DESIGN METHODOLOGY ADDRESSING STATIC/RECONFIGURABLE PARTITIONING FOR
OPTIMIZING SOFTWARE DEFINED RADIO (SDR) IMPLEMENTATION THROUGH FPGA
DYNAMIC PARTIAL RECONFIGURATION AND RAPID PROTOTYPING TOOLS

RAUL TORREGO ARTOLA

Supervisors:
Ifaki Val

Efiaut Muxika

MONDRAGON
UNIBERTSITATEA

A thesis submitted for the degree of

Doctor by Mondragon Unibertsitatea

Department of Electronics and Computer Science
Mondragon Unibertsitatea
November 2012

STATEMENT OF ORIGINALITY

I hereby declare that the research recorded in this thesis and the thesis itself were developed entirely
by myself at the Signal Theory and Communications Area, Department of Electronics and Computer

Science, at Mondragon Unibertsitatea.

Raul Torrego Artola

November 2012

ACKNOWLEDGEMENTS

I would like to thank to all those who have contributed in any way to make this thesis possible. Thank

you!

ABSTRACT

The characteristics people request for communication devices become more and more demanding
every day. And not only in those aspects dealing with communication speed, but also in such
different characteristics as different communication standards compatibility, battery life, device size
or price. Moreover, when this communication need is addressed by the industrial world, new
characteristics such as reliability, robustness or time-to-market appear. In this context, Software
Defined Radios (SDR) and evolutions such as Cognitive Radios or Intelligent Radios seem to be the

technological answer that will satisfy all these requirements in a short and mid-term.

Consequently, this PhD dissertation deals with the implementation of this type of communication
system. Taking into account that there is no limitation neither in the implementation architecture nor
in the target device, a novel framework for SDR implementation is proposed. This framework is made
up of FPGAs, using dynamic partial reconfiguration, as target device and rapid prototyping tools as
designing tool. Despite the benefits that this framework generates, there are also certain drawbacks
that need to be analyzed and minimized to the extent possible. On this purpose, a SDR design
methodology has been designed and tested. This methodology addresses the static/reconfigurable

partitioning of the SDRs in order to optimize their implementation in the aforementioned framework.

In order to verify the feasibility of both the design framework and the design methodology, several
implementations have been carried out making use of them. A multi-standard modulator
implementing WiFi, WiIMAX and UMTS, a small-form-factor cognitive video transmission system and
the implementation of several data coding functions over R3TOS, a hardware operating system

developed by the University of Edinburgh, are these implementations.

CONTENTS LIST

(0] 1 (=101 31 1151 S TP PRTPT 6
LiSt OF IIUSTFALIONS ..ot ies ettt ettt e e bt e e nab e e s abbe e e e 9
IS A 0 7= 1] 5 TSP UP PRI 11
Glossary and ADDIEVIAtIONS. ...t e a e a e 12
I [a1 0T [Tox i o] o F TSP UP PRI 17
I Y/ Fo 1 117 1 o o OO SSRP S 17
b © o] 1= o3 11 SO PPPP PRSPPI 18
T O o1 1] o101 1T] o F PR PU PP PPPRR 18
O N 0T T S L) {1 o] (1] (T OSSPSR 19
2. SHALE OF B Al .t et 23
I [o1 0T [T i o o PSSRSO SEUP S 23
2. Software Defined RATIOSccoouiiiiiiiiie et 23
2.1. Architectures for Software Defined Radios...........cccoovvviiiiiiiee i, 25
2.2. Novel design framework for the implementation of Software Defined
= 1o 10 1 OSSPSR 26
3. FPGAs and dynamic partial reconfiguration..............eeeieeiiiiiiiiiiiee e 27
3.1. Configuration tECANOIOGIESccceeiiiiiiiiiie e 28
3.1, ANE-FUSE FPGAS ..ottt 28
T N e I N o € 29
3.1.3. SRAM FPGAS.....oeitie ittt 30
3.2, FPGA MANUFACTUIETSiiiiiiiiee ettt e e e ettt e e e e et a e e e e et e e e e e e s e nnnnnnnees 30
32010 XHIINX ettt et 31
I | (=] - U EUU PSPPSR 31
32030 ACTEL. ot 31
32,4, AIMEL oo e e e e e s 32
3125, LALICE .t 32
3.2.6. Other ManUFACIUIEIS........ccciiiiiiiiiiie e e a e 32
3.3. FPGA Dynamic Partial Reconfiguration............ccccveeiiiiiiiiiiine e 33
3.3.1. Operating PriNCIPIEuuuiiieee e e e a e e 33
3.3.2. Types of reconfigurationuuvviieeiiiiiiiiiee e 35
3.3.3. Benefits and inconveniences of dynamic partial reconfiguration........... 36
3.3.4. Applications for dynamic partial reconfiguration...............ccccccvvvveeeennns 37
4. Rapid PrototyPing tOOISeeieiiiiiiiiiiiee ettt e et a e e e s s e e e e e e e s b reaeaee s 38
4.1. FPGA rapid prototyping t00l SUMMAIYcccouiiiuiiiiieeeeiiiiiiiereae e s esiiineereaeesennnes 39
4.1.1. COrE GENEIALON.....cciiiiiiiiiiiiiie ettt e e 39
L A O - 1 11 || (OSSP PP 39
4.1.3. ACCEIDSP ...ttt e 40
4,04, DSP BUIIAET ...ttt a e e eaaa e 40
4.1.5. SYSIEMVUE ... 40
4.1.6. SYSIEM GENEIALON ..cceiiiiieee e 40
4.1.7. CodeSimuliNnK/SMTE040cceeeimiiiiieiiie et 41
4.1.8. Model-Based DeSIgN Kit.......cueeeiiiiiiiiiieeeiiiiiieiiee et ea e e e siinneeeae s 42
4.2. Benefits and inconveniences of FPGA rapid prototyping tooISccccceeerinne 42
5. Critical review of the proposed sdr design frameworkccevvveeeiiiiiiiiiiee e 42

6. SDR design framework's drawbacCks ..o 43

6.1. Reconfiguration tIMeuuiiiiiie i 43

6.2. DESIgN SIZE INCTEMENT.......uiiiiiieee ettt e e e e e e e e e e e s e e e e e s e st rraaeesaannnnees 44

6.3, TiIMING deQradationcc.uuuiiiiiiiiiiiiiee e e e e e eaennes 44

6.4, Flip-FIop initialiZationoeviiiiiiiiiiiiiie e a e 45

7. DeSigN MEtNOUOIOGIES. .. .ciiiiiiiiiiiiiiee ettt e et e e e e s e s abbbeeaaeeeaannes 45

8. Critical review of the state of the art of design methodologies...........cccccvveeeiiiiiiiiiiieeenis 48

9. Methodology objectives and initial hypothesis ..., 48

F0. SUMIMAAIY ..ttt e aaaaaaaaes 49

T B TS o o 1Y =3 i oo o] (oo VA0SR 51

I o T [0o 1T o PRSP PR PRSPPI 51

2. Degree of freedom: reconfiguration granularity...........cccccoeeeviiiireeeiisiiiiieie e 51

3. Methodology deSigN flOW......couiiiiiiiie e e e e e eae 52
3.1. Analysis of the waveforms to be implemented: "Common

functions/common operators” teChNIQUE..........ooviiiiiiiiiee e 53

3.2. Establishment of common parts: Parameterizationccccccoevcivviveeeeecccinnnen, 54

3.3. Reconfigurable function implementation.............cccceeiiiiiiiiee e, 56

3.4. Design partitioning (granularity selection)...........cccceeeeeiiiiiiie e 57

3.5. Design cost analysis via COSt fUNCHONcccuvviiiiieiiiiiiiiee e 58

3.6. Physical implementationccooiuiiiiiee e 59

V2o \V =3 gToTe [o] (oo |VAR= 18] (o] =1 1 o] o HN PP PUPP PPN 62

4.1. Software tools for the automMationcooiiiiiiiii e 62

4.2. Automated design mMethodologyooouviiiiiiiiiiiie e 64

LTS 01101 0= Y PP PPPPPP 65

4. The 'Common functions / common operators' technique and parameterization....67

I o T [0 ox 1T o O PRSP PR PURRP PP 67

2. The original tECNNIGUE.......cci it e e e e e e e e e e e e ssraneraaeeeaanes 67

2.1, Graph MOGELuueiiiiie i a e e e e e e eeennes 68

2.2, OPtiMIZAtiON PrOCESS ...cccuviiiiiieee e e eeiiiee e e e e e e et a e e e e e st r e e e e e s e asttraeaaaeesannnnnnees 69

3. Technique adaptation to the current design framework............ccccooviiiiiiiiieiniiieee s 69

4. FUNCHION ParameEteriZatiON.........cccuuuiiiiieeeieeiiitt e e e e e et e e e e e s s st e e e e e e s e st raereeaeeeeassanaeaeaeeas 71

4.1, Parameterization tECHNIQUEScooiiiiiiiiiiii e 72

4.2. Sample time parameteriZationcccvviiieeeeiiiiiiii e e e a e 74

4.3. Developed SDR parameterized blocks: examples and characteristics............... 75

LTS 01101 0= YRR 76

LT 0011 A S ¥ (o4 o] o P RO PR OTPPR 79

O o T [0 ox 1T o PP PP PR PUPRP PP 79

2. General COSE FUNCHIONccoiiiiie ettt e b e e e nnae e e e enneeeeeeees 79

2.1. Normalized design Size CalCUlatioNoooiiiiiiiiiiiiiiiiiie e 80

2.2. Normalized reconfiguration time calculationcccccvvvvieee e, 81

2.3. Normalized minimum clock period calculationcccvvvieiiiiiiiiiiiine i, 83

2.4, Weighting Par@meEterS.........uuuiiieeiiiiiiieiiie e e serire e e e e e e st r e e e e s e s e e aae e s e nnennees 83

2.5. Design requiremMeNnt ChECKcooiiiiiiiiiie it 84

3. EStMAtion FUNCHONSoiiiiie et e e e e e e 85

3.1. Reconfiguration time eStmMation..............ccouiiiiiiiiiirie e 86

3.2. Reconfiguration overhead estimationcccvveeeeiiiiiiiiiiie e 88

4, AJAItIONAI FEIMAIKSeiiitiiieii et et e e st e e e e e s e e e e snneeeen 89

4.1, Maximum eXeCution frEQUENCYcoocuiiiiiee et e e e e e e e e e e eanes 89

4.2. Power consumption evaluation in the cost fUNCLioNccevveeeiiiiiiiiiiie s 90

4.3. Reconfigurable functions remaining StatiCcccvvveeeiiiciiiiiiee e 90

B SUMIMIAIY ..ttt ettt ettt ettt ettt ettt e e e e e e e e e aeeeaes 91

6. Methodology verification: Multi-standard modulator ... 93

I o o [0 Tox 1T o ORI 93

2. Methodology apPlICALIONociiiiiiiiie et e e e e e s s s bbb e eeeeeeanne 93
2.1. Analysis of the waveforms to be implemented: "Common

functions/common operators” teChNIQUE..........ooviiiiiiiiie e 93

2.1.1. Multi-standard modulator and WiFi, WiMAX and UMTS overview 93

2.1.2. Application of the "Common functions/common operators™ technique .95

2.2. Establishment of common parts: Parameterizationccccccoevciviivieeeeccciinnen, 99

2.3. Reconfigurable function implementation.............ccccoovviiiiiiiieei i, 103

2.4. Design partitioning (granularity selection)..........cccccoeeviiviiiieee e, 105

2.5. Design cost analysis via COSt fUNCHONcuvvviiiieiiiiiiiiicce e 107

2.5.1. Design requirement CheCK..........cuvviieiiiiiiiiiiee e 108

2.5.2. Optimality @nalySiS.........uueiiiiiiiiiiiiiiie e 109

2.6. Physical implementationcccciiiiiieee i 112

3. Analysis oOf the obtaiNed rESUILScooiiiiiiiiiie s 114

S U0 1 0T PR 115

A 1]] (=T 41T 01 2= 11T 1P PRRRR 117
B o T [B ox 1T o PP PP PP PPPRPN 117

2. Small form factor cognitive video transmission SYSEM.........ccuvvviieeeiiiiiiiiiiee e 117

2.1, INFOTUCTION ..ttt an e s e e e ees 117

2.2. Environment description and SyStem SETUPceeeeeeiiiiirieeeeeieiiiiieeeeeeesiineens 118

2.2.1. Software for streaming video over RS232........cccccvviiiiiiieeiiiiiiiieneeennn 119

2.2.2. Hardware platform..........eovieiiiiiiiice e 119

2.2.3. RE FIONE-€N ..ottt 120

b2 T 1101 0] (=T 4 g T=T 01 = Vi o o OO ERUPR 120

2.3, TIANSIMIEEET ...oeiiiiiiiee et e e 120

2.3.2. RECEIVET ..ttt e e e e e a e e s et raaaeean 122

2.3.3. Infrastructure for dynamic partial reconfigurationccoccvvveeeennn. 124

2.3.4. SOftWAIE tASKSceeiiiiiiiiiiiee ettt e e e a e 125

2.4, MEASUINEIMENTSoviiiiiiiiiiiiiii ettt e e e e s s 126

3. Software Defined Radio 0VEr R3TOSuuiiiiiiiiiiiiiiiiee et e e e a e e e s sniraareaeae s 128

R I 11 (0T [o3 1T o I PP PP PP PUPRPPP 128

3.2, OVErview Of R3TOSiiiiiiiee ettt e e e a e e e s st e e e e e e e e ennennees 129

3.2.1. ICAP CONLIONET ... e 130

3.2.2. R3TOS SChEAUIET ...ttt 130

3.2.3. R3TOS AlIOCALONcciiiiieiiiiiie et 131

3.2.4. ICAP-based Inter-Task Communication Infrastructure (12ClI).............. 131

3.2.5. MISCEIIANEOUSoviiiiiiie it 132

3.3. Design issues in R3TOS and modified cost function............cccoccvvivveeeeeecinnen, 133

3.4, IMPIEMENTALION ...eeiiiiieiiiiiieie et e e e st e e e e s e s e enennees 137

3.4.1. Data coding fUNCLONScceiiiiiiiiiiiee e e e 137

3.4.2. 12Cl connection to System Generator interface.............cccccoovvvivvenennnn. 138

3.4.3. Task context saving and restoration procedure.............cccccoovvvvvvereennn. 138

3.5, MEASUIEIMENTS ... 142

A SUIMMTIATY ...ttt 5555ttt e e e e e nn e e 146

8. SumMMary and CONCIUSIONS......ccccciiiiiiiiiiiiies crtiierr e e e e s s s e e e e e s s e s rer e e e e e e s s nnnnraaeeeeeas 149
I [o110 T [T i o) o OSSO UPPRPPRN 149

2. Summary of thesis and final CONCIUSIONSccooiiiiiiiiiiii 149

3. SumMary Of aChIEVEMENTS.........uiiiiiie e e e e e e e e e e e e snaaaeaaaeeas 150

A, FUBUIE WOTK ..ottt e e et e e e e e e s s e e e st e e eanne e e e annneees 151

IS o 010][o3= 4[] 1 SRR PPPRRPR 153
R] (<Y (=T 10T TR 154
F N 0] 01 G TP PP PPTT PP 161
1. Xilinx FPGA programming frame fOrmMat...........cccuuiiieeeiiiiiiiiiiee e e e e 161

2. Bitstream size estimation from SLICE OCCUPALIONceeeviiiiiiiiiiiee it 163

3. "Function commonality list" teMPIAtevvviiieeiiiiiiiie e 166

LIST OF ILLUSTRATIONS

Figure 1: BasiC SCheme Of @ SDRooiiiiiiiiiee ettt e e e s s st bba e e e e e s aaane 23
Figure 2: Evolution of Software Defined RATIOSccooiiiiiiiiiiiiiiiiiiee e 24

Figure 3: Outline of the integration of FPGA dynamic partial reconfiguration and rapid

prototyping tolos in the design of Software Defined Radios............ccccceeiiiiiiiiiiieeiiniiee, 26
Figure 4: Generic diagram of 28 SRAM FPGAt 27
Figure 5: FPGAs in the SDR application task SPaCE...........cccuviiiiiii i 28
Figure 6: Detail of an Anti-FUSE CONMNECTIONccc.viiiiiiie et e e e e s e e e e s e e ntaraereaeeeaanes 29
Figure 7: ACTEL FLASH SWITCRoiiiiiiiie ittt 29
Figure 8: SRAM FPGA interconnection detail and SRAM cell construction............cccccoevvvvvviieieennnnns 31
Figure 9: Connection transistor between two wires and SRAM control bit (S).......ccccceeevvviiiiiiieeeiinns 34
Figure 10: Scheme of module based partial reconfiguration..............ccccvuivieeeiiiiiiieeeee e 36
Figure 11: Design flow with rapid prototyping t0O0IS...........cuiiuiiiiiiiiiiiiiiiiice e 39
Figure 12: System performance vs. Reconfiguration granularitycccccceeiiiiiiiiiie s 52
Figure 13: Partitioning methodology design flOWccooiiiiiiiiiiei e 53
Figure 14: Common functionS/COMMON OPEIALOISuuiiiiiiiiiiiiiiee e ettt e ettt e e e s snrr e e e e s eane 54
Figure 15: Resource estimation vs. Implementation reSUILSooiiiiiiiie i 55
Figure 16: Design flow evolution and generated data..............uuvveeeiiiiiiiiiie e 57
Figure 17: PRM homogenization procedure detail.............cccuuuiiiieeiiiiiiiiiiie e esnnenea e e e 60
Figure 18: Detail on Plan Ahead floor-planning and resource percentage estimation........................ 61
Figure 19: Multi-level organization of possible COMmMOoN OPEratorsccccovvviiiiiiiieeeiiniiiiiieee e 68
Figure 20: Graph of a generic tri-standard SDRcoooiiiiiiiiiiiee e e e srrereae e 69
Figure 21: Virtex-4 frame addressing scheme (XCAVFX12 Part).......ccccocvveeeeeiiiiiineieeeesisiiinnneeeeeeannes 73
Figure 22: Solution for sample time parameterization.............uuuviiee it 74
Figure 23: Parameterized IFFT fUNCLONciiiiiiiiiiiiee ettt a e s e e e e e e snnarnaneaeeeaennes 75
Figure 24: Parameterized interleaver fUNCLIONuiii oo e e e 76
Figure 25: Parameterized interleaver (direct ICAP aCCESS VEISION)cevveeeiiiiiiiiiiiieeniiiiiiieeeee e s 76
Figure 26: Functional blocks of @ WiFi tranSMITIErcoiiiiiiiiiiie e 94
Figure 27: Functional blocks of @ WIMAX tranSMItLETcccuuviiiieeeiiiiiiiiiee et e e e esvneaea e e 95
Figure 28: Functional blocks of @ UMTS tranSIMIttercccuuiiiieee i e e e e 95
Figure 29: Graph model of the multi-standard Modulatorcccoviiiiiiieiiiiiii e 96
Figure 30: OFDM DUIIAEr FOr WIF ..cccoiiiiiiiiiiiee et e e s e e e e e s e eee 100
Figure 31: Implementation of the QPSK MaPPEIuuviiiiiiiiiiiiiiie ettt e e a e e 101

Figure 32:
Figure 33:
Figure 34:
Figure 35:

Implementation of the parameterized convolutional encodercccccoeevvvviveeeeecescneee, 102
Implementation of the randomization fuNCHONcccviviiei i 103
Implementation of the UMTS slot builder fUNCLoNccccoviiiiiiiiiie e 104
Implementation of the WCDMA geNErationcoouiiiiiiiiieeeiiiiiieiieee e sniiiieeee e e e niienes 104

Figure 36: Data 0N reSOUIrCE OCCUPALIONuiieeieiiiitiieeeeeeeiiteteeeeesasiiireeeaeessanattrreaeeaeesasssnnereaaeeaannes 108
Figure 37: Data on maximum reconfiguration tiMecocueiiiieiiiiiiiiii e 109
Figure 38: Individual design cost analysis (NEULIAI)couuuiiiiieiiiniiiiiiice e 110
Figure 39: Overall design cost analysis (NEULIAI)ccceiiiiiriiieee et ceire e e e e e e e e e e 110
Figure 40: Individual design cost analysis (area optimization)............ccccuvveeeiiiiiiiiieiee e ceciireee e 111
Figure 41: Overall design cost analysis (area Optimization).............occuveiiieeiiiniiiiiiiee e 112
Figure 42: Cognitive video streaming tranSMIiSSION SYSIEMcccoiiiiiiiiiiieeniiiiiiiece e 118
FIQUIE 43: SMTBO96eeiiieeiiiiiiiiiiie e e e ettt e e e e e et e e e e e e e st tba et aaeesaasstaaaeeeaaeeassssssasaaaeesansssaneeeaeeeaannes 119
Figure 44: Data acquisition and OQPSK MOAUIALON...........ccuviriieeeiiiiiiiiiiee e e e e sirreee e e 121
FIQUIE 45: PSD ESHMALIOTcuiiiiiiiiee ettt ettt e e ettt e e e s s e s bbb e e e e e s e stbbneeaaeeeaanee 122
Figure 46: OQPSK demMOTUIALONoouiiiiiiiee ettt st e e e e s s bbneeaeeeeaanes 123
Figure 47: Detailed scheme of the internal organisation of the FPGAcccciiiiiieei e, 124
Figure 48: Software tasks’ eXeCULION fIOWooiiiiiiiiiii e 125
Figure 49: Scheduling, allocating and executing hardware tasks onto a partially damaged

[YN 1 = 1 TSRS 130
Figure 50: ICAP-based inter-task communication infrastructure detailcccccceeeiiiiiiiiniene e, 132
Figure 51: R3TOS iMPIEMENTALION.......c.ieeiiiiee ittt e e s s e e e e s esabaneeeaaeeaaee 133

Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:

“Full-standard” task implementation for WiMAXcooiiiiiiiiiieecee e 137
SLICE Flip Flop representation in FPGA €ditOrccccuiuiiieeeiiiiiiieiie e csiiieee e 140
Frame addressing (FAR @0AreSS).......uuuiiiiiiiiiiiiieeeeieiiiiteeie e e e s ssiraeeaa e e s ssssnnraeeaeeeeennesaees 140
BlOCK Special Frame DItS........cuiiiiiiiiiiiie et 141
Task context saving and restoration ProCEAUIEuuuvviieeeiiiiiiiiieee e e e e 142
BRAM frame OrganiZatioNcociuiuiiiie e et e e e e e ettt a e e e s et e e e e e e e e e s nnaaaeaaeeeaennnnenees 161
RAM LUT OFQanIZALIONuvveiieieeiiiiiiiiiee e e ettt et e e et e e e e e s s st bbe et e e e e e s s snabbbeeaaeesssnnsneeees 162
Reconfigurable area in Plan ANEadccuuiiiiiiiiiiiiii e 163
CLB LA ..ttt e et e et e et e e e e e nae e e e enraeaas 164

10

LIST OF TABLES

Table 1: Summary of FPGA MaNUFACIUIEISuuviiiiieiiiiiiiiiie e ettt e s a e e s e esraa e e e e e e e e ennnenees 32
Table 2: Summary of Virtex 4 FPGA configuration interfaces..........cccuvvieeeiiiiiiiiiie e 35
Table 3: Predefined sets of wWeighting Parametersoovuvvviiieiiiiiiiiiiie e 84
Table 4: Overhead of the infrastructure for partial reconfiguration............ccoccuvviiiiniiiiiiiiiiee e, 89
Table 5: Function commonality list (CharacterisStiCS)cuuuviiieeiiiiiiiiiiie e 98
Table 6: REQUIFEMENT SNEEL.......ciii i e e e s e e e e e e e e s ntaaeraaaeaeannnnenees 99
Table 7: Function commonality list (estimated resources and reconfiguration time)ccc........ 105
Table 8: Partition tADIEooi e 106
Table 9: Partition data obtained from physical implementation..............ccccoeeieiiiiierie e 113
Table 10: Partition cost based on physical implementation ... 113
Table 11: Comparison between estimated and real data..........ccccooevvvviiiiieiiiiiiiii e 114
Table 12: Transmitter resource ULIIZAtIONc..oii i 126
Table 13: Receiver reSOUrCe ULIIZAtIONoiiiiiiiiiiie ettt e e e e eeeee e 126
Table 14: Reconfiguration tIMESccouuiiiiiii et e e e e e e s e s bbba e eeeeeannne 127
Table 15: Achievable Maximum fTEQUENCYcocuuuiiiiiiee et e e e e 128
Table 16: Task reSource ULIZAtION.cooiuiiiiiii ettt e e e e ieeee e 143
Table 17: Task execution time COMPATISON...........uuuiiiieeieiiiitiiree e e e essitrr e e e e e e s asatrarereeaeeessasrareaaeeeaannes 144
Table 18: Task 10ading/UnIOadiNng tIMES......cccoiiiiiiiiiiee e e bbb e e e e e s e ane 145
Table 19: Function commonality list teMPIateeeveiiiiiiiiiiie e 166

11

GLOSSARY AND ABBREVIATIONS

ADC Analog-to-Digital Converter

ASIC Application-Specific Integrated Circuit

Baud Symbol per second

BUFG Global Clock Buffer

BUFR Regional Clock Buffer

CCTV Closed-Circuit Television

CLB Configurable Logic Block

CPI Cyclic Prefix Inserter

DAC Digital-to-Analog Converter

DCM Digital Clock Manager

DSL Domain Specific Language

DSP Digital Signal Processor

DSSS Direct Sequence Spread Spectrum

EDA Electronic Design Automation

ESL Electronic System Level

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

GPP General Purpose Processor

HDL Hardware Description Language

HWS Hardware Semaphore (R3TOS's task synchronization resource)
12CI ICAP-based Inter-task Communication Infrastructure
ICAP Internal Configuration Access Port

ICT Information and Communication Technology

12

JTAG
LAPU
LUT
LVCMOS
LVTTL
MAC unit
MBDK

MIG

N

NCO
OFDM
OQPSK

OoTP

PC
PCAP
PCI
PLL
PRA
PRBS
PRM
PROM
PSD

R3TOS

Intermediate Frequency

Inverse Fast Fourier Transform

Intellectual Property

Joint Test Action Group

Live-At-Power-Up

Look-Up Table

Low Voltage Complementary Metal Oxide Semiconductor
Low Voltage Transistor Transistor Logic
Multiply-Accumulate unit

Model-Based Design Kit

Memory Interface Generator

The total number of different configurations of a certain design. That is, the total
number of waveforms present in the SDR

Each of the configurations/waveforms of a design.n=1,2, 3, ... N
Numerically Controlled Oscillator

Orthogonal Frequency Division Multiplexing

Offset Quadrature Phase Shift Keying

One-Time Programmable

The total number of different partitions obtained for a certain design
Each of the partitions of a design.p=1, 2,3, ... P

Personal Computer

Parallel Configuration Access Port

Peripheral Component Interconnect

Phase-Locked Loop

Partially Reconfigurable Area

Pseudo Random Binary Sequence

Partially Reconfigurable Module

Programmable Read Only Memory

Power Spectral Density

Reliable Reconfigurable and Real-time Operating System

13

RF

SDR

SerDes

SEU

SoC

SOFDMA

UMTS

UPaRC

Waveform

WiFi

WiMAX

ZBTRAM

Radio Frequency

Software Defined Radio

Serializer-Deserializer

Single Event Upset

System on Chip

Scalable Orthogonal Frequency-Division Multiple Access
Universal Mobile Telecommunications System

Ultra-fast Power-aware Reconfiguration Controller

Each of the different radio protocols, communication standards or functions in

charge of the communication present in a Software Defined Radio

Wireless Fidelity
Worldwide Interoperability for Microwave Acces

Zero Bus Turnaround Random Access Memory

14

15

Chapter 1

Introduction

1. INTRODUCTION

1. Introduction

1. MOTIVATION

We belong to the information society where the trend is towards people being connected, one way or
another and in an uninterrupted way, both with other people and to the Internet. The necessity to
share and transmit data grows exponentially, so the features users demand from communication
devices become more and more exigent every day. These requirements go beyond the simple fact of
a bigger bandwidth and concern other factors such as size, battery life, compatibility with various
communication standards, update capability and, of course, cost. This communication eagerness not
only affects consumer environments but also industrial ones. Up to date, wired communication
systems were the favourite ones in this type of environments due to the robustness and reliability
they offer when dealing with harsh environments. However, a new tendency towards replacing these
wired communication systems by wireless ones is emerging. These wireless communication systems
have to achieve, at least, the same performance the wired systems reach, therefore they have to
fulfil the aforementioned reliability and robustness. For both, the consumer and industrial
environments, the technology that nowadays seems to meet the requirements stated above is the
Software Defined Radios (SDR).

Software Defined Radios are digital, wireless, communication systems with reconfigurable nature. By
definition, there is no restriction in the type of parameters or characteristics that can be reconfigured.
Therefore, this type of radio supports the change of multiple features; from the update of the simplest
parameter (i.e. the gain of an amplifier) to a complete communication standard change. This
reconfiguration capability is the one that makes them ideal for accomplishing the aforementioned
requirements. Furthermore, the implementation of these radios is not restricted to any technology;
hence, the developers can choose the implementation technology that better suits their expertise,
time-to-market or fabrication costs. The first objective of this thesis focuses on proposing an
implementation framework for Software Defined Radios. This framework is formed by the dynamic

partial reconfiguration of the FPGAs and rapid prototyping tools.

In the field of high speed data processing, FPGAs are becoming the alternative to microprocessors
and classical signal processing architectures. A mixture of factors such as their high processing
capacity due to their hardware oriented programming, their reconfigurable nature and new
characteristics like dynamic partial reconfiguration, together with the decrease in the price that
FPGAs have had in the last years, contribute to this spread. It is precisely this last characteristic, the
dynamic partial reconfiguration, which makes the FPGAs an optimum candidate for the
implementation of SDRs. Dynamic partial reconfiguration is defined as the possibility of changing the
configuration of part of the FPGA while the rest of it remains working. Consequently the link of SDRs
with this characteristic is clear.

On the other hand, rapid prototyping tools are programs developed in order to simplify and ease the

use of traditional compilers and code synthesizers. These tools complement the compilers with new

17

1. INTRODUCTION

features such as graphical programming, functional simulations in early design steps, resource
estimations or automatic code generation. The joint of all these characteristics leads definitely to an
important saving in the overall design time. SDRs being complex communication systems, the
design, development and test of signal processing algorithms are a very important parts of the
design flow. Therefore, the link between SDR implementation and the use of rapid prototyping tools

is evident again.

Unfortunately, the use of this SDR development environment composed by FPGA dynamic partial
reconfiguration and rapid prototyping tools, besides multiple benefits, also introduces several
inconveniences. These inconveniences have to be evaluated and solved as far as possible so that
they do not have a significant influence in the final implementation. Among them, the reconfiguration
time in which the area to be partially reconfigured is not functional and the fact that the code
generated by the rapid prototyping tools is not as optimal as hand-made code would be, are two of
the more relevant. In order to minimize the impact of these inconveniences, and looking for the
achievement of high performance designs, the use of design methodologies is a widely used
solution. As will be presented in the next chapter, there are multiple design methodologies present in
the literature that look for the optimization of the designs following several approaches and focusing
on diverse system factors. Among them, and at the best of the author's knowledge, none of them
consider the partitioning of which parts of the design should be implemented statically and which in a
reconfigurable way in order to obtain the highest performance. This thesis proposes a design
methodology that addresses the static/reconfigurable partitioning for optimizing SDR implementation
through FPGA rapid prototyping tools and dynamic partial reconfiguration and investigates all the
implications that such methodology and design environment generate.

2. OBJECTIVES

There are two main objectives that this thesis pursues. On the one hand the presentation and
validation of a design framework for the implementation of Software Defined Radios composed of
FPGA dynamic partial reconfiguration and rapid prototyping tools. Afterwards, and with the aim of
optimising the implementations carried out over this design framework, the second objective
considers the development of a design methodology. This design methodology evaluates the
characteristics of the SDR to be implemented and chooses the optimum static/reconfigurable

partitioning.

3. CONTRIBUTION
The major contributions of this thesis are split into seven key aspects.

1. A novel design framework for the implementation of Software Defined Radios has been
proposed and tested. This design framework is made up of FPGA dynamic partial
reconfiguration and rapid prototyping tools. The drawbacks and design implications of this

framework have been analyzed and evaluated, coming to the conclusion that, despite the

18

1. INTRODUCTION

multiple benefits that it offers, a design methodology is needed in order to optimize the obtained

implementations.

2. A complete design methodology that addresses static/reconfigurable partitioning for optimizing
the SDR implementation through the aforementioned design framework has been designed.
The methodology selects which parts of the SDR are to be implemented statically and which in

a reconfigurable way in order to minimize system's cost.

3. A cost function has been developed in order to quantitatively evaluate a certain partition's
optimality. The function evaluates those design factors that have been determined as most
important in the performance of a design. Namely: design size, reconfiguration time and

maximum applicable clock frequency.

4. A multi-standard modulator implementing three of the most used communication standards
nowadays (WiFi, WIMAX and UMT) has been designed and implemented using the proposed
design framework and design methodology. This implementation serves as a proof-of-concept

and as a validation of the first and second contributions.

5. A small-form-factor cognitive video transmission system has been implemented using the
proposed design framework. This system is able to change its Intermediate Frequency (IF) if the
transmission channel is occupied, hence achieving a secure communication. The frequency
change is carried out via dynamic partial reconfiguration. It provides a tangible demonstration of

the feasibility of the proposed framework with a fully functional application.

6. The implementation of several data coding functions used in SDRs has been carried out over
R3TOS, a Reliable, Reconfigurable and Real-Time hardware Operating System developed by
the University of Edinburgh [Iturbe'10]. The design of the functions has been carried out using
rapid prototyping tools and applying some of the guidelines proposed by the design
methodology. Therefore the possibility of using this methodology in other reconfigurable

architectures is demonstrated.

7. A novel task context saving and restoration procedure has been designed for its use with
R3TOS. This feature, similar to context saving and restoration performed in software
processors, requires special care when dealing with FPGA dynamic partial reconfiguration as

some issues related with Flip-Flop initialization appear.

4. THESIS STRUCTURE

This thesis is structured into eight chapters. This first chapter has provided the reader with a general
introduction to the thesis' topic and has presented the motivation, objectives and main contributions

of this research work.

Chapter 2 contains descriptions of the background and existing literature. It provides an overview to
all the aspects that take part in this research work. Taking the Software Defined Radios as starting

19

1. INTRODUCTION

and key point, the chapter summarizes the different works and investigations reported in the
literature around the SDRs itself, the FPGAs and their dynamic partial reconfiguration, the rapid
prototyping tools and the diverse design methodologies that try to optimize this type of

implementations.

Chapter 3 presents the design methodology that has been developed. Firstly the degree of freedom
over which the methodology will act is decided and explained. Subsequently, the several steps that
make up the design flow of the methodology are exposed. Finally, the basics of an automation
procedure for the methodology that aims to ease the design flow and hence reduce the design time

is presented.

Chapters 4 and 5 thoroughly describe the two key steps within the design methodology, i.e. the
establishment of common parts and the evaluation of system's performance via a cost function.
Chapter 4 takes care of the first step. It initially presents the original the "Common functions /
common operators" technique that aims to search for and find all the commonalities between several
different standards. This technique is later adapted for its use on the design framework presented by
this thesis. Subsequently "Function parameterization” is presented. This procedure is in charge of
making the similar parts of functions in the design really compatible. In turn Chapter 5 deals with the
cost function that quantitatively evaluates the optimality of each of the generated design partitions.
This chapter also presents other auxiliary functions that make an estimation of those design factors

that are not available in early design steps.

Chapters 6 and 7 provide the reader with a set of implementations that serve as proof-of-concept of
the feasibility of both the proposed design framework and design methodology. Chapter 6, on the
one hand, present the development of a multi-standard modulator that implements three of the most
used communication standards nowadays. Namely: WiFi, WiMAX and UMTS. This multi-standard
modulator, designed following all the steps within the design methodology serves as a validation for
it. On the other hand, Chapter 7 presents two implementations that, although do not completely
follow all the guidelines proposed by the design methodology, show the viability of the design
framework via real functional applications. The two presented implementations are: a small-form-
factor cognitive video transmission system, and the implementation of several data coding functions
used in SDRs over R3TOS, a Reliable, Reconfigurable and Real-Time hardware Operating System
developed by the University of Edinburgh. In regards to this last implementation, this chapter also
presents a novel task context saving and restoration procedure has been designed for its use with
R3TOS.

Finally, concluding remarks and future works that can extend the results presented in this thesis are
drawn in Chapter 8. Annex 1 compiles certain information that, even though is necessary to properly

complete this thesis, do not have place within the normal dissertation.

20

21

Chapter 2

State of the Art

2. STATE OF THE ART

2. State of the Art

1. INTRODUCTION

This chapter covers a compilation of the state of the diverse technologies that take part in the topics
that this thesis investigates. Taking the Software Defined Radios as starting and key point, the
chapter summarizes the different works and investigations reported in the literature around the SDRs
itself, the FPGAs and their dynamic partial reconfiguration, the rapid prototyping tools and the
diverse design methodologies that try to optimize this type of implementations. On this basis, a novel
design framework for SDR implementation and a design methodology that addresses
static/reconfigurable partitioning are presented. Precisely the chapter concludes with the introduction

to this methodology's objectives and with the initial hypothesis that motivates its development.

2. SOFTWARE DEFINED RADIOS

The term “Software Radio” was used for the first time by Joseph Mitola [Mitola'92, Mitola'95] in 1992
for referring to reconfigurable or reprogrammable radios. In radios a single piece of hardware could
have different functionalities in different times with just the introduction of software configuration
changes. The origins of these "Software Radios" are the digital radios: communication systems in
which some parts that had been traditionally implemented with analog hardware devices (mixers,
filters, amplifiers... etc.) are carried out in a digital way. This digital implementation can refer both to
software systems such as processors or DSPs or to ‘pure' digital hardware devices like FPGAs,
ASICs and so on. Taking advantage of the reconfigurability that software applications and digital
hardware devices have, its logical evolution provides these radios with the ability of changing their

characteristics, leading to Software Defined Radios, commonly known as SDR.

RF F Baseband
saction Section Saction

—>{ soc |- poc
3 MCFDUC

RF
Frent End
Eosebond
processing

T 1

Figure 1: Basic scheme of a SDR

In Figure 1 the basic scheme of a SDR can be observed. Ideally the analog-to-digital (ADC) and

digital-to-analog (DAC) converters should be directly connected to the antenna so that the whole

23

2. STATE OF THE ART

processing could be digitally accomplished. Unfortunately, there is a limitation with the maximum
frequency at which these converters can work. Taking into account that the radio frequency (RF)
used in this kind of system is usually placed above the Gigahertz, the converters able to properly
work at this frequency are scarce, expensive or just under development. Therefore, the typical
structure that SDRs have nowadays includes an analog RF front-end that reduces this RF frequency.
This reduction can be made to an intermediate frequency (IF), like in the figure, or directly to
baseband, what is called zero-IF or direct conversion systems.

Once in the digital domain, the functionality changes, or the parameter updates mentioned in the
definition of what a SDR is, are not limited in any way. Therefore, they span from small granularity
changes in which just some parameters such as gains or filter coefficients are updated, to big
reconfigurations where a whole communication standard (usually known as ‘waveforms’) is replaced
by another (i.e. from WiFi to WiMAX). Taking advantage of these possibilities, the use of Software
Defined Radios solves many of the requirements that users demand to communication systems and
that have been expounded in the introduction. The hardware reuse that is achieved due to the
reconfiguration capacity that SDRs have, leads directly to a reduction in the size of the devices
needed to make up the implementation. This size reduction entails a reduction in both the power
consumption of the device and, usually, in its price, what in turn has influence in the battery life and
in the final price of the communication system. On the other hand, the compatibility with various
communication standards and the update capability are also fulfiled by SDRs and their

reconfigurability.

Figure 2: Evolution of Software Defined Radios

Going a bit further, Software Defined Radios are the base for other novel architectures for
communication systems like Adaptive Radios, Cognitive Radios or Intelligent Radios [WIINN-
FORUM'12]. Figure 2 shows the evolution of these communication technologies. Adaptive Radios
monitor its own performance and are able to change, using the SDR technology, some of its

characteristics to improve it without user's intervention. Cognitive Radios behave in a similar way but,

24

2. STATE OF THE ART

apart from monitoring its own performance, they are aware of the characteristics of the environment
they are working in and change their parameters accordingly. One of the most typical characteristics
measured by Cognitive Radios is the availability of the RF spectrum. This way Cognitive Radios can
detect which wireless channels are available and change their transmission frequency to them in
order to improve the quality of the communication link. This process is also known as dynamic
spectrum management. Finally, Intelligent Radios are an evolution of Cognitive Radios that add them
the ability to learn. That is, Intelligent Radios are aware of their environment and also of their
previous actuations. Definitively, all these evolutions of SDRs add them certain intelligence that looks
for the improvement of the success probability of the data transmissions. Going back to the
requirements explained in the introduction, these types of radios fit perfectly with the robustness and
reliability demanded by industrial communications.

2.1. Architectures for Software Defined Radios

The implementation of Software Defined Radios is not limited in any way by the definition. Therefore
there are plenty of systems, architectures or frameworks that can hold this kind of communication

systems. A short survey of them is presented below:

Bearing in mind the above presented SDR evolution from the original "digital radios" to the current
concepts, one of first and still most common implementation architecture is the DSP. By way of
example Nicollet and Demeure [Nicollet'03] present a an innovative software architecture for modem
and audio applications embedded in Digital Signal Processors. For his part, Schoenes et al.
[Schoenes'03] have developed a new DSP architecture for baseband processing in multistandard
software-defined radios. The designed single-instruction multiple-data (SIMD) architecture provides
best support for vector-oriented algorithms commonly used in many signal processing applications.
In turn, Boch et al. [Boch'06] analyze the digital and reconfigurable implementation of selected signal
processing algorithms using a commercial DSP.

FPGAs are other of the favourite devices for the implementation of Software Defined Radios, both in
a stand-alone mode or together with other devices. Mecwan and Gajjar [Mecwan'l1] propose the
design of a transmitter and receiver on a reconfigurable platform like a FPGA, so that the modulation
scheme can be dynamically adapted depending on the noise in the communication medium. Saha
and Sinha [Saha'09], in turn, present a FPGA based architecture of a novel reconfigurable radio
processor for SDRs. The proposed architecture acts essentially as a reconfigurable accelerator for
radio functions and works in conjunction with a main CPU (i.e. a DSP or a GPP). Harnessing the
opportunities that the FPGA market offers, Kuo et al. [Kuo'l2] present uSDR, a compact,
inexpensive, and battery-powered SDR platform built on a single-chip from Actel. This chip is made

up of a flash-based FPGA fabric and ARM Cortex-M3 processor.

There are also in the literature several custom-made devices for the implementation of SDRs. RICA
[Khawam'08, Zong'08], presented by Khawam et al. and used by Zong and Arslan in the
development of SDRs, is a reconfigurable instruction cell array. Designing the silicon fabric in a

similar way to reconfigurable arrays but with a closer equivalence to software, the same high

25

2. STATE OF THE ART

performance as coarse-grain FPGA architectures is achieved and the same flexibility, low cost, and
programmability as DSPs is maintained. Similarly SODA, presented by Lin et al. [Lin'07] is described
as a high-performance DSP architecture for SDR. It is a multiprocessor architecture which consists
of multiple processing elements, a scalar control processor, and global scratch-pad memory, all

connected through a shared bus.

2.2. Novel design framework for the implementation o f Software Defined Radios

Analyzing a common, current definition of what an SDR is, e.g.: “Communication system where a

single piece of hardware has different functionalities in different times” [Rappaport'01] we can get an

idea of which could be an interesting SDR implementation framework. On the one hand, “Different
functionalities in different times” is part of the definition of what FPGA dynamic partial reconfiguration
is. Therefore, the use of dynamic partial reconfiguration seems a promising opportunity. On the other
hand, the design of a “Communication system” has to face with tasks such as algorithm design,
coding and debugging, realization of performance tests, optimization of the final code and so on.
Rapid prototyping tools are the perfect software tools for doing all these tasks in an efficient way so

their use in the design of SDRs seems feasible.

Ultimately, this thesis proposes at first instance a design framework for the implementation of
Software Defined Radios based on FPGA dynamic partial reconfiguration and rapid prototyping tools
with the intention of benefiting from the advantages these two technologies offer. Figure 3 shows a

first outline of the sought out integration.

*Design 1

t *FPGA 50C

COMM,
RESOURCEs

RECONFIGURABLE
WAVEFORM

: II

INTERFACE

ADCs/DACs

Figure 3: Outline of the integration of FPGA dynamic partial reconfiguration and rapid prototyping tolos

in the design of Software Defined Radios

26

2. STATE OF THE ART

The subsequent sections will discuss the characteristics, advantages and disadvantages that these

technologies have.

3. FPGAS AND DYNAMIC PARTIAL RECONFIGURATION

Field Programmable Gate Arrays (FPGAs) are nowadays the reprogrammable logic devices par
excellence. They can implement any type of digital circuit, from the most simple logic gate to the
most complex System on Chip (SoC) made up of several processors, peripherals and glue logic in a
single device [Astarloa'05]. This is possible due to the particular structure they have (Figure 4) made
up of an interconnection matrix that communicates thousands of Configurable Logic Blocks (named
CLB in Xilinx's FPGAS). These blocks constitute the heart of the FPGA and are typically formed by a
combinational programmable circuit in the form of a Look-up Table (LUT), a bistable component
(latch or Flip-Flop) and additional logic for internal signal routing. Besides, CLBs usually complete
with memory cells that store the configuration of the aforementioned components. However, this
feature is dependent on the configuration technology of the FPGAs as will be analyzed later on.
Additionally, FPGAs are provided with dedicated Input-Output Blocks (IOBs) as well as diverse extra
resources directly implemented in silicon and connected to the interconnection matrix. These
resources such as multipliers, RAM memory blocks, DSPs, communication controllers and even
microcontrollers like PowerPC or ARM [XILINX'12e] give the FPGASs the ability of implementing high
performance functions without the inefficient consumption of the programmable logic. The distribution
and amount of these resources change between the different FPGA families or manufacturers with
the aim of covering the different application necessities. It is precisely the inclusion of these new
possibilities in the FPGAs together with their gradual price reduction one of the reasons for their

increasing popularity.

LOGIC BLOCK
Y Sa— - i
1 N |
Interconnection architecture A SRAM configuration memory [= :
(routing resources) // I = |
; 4 I i i i :
(= e s == = | ! ! ! Output
i |] I ! l I 3 § ! multiplexer !
A EE§ Y1 ‘ | Input i i :
- | multiplexer !
OOOOO00000 -7 s =— = ! i Configurable !
g P - |-—l I. | combinational| ‘ Q]
d - u) T 3 | N | element D :
| o b e
| - |- { LUT] |
g <. b Padmis immpq=i = N : en Lr—ﬁ‘ I
E FPGA \\\; L ' s B g | CLR CLK i
- |
TOOOOOOTT S~ | Y i N]] S— — i
Y ,:._1. I ok~
! L_:[\! [L%J__ l [Interconnection net

Figure 4: Generic diagram of a SRAM FPGA

Moreover, due to their own nature and abovementioned structure, FPGAs allow the implementation
of multiple functions or systems in parallel, and, therefore, the achievement of very high data
processing speeds. As can be seen in Figure 5 [PENTEK'10], this high speed processing capability,
together with the flexibility FPGAs offer have made them find their own place in the Software Defined

Radio application task space.

27

2. STATE OF THE ART

&0
COMVERSION /,./" ‘Hx_x\
- FPGAs ™.
0o N
o \
0] FILTER \
c i \
: ASICs DEMOD '
£ |
=) DECODE [
/
o Y / DSPs
Q
FFT
: \ \
i e
5 & ANALYSIS
DECISIONS

Flexibility =—

Figure 5: FPGAs in the SDR application task space

3.1. Configuration technologies

The classification of the different types of FPGAs present in the market can be done attending to
several factors such as internal structure, granularity (size of the smallest functional unit that
synthesis and routing tools can address and, therefore, a measurement of the flexibility they offer),
power consumption or number and distribution of the aforementioned silicon-implemented resources.
However, from the point of view that this thesis faces the use of FPGAs in the implementation of
SDRs, the most interesting classification focuses on the different configuration technologies of the
FPGAs [Cofer'05, Wolf'04]. The possibility of dynamically reconfiguring the FPGA directly depends
on these configuration technologies.

3.1.1. Anti-fuse FPGAs

Anti-fuse FPGAs are One-Time Programmable (OTP) devices. That is, once they are programmed
they maintain their internal configuration indefinitely and cannot be reprogrammed. This is due to the
use of the Anti-fuse technology for the carrying out of the interconnections needed for the
configuration of the FPGA. This technology (called anti-fuse because it works in the inverse way a
fuse does) instead of melting the connections that are not used generates new permanent
connections when programming (Figure 6). This way, taking into account that the programming of
the FPGA creates new physical connections, it is not possible to reprogram it, and therefore, they do
not support dynamic partial reconfiguration either. On the positive side, this type of FPGAs does not
need the transmission of a bitstream on start-up, moreover, this configuration bitstream does not
exist, and therefore anti-fuse FPGAs are extremely secure when dealing with intellectual property
protection. Similarly, this lack of configuration bitstream at start-up enables these FPGAs to be Live-

28

2. STATE OF THE ART

At-Power-Up (LAPU), that is, the devices are operational as soon as the system voltage has reached
its minimum level. Regarding FPGA robustness and immunity against soft errors, anti-fuse FPGAs
also achieve a good qualification. The use of physical permanent interconnections once the FPGA is
programmed, makes them highly immune against effects like Single Event Upsets (SEU)
[Carmichael'99, XILINX'10].

From Computer Desktop Encyclopedia
@ 2004 The Computer Language Co. Inc.

|~ NON-CONDUCTING
non-crystalline silicon
{amorphous silicon)

silicon substrate

metal layer

{
T

|
) /Q CONDUCTING
polysilicon via
is "grown”

silicon substrate

Figure 6: Detail of an Anti-Fuse connection

3.1.2. FLASH FPGAs

This type of FPGAs replaces the anti-fuse connections by programmable FLASH-based switches
(Figure 7) [Wang'02] . These switches adopt FLASH technology's characteristics and therefore they
are non-volatile but reprogrammable. This way FLASH FPGAs maintain the aforementioned benefits
around security and robustness and add them the possibility of being reprogrammed. Unfortunately,
although this configuration technology could support partial reconfiguration, the manufacturers do not

offer this possibility in their design tools. Consequently, this type of FPGAs has not been used in the

T Floating Gate ® Switch In

Sensing I—[Switching
~ 1

® Switch Out

designs carried out in this thesis.

Figure 7: ACTEL FLASH switch

29

2. STATE OF THE ART

3.1.3. SRAM FPGAs

SRAM-based FPGAs hold their configuration in static memory. The state of both, the programmable
LUTs and the switches for signal routing, is controlled by the output of these SRAM memory cells.
This way, the configuration of the FPGA is carried out in two steps or layers. On the one hand the
configuration data is written and stored into the SRAM configuration memory and on the other hand
the output of this memory is the one that directly controls the switches or states of the diverse
components in the FPGA. A simple scheme of this type of configuration could be observed in Figure
4 a few pages back. A detail of the way the interconnection switches are controlled is shown in
Figure 8 [Lew'04]. Due to the nature of the SRAM memories, this type of FPGAs is volatile, and its
configuration is lost whenever the power supply is interrupted. Consequently, the configuration
bitstream has to be loaded to the FPGA every time it is switched on. This makes it necessary to
include in the system a non-volatile memory in which to store this bitstream, and makes this type of
FPGA quite vulnerable against IP hacking. These devices are also quite sensitive to SEUSs,
attributable to the memory-based configuration architecture. However, there are several
characteristics that have turned these FPGAs the most common in the market and the ones that the
two main FPGA manufacturers (Xilinx and Altera) focus their development efforts on. On the one
hand the circuits used in SRAM FPGAs can be fabricated with standard VLSI (Very-large-scale
integration) processes that are nowadays able to implement 28nm transistors. This leads to the
achievement of very high density devices compared to other FPGA configuration technologies and
therefore to the reduction of FPGA size. On the other hand, this memory-based configuration allows
easy in-system reconfiguration and makes it possible the dynamic partial reconfiguration. This
characteristic, which will be detailed later in an individual section, permits to change the configuration
of part of the FPGA while the rest of it continues working. Updating only certain bits in the
configuration memory makes the resources controlled by those bits change their functionality. Being
dynamic partial reconfiguration one of the mainstays of the present thesis, from now on all the
references related to FPGAs will refer to SRAM FPGAs.

3.2. FPGA manufacturers

The proliferation of FPGAs has brought about an increase in the number of manufacturers of this
type of devices. Even though most of them use VHDL or VERILOG as programming language, each
manufacturer has developed its own programming tools that embrace from simple code
synthesizers, to high level tools for SoC design, software development or implementation of dynamic
partial reconfiguration. Moreover, due to the important differences in the fabrication procedures that
the abovementioned configuration technologies have, it is usual that each manufacturer just focuses
on the development of a certain technology [Donthi'03]. Therefore, it is necessary to analyse the

different manufacturers and to choose the one to continue working with.

30

2. STATE OF THE ART

SRAM

o

Pass Transistor

\

Horizontal
Wires

FPGA Interconnect

~hithne

kitlne

Figure 8: SRAM FPGA interconnection detail and SRAM cell construction

3.2.1. Xilinx

Xilinx [XILINX'12d], together with Altera [ALTERA'12], is one of the FPGA market leaders. Although it
started working both with the anti-fuse and the SRAM technologies, since 1996, it is completely
focused on the development of this second type of FPGAs. Additionally, Xilinx also develops a wide
variety of tools for FPGA design implementation. In regard to dynamic partial reconfiguration, Xilinx is
one of the pioneers in its use and hence nearly all the diverse FPGA families they offer support it in
one or another way [XILINX'12b].

3.2.2. Altera

As mentioned before, Altera [ALTERA'12] is the other big FPGA manufacturer. This company also
works only with SRAM FPGAs but, unlike Xilinx, the possibility of applying dynamic partial
reconfiguration to their FPGAs is quite new [ALTERA'10], even if technologically they could have
supported it before. Up to this inclusion of dynamic partial reconfiguration, Altera worked with the so-
called "Software Programmable Reconfiguration" [ALTERA'08]. This approach, more software-like,
suggests maintaining an static hardware with facilities for the software tasks to reuse the different
parts of the hardware and hence changing the functionality of the device. In addition, the true on-the-

fly reconfiguration of certain resources like PLLs or SerDes components was available.

3.2.3. Actel

Actel [ACTEL'12] is a company that mainly focuses its efforts on the development of non-volatile
FPGAs. Therefore, they primarily work with anti-fuse and FLASH FPGAs. Due to the technological

31

2. STATE OF THE ART

restrictions these FPGAs have and that have been explained before, Actel's FPGAs do not support
dynamic partial reconfiguration. However, Actel do have developed the possibility of "on-the-fly"
reconfiguring certain parameters of their PLLs [ACTEL'04] what is a great advantage for some king

of applications.

3.2.4. Atmel

Atmel [ATMEL] is also focused only in SRAM FPGAs. Besides, Atmel's FPGAs support dynamic
partial reconfiguration [ATMEL'02] in the way this thesis understands it, that is, as a means for
reusing parts of the FPGA. Unfortunately, Actel has not reached up to now the miniaturization degree
of other FPGA manufacturers; hence they do not offer FPGAs with the necessary amount of

resources for holding a complex SoC or SDR.

3.2.5. Lattice

Lattice [LATTICE'12] is probably the only FPGA vendor that maintains its position in both the volatile
and non-volatile FPGA market. They work with SRAM and FLASH FPGAs. Regarding SRAM
FPGAs, they also support dynamic partial reconfiguration [Donthi'03].

3.2.6. Other manufacturers

As stated before, with the spreading of the FPGASs, a proliferation in the FPGA manufacturers has
also occurred. Therefore, apart from the aforementioned FPGA manufacturers, there are plenty of
smaller companies such as Acroflex, Quicklogic, SiliconBlue Technologies or Achronix also
dedicated to FPGA fabrication. These companies do not usually work with general purpose FPGAs
but look for they place in the market with the development of FPGAs with exclusive characteristics
like low power, small size or very high speed. Taking into account the scope of this research work,
these FPGA manufacturers are out of it and hence not analyzed more deeply.

Table 1: Summary of FPGA manufacturers

MANUFACTURER MAIN FPGA DPR MAIN CHARACTERISTICS
TECNOLOGY SUPPORT

XILINX
ALTERA SRAM PARTIALLY | Newcomer in dynamic partial reconfiguration
ATMEL SRAM YES Focused on small FPGAs

2. STATE OF THE ART

Considering all the above exposed information (summary in Table 1), there are only two companies
that offer FPGAs able to carry out the implementation of Software Defined Radios in the design
framework proposed by this thesis: Xilinx and Lattice. The FPGAs from these companies are SRAM-
based, support dynamic partial reconfiguration and have the necessary amount of resources to
implement designs as complex as SDRs. Considering that Xilinx takes nearly the 50% of the FPGA
market, the information and number of works documented with their FPGAs is significantly higher
than the ones from Lattice. This, together with the fact that the tools offered by Xilinx for the
development of designs with dynamic partial reconfiguration are more elaborated, makes the FPGAs
from this company the best candidates for the research work carried out by this thesis. Therefore,
from now on, all the works and references made to FPGAs will be referred to Xilinx FPGAs. In this
context, it has also to be stated that due to available equipment, all the implementations have been
carried out on FPGAs from Xilinx's Virtex 4 family. In any case, this choice is not completely
exclusive for the application of the design framework and partitioning methodology proposed by this
thesis. That is, the work presented below can be applied with minor changes to Lattice FPGAs or to
any other present or future FPGA that supports dynamic partial reconfiguration in the terms Xilinx

does.

3.3. FPGA Dynamic Partial Reconfiguration

Partial reconfiguration, by definition, is the process in which part of the FPGA changes its
configuration while the rest of it remains unaltered. Under this definition two types of partial
reconfiguration can be distinguished: the static and the dynamic one (also known as active). In the
static partial reconfiguration, although only part of the configuration of the FPGA is changed, the
whole device is deactivated during the process. Only when the new configuration is completely
downloaded to the device the FPGA is reactivated. In dynamic partial reconfiguration, in turn, the
part of the FPGA that is not reconfigured, commonly known as 'static part', remains active during the
reconfiguration process. Moreover, this static part can even be the one in charge of controlling the

reconfiguration of the reconfigurable part. This is known as dynamic partial self-reconfiguration.

3.3.1. Operating principle

As has been stated before, partial reconfiguration is a feature that comes from the constructive
nature of SRAM FPGAs. In this type of FPGA, both, the states of the logical blocks (LUTSs), the
configuration of other resources in the FPGA like DSPs or RAMB16, or the state of all the
interconnections, is controlled by the output of SRAM memories. The set of all these memories is the
FPGA is usually known as 'Configuration memory'. Therefore any change in these memories affects
the functionality of the part they control. Furthermore, taking into account that SRAM memories can
be re-written on-the-fly and that the final control of the resources is made opening or closing
transistor-like components (Figure 9 [Bobda'07]), this reconfiguration can be done without stopping
or switching off the device. However, and as will be seen later in this chapter, special care has to be
taken when performing a dynamic partial reconfiguration as this technique could potentially lead to
the destruction of the FPGA.

33

2. STATE OF THE ART

VAN

Figure 9: Connection transistor between two wires and SRAM control bit (S)

Analysing dynamic partial reconfiguration from a more operational point of view, it can be simplified
just to a download, and subsequent storage, of several bits to the FPGA configuration memory.
Usually, a full bitstream with the configuration of the whole FPGA (both static and reconfigurable
parts) is downloaded in the first place and later the bitstream holding just the bits to be reconfigured
is used. These bitstreams holding only the bits to be changed are commonly known as 'partial
bitstreams'. It is precisely the generation of these partial bitstreams the key point for a successful

dynamic partial reconfiguration.

Dealing with the download of the partial bitstreams to the FPGA, Xilinx FPGAs offer several access
ports to the configuration memory. On the one hand the traditional external configuration ports are
available [XILINX'09]. These are the JTAG interface (common name of the IEEE1149.1 standard),
the serial configuration interface and the SelectMAP interface. These interfaces allow the
configuration or reconfiguration of the FPGA from an external device, whether it be a PC, an onboard
processor or another FPGA. Moreover, each interface has its own characteristics and writing speeds
(Table 2) what covers a wide range of configuration possibilities. On the other hand, Xilinx's FPGAs
are also provided with the Internal Configuration Access Port (ICAP). This port permits the access to
the SRAM configuration memory from the inside of the FPGA. That is, a design implemented in the
FPGA itself can have access to the configuration memory and hence carry out the dynamic partial
reconfiguration. In addition, the 32 bits wide and 100 MHz maximum frequency of the ICAP port
offer, together with the SelectMAP interface, the highest bandwidth for FPGA reconfiguration, what
makes it the most common interface when dealing with dynamic partial reconfiguration.

There is a final fact that has to be considered in the use of dynamic partial reconfiguration: the
storage of the partial bitstreams. Although the use of partial reconfiguration usually leads to a
reduction of the FPGA size, it is necessary the inclusion of a memory (in case there was not one in
the design) for bitstream storage. This fact is usually not considered as a size overhead since the
presence of memories is quite usual in FPGA boards. However, the choice of the memory is quite
important as the access speed to this memory will be determinant in the speed the dynamic partial
reconfiguration can achieve, as will be seen later.

34

2. STATE OF THE ART

Table 2: Summary of Virtex 4 FPGA configuration interfaces

INTERFACE BUS WIDTH MAXIMUM CLOCK MAXIMUM
FREQUENCY BANDWIDTH
SERIAL 1 bit 100 MHz 12.5 MBps
SELECTMAP
ICAP 8 or 32 bit 100 MHz 400 MBps

3.3.2. Types of reconfiguration

Attending to the amount and organization of the resources to be reconfigured, Xilinx defines two
types of dynamic partial reconfiguration: difference based reconfiguration and module based
reconfiguration [XILINX'04]. Both of them end up in the generation of partial bitstreams, nonetheless,

the design flow for achieving them has some differences.

a) Difference based partial reconfiguration

In this type of reconfiguration the number of changes is minimum. These are usually reduced to
changes in the equations implemented in the LUTSs, changes in the input/output standards (LVTTL,
LVCMOS...) or changes in the data stored in the BRAMs. Therefore, and as the name indicates, the
generation of the partial bitstreams in this type of reconfiguration is achieved making the direct
comparison between the original bitstream and the modified one and extracting the differences.
Generally, the design flow starts with a base design that has already been synthesized, mapped and
routed. It is opened with a tool like FPGA Editor [XILINX'00b] where the design can be analyzed and
where minor changes like the aforementioned ones can be carried out. This secondary design that
holds the changes is saved with a new name and finally the differences, and with them the partial

bitstreams, are extracted and generated with the Bitgen tool [XILINX'11b].

b) Module based partial reconfiguration

Module based partial reconfiguration is oriented towards providing with reconfiguration capabilities
systems designed with the same philosophy: the modular design [XILINX'01]. Modular design allows
a team of engineers to independently work on different pieces or "modules” of a design and later
merge these modules into one FPGA design. This is an historical design flow in Xilinx tools that has
now evolved to what has been called "Design preservation" [XILINX'12a]. This design flow adds to
the traditional module based design flow the ability to preserve the implementation results of a
module for its use in the next implementation iteration. When dynamic partial reconfiguration is
applied to these design flows, the aim is to change the complete functionality of one or several of

35

2. STATE OF THE ART

7 PRM_entity
—
(D o YT e
Base e Base
—
- PRMO
—| PRM
BM 1 | PRM_entity
y e ~ .
DCM Tt
BUFG Tt
O ~| > T~ PRM1
UG208 02 05 102105

Figure 10: Scheme of module based partial reconfiguration

these modules. This way the reconfiguration is not restricted to minor characteristic changes but can
affect nearly any resource in the FPGA including routing resources. Figure 10 gives an idea of how
module based partial reconfiguration works. The figure shows a schematic view of the different
modules instantiated in the "Top" design. There are several static modules such as U0 Base or Ul
Base and a reconfigurable module named PRM ("Partially Reconfigurable Module"). The detail on
the right shows the two different implementations the PRM module can have: PRMO and PRM1. As
can be observed the input/output ports have to be maintained but the internal implementation can be
completely different. The PlanAhead software [XILINX'11d] is the most useful one when dealing with
the partial bitstream generation in this type of reconfiguration. Initially, the software permits the
designer to generate the "Top" project. Then, the files that describe the functionality of each module
are linked to their instantiation (a single functionality for the static modules and various ones for
reconfigurable ones). Finally area restrictions within the FPGA are associated to each of the modules

and the partial bitstreams are generated.

3.3.3. Benefits and inconveniences of dynamic partial reconfiguration

Once the philosophy and the operating principles of dynamic partial reconfiguration have been

understood, the advantages this technique offers are quite clear:

e A reduction in the necessary area to implement some types of systems (such as SDRS) is
achieved due to the reutilization of the resources of the FPGA. Consequently, and even
though it becomes necessary to include a memory for storing the partial bitstreams, the
overall physical size of the system is reduced.

e The power consumption of the system is also reduced as smaller FPGAs can be used.

« Uninterrupted operation of the system is possible even if a part of it is being reconfigured.

« The implementation of applications based on time-multiplexing is enabled.

36

2. STATE OF THE ART

Unfortunately this technique also entails some disadvantages that have to be taken into account:

e ltis considered a low level programming technique and therefore a deep knowledge on the

design flow is required.

« A wrong use of dynamic partial reconfiguration (i.e. generating an internal short-circuit) may

potentially lead to the destruction of the FPGA, hence, special care needs to be taken.

e ltis a relatively new technique so the available information and experience may be scarce.
This novelty, together with the low level nature of this technique leads to a still low efficiency

of the design flow, being quite slow and laborious.

e There are certain FPGA resources that must reside in the static region of the design, that is,
that do not support partial reconfiguration [XILINX'11c]. They are usually related to global
clocks or clock modifying logic (BUFG, PLL, DCM and similar) or to architecture feature
components such as BSCAN, STARTUP, etc. Besides, IP restrictions may occur if any of

these components are used to implement them (i.e. ChipScope ICON or the MIG controller).

* Some effects that affect system's performance such as reconfiguration time (time in which
the reconfiguration is underway and in which the area to be partially reconfigured is not
functional) or timing degradation also appear with the use of dynamic partial reconfiguration.
These effects need further consideration and consequently they will be explained in detail in

Section 6.

3.3.4. Applications for dynamic partial reconfiguration

Even though it is a recent technique, as well as Software Defined Radios [Delahaye'07, He'12], there

are in the literature several applications that take advantage of dynamic partial reconfiguration:

e Self-healing architectures [Custodio'07, Wichman'06]. It is possible that certain resources of
the FPGA get damaged during operation and hence producing a malfunction of the device.
"Self-Healing" architectures are able to detect these damaged resources, read back their
configuration and, via dynamic partial reconfiguration, move their functionality to a non-
corrupted part of the FPGA. In case the damage is not permanent in the resource (i.e. due
to a SEU [XILINX'10]), dynamic partial reconfiguration also permits to recover the resource
without altering the rest of the system.

« Dynamically reconfigurable crossbar switches [Young'03]. Crossbar switches are devices
able to connect M inputs to N outputs in a matrix way, that is, being able to connect any
input to any output. FPGAs are widely used for their implementation due to the input-output
resources they provide. The use of dynamic partial reconfiguration makes it possible to
maintain several interconnections working while others are being reconfigured.

37

2. STATE OF THE ART

e Hardware operating systems. Traditional operating systems load, execute and pre-empt
software tasks as they are scheduled. Hardware operating systems, in turn, use dynamic
partial reconfiguration to load and unload hardware tasks to the FPGA fabric. The position of
this hardware modules can be fixed, being always loaded to the same position of the FPGA,
or dynamic, in which an allocator controls the free space in the FPGA and places each
module in the optimal position [Hong'l1la]. R3TOS (Reliable Reconfigurable and Real-time
Operating System) [lturbe'10] is a hardware operating system developed by the University of
Edinburgh. In collaboration with them, the implementation of several data coding functions
for SDRs over R3TOS and using the design framework and partitioning methodology
presented in this research work have been carried out. A deeper look into this work is

presented in Section 3 of Chapter 7.

4. RAPID PROTOTYPING TOOLS

Rapid prototyping tools in the field of Information and Communication Technology (ICTs) are
programs situated at a higher level than the traditional code compilers/synthesizers. These tools look
for easing or improving the code design by adding characteristics like simulations, graphic
programming, automatic code generation or co-simulation to the aforementioned code
compilers/synthesizers. Under this description very different types of tools can be included: software
development tools like Visual Basic [MICROSOFT'12], simulation tools like Matlab/Simulink, system
description languages like SystemC [ACCELLERA'12] or FPGA/DSP development tools like System
Generator[XILINX'12c], CatapultC [MENTOR'12] or SystemVue [AGILENT'12a].

As stated before, due to the importance FPGAs are gaining in the market, the rapid prototyping tools
oriented to this type of devices are also becoming a key element. Moreover, taking into account the
difficulty that the design of high performance algorithms in hardware description languages such as
VHDL or Verilog entails, these tools become essential. FPGA rapid prototyping tools range from
simple code generators that, from the selection of certain parameters, generate VHDL or Verilog
code to be subsequently integrated into a bigger project, to highly complex tools. This type of tools
includes a graphical environment in which programming is performed interconnecting predefined
blocks. These blocks usually represent functions or components that are typically used in signal
processing or in the digital logic world, from logic gates to multiplexers, filters or microprocessors.
This way, programming is very intuitive and the signals that connect the different blocks represent
the real, physical, data paths. Once a design is finished, these tools are able to generate the VHDL
code that describes the system, synthesize it, and even, upload it directly to the FPGA. Furthermore,
many of these tools work under the Matlab/Simulink environment, so before executing this synthesis
and upload, it is possible to carry out a functional simulation, making available all the resources this
environment offers, like scopes, customizable data sources or spectrum analyzers, for the results’
analysis. This allows the user to iteratively test and adjust in deep the algorithm or system being
implemented without having to execute the code synthesis and place and route, usually a time

consuming task (Figure 11).

38

2. STATE OF THE ART

_ Simulation
?-_ n n i

Graphic programming

) _ / :II _|I!Il| [II‘ #I |Il Ii: i-l | :: ,

ALGORITHM

Figure 11: Design flow with rapid prototyping tools

In short, the use of the characteristics that rapid prototyping tools offer, in comparison with the
traditional design flow in pure VHDL/Verilog, leads to a reduction in the development time needed for
the implementation of a FPGA application. This time reduction has been estimated by some authors

in a 10:1 ratio [Haessig'05, Haessig'06].

4.1. FPGA rapid prototyping tool summary

A short survey of the diverse FPGA rapid prototyping tools available on the market is presented

below:

4.1.1. Core Generator

Core Generator [XILINX'00a], from Xilinx, is a rapid prototyping tool restricted to code/IP generation.
With a catalogue of user-customizable functions as starting point, the designer selects the IP to be
generated and sets its corresponding parameters. The available IP functions range in complexity
from commonly used functions, such as memories and FIFOs, to system-level building blocks, such
as filters and transforms. Subsequently, the tool generates the HDL code that implements the
selected function. It remains in hands of the designer the integration of the generated code in the

final design.

4.1.2. CatapultC

CatapultC [MENTOR'12] from Mentor Graphics is defined as a high level synthesis tool for FPGAs
and ASICs. This is a rapid prototyping tool able to generate synthesizable code for these two types
of devices starting from designs carried out in the ANSI C/C++ programming language or in
SystemC. When dealing with the final HDL code generation, this tool allows the configuration of
several hardware-related characteristics needed by FPGAs or ASICs that cannot be programmed in
the aforementioned languages. Area or timing restrictions or 10 technologies are some of these
characteristics. Once the HDL code is generated, the tool gives the possibility of simulating it.
However, for the final implementation of the system, it is necessary the use of an external synthesis

software.

39

2. STATE OF THE ART

4.1.3. AccelDSP

AccelDSP [XILINX'08a] is another rapid prototyping tool from Xilinx (unfortunately discontinued since
software version 10.1) that generates HDL code from algorithms implemented in MATLAB language.
The design flow in AccelDSP gradually transforms the initial "infinite precision" algorithm into several
fixed-point models until the final HDL is generated. During this process it is possible to simulate,
evaluate and adjust the precision loss that the algorithm is suffering in each of the steps. As it is
presumable, not all the functions available in MATLAB are supported by AccelDSP as they are not
implementable in hardware. Nevertheless, most of the functions used in signal data processing are
available [XILINX'06]. This is a very interesting tool for those designers with wide experience in the
development of algorithms in plain MATLAB.

4.1.4. DSP Builder

DSP Builder [ALTERA'09] from Altera allows the designer to go from a system definition in MATLAB
to its integration and simulation in Simulink and, finally, to the VHDL code generation, synthesis and
hardware implementation. The tool appears as a toolbox in the Simulink library in which the available
functional blocks (filters, FFTs, basic functions...) and the tool-control blocks are present. Both the
HDL code and the tcl scripts (for the simulation and implementation of the system) generated by
DSP Builder are optimised for being used with Altera's synthesis tool: Quartus Il. This tool is also

prepared for its integration with the Qsys software, Altera's tool for complex system integration.

4.1.5. SystemVue

SystemVue [AGILENT'12a], developed by Agilent, is defined as an electronic design automation
(EDA) environment for electronic system-level (ESL) designs. It permits, via different building blocks,
the design, simulation, implementation and test of signal processing algorithms for communication
systems. One of the key points of SystemVue is that it is not restricted to the digital part of the
systems, but also covers the analog and Radio Frequency (RF) parts of the design. Besides, being
Agilent's main activity the design and manufacturing of measurement instruments, SystemVue allows
an easy connection with many of these devices enabling system-level verification. Although
SystemVues does not work over MATLAB/Simulink it offers a similar graphic environment that eases
the design process. Concerning the rapid prototyping characteristics for FPGAs, SystemVue FPGA
Architect [AGILENT'12b] is the specific module in charge of it. It adds fixed-point hardware-true
simulation models and a VHDL/Verilog hardware implementation path. Unfortunately, as Agilent is
not concerned about the final implementation process, so the generated HDL code needs to be

ported to an external implementation soflware.

4.1.6. System Generator

System Generator [XILINX'08b] is a rapid prototyping tool, with the appearance of a toolbox in
MATLAB/Simulink, developed by Xilinx for designing high-performance DSP systems using FPGAs.
The toolbox offers several predefined blocks that represent, from generic, basic functions like
adders, logic gates or comparators to complex signal processing functions such as filters, encoders

or channel emulators. All these blocks can be simulated in the MATLAB/Simulink environment taking

40

2. STATE OF THE ART

advantage of all the available resources it offers, like customizable data sources, scopes, spectrum
analyzers or the possibility of exporting data to the MATLAB workspace where it can be deeply
analyzed. In subsequent stages these blocks are translated into VHDL code, and, harnessing the
complete integration of all the Xilinx tools, synthesized, place and routed and, if desired, downloaded
to the target FPGA.

Two other characteristics make System Generator an interesting rapid prototyping tool: the possibility
of integrating user VHDL code via the so called "Black Boxes" and the feasibility of co-simulation. On
the one hand, "Black boxes" are a special type of block that permits the inclusion of pure VHDL code
by the designer. In addition, this code can be bitwise simulated together with the rest of the design.
This way System Generator eases the implementation of certain operations that could be hardly
designed with the predefined blocks. On the other hand, co-simulation is understood as the
possibility of mixing the FPGA execution of the implemented design with the analysis resources that
the MATLAB/Simulink environment offers. System Generator offers the possibility of generating the
input data in MATLAB/Simulink, downloading and processing it in the design implemented in a FPGA
and finally, showing the output data in the tool. This way simulation times are reduced considerably

and the implemented design is validated in hardware.

4.1.7. Codesimulink/SMT6040

Codesimulink/SMT6040 [SUNDANCE'09] is a software developed by Sundance, similar to System
Generator. It is also based on predefined blocks and is executed on MATLAB/Simulink. The main
peculiarity this tool has is that is has been designed to target the Xilinx FPGAs that Sundance uses
in the development boards they commercialize (which is in fact their main business area). Therefore,
besides general purpose function blocks, this tool is also provided with concrete blocks that control
certain devices/resources present in the development boards such as clock signal generators, high

speed communication buses or analog-to-digital (ADC) and digital-to-analog converters (DAC).

Another interesting characteristic provided by Codesimulink/SMT6040 when dealing with certain
development boards is the possibility of carrying out Hardware/Software co-design. Sundance
includes in certain boards not only an FPGA but also a DSP, and this tool enables the possibility of
determining which functions are implemented in which processor. When the code generation has to
be performed, those functions to be executed in the FPGA are translated into VHDL code, while the
ones for the DSP are generated in C. In any case, simulations are not affected by this circumstance.
Finally, the latest versions of Codesimulink/SMT6040 are oriented towards their use with the
Diamond tool [3L'05] from the company 3L. This software is conceived as a design tool for hardware
operating systems. It is in charge of the management of the different functions and data
communications to be carried out in the system and compiles and downloads each of them to its
rightful device. Besides, it allows the combination of code generated by different rapid prototyping

tools like Codesimulink/SMT6040 and System Generator into a single design.

41

2. STATE OF THE ART

4.1.8. Model-Based Design Kit

Commonly known as MBDK [LYRTECH'12], this software kit by Lyrtech offers the necessary tools for
combining in a single design the MATLAB/Simulink design environment, System Generator, the
Simulink Coder (formerly the Real-Time Workshop, a tool that generates and executes C and C++
code from Simulink diagrams) and the development boards manufactured by this company. Even
though it is not a complete rapid prototyping tool, due to the possibility this kit offers of making this
tool combination it has been added to the survey. The kit adds to the abovementioned tools the
necessary information about Lyrtech's development boards and some code for controlling the
communication resources. In this way, operations such as co-simulation or Hardware/Software co-

design are simplified.

4.2. Benefits and inconveniences of FPGA rapid protot yping tools

On the basis of the above, the use of FPGA rapid prototyping tools offers the following benefits:

« Areduction on the overall design time is achieved. The automatic code generation and the
possibility of simulating and correcting the implementation on early design steps lead to it.

e A deep knowledge on HDL coding or on FPGAs to target complex designs is not necessary.
The automatic code generation provided by these tools and the possibility of using several
programming languages (MATLAB language, C++, graphical coding...) as starting point

allows this.

In contrast these are the main inconveniences that they bring about:

e This automatic generation of the HDL code from the programming blocks entails a loss of
control over this code by the designer. Due to the necessity on tool's part of generating a
scalable code for each block/function, that must also be compatible and connectable to any
other one, the generated code is often oversized and relatively chaotic. In case this HDL

code has to be analyzed or modified by hand, this becomes a hard task.

« Similarly, this flexibility needed by the generated code makes it more inefficient than it could
be. A dedicated, manual programming of the target algorithms would probably offer a better
design in terms of processing speed or resource optimization, but at the expense of a longer

design time.

5. CRITICAL REVIEW OF THE PROPOSED SDR DESIGN FRAMEWORK

In the preceding sections the analysis of both FPGA dynamic partial reconfiguration and rapid
prototyping tools has been carried out. Traditionally, this two technologies, and even FPGAs
themselves, have been used for just prototyping purposes. In other words, the preliminary design
tests and implementations to check the feasibility of a certain implementation where realised using
these tools and devices but the final implementations were carried out over devices like ASICs that

42

2. STATE OF THE ART

were manually programmed. The reason for this behaviour lies in the poor performance, in relation to
the price, and in terms of size, power consumption and processing capabilities that FPGAs had in
their first years and in the lack of reliability of the first rapid prototyping tools. Nevertheless, the
evolution FPGAs and rapid prototyping tools have suffered in the last years now makes their use

possible as a final implementation framework.

At the best of the author's knowledge, and as has been stated up to now, there is not a tool or design
framework nowadays that combines rapid prototyping and FPGA dynamic partial reconfiguration
neither for the implementation of Software Defined Radios, nor for the development of any other type
of design. The available tools in the market allow dynamic partial reconfiguration or ease algorithm
design with rapid prototyping techniques, but do not merge both possibilities. Bearing in mind the
advantages and benefits of both technologies that have been presented previously, the proposed
design framework seems a promising opportunity for continuing with the spreading of FPGAs as a

final device for the implementation of SDRs of any other design.

Unfortunately, this design framework is not immune to the various disadvantages that each of the
technologies that take part on it has. The subsequent section will analyze the diverse drawbacks that

have been identified.
6. SDR DESIGN FRAMEWORK'S DRAWBACKS

6.1. Reconfiguration time

The main drawback of dynamic partial reconfiguration is the so-called "Reconfiguration time". While
the reconfiguration is underway, that is, while the writing procedure that updates certain bits in the
configuration memory of the FPGA is ongoing, the resources controlled by those bits are not
operative. More precisely, although once a concrete bit is updated the corresponding resource
acquires its final functionality, due to the serialized nature of the memory writing procedure, it is not
possible to assure a proper operation of the reconfigurable area until the whole partial bitstream is
downloaded. Therefore, it is known as "reconfiguration time" the necessary time to write a partial

bitstream into the configuration memory. It is a clear drawback and hence it should be minimized.

Since this time is directly related with data writing into a memory, its value depends on the amount of
data to be written and in the writing speed. Considering this last point and as already mentioned,
between the several access ports to the configuration memory, the ICAP port is the one that offers
the highest access bandwidth (theoretical 400 MBps). Therefore it is the most common access

interface when seeking small reconfiguration times.

Dealing with the amount of data to be written, several aspects have to be analyzed. The size of the
partial bitstreams is directly related to the size and shape of the reconfigurable area. Consequently,
the smaller this area is, the smaller the partial bitstream is and hence, the faster the reconfiguration
time is. Obviously, a reduction in the size of the reconfigurable area also entails a reduction in the

available resources for the intended implementation. Ultimately, it is necessary to reduce the number

43

2. STATE OF THE ART

of resources/blocks/functions to be reconfigured in order to reduce the reconfiguration time.
Fortunately, the nature of SDRs offers an opportunity for achieving this reduction. Many SDR
waveforms, being signal processing algorithms, are usually built with similar functions or blocks.
Parts like constellation mappers, phase and frequency recovery loops, or forward error correcting
blocks are common to most of the waveforms. Consequently, it is possible to maintain them
implemented statically and therefore reducing the reconfiguration time. Unfortunately, this concept is
not straightforward and can produce undesired effects like an increase in the design size as will be

explained in the next subsection 6.2

The last aspect related to the size of the reconfigurable area concerns the percentage of use of the
resources in this area. In case the default implementation flow is used in the synthesis tools, the size
of the generated partial bitstream is only affected by the size of the reconfigurable area that has been
established regardless of the resources used in it. That is, two designs with the same reconfigurable
area, one in which the 100% of the resources are used and the other with only a LUT occupied
would generate partial bitstreams with the same size. Consequently, it is advisable to adjust the size
of the selected reconfigurable area to the size of the greatest design to be implemented in it. In order
to reduce the size of the bitstreams with less utilization percentage, it is also possible to enable the
‘bitstream compress' characteristic. This characteristic removes the redundant data from the
bitstream hence reducing its size. Nevertheless, the unused resources within a reconfigurable area
cannot be used by another one, so, even if this characteristic is enabled, it is always recommendable
to make this adjustment in the extent possible (unluckily, an excessive adjustment looking for a

smaller reconfiguration time it is also inadvisable as will be explained in subsection 6.3.)

6.2. Design size increment

It has been stated that many of the SDR waveforms use common functions that are susceptible to be
reused and not reconfigured; however, it is more precise to define them as similar functions.

Although these functions share a common name (i.e. interleaver or FFT), each of them has different
configuration parameters depending on the waveform. Operating frequencies, filter coefficients,
generation polynomials or FFT sizes are some of these changing parameters. In order to establish
these functions statically it is necessary to modify them so that these parameters can be changed on
the fly. This procedure, that has been named as '‘parameterization' and that will be widely analyzed in
Chapter 4, generally produces an increase in the number of the resources used by the function in
scope. Therefore, the amount of resources used by the final design may increase when trying to

reduce the reconfiguration time so it is a factor to be evaluated.

6.3. Timing degradation

The design flow of dynamic partial reconfiguration forces the synthesis tools to place all the
resources and routes within the defined reconfigurable area. This is a limitation that hinders the
search for the optimal routing of the clock signals, hence reducing the maximum clock frequency that

the designs with dynamic partial reconfiguration can support. Xilinx estimates this degradation in a

44

2. STATE OF THE ART

10% [XILINX'11c]. Nevertheless, this is an average estimate that changes depending on the designs.
An excessive occupation of the reconfigurable area makes the optimal routing harder and worsens
this degradation. Moreover, occupations above an 80% usually lead to the impossibility of
implementing the design.

Besides, the more reconfigurable areas there are and the more nets that go in and out of these
reconfigurable areas, the worse the timing degradation is. In-out ports in a reconfigurable area must
be fixed in order to be reused by the different partial designs. This fact is also a limitation for the

synthesis tools and therefore this number of nets also affects the design's timing.

Finally, rapid prototyping tools, as a drawback of the flexibility and facilities that the automatic code
generation offers, usually achieve worse timing characteristic than a manual coding would do. The
necessity of generating HDL code for each block able to be merged with a wide range of blocks and

able to support the modification of several parameters generates this worsening.

In view of the above, the maximum clock frequency that a certain design is able to support is also a

factor to be under control.

6.4. Flip-Flop initialization

Finally, and placed in a more functional level, an issue related with the initialization of the Flip-Flops
when placed in a reconfigurable area has to be solved. In static implementations one of the last
commands present in the bitstream and that has to be executed by the FPGA is GRESTORE. This
command initializes all the Flip-Flops in the FPGA to the default values programmed in the
corresponding HDL language. However, this command is not present in the partial bitstreams as it
affects the whole FPGA and its execution could corrupt the static area. Therefore, after a partial
bitstream has been downloaded to the FPGA the Flip-Flops present in the new design are not
initialized and maintain their previous value. This circumstance may not be acceptable in some
designs (i.e. if the coefficients of a certain filter are stored using Flip-Flops), so it has to be resolved.
The designed solution is out of the scope of the design methodology itself but is part of the
achievements of the present work so it will be presented in Section 3.4.3 of Chapter 7. This chapter
presents a real case example of an implementation that requires this type of initialization. This
circumstance motivated the development of the Flip-Flop initialization procedure.

7. DESIGN METHODOLOGIES

The use of design methodologies that try to optimize some of these issues, determining the best way
of undertaking the implementation of a certain design, is widespread. The next subsection lists
several design methodologies present in the literature that face this optimization of the

implementation from different approaches.

Berthelot et al. [Berthelot'08] propose a complete design methodology for automatic design

generation in heterogeneous architectures. These architectures are made up of several "processing

45

2. STATE OF THE ART

elements" such as general purpose processors, DSPs or FPGAs. These last ones even supporting
dynamic partial reconfiguration. This methodology starts with the generation of a model for both, the
target architecture and the algorithm/system to be implemented. Subsequently, the methodology
determines the optimum mapping of tasks into the processing elements. The criterion for choosing
the best placement looks for minimizing the reconfiguration cost in terms of reconfiguration time.
Taking advantage, if possible, of the sequential execution of certain tasks, the methodology attempts
to parallelize the reconfiguration of some tasks with the execution of others with no data

dependencies. This technique is known as Configuration Prefetching.

Gohringer et al. [Gohringer'10] in turn, present a design methodology that tries to identify the
optimum architecture for a certain application. Starting with a description of this application made
with a high level language like C/C++, the methodology first performs a software/software partitioning
of the application into several modules or tasks. Each of these modules represents a processing
element in the final implementation. In this case, the criterion for making this partitioning looks for
minimizing a closeness function that evaluates several factors of the system such as the processors'
workload, the necessary memory resources, the timing requirement for a real-time execution or the
size of the FPGAs in case they are needed. A second stem in the methodology carries out a
hardware/software partitioning deciding which modules from the first step should be implemented in
software and which in hardware. This decision is performed looking for the maximum local efficiency

of each of the processing elements.

Another type of optimization is the one proposed by Athalye and Hong [Athalye'05]. Their work tries
to determine the best way of mapping the several tasks in an application into the different,
predefined, reconfigurable areas available in a Xilinx FPGA with use dynamic partial reconfiguration.
They use a communication cost based heuristic criterion that analyzes the number of lines that cross
from a static area to a reconfigurable one and vice versa. They assume that the higher this factor is,

the worse is the system's performance since more routing issues appear.

Returning to the hardware/software co-design approach, Noguera and Badia [Noguera'01] present a
partitioning algorithm for dynamically reconfigurable architectures. This algorithm is divided into three
stages: application stage, static stage and dynamic stage. The first stage is in charge of modelling
the application to be implemented with a set of interrelated processing objects which communicate
among them using events. The static stage converts the information from the application stage into
independent tasks and, after a execution time, memory usage and area estimation, decides which of
these tasks will be executed in hardware and which in software. Finally, the dynamic stage
schedules the execution of the tasks in the different processing elements. Focusing on the
hardware/software partitioning, the algorithm tries to minimize a cost function that measures the
execution time of the whole system. On this purpose, the algorithm iteratively evaluates the cost
function against the different possible partitions. In addition, the algorithm takes into account a

configuration prefetching mechanism for reconfiguration latency minimization.

Alaus et al. [Alaus'09] focus their efforts on the development of a design methodology for Software

Defined Radios. They work in the concept of parameterization of SDRs, defined as the identification

46

2. STATE OF THE ART

of all the common aspects of the mobile communication modes and standards to be implemented.
These common aspects become one common processing procedure installed in the device and can
be executed by a single "call". Thereby a gain of both size and time with regards to the amount of
code to be downloaded or read in order to modify the radio behaviour is achieved. The authors face
this parameterization with the development of two techniques: the Common Functions technique and
the Common Operators technique. Each of the techniques deals with a different granularity of the
parameterization. The Common Functions, as its names suggests, looks for similarities at
"Functionality" level, with functions like mapping, filtering, synchronization and so on. In turn, the
Common Operators technique looks for common elements based on structural aspects. FFT, Cordic
or LUTs are some of these operators. This last technique claims to be independent of the standards
by finding the smallest set of highest-level operators which are used by the maximum number of
functions. In this context, the proposed design methodology completes these two techniques with
several steps that cover the rest of the design flow. This methodology and particularly the Common
Functions and Common Operators techniques complement perfectly with our proposed design
framework and partitioning methodology, hence they have been ported and used as a part of our

design methodology. Further information about this point is discussed in Chapter 4.

Bearing in mind the still slow and laborious process of using FPGA dynamic partial reconfiguration in
a design, authors like Cancare [Cancare'07] propose a methodology for automating this design flow.
The proposed methodology relies on Simulink as high-level development framework for
reconfigurable systems and on an enhanced version of the Caronte flow [Donato'05] as low-level
implementation generator. This low-level implementation phase embraces and automates all the
necessary steps for the generation of partial bitstreams from a VHDL description of a system.

Finally, the reconfiguration time being one of the main drawbacks of the dynamic partial
reconfiguration, there are in the literature various works that try to resolve this issue speeding up the
access to the configuration memory. Although they are not design methodologies themselves, it is

worth considering them.

Liu et al. [Liu'09] explore the design space of ICAP architectures and propose and evaluate five
different designs in which different storage sources and communication interfaces for the partial
bitstreams are tested. Taking the base designs for ICAP provided by Xilinx as a starting point
(reconfiguration speeds below 1 MB/s) they achieve a maximum ICAP speed of 371 MB/s, close to

the theoretical maximum speed of 400 MB/s in a Virtex 4 architecture.

Similar approaches are presented in [Bonamy'12] and [Hansen]. Bonamy et al. present an ultra-fast
power-aware reconfiguration controller (UPaRC) that boosts the reconfiguration throughput up to
1.433 GB/s. This huge improvement in relation to the theoretical maximum is achieved breaking the
limitation self-imposed by Xilinx to maximum clock rate applicable to the ICAP port. In a similar way,
Hansen et al. implement an enhanced ICAP hard macro able of raising the reconfiguration speed up

to 2200 MB/s. Both approaches are based on Virtex 5 devices.

a7

2. STATE OF THE ART

Finally, and looking for spreading the possibility of using self-reconfiguration to devices that initially
do not support it, Bayar and Yurdakul [Bayar'08] have developed the PCAP: Parallel Configuration
Access Port for Spartan-lll FPGAs. These FPGAs do not implement an internal ICAP, hence they do
not support dynamic self-reconfiguration and they require an external device to be reconfigured. The
presented solution implements a loopback between the pins of the SelectMAP interface and some
user-10 pins in the FPGA. This way the PCAP core, implemented in the FPGA, controls the
SelectMAP interface and self-reconfiguration is enabled.

8. CRITICAL REVIEW OF THE STATE OF THE ART OF DESIGN METHODOLOGIES

All the aforementioned methodologies improve the performance of the SDR in the terms we intend
to. However, many of those related with FPGA dynamic partial reconfiguration start their work from a
pre-partitioned design. They need to know beforehand which functions or parts of the design will be
implemented in the static part of the FPGA, and which ones in the reconfigurable one. Furthermore,
the final physical distribution of the FPGA, in terms of number and size of reconfigurable areas, need
to be also predefined. Usually, all this work is done manually by the designer, based on his

knowledge of the system and of the application.

However, at the best of author's knowledge, this handmade partitioning can also be optimized,
especially as the designs’ complexity grows up. Therefore, the second goal of this thesis is the
design, validation and automation of a design methodology that looks for the optimal partitioning in
terms of static or reconfigurable implementation of the functions present in a Software Defined
Radio.

9. METHODOLOGY OBJECTIVES AND INITIAL HYPOTHESIS
In view of the above, the proposed design methodology aims to fulfil the following objectives:

e Optimize the implementation of Software Defined Radios in terms of reconfiguration time,

amount of resources needed and maximum clocking frequency.

¢ Reduce the design time and simplify the design flow for implementing SDRs using FPGA

dynamic partial reconfiguration and rapid prototyping tools
The initial hypothesis that motivates the development of the methodology is defined as follows:

e The use of a design methodology that determines which parts/functions of a Software
Defined Radio has to be implemented statically and which in a reconfigurable way, when
using a design framework made up by FPGA dynamic partial reconfiguration and rapid
prototyping tools allows for the following. On the one hand, reduce the design time if
compared with a manual implementation. On the other hand the securing of an optimal

implementation. It is meant by optimal the implementation with less value of a cost function

48

2. STATE OF THE ART

generated with the reconfiguration time, the amount of resources needed and the maximum

clock frequency.

10. SUMMARY

The present chapter has made a deep analysis on the state of the art of the three main technologies
that take part in the development of this thesis: Software Defined Radios, FPGA dynamic partial
reconfiguration and rapid prototyping tools. The benefits and inconveniences of such a design
framework have been evaluated and the design methodologies present in the literature that try to
optimize those drawbacks have been examined. Ultimately, a critical review of these methodologies
has been carried out and a novel design methodology that addresses static/reconfigurable
partitioning has been identified as a promising technique for optimising the implementation of SDRs

with FPGA dynamic partial reconfiguration and rapid prototyping tools.

49

Chapter 3

Design Methodology

3. DESIGN METHODOLOGY

3. Design Methodology

1. INTRODUCTION

In this chapter the basics of the proposed design methodology will be presented and explained.
Based on the information analyzed in the foregoing state of the art, firstly the degree of freedom over
which the methodology will act is decided and explained. Subsequently, the several steps that make
up the design flow of the methodology will be exposed. Finally, the basics of an automation
procedure for the methodology that aims to ease the design flow and hence reduce the design time

will be presented.

2. DEGREE OF FREEDOM: RECONFIGURATION GRANULARITY

Taking into account the drawbacks of the proposed SDR design framework and the compilation of
the existing design methodologies exposed in the state of the art, there are several parameters or
characteristics over which a design methodology can act in order to optimize a design. Among them,
and being, at the best of author's knowledge, a novel approach, the partial reconfiguration granularity
is the degree of freedom that the current design methodology modifies in order to optimize the SDR
design. Partial reconfiguration granularity is defined as the design level where the dynamic partial

reconfiguration takes place.

By way of example, in order to change the functionality between two SDR waveforms it is possible,
on the one hand, to erase and reconfigure the whole waveform. This is considered a coarse grain
reconfiguration and has several advantages (like minimum resource utilization) and disadvantages
(very high reconfiguration time). On the other hand, another approach for carrying out the same
objective consists of just reconfiguring the concrete functions that are not common to both
waveforms, maintaining the rest of the design static. This would be a fine grain reconfiguration and
generally entails a reduction in the reconfiguration time at the expense of an increase of the
resources needed by the design and a degradation of the supported maximum clock frequency.
Between these two reconfiguration granularities there are several other partitioning possibilities that
affect the design factors under our scope. Due to the non-linearity of the relation between these
factors and the reconfiguration granularity, there are certain partitions that offer an overall better
design performance. Figure 12 graphically shows this concept. It should be noted that this is a
hypothetical representation of the expected evolution of these factors. Its verification is precisely one
this research work's tasks.

51

3. DESIGN METHODOLOGY

High

Resources
T.config
F.max.

Low

Fine Granulatity Coarse

>

High

Performance

Low

Fine Granulatity Coarse

Figure 12: System performance vs. Reconfiguration granularity

Consequently, the aim of the proposed design methodology is to quantitatively evaluate the way the
most important system factors evolve in relation with the reconfiguration granularity and determine

the optimum implementation.

3. METHODOLOGY DESIGN FLOW

Hereafter, the methodology design flow will be introduced. A detailed description of the several
design steps that make up the methodology will be presented. However, the two most important
features, namely, the establishment of common parts and its surrounding proceedings, and the
mathematical definition of the cost function will be individually analyzed in Chapter 4 and Chapter 5

respectively.

Figure 13 shows the basic design flow of the proposed design methodology.

As suggested above, the design methodology is broadly an iterative procedure in which several

iterations at different levels are necessary to finally obtain the optimal implementation.

Firstly, a theoretical approach to these steps will be presented. This theoretical approach aims to

individually cover all the concepts involved in each of the steps and represents a manual application

52

3. DESIGN METHODOLOGY

1. Waveform
analysis

[2. Parameterization]

v

3. Reconfigurable
function
Implementation

v

4, Design
partitioning
(granularity

selection)

6. Physical

5. Cost analysis implementation

Optimal
Implementation

Figure 13: Partitioning methodology design flow

of the methodology. That is, a brute force approach to the methodology that covers all the design
possibilities at the expense of incrementing the design time. Bearing in mind that one of the
objectives of the design methodology is to simplify the design flow and reduce the design time, these

steps can be later simplified and automated as will be seen in Section 4.

3.1. Analysis of the waveforms to be implemented: "Co mmon functions/common

operators" technique

The first step and starting point of the design methodology covers the analysis of the waveforms or
communication systems to be implemented. This step, essential and common to nearly all the design
methodologies and design processes whatever the field of application is, aims to seek the basic

characteristics and factors of the target SDR.

Taking into account the degree of freedom that this methodology uses in order to optimize the design
and being the existence of common parts in the waveforms to be implemented the keystone of this
methodology, the main objective of this step is to gather information about the possible candidates to
be reused. On this purpose the design methodology uses a modified version of the general

53

3. DESIGN METHODOLOGY

"Common functions/common operators" technique [Alaus'09]. Figure 14, extracted from the original

presentation of this technique, gives an overview of the way the commonalities are chosen.

Common Function Common Operator
Standard _/ Layer /| Function /| Coarse | /| Fine
UMTS Application e — Fillering gram grain

GSM Source coding

(R

FFT MAG
1895 Transport y| Channel coding /z Cordic % LutT
DECT Network / Access FIRcellular \ Butterfly
Bluetooth Link
z 0

Physical é

Synchro

- Mapping

Figure 14: Common functions/common operators

The characteristics of both the original technique and the modified version are widely addressed in
next chapter. Nevertheless, after the application of the technique a list, named "Function
commonality list”, of the design parts, functions or functional blocks susceptible to be reused is
generated. This list contains all the parts in the design and, on the one hand, labels them as
"reconfigurable" if they are not common to any of the waveforms and hence have to be implemented
in a reconfigurable area. On the other hand, if the function or part of the design can be shared
between the different waveforms, it is labelled as "common" and will be methodology's work to
decide whether it has to be implemented statically or as a part of a reconfigurable area. It has to be
stated that all this analysis is carried out from a high-level point of view; that is, without performing a
deep analysis of the involved functions. The "function commonality list" is then completed with the
concrete functional characteristics of each function (e.g. input-output interfaces, number of

coefficients, generation polynomials... and so on) needed by subsequent design steps.

Finally, and also as a part of the information compilation procedure but in another design level, this
step collects certain information about the target FPGA (if known) and about the performance
requirements of the final application. Basic information like target clock frequency, maximum
available resources or maximum assumable reconfiguration time are passed to the next steps so that
the methodology can act consequently. In case any of the parameters is not determined, it is left in
hands of the methodology the election of a target value. This information is collected in the so called

"Requirement sheet".

3.2. Establishment of common parts: Parameterizatio n

Once the analysis of the waveforms to be implemented has been carried out and the list of functions
susceptible to be reused is generated, it is necessary to confirm and definitely establish the common
parts. As already presented in Section 6.2 of the state of the art, many functions present in SDR
systems have the same name; however, a deeper look at them reveals that they are not equal but

similar (different generation polynomials, different filter coefficients... etc.) and hence need some

54

3. DESIGN METHODOLOGY

modifications in order to be reused. Bearing in mind that the classification carried out in the first steps
has only considered function names for its generation, this in-depth analysis of the candidate

functions to be reused is necessary.

The design procedure that carries out the necessary modifications in these functions to make to
make them reusable has been named "Parameterization”. This name responds to the fact that these
functions have to be able to change some of their parameters on-the-fly, that is, they have to be
parameterizable. 4 addresses "Parameterization" in detail

Chapter and presents several

parameterized functions that have been developed during this research work.

Definitively, the aim of this step is to analyze the functions labelled as "common" in the "function
commonality list" and decide whether they are ready to be reused directly or they need to be
parameterized. In this second case, the design of both, the straightforward and parameterized
versions of each function is carried out over rapid prototyping tools and the necessary information, in
terms of reconfiguration time and amount of FPGA resources used, is generated and added to the
"Function commonality list". This data can be generated in various ways depending on the required
accuracy. On the one hand the resource estimators available in rapid prototyping tools can be used.
These estimators offer a rough estimation of the resources used by a certain function or design prior
to any code generation or synthesis at the expense of a lower accuracy. On the other hand, the
complete design flow can be executed. It is a time consuming task but the performance of the
automatic code generation, synthesis and mapping (place and routing does not modify the resources
needed) delivers exact results. Figure 15 shows a comparison between the estimated and exact
results obtained for the IFFT function of the WiMAX standard used in the multi-standard modulator
presented in Chapter 6. The accuracy of the estimation varies for each design, as the rough
resources estimated for each function can be optimized by the synthesis tools. These tools are able
to apply certain resource optimisation techniques such as SLICE packaging, equivalent register

removal or unused logic trimming that lead to reduction in the overall resources used. However,

Device Utilization Summary 1
Logic Utilization Used Available Utilization Mote(s)

MNumber of Slice Flip Flops 2,902 135,168 2%

£2) Resource Estimator (Xifink =1alx| Number of 4input LUTs 2,581 135,168 1%

Slices | 2334 Mumber of occupied Slices 2,082 67,584 3%

FFe | 3440 Mumber of Slices containing only related logic 2,092 2,082 100%:

BRAMs | 2 Mumber of Slices containing unrelated logic i} 2,092 0%

L |3062 Total Mumber of 4 input LUTs 2,739 135,168 2%
MNumber used as logic 1,331
i l = Number used as a route-thru 158
Mults/DsP4ss | 46 Number used as 16x1RAMs 232
TBUFs Jo Mumber used for Dual Port RAMs 336
T~ i somsm MNumber used as Shift registers 682

Number of bonded I0Bs 19 960 1%

Estimate options [Estmate ~| Estmate Number of BUFG/BUFGCTRLs 1 2 3%
Number used as BUFGS 1

£ | Sl | Feb | Apply I Number of FIFO16/RAME 165 2 288 1%
Number used as RAMB 16s 2

Number of DSP4gs 45 96 47%
Average Fanout of Non-Clock Mets 2.08

Figure 15: Resource estimation vs. Implementation results

55

3. DESIGN METHODOLOGY

during the implementations carried out in this research work a maximum error of 15% has been
detected between the estimated and the real values. This is an acceptable accuracy and

consequently the estimated values can be used in the design methodology.

It is noticeable that the maximum clock frequency is not taken into account in this analysis although it
is one of the important factors in the system. This factor cannot be estimated and is highly dependent
on the final physical implementation; consequently, it will be addressed later in the design
methodology. Besides, the reconfiguration time is also a factor that cannot be directly obtained
neither from the estimators, nor from the implementation results. Its real value can only be measured
on the final system. However, it can be estimated from the resource utilization value. Chapter 5 will

present the estimation function used on this purpose.

Obviously, both in this design step and in the next one, in which the implementation of the functions
labelled as "reconfigurable" is carried out, the full potential that rapid prototyping tools offer is
exploited. Functional simulations and performance tests are carried out in order to ensure proper

operation of designs.

3.3. Reconfigurable function implementation

As mentioned above, once the "common" functions have been implemented, both in their
straightforward and parameterized versions, and their relevant information compiled, the same
procedure has to be carried out for the "reconfigurable" functions. In this case, obviously, there is
only one version for each function as these functions do not need to be reused. Nevertheless, all the
other aspects commented in previous step (data generation procedures, use of rapid prototyping
tools and so on.) are applicable here.

To sum up, once the previous three steps have been completed, the SDR design is in the following

state (Figure 16):

e Allist of the different functions that make up the whole SDR has been generated (Function
commonality list). Each function has been classified as "reconfigurable" if it is not common
to any other waveform in the SDR or “common” if the function appears in more than one

waveform.

e A requirement sheet has been filled out with the basic characteristic that the final SDR has

to meet (Requirement sheet).

e All the functions involved in the SDR have been individually designed with rapid prototyping
tools. There is a straightforward implementation for the "reconfigurable” functions and a

straightforward and a parameterized version for the "common" functions.

e The Function commonality list is completed with the resource utilization and reconfiguration

time for each of these functions.

56

3. DESIGN METHODOLOGY

[1. Waveform

* “Function commonality list”
analysis]

* “Requirementsheet”

+ Straightforward and
[2. Parameterization] parameterized implementation

of the “common™ functions

3. Reconfigurable + Straightforward
function implementation of the
Implementation “reconfigurable” functions
4. Design
partitioning
{granularity

selection

6. Physical
5. Cost analysis ysica]

implementation

Optimal
Implementation

Figure 16: Design flow evolution and generated data

3.4. Design partitioning (granularity selection)

With all this information, the optimization loop that will determine the optimal static/reconfigurable
design partition starts. This loop involves the partitioning step, the design cost analysis performed in
the next step, and optionally, the final implementation presented in subsection 3.6. That is, steps 4, 5
and 6 on Figure 16.

This step's main objective is to generate all the possible partitions that can be obtained from the
combination of the two implementation possibilities (static or reconfigurable) of each "common"
function. Remembering the explanation made in Section 2 about the degree of freedom of the
methodology, between the whole reconfiguration of the waveform and the reconfiguration of just the
functions that change from waveform to waveform, there are several reconfiguration granularities
that must be analyzed. This step's mission is precisely the generation of the designs that stem from
these different granularities. It should be noted that facing the design of complex SDRs, the number
of possible partitions can grow exponentially. In that case it is not possible to generate all the designs

and other solutions are needed. Some of these solutions will be explained later in this section.

A base partition situated in one of the granularity ends is generated as a start point for this design
step. This initial partition looks for a minimum reconfiguration time so it implements all the "common”
functions statically, that is, with their parameterized version. From this point on, the rest of the

partitions are generated. Individually, each "common" function is passed from its static to its

57

3. DESIGN METHODOLOGY

reconfigurable implementation until the coarse grain reconfiguration is reached. This is the other
reconfiguration granularity end in which the whole waveforms are reconfigurable. Although the words
"generate” or "implement” have been used throughout this paragraph, it has to be stated that up to
now all the obtained partitions are just theoretical. Each partition is just composed of a list of the

status (static or reconfigurable) of the different functions.

Once each partition is generated, their optimality has to be evaluated. This objective is ultimately
carried out in the next step. However, the methodology offers here two alternatives: on the one hand
each partition's cost can be directly evaluated based on the already obtained factors; that is, based
on the factors estimated in steps 3.2 and 3.3. This option is straightforward and does not need
further actions prior to executing step 3.5. Consequently, a very fast evaluation is obtained but at the
expense of two main drawbacks: the available data has been obtained via estimation, hence it may
suffer deviations, and the maximum clock frequency is not available. This factor is dependent on the
final physical implementation and therefore it is not available at this point. On the other hand, the
second design option that the methodology offers considers the real physical implementation (step
3.6) of each partition prior to the evaluation of its performance. This way, the available data for the
evaluation is exact and the maximum clock frequency has already been obtained. Unfortunately, this
implementation process (made up of the HDL code generation and the synthesis, map, place and
route processes executed in the EDA tools) is a time-consuming task that can considerably slow

down the design process if it is executed many times.

In order to avoid this issue the methodology foresees two actions. On the one hand a mixture of both
the estimated and the real design evaluation procedures can be used. Initially a fast estimation can
be performed in order to discard the worst designs. Once a reasonable number of partitions are left,
the physical implementation can be executed in order to obtain the exact design factors. On the other
hand, the total number of partitions can also be reduced beforehand. The quantification of the
number of partitions that can be considered "reasonable” is dependent on the available design time.
However, from the experience gained in this research work, as a guideline, the complete

implementation of more than 10 designs is inadvisable.

Regarding the aforementioned reduction of the number of partitions, in the literature there are
several optimization algorithms that can face up with this issue and reduce the number of tests. The
Simulated Annealing algorithm (SA) [Kirkpatrick'83], the Stochastic Tunnelling (STUN) [Wenzel'99],
or evolutionary algorithms are some of them. Unfortunately, their inclusion in the design methodology
is out of the scope of this work, which uses a brute force algorithm to tests all the possibilities. As will
be explained later within the future work section, the inclusion of this kind of algorithms in the design

methodology would be really interesting.

3.5. Design cost analysis via cost function

This step is in charge of quantitatively evaluating the optimality of each of the partitions generated in
the previous step. On this purpose, a cost function that computes a weighted sum of the most

important factors has been designed. Chapter 5 will analyze all the aspects related with this cost

58

3. DESIGN METHODOLOGY

function and its application, however, as an introduction, a conceptual, basic version of the cost
function can be seen in the equation (1) below:

COSt == Resources + TRECONF. + TCLK_MIN. (1)

As can be seen, the function takes into account the three factors that, due to their relevance and
variability, have been identified as important in Section 6 of Chapter 2: the design size (measured via
the FPGA resource occupation), the reconfiguration time and the maximum clock frequency. Please
note that the minimum period, that is, the inverse of the maximum clock frequency (2), is used in the
third term of the cost function. The maximum clock frequency is the usual way of representing this
factor (e.g. in the reports generated by synthesis tools), moreover, it is the way that is used along this
document. However, the use of the minimum clock period suits better in the cost function, as this
way the three terms that are evaluated need to be reduced in order to obtain a lower cost. Therefore,

this small transformation has been carried out.

1

- @
Ferk max.

TCLK_MIN. =

Furthermore, harnessing the computations carried out by this cost function, this step checks that
each design fulfils the performance requirements collected in step 3.1. Even if a design obtains the
lowest cost, in case any of the design factors exceed the maximum established limits it has to be

discarded or, at least, re-implemented.

Finally, relative to the afore-mentioned possibility of estimating the cost of a partition prior to its final
implementation, another consideration has to be taken into account. The same cost function is used
in both, the real and the estimated case; however, bearing in mind that certain factors are missing in
the estimated case, a procedure for computing them is needed. Therefore, in addition to the general
cost function, several estimation functions are available within this step in order to calculate these

missing factors. These functions will also be presented in Chapter 5.

3.6. Physical implementation

Once an optimal design partition has been elected, or as part of the aforementioned optimization
loop made up of steps 4, 5 and 6 of Figure 13, the final step is the physical, real, implementation of
this design. This step carries out all the necessary procedures in order to obtain the base bitstream
that holds the static parts and the partial bitstreams in order to perform the functionality changes.
These procedures combine two design paradigms. On the one hand, bearing in mind that rapid
prototyping tools do not support dynamic partial reconfiguration in their standard design flow, some
actions and checks have to be performed so as to make the HDL code generated by these tools
compatible with it. On the other hand this step covers the standard dynamic partial reconfiguration
design flow [XILINX'11c, XILINX'11d].

59

3. DESIGN METHODOLOGY

Addressing the compatibility of rapid prototyping tools with dynamic partial reconfiguration two main

issues have to be resolved. Both of them are related with the automatic code generation carried out

by rapid prototyping tools, as it entails a lack of control over this code:

Partial design homogenisation: Xilinx's standard dynamic partial reconfiguration design
flow is based in the Plan Ahead software as will be seen later in this section. This design
flow uses a "Top" design in which all parts of the design are initially instantiated in the form
of black boxes. That is, only the high level definitions of the functions/parts of the design
are initially instantiated. Dealing with the reconfigurable parts, a unique black box per
dynamically reconfigurable area (PRA) is instantiated. It is later in the design flow when as
many dynamically reconfigurable modules (PRM) as different functionalities for this
reconfigurable area are linked to it. That is, a single PRA is present in the "Top" design but,
there are several PRMs to describe its different functionalities. Consequently, it is
compulsory that every PRM and its corresponding PRA has the same name and same
connections. Bearing in mind the possible different naming that can be used by rapid
prototyping tools it is necessary to create a wrapper file for each PRM generated with these
tools. In this wrapper file the original design is instantiated and the entity name and signal

towards the external world are homogenized. Figure 17 shows this process.

Port A

PRM2Z

P WrapperPRAL
-
- PartA PortC
- PRM1
7 | []
r”
I“’
‘*’ v
- Port B Port D
4"
-~ s
System PortE
Port A Port C Generator
clk (- PortF
PortB Port D
I TOP PRAL —
ENTI WrapperPRAL
PortE
(black box) —

PortC

Port F

Part B

}
> N

Systemn
Generator

Port D

PortE

Port F

Figure 17: PRM homogenization procedure detail

60

3. DESIGN METHODOLOGY

* Non-reconfigurable resource detection: As has been already explained in Section 3.3.3 of
Chapter 2, due to FPGA constructive limitations there are several resources that cannot be
reconfigured. Taking into account that rapid prototyping tools are not aware of this
limitation and that they usually do not allow such a low-level design control, it is necessary
to examine the generated code looking for the use of these resources. In case they are
used, some modifications have to be carried out in order to remove or replace them. If they
are required by the design, the generated code has to be modified so as to move the non-
reconfigurable resource to the static part while preserving its connection. This way this

resource remains static but the reconfigurable design makes use of it.

The Plan Ahead software is the keystone of Xilinx's dynamic partial reconfiguration design flow. This
software is in charge of collecting the source files of all the parts involved in a particular
reconfigurable design and generating the necessary files for carrying out the partial reconfiguration.
This design flow is standardized and perfectly detailed in [XILINX'11d] hence does not need further
introduction in this section. Just certain characteristics related with the proposed design methodology

are to be explained.

» The physical definition (size, shape and position) of the reconfigurable areas within the
FPGA is one of the procedures carried out in Plan Ahead. As already mentioned, several
design factors such as partial bitstream size or maximum clock frequency are dependent
on this definition, therefore it requires special attention. In order to appropriately adjust the
size of the reconfigurable areas, Plan Ahead offers a tool that estimates their resource use
percentage (Figure 18). Considering that an excessive resource occupation may bring
about undesired effects in the maximum clock frequency, a trial and error process is
advisable. Unfortunately, it is necessary to perform the whole implementation process in
order to obtain the timing information. Consequently, to avoid delaying the design process,

this adjustment should only be carried out once a concrete partition has been elected.

| X Project Summary. X | & Device x| 0o x

Pblock Properties - 0O =
- [1
S5 | 20 pblock_rs_wimax_task_inst
2 [Physical Resource Estimates -
2 Site Type | Available | Required | 5o uti
4 1024 301 30
FO_LD 1024 208 21
SLICEL 258 75 30
SLICEM 256 76 30
FIFO16 8 o o
| RaMB15 G 2 25
~Carry Statistics
— = i —
&l | Li [=]
General | Statistics | Instances | Rectangles | Attributes | |
] — D=

Figure 18: Detail on Plan Ahead floor-planning and resource percentage estimation

61

3. DESIGN METHODOLOGY

» Regarding this fine grain design adjustment, Plan Ahead includes several implementation
strategies that are able to optimize the final implementation in different ways. Each strategy
modifies the internal algorithms of the synthesis tools looking for a speed, area o balanced
optimization. The obtained results, although not statistically significant compared to the
ones obtained by the design methodology (please note that these optimization strategies
provided by Plan ahead should not be confused by the optimization strategies considered
in the proposed design methodology), permit a further improvement of the design
performance. As before, this kind of optimization is only advisable in the latest design steps

in order to reduce the design time.

» To conclude, we would like to remark that this tool generates several reports where all the

necessary information related with design factors to be measured is present.

4. METHODOLOGY AUTOMATION

One of the objectives of this methodology looks for the reduction of the design time of Software
Defined Radios within the proposed design framework made up of FPGA dynamic partial
reconfiguration and rapid prototyping tools. Therefore, the aforementioned design steps are intended
to be automated using software tools, reducing, as far as possible, the necessity of manual work.
Unfortunately, due to the necessity of limiting the scope and duration of this research work, only the
basics that this automation should meet have been established and certain tests on its feasibility
carried out. As it will be later presented within the "Future work" section (4) of Chapter 8, the
complete development of this automation would be the direct continuation of the work presented by

this thesis.

Two of the characteristics of the proposed design methodology and design framework are precisely
the key point of the intended automation. The fact that many functions are very similar to each other
in different radio communication systems and the use of rapid prototyping tools in the function design
permit on the one hand the reutilization of functions between different designs. A data base can be
generated into the libraries of the aforementioned tools, hence being possible to reuse previous
implementations. This way, time consuming tasks such as function design or performance
measurements can be avoided. On the other hand, these tools also offer some computing capacity
and the possibility of executing user-defined programs; therefore, the design partitioning procedure
and the cost analysis can also be carried out automatically. Finally, taking into account the possibility
of executing many of Xilinx's tools via command line [XILINX'11b], the automation of the final
physical implementation of the designs is also feasible. Nevertheless, the next subsections will

further explain the intended automation.

4.1. Software tools for the automation

The use of "software tools", generically, has been presented as the base for carrying out the
automated version of the design methodology. However, tests on two concrete types of tools have

62

3. DESIGN METHODOLOGY

been performed in order to check their suitability for this work: Matlab/Simulink and Domain Specific
Language (DSL) tools [Mernik'05]. Both tools are intended to act as high level design tools in the
proposed design methodology and design framework. That is, these tools' main task is to
automatically carry out the steps that make up the design methodology and to control the rest of the
tools that take part in the design (rapid prototyping tools, tools for synthesis and implementation of
FPGAs... etc). Consequently, it has been checked that these tools, on the one hand, are able to
execute used defined code, (e.g. code programmed in C++ that would be in charge of evaluating the
cost function), making remote calls to the FPGA synthesis tools and so on. On the other hand, the
tools also have to be able to automatically generate designs using the format required by rapid

prototyping tool.

Matlab, and its graphical programming environment, Simulink, is the first tool that has been
evaluated. Matlab is able to execute both, scripts programmed in its own language and C/C++
compiled functions or programs. Consequently, it is able to carry out those steps in the methodology
that require mathematical computations or the execution of algorithms. Besides, System Generator,
one of the rapid prototyping tools used during this research work, is precisely executed over
Matlab/Simulink. Therefore, it is possible to control this rapid prototyping tool from the
aforementioned scripts. Moreover, dealing with the need of automatic generation of designs in
System Generator, Matlab provides certain functions that are able to manage this design procedure.
Actions such as inserting a block from a library, interconnecting blocks or editing block parameters

can be carried out from Matlab.

DSL tools are the second possibility that has been evaluated. These tools able to generate a
domain-specific language, that is, a programming language or specification language dedicated to a
particular problem domain. In our case this problem domain could be summed up as the
implementation of Software Defined Radios over rapid prototyping tools. DSL tools are some kind of
rapid prototyping tool and are usually provided with a graphical interface that permits a simple and
intuitive programming of the target application. Afterward, these tools automatically generate the
end-point implementation of this application in the selected programming language. The main
particularity of this type of tools is that the output language is customizable. Regarding the
aforementioned two characteristics that are needed for the automation of the methodology, DSL
tools are also able to execute user-programmed C/C++ code; hence the consequent methodology
operations can be carried out. In turn, the code generation possibility, that constitutes the key point of
this type of tools, can be harnessed in order to generate the designs in the corresponding rapid
prototyping tool. Focusing on System Generator, the generated models with this tool (which are
really based on Simulink models), are stored in files with extension .mdl. These are text files which
store all the information about the graphically created model. Therefore, the language in which this
description is carried out can be used as output language of the DSL tool. Definitely, DSL tool are

also able to automatically generate designs in the selected rapid prototyping tool.

63

3. DESIGN METHODOLOGY

4.2. Automated design methodology

The automated version of the design methodology is intended to cover the following design steps. In

should be noted that the order of certain design steps may change due to the automation:

- The design process would start generating, in the selected high level tool, a simple
description diagram that contains the functions present in each waveform. These
diagrams, that would be similar to the ones presented in Figure 26, Figure 27 or Figure 28,
just contain black boxes (i.e. empty boxes) and the name and characteristics of the

corresponding functions.

- Next, this diagram would be parsed and the analysis planned by the first two steps of the
design methodology (namely: analysis of the waveforms and establishment of the common
parts) carried out. It should be noted that the aforementioned capability of executing used-
defined code, which is required for high level tools, would enable the automation of these
processes. During the process of analysing the different implementation possibilities of
each function, the already available information of previous designs would be used. As will
be seen later, once a successful design is carried out, the generated function
implementations would be stored in the library of the rapid prototyping tools so that they
could be used in the future. Dealing with the implementation of the functions (both in their
parameterized or waveform-linked version), if the implementation of a certain function is
not available in the library, the tool would ask the designer to introduce it. Obviously, this

process would be carried out by hand with the corresponding rapid prototyping tool.

- Once the analysis is carried out, the graph model of the system would be generated.
Please note that the explanation of what this graph model represents will be later
presented in Section 2.1 of Chapter 4. Besides, the "function commonality list" and the

"requirement sheet" would also be automatically generated at this point.

- Taking into account that step number 3 in the design methodology ("Reconfigurable
function implementation") would have already been covered by previous steps, the
optimization loop (made up of steps 4, 5 and 6) could start. The generation of the possible
partitions and the evaluation of their cost via the cost function would be automatically
carried out in this step. These procedures would also be carried out by the execution of
user-defined code. Besides, the possibility of using optimization algorithms such as
Simulated Annealing, which has been presented in Section 3.4, would also be introduced

in this design step.

- In regards to the final, physical implementation of the design, the high level tool would be
in charge of both, the generation of the designs in the corresponding rapid prototyping tool
and the management of the process of VHDL code generation and final synthesis and
implementation. On this purpose, the blocks available in the libraries would be

64

3. DESIGN METHODOLOGY

automatically placed and connected in a new design, (based on the information introduced

in the first step) and the necessary implementation programs called-back.

- Finally, once a successful design would have been carried out, those new functions that
would have been implemented would be stored in the library. This way any future design
could make use of them. Besides, information on the design factors of these functions (i.e.
FPGA resource consumption or reconfiguration time) would also be stored in a database
also to be used by future developments. It should be noted that as the number of designs
carried out with the automated design methodology increases, the available functions

within the library would be bigger and the benefits of using it would be enhanced.

To sum up, it has to be remembered that the abovementioned automated steps are just a proposal.
Further work and analysis on the concrete drawbacks and limitations of this automation is needed.

Nevertheless, the basics of the proposed automation seem, a priori, feasible and highly interesting.

5. SUMMARY

The design flow of the proposed design methodology has been presented in this chapter. Initially, the
degree of freedom over which the methodology acts has been introduced. Later, the basics of the
steps that make up the design methodology have been thoroughly explained. Finally, an introduction
to the intended automation of the methodology has been carried out. Unfortunately, it has not been
possible to develop this automation and remains as a future work. The next chapters will individually
address the details of the key steps within this methodology, i.e. the establishment of common parts
and the evaluation of system's performance via a cost function. Besides, a use case example of the
application of the methodology will be presented with the implementation of a multi-standard

modulator.

65

Chapter 4

The 'Common functions / common operators'

technigue and parameterization

4. 'COMMON FUNCTIONS / COMMON OPERATORS' TECHNIQUE AND PARAMETERIZATION

4.The 'Common functions / common operators'

technigue and parameterization

1. INTRODUCTION

The keystone for reducing the undesired reconfiguration time within any implementation using FPGA
dynamic partial reconfiguration resides in the reduction of the amount of resources to be
reconfigured. On this purpose, and focused on the implementation of Software Defined Radios, the
common parts or functions of the different waveforms to be integrated in the SDR can be
implemented statically and hence not reconfigured. Consequently, a proper identification of these
common parts is crucial as it has already been stated in the methodology design flow.

This chapter thus introduces the "Common functions / common operators" technique. This well
known technique precisely aims to "search for and find all the commonalities between several
different standards in order to optimize the resources during the equipment’s implementation and/or
the execution phases” [Alaus'09]. The original and generic technique is firstly presented and later
adapted for its use on the design framework presented by this thesis. Subsequently, the second part
of this chapter addresses the necessity of "Function parameterization”. This procedure is in charge of
making the similar parts of functions in the design really compatible. Therefore the chapter concludes
with the presentation of the basics of function parameterization and with examples of several

functions that have been parameterized throughout the development of this research work.

2. THE ORIGINAL TECHNIQUE

In the context of identifying the common aspects of the mobile communication modes, the common
functions technique was firstly introduced by Rhiemeier in 2002 [Rhiemeier'02]. Subsequently,
several authors evolved and improved the concepts proposed by the original technique and in 2006
Moy et al. presented the common operator approach [Moy'06]. Research and use of these two
techniques, however, is still an ongoing task nowadays looking for the improvement of SDR

implementations.

The original common functions technique addresses the search of commonalities from a, if you will
forgive the repetition, function level. It analyzes the similarities between several communication
systems in terms of high level data processing functions such as coding, equalization,
synchronization and so on. This way, functions at this granularity level are the ones proposed to be
reused. Subsequent research considered this technique too fixed, as the functions are highly
dependent on the communication standards. Therefore, the common operators technique was
developed in order to find similarities in a finer grain level. This technique aims to find low level
operators, based on structural aspects, which can be reused by any of the functions within the SDR.
That is, the reuse of the common operator does not only happen when a standard change happens

but also during a normal execution when different functions are called. From an operational point of

67

4. 'COMMON FUNCTIONS / COMMON OPERATORS' TECHNIQUE AND PARAMETERIZATION

view, the common operators technique breaks up the functions targeted by the common functions
technique into the operators that make them up. This operation can be performed several times
hence obtaining common operators also in different functional levels, e.g. FFT, butterfly and MAC
unit. Figure 19, presented in [Godard'07] perfectly shows this multi-level organization. It should be
noted that the technique considers the possibