-
ally, the BER performance of the SBE algorithm with the brute force genie ordering OGenie

is shown. The latter consists of ordering the user data streams according to all possible N !

permutations for each channel realization and performing the precoding for each considered
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Figure 7.3: Accumulated distances of the nodes expanded during a SBE tree traversal with
the `2 norm (a) and with the approximated `1̃ (b) and `∞̃ (c) norms.

ordering tuple. The OGenie user order for that particular channel realization is then selected
as the ordering sequence that yields the best performance. This ordering approach therefore
establishes the upper bound on the error-rate performance of the SBE tree-search structure.
The data displayed in this �gure shows that the proposed ordering approach clearly outper-
forms the more traditional OBL ordering. What is more, the proposed OSBE approach yields
virtually the same BER performance as the brute force OGenie strategy when applied to the
SBE structure. Note also that the error-rate performance of the presented SBE approach is
close to the optimum set by the SE algorithm.

As an additional result, the cumulative distribution function (CDF) of the amount of
node expansions at the root level of the tree search is depicted in Figure 7.2(b). The longer
run-time of the SBE algorithm caused by rearranging the users according to the proposed
ordering approach can be observed in this �gure.

7.3 The Low-complexity SBE Algorithm
Despite its already simple architecture, the features of the SBE algorithm can be further
improved in terms of required hardware resources, delay and run-time. The proposed low-
complexity SBE (LC-SBE) aims in this direction by applying a joint strategy of approxi-
mate norm computations and �exible run-time constraints. The implementation of the more
computationally-e�cient LC-SBE yields an insigni�cant performance degradation with re-
spect to the original algorithm considering the great hardware resource saving and the ad-
ditional complexity reduction that it is achieved.

7.3.1 SBE with an Approximate Norm
As already discussed in Section 6.5.2, a signi�cant portion of the hardware resources in the
implementation of any tree-search algorithm is dedicated to computing the PEDs related to
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the nodes in the search tree. Additionally, in iterative systems such as the proposed SBE,
the long delays associated with squaring operations required to compute the `2 norms greatly
contribute to the critical path of the hardware architecture. The use of an approximate norm
alleviates these problems, but it also results in a slight error-rate performance degradation.

With the introduction of the approximate norms the iteration complexity of the SBE is
also altered. The e�ect on the pruning behavior is illustrated in Figure 7.3, where the AEDs
computed during an 8 level SBE tree traversal are shown for di�erent norm implementations.
The image depicts the PEDs of all the nodes in the �rst level (eN) and the accumulated
distances of the branches expanded during the tree traversal in the rest of the levels. The
vertical dotted lines represent the initial pruning radius for the di�erent norm models, namely
R = E1. For the particular case illustrated in this example, the solution vector given by
the SBE algorithm is the same regardless of the norm in use. Nevertheless, the resulting
run-time of the SBE varies signi�cantly depending on the implemented distance computation
model.

By accumulating the distance increments following the `1̃ approach described in (6.2)
and (6.3), the square root operation required by the MNA `2 model is omitted for the sake
of computational complexity, namely Ei =

√
E2

i+1 + e2
i ≈ Ei+1 + ei. This results in a fast

escalation of the AED values in the `1̃ tree search, as is shown in Figure 7.3(b). As a
consequence to this, many root nodes ful�l eN ≤ E1 = R and therefore, a very lenient
pruning and an extremely long run-time are experienced by the `1̃-SBE. The problem of the
increased number of iterations in the `1̃ variant is aggravated as the tree grows in dimensions,
i.e. more users are added to the system.

The behavior of the SBE with the `∞̃ norm is the opposite, since the max operator
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in (6.4) causes little variations in the value of the AEDs as the tree is traversed. The
combination of this feature with the preferred ordering strategy for the SBE, which derives
in the concentration of the largest PEDs at the top levels of the tree, results in a very early
pruning of the root nodes, as is shown in Figure 7.3(c).

On a more general scope, the variations on the run-time of the SBE caused by the use
of an approximate norm will be further analyzed by means of the CDF of the amount of
evaluated root nodes. The data displayed in Figure 7.4 support the conclusions drawn from
the illustrative example in Figure 7.3, such as the considerably less aggressive pruning of
the `1̃-SBE algorithm when compared to the other addressed SBE variants, or the short
run-time of the `∞̃-SBE. To this respect, the statistical analysis on the expanded nodes at
the top level concludes that the aggressive pruning strategy performed when applying an
`∞̃ distance computation model derives in a single branch computation being performed in
roughly 40% of the tree-search instances.

Clearly, the adoption of an approximated norm approach introduces a certain error-
rate performance degradation, as is shown in Figure 7.5. The BER performance of the SBE
algorithm with the addressed approximate norms in an 8×8 system with 16-QAMmodulation
is shown in Figure 7.5. Despite having a similar complexity in terms of distance computation
e�ort, the `1̃ variant of the simpli�ed-norm SBE achieves a better error-rate performance
than the `∞̃ model, mainly due to the more aggressive pruning process performed in the
latter. Nevertheless, both approximate distance computation models preserve the diversity
order of the `2-SBE tree search.
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Figure 7.6: Index of the branch selected as the solution vector for the `1̃ and `2-SBE (a),
and for the `2-SBE and the proposed LC-SBE (b).

7.3.2 Flexible Run-time Constraint
The implications of using a low-complexity distance computation model for the SBE tree
search were presented in the previous section. As already discussed, the `1̃ approximate norm
is preferred from a BER performance point of view, whereas the `∞̃ norm is considerably
more attractive in terms of run-time of the SBE algorithm. In this section, a low-complexity
tree-search algorithm that aims at closing the performance gap with respect to the (`2-)SBE
will be presented. The proposed scheme combines two advantageous features, namely, the
close-to-optimum performance of the `1̃-SBE and the brief run-time of the `∞̃-SBE.

To that end, an analysis on the `1̃ tree traversal will be performed �rst, identifying
the main causes for the performance degradation su�ered when replacing the optimum `2

distance computation model by this approximate norm. Next, a novel variable constraint
algorithm will be presented, which will greatly improve the long run-time issues of the
`1̃-SBE, while at the same time considerably enhancing its performance. The resulting tree-
search algorithm will be denoted as the LC-SBE.

7.3.2.1 Performance Degradation in the `1̃-SBE

When approximating the distance computation in (2.8) by a simpli�ed model, the metrics
associated with all the branches in the SBE tree are altered, which may lead to selecting
a suboptimum branch within the SBE tree. Note that, as already discussed, the nodes at
the root level can be sequenced without computing their associated distances and there-
fore, the node expansion at this level can be performed equally for both `2 and `1̃ variants.
Furthermore, given that only the most favorable node is expanded in the subsequent levels,
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which results in the same selected child node regardless of the norm in use, we conclude that
the set of eligible nodes in the structure of the SBE tree is not modi�ed with the imple-
mentation of an approximate norm. Hence, the ϕth branch in the SBE tree will represent
the same candidate solution vector regardless of the approach used to compute the distance
increments.

We shall refer to the branch selected as the optimum within the `x-SBE tree search as
the winner branch, whose index will be denoted as ϕ`x

W. Due to the metric discrepancies
between the `2 and `1̃ models, the perturbation vector selected by the SBE tree search may
di�er in some cases, i.e. ϕ`1̃

W 6= ϕ`2

W. These events, which will be referred to as false positive
events, represent the only cause for the performance degradation su�ered when replacing the
optimum `2 distance computation model by an approximate norm in the SBE tree search.

With the aim of further analyzing the rationale behind the false positive events, the
variations in the tree traversal of the SBE with di�erent distance computation models have
been studied for 100000 channel and symbol vector combinations. For each analyzed search
tree, the winner branches ϕ`2

W and ϕ`1̃

W have been stored. The data collected for this study,
which are displayed in Figure 7.6(a), have been properly arranged by increasing order of ϕ`2

W
and ϕ`1̃

W to ease the readability of the results. As is shown in this �gure, the great majority
of the false positives are caused by ϕ`1̃

W > ϕ`2

W events, while only a small part of the errors are
due to situations in which ϕ`1̃

W < ϕ`2

W. The former and most unfavorable events are triggered
by the extended run-time of the `1̃-SBE. This is due to the fact that in these occasions the
optimum ϕ`2

W branch is visited at an early stage of the `1̃-SBE tree traversal and is stored as
a candidate solution. Nevertheless, given the nature of the `1̃ distance distribution, a great
amount of iterations through the SBE tree are performed in the subsequent stages of the
algorithm until eventually, a false positive branch with a smaller `1̃ metric is found.

7.3.2.2 Flexible Run-time Constraint for the `1̃-SBE

The problem of the wrong branch selection caused by ϕ`1̃

W > ϕ`2

W events can be overcome
by setting an appropriate limit to the amount of iterations to be performed during the `1̃-
SBE tree traversal. This way, the probability of choosing a suboptimum branch in later
iterations through the SBE tree search is reduced. Put in other words, the implementation
of a limit in the number of iterations forces the `1̃-SBE to keep an early correct decision
in many occasions, consequently improving the overall system performance. The limit on
the maximum allowable number of branch expansions (ϕTH) has to be set carefully. If the
threshold is set too low, the strict constraint may prevent the evaluation of the optimum
branch during the tree traversal, which will result in the selection of an erroneous pertur-
bation vector. However, if the threshold is too lenient, most of the false positive events will
not be prevented.

In previous sections, the e�ect of the uN,N parameter on the run-time of the SBE has
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been discussed. Clearly, those channel realizations that yield small values of uN,N , and
hence perform an increased amount of iterations through the search tree, will allow for
higher values of ϕ`2

W, and viceversa. With this statement in mind, the implementation of
a �exible threshold system is proposed, where the pruning constraint of the tree search is
updated depending on the particular structure of the triangular matrix U .

Hence, the value of ϕTH will be selected based on previously gathered statistics on the
value of ϕ`2

W subjected to uN,N . The gathered data is discretized by dividing the range of
captured uN,N values in several intervals. The run-time constraint for a given value of uN,N is
then set by analyzing the captured ϕ`2

W values for the corresponding interval and evaluating
the amount of expanded root nodes that are necessary to �nd the optimum solution with a
probability of p. The value of p will determine the leniency of the constraint for each discrete
range of uN,N values. Usually, a value of p ∈ [0.9, 0.99] provides good performance results,
with the values in the lower range enabling shorter run-times of the algorithm.

The data displayed in Figure 7.6(b) show the index of the `1̃-SBE winner branch after
the implementation of the proposed �exible threshold approach (ϕ`1̃,LC

W ). As one can notice,
most of the false positive events with ϕ`1̃

W À ϕ`2

W have been corrected. In some cases, the
constraint is not restrictive enough and the selected branch in the LC-SBE tree traversal is
not the optimum SBE solution, namely ϕTH > ϕ`1̃,LC

W > ϕ`2

W. However, even in this cases, a
certain performance enhancement is introduced as the index of the suboptimum branch is
signi�cantly smaller after the implementation of the �exible threshold, that is ϕ`1̃,LC

W ¿ ϕ`1̃

W.
This implies that the new approach favors the selection of those perturbation vectors that
are closer to the origin, and hence have a smaller branch index. Due to their proximity to the
origin of the lattice, they enable the reduction of the precoded signal power, which re�ects
positively on the �nal system performance.
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7.3.3 Performance Results
The BER performance of the SBE-based algorithms is shown in Figure 7.5 for an 8 single-
antenna user system. The data displayed in this �gure show that the false positive correction
procedure performed on the `1̃-SBE tree search bridges the performance gap between the
optimum SBE structure (`2-SBE) and the simpli�ed distance computation model.

Moreover, Figure 7.4 depicts the CDF of the amount of expanded branches for the LC-
SBE along with the previously discussed (`2-)SBE, `1̃-SBE and `∞̃-SBE. As one can notice,
the run-time of the SBE tree search based on `1̃ distances is reduced drastically after the
implementation of the variable threshold approach, yielding an iteration e�ort that is even
comparable to that of the computationally-attractive `∞̃-SBE.

7.3.4 Implementation Considerations
The steepness of the LC-SBE CDF curve in Figure 7.4 indicates a low variability on the
amount of expanded nodes at the root level. This fact is bene�cial if a semi-parallel branch
computation approach is considered for hardware implementation. In such a case, the bene�t
with respect to the �xed-complexity K-Best and FSE algorithms is clear, as the amount of
branches computed by the LC-SBE is in general considerably smaller than the amount
required by the �xed-complexity approaches to achieve a close-to-optimum performance.

This way, it can be shown that several semi-parallel LC-SBE tree-search instances can
achieve a higher average throughput than the addressed �xed-complexity algorithms for the
same amount of allocated hardware resources. From the data displayed in Figure 7.4, it
can be extracted that the LC-SBE traverses 4 tree branches or less with a 99 % probability.
Consider a �xed-complexity tree-search technique that evaluates the metrics of L candidate
branches, where L is assumed to be a multiple of 4 for ease of exposition. Additionally, con-
sider that L/4 LC-SBE tree-search instances are implemented, each one of them processing
4 tree branches in parallel. In this case, the run-time constraint ϕTH will determine which
computed branches are considered as candidates whenever ϕTH < 4, and will indicate the
occasions in which the 4 branch processing structures should be traversed for a second time,
i.e ϕTH > 4. Hence, despite the parallel processing of the branches, the LC-SBE implemen-
tation remains of variable nature. This way, both the �xed-complexity and variable LC-SBE
function on a L-branch computation hardware architecture. Nevertheless, the throughput
the of the LC-SBE model is on average L/4 times higher.

7.4 Simulation Results
A comparative analysis on the error-rate performance and complexity of the proposed SBE
and LC-SBE algorithms with respect to the previously addressed tree-search techniques will
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Figure 7.8: 90-percentile of the number of node expansions per level for the SE, FSE, K-Best,
SBE and LC-SBE tree-search algorithms in an 8× 8 antenna system.

be provided in this section. The �exible threshold values that have been used for the current
study are depicted in Figure 7.7.

7.4.1 Computational Complexity
The computational complexity of the proposed SBE and LC-SBE algorithms will be as-
sessed in terms of evaluated nodes and total operation count with the aim of extending the
complexity analysis of the SE, K-Best and FSE approaches already presented in Section 4.4.

7.4.1.1 Number of Evaluated Nodes

The 90-percentile of the amount of node expansions per level for the variable complexity
schemes, i.e. the SE, SBE and LC-SBE, is shown in Figure 7.8, whereas a more general scope
on the SNR-dependency of the iterative algorithms is given in Figure 7.9. Additionally, the
amount of visited nodes for the addressed �xed-complexity algorithms, namely the K-Best
and FSE, is also depicted for completion.

The notably smaller complexity in terms of evaluated nodes of the SBE-based algorithms
when compared to the SE is a consequence of considering only the most favorable nodes in
levels i < N of the tree traversal. This implies that the number of expanded nodes at level
i is always equal or inferior to the amount of nodes evaluated at level i + 1, as is shown in
Figure 7.8. Consequently, the great escalation of node expansions experienced by the SE in
the central part of the tree search, where the small AEDs derive in a great amount of nodes
satisfying the sphere constraint, can be avoided. The single node expansion policy of the
SBE-based schemes also re�ects positively on the SNR-dependency of their iteration e�ort.
Even if the (`2-)SBE also performs more node computations in the high SNR range due to
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Figure 7.9: 90-percentile of node expansions for the SE, FSE, K-Best, SBE and LC-SBE in
an 8× 8 antenna system.

its variable nature, its growth rate is considerably smaller than that of the SE due to the
additional pruning policy.

What is more, the limitation set by the LC-SBE on the number of expanded root nodes
results not only in the elimination of the unfavorable false positive events, but additionally in
a considerable reduction of the complexity of the algorithm in terms of amount of processed
nodes. The data depicted in Figure 7.8 show that the proposed low-complexity scheme iter-
ates through the search tree in a very e�cient way, expanding a remarkably smaller amount
of nodes than the optimum SE or the addressed �xed-complexity schemes. Additionally, the
novel node expansion constraint implemented on the LC-SBE enables an iteration pattern
with virtually no SNR dependency, as is shown in Figures 7.8 and 7.9. Actually, the SNR-
imposed variation of the LC-SBE iteration pattern is so reduced that it is unnoticeable in
the provided �gure.

7.4.1.2 Number of Operations

The analysis of the total operation count for the SE, FSE and K-Best approaches performed
in Section 4.4.1.2 will be extended to the proposed SBE-based algorithms. The data de-
picted in Figure 7.10 therefore represent the total amount of arithmetic (addition, substrac-
tion, multiplication and division) and logical (comparison, swapping, branching) operations
performed during an N = 8 tree traversal.

As one can notice, there is a broad complexity gap between the optimum SE and the
proposed sequential SBE and LC-SBE schemes. This data re�ects the great computational
complexity entailed in the management of the candidate lists at each level of the SE tree.
When suppressing the possibility of sibling node expansions in levels i < N , the complexity
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Figure 7.10: Total number of operations for the SE, K-Best, FSE, SBE and LC-SBE tree-
search approaches on an N = 8 user system. A zoomed image of the lower section of the main
�gure is also included for a better appreciation of the complexity results of the SBE-based
schemes.

of the algorithm in terms of number of operations and node expansions, as already discussed
in the previous section, is greatly reduced. Moreover, the elimination of the candidate lists
also works in favor of a more constant computational load, as is shown in the zoomed plot
of Figure 7.10.

When compared to the addressed �xed-complexity approaches, the data in Figure 7.10
show that an important complexity reduction can be achieved by traversing the tree in both
forward and backward directions in such a way that a sphere constraint can be implemented
to get rid of unnecessary distance computations. This way, the proposed SBE and LC-
SBE approaches yield a total operation count that is at least half of that required by the
�xed-complexity FSE, and roughly 10 times smaller than that of the K-Best.

7.4.2 BER Performance

The data displayed in Figure 7.11 show the BER performance of the optimum SE and the
proposed tree-search approaches for 4× 4 and 8× 8 antenna setups. It is noticeable that the
SBE yields better error-rate performance results in systems where the number of tree-search
levels is more reduced, e.g. N = 4. Nevertheless, the performance in the 8 antenna case
is still close to the optimum, with just a 0.6 dB degradation in the high-SNR regime. As
for its low-complexity counterpart, the performance degradation with respect to the SBE is
negligible in both scenarios. This is mainly due to the fact that, by means of the variable
threshold approach, the iteration pattern of the LC-SBE is forced to resemble that of the
SBE.

Given the close-to-optimum error-rate performance and great complexity reduction of
the proposed SBE techniques when compared to the optimum SE, it is concluded that there
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is little to be gained by considering all sibling nodes for expansion in levels i < N of the tree
search.

7.4.2.1 BER Performance under an Overall Run-time Constraint

The iterative tree-search algorithms discussed in this section require a variable amount of
cycles to �nd the perturbation vector. This variable nature usually constitutes a problem in
practical systems, where the user data streams are supposed to be processed at a �xed rate.
It is therefore important to assess the error-rate performance of the tree-search algorithms
under an overall run-time constraint.

The data in Figure 7.12 re�ect the error-rate performance of an 8×8 VP system where an
overall run-time constraint of $ = 32 evaluated nodes has been imposed on the analyzed tree-
search algorithms. Given the �xed-complexity of the K-Best and FSE approaches, the design
parameters that yield a node expansion count of $ have been selected. Consequently, values
of K = 4 and nT = 4 have been considered for the K-Best and FSE tree-search approaches,
respectively. Note that the optimum tree con�guration vector that yields nT = 4 in an
N = 8 user system entails the computation of 30 PEDs. This is the closer amount of PED
computations to $ = 32 that can be achieved with the FSE, as dictated by (4.4).

As is shown in Figure 7.12(a), the performance of the run-time-constrained algorithms
that use the optimum `2 norm is similar, being the K-Best the one that performs slightly
better in the low and mid-SNR ranges. Nevertheless, the K-Best shows its characteristic
error-rate performance degradation in the high-SNR regime. Despite their suboptimum
performance [see Figures 4.13 and 7.11], the additional pruning strategy carried out in the
�xed-complexity and SBE-based systems favors the expansion of the most promising nodes
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Figure 7.12: BER performance of various tree-search approaches with an overall run-time
constraint of $ = 32 evaluated nodes for an 8× 8 antenna setup.

as opposed to the SE, which considers all eligible nodes at every level. As a consequence to
this, a slightly higher BER performance degradation is introduced by the SE when imposing
an overall run-time constraint.

As for the algorithms with an approximate norm, which are depicted in Figure 7.12(b),
the same rationale applies. Nevertheless, the performance gap between the optimum SE
and the suboptimum techniques is wider in this case. The reason for this is that the use of
an approximate norm in the SE derives in an extended set of eligible nodes at every level,
which causes a considerable performance degradation when applying an overall run-time
constraint. The e�ect of the `1̃-norm on the LC-SBE is more limited due to its variable
threshold scheme, and therefore, the imposition of an additional run-time constraint does
not signi�cantly a�ect its performance, as the limitation on the amount of processed nodes
is only e�ective for those channel realizations that yield ϕTH > 4.

It is worth pointing out that the proposed LC-SBE scheme yields the same BER perfor-
mance as the (`2-)SE when an overall run-time constraint is applied, even when the architec-
ture of the former features an approximate distance computation model and a single-node
expansion strategy.

7.5 Chapter Summary
The present chapter has dealt with the design of sequential and low-complexity tree-search
algorithms for VP. The main motivation for the change of tree traversal strategy is the
implementation of a sphere constraint that will allow for additional pruning. This way,
a considerable reduction of the unnecessary distance computations performed in the fully-
parallel scheme can be achieved.
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The proposed SBE approach features, on one hand, a simpli�ed tree-search architecture
that only considers the most favorable nodes for expansion and, on the other hand, a spe-
cially tailored ordering strategy that provides a good trade-o� between performance and
computational complexity. Provided BER results have shown that the proposed approach
achieves an error-rate performance that is close to the optimum set by the SE.

In addition to this, a low-complexity counterpart of the SBE algorithm has been pre-
sented. The proposed LC-SBE combines a simpli�ed norm approach and a variable run-time
constraint strategy to further reduce the complexity of the SBE in terms of amount of evalu-
ated nodes and distance computation e�ort. The LC-SBE presents a negligible performance
degradation when compared to the SBE considering the high complexity reduction that it
is achieved.

Furthermore, when an overall run-time constraint is imposed to guarantee a �xed through-
put, the proposed algorithms show a better error-rate performance than the SE. Moreover,
despite featuring an approximate distance computation model and a single-node expansion
tree search, the LC-SBE yields an error-rate performance that is similar to that of the SE
with the optimum `2 norm.
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Summary and Conclusions

This chapter summarizes the work developed during this PhD thesis, along with its main
contributions and associated publications. The main focus of this thesis has been on the
circumvention of the analytical and computational di�culties posed by the perturbation
process in VP systems. In this respect, the performance improvement obtained by adding a
perturbation signal before the linear precoding stage entails two main drawbacks. On one
hand, the computation of the perturbation vector is a non-trivial task of NP-hard complexity
and, on the other hand, the analytical assessment of the performance of VP is hindered by
the lack of knowledge of the statistical properties of the perturbed signal.

Chapter 3 has provided some insight into the main di�culties in the analytical assessment
of the performance of VP systems. From an analytical perspective, the intricacies derived
from the incorporation of non-linear algorithms are twofold: �rst, the AWGN at the receivers
is �ltered by a modulo operator, which causes the modi�cation of the statistical properties
of the e�ective noise at the detection stage. Second, the computation of the power of the
precoded symbols involves the expectation over a closest-point lattice search. These issues
have been overcome by introducing several lower and upper bounds on the power of the
precoded symbols in the high-SNR range, where the e�ect of the modulo-�ltered noise can
be neglected. The user sum rate and three other applications have then been analyzed
(weighted sum rate, QoS and user rate balancing) for linear precoding and VP. In the latter,
the proposed bounds have been used to solve the optimization problems. The computation
of the performance gap between the linear and vector precoding systems has provided an
analytical proof of the superior performance of the non-linear scheme. As an additional
result, the ergodic performance gap has also enabled the quantization of the gain to be
expected from the incorporation of a perturbation process into a linear precoding system.

Chapters 4 and 7 have dealt with the design of tree-search architectures for an e�cient
computation of the perturbation vector. Initially, non-iterative structures that allow for a
high-throughput implementation of vector precoders have been considered. In this respect, a
�xed-complexity algorithm entitled the �xed-sphere encoder (FSE) has been proposed for the
VP tree search. The lack of sorting stages and the reduced amount of expanded child nodes
result in a low complexity of the proposed algorithm when compared to the optimum SE
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and the non-recursive K-Best scheme. Furthermore, the optimum structure of the FSE tree
search in terms of computational complexity and error-rate performance of the algorithm has
been introduced. Despite its simple architecture, the FSE still achieves a close-to-optimum
error-rate performance.

The excessive distance computations performed by the pruning criteria of non-iterative
algorithms is the main motivation for the study of an alternative tree traversal method for
VP systems. The iterative SBE algorithm presented in Chapter 7 features a single-node
expansion structure and the implementation of a sphere constraint for additional pruning.
The former characteristic of the proposed SBE avoids the computationally expensive task
of sibling node management performed during the SE tree traversal, and therefore allows
for a more regular data path of the proposed scheme. This particular tree structure, along
with the possibility of implementing a sphere constraint, results in an e�cient tree traversal
approach in terms of amount of expanded nodes, allocated hardware resources and power
consumption.

Additionally, a low-complexity counterpart of the SBE algorithm has been presented.
The proposed LC-SBE combines a simpli�ed norm calculation approach and a variable run-
time constraint strategy to further reduce the complexity of the SBE in terms of amount of
evaluated nodes and distance computation e�ort. The resulting scheme is specially attractive
for hardware implementation due to its single node expansion policy and modest resource
occupation derived from the lack of squaring operations in the distance computation process.

An interesting insight into the hardware implementation of tree-search algorithms for
precoding scenarios has been provided in Chapters 5 and 6. As an initial step, the piv-
otal process of determining the ordered sequence of complex-valued child nodes has been
analyzed. With the aim of minimizing the computational complexity of this task, a novel
non-sequential algorithm has been presented. When compared to other state-of-the-art com-
plex enumeration algorithms, the proposed puzzle enumerator has shown a remarkably more
reduced hardware resource occupation and latency. Due to these properties, the presented
enumeration unit is highly suitable for its incorporation into the hardware architecture of
recursive or non-recursive tree-search algorithms.

Furthermore, the proposed enumeration scheme has been included in the fully-pipelined
hardware implementation of the non-recursive FSE and K-Best algorithms presented in
Chapter 6. Despite the fact that the implemented hardware architectures account for a
similar amount of allocated embedded multipliers, the more complex node selection proce-
dure in the K-Best algorithm results in a higher FPGA slice occupation for this tree-search
scheme. Due to the good performance, occupation results and simplicity of implementation,
it is concluded that the FSE is best suited for a fully-pipelined practical implementation.
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8.1 Thesis Contributions
This section outlines the main contributions of the presented research work and the associated
scienti�c publications.

• Analysis and computation of upper and lower bounds for the sum rate in VP systems.
The results of this study have been published in [Barrenechea10c] and partially in
[Barrenechea10b].

• Optimization problem resolution and delimitation of the performance of VP system
with respect to the applications of quality of service, weighted sum rate and user rate
balancing [Barrenechea10b].

• Fixed-complexity tree-search algorithm design for the computation of the perturbation
vector in VP systems. The results for the Wiener �lter variant have been published
in [Barrenechea09b] and [Barrenechea09a], while the regularized inversion alternative
has been presented in [Barrenechea09c].

• Hardware implementation of �xed-complexity and high-throughput algorithms for pre-
coding scenarios. The results and conclusions of the aforementioned contribution have
been published in [Barrenechea10a] and [Barrenechea11b].

• Design and hardware implementation of a non-sequential and low complexity complex-
plane enumerator for tree-search-based precoding systems [Barrenechea11d].

• Design and hardware implementation of a distributed sorting and high-throughput
K-Best tree-search architecture for the computation of the perturbation vector in VP
systems. The results of this research work have been presented in [Barrenechea11a].

• Design of iterative tree-search algorithms for a low-complexity implementation of a
vector precoder. The publication associated with the aforementioned research work is
pending for review [Barrenechea11c].

8.2 Suggestions for Further Research
The research work presented in this PhD dissertation can serve as the foundation for future
work in the area of non-linear precoding. These are some of the directions for a possible
extension of the presented results:

• Analysis of the performance gain of VP with respect to linear precoding in the low
and mid-SNR ranges. The study of this scenario requires the incorporation of the
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modulo-�ltered noise parameter Ω (3.13) into the optimization problems presented in
Chapter 3.

• Extension of the analysis on the performance of VP-ZF to other precoding structures
such as VP-WF. In this case, the e�ect of the noise variance will also a�ect the gen-
erator matrix of the lattice, and therefore, the lattice parameters used to delimit the
performance of VP systems.

• Assessment of the performance of the proposed tree-search algorithms, namely the FSE,
SBE and LC-SBE, in a more realistic scenario. The adverse conditions to be consid-
ered include imperfections in the channel state information or interference generated
from users in an adjacent cell. Moreover, it would be of great interest to analyze the
performance of the aforementioned tree-search algorithms with real measured channel
coe�cients instead of the widely-used Rayleigh fading model.

• Hardware implementation of the proposed iterative algorithms, namely the SBE and
LC-SBE. This way, a comparative analysis on the hardware occupation results and
average throughput of the non-iterative (FSE and K-Best) and iterative schemes could
be provided.
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Publications

The research work that has been carried out during the development of this thesis has been
published in the refereed conference papers and journal articles listed below.

Journal papers:

• M. Barrenechea, L. Barbero, M. Mendicute and J. Thompson, �Design and imple-
mentation of a low-complexity multiuser vector precoder�, International Journal on
Embedded and Real-Time Communication Systems(accepted).

• I. Sobrón, M. Barrenechea, P. Ochandiano, L. Martínez, M. Mendicute and J. Altuna,
�Low-complexity detection of space-frequency block codes in LDPC-based OFDM sys-
tems�, (accepted) IEEE Transactions on Communications (Transaction Letter).

• M. Barrenechea, A. Burg and M. Mendicute, �Reduced complexity tree-search-based
vector precoding for multiuser systems�, (submitted to) IEEE Transactions on Com-
munications.

International conference papers:

• M. Barrenechea, M. Mendicute, J. Del Ser, and J. S. Thompson, �Wiener �lter-based
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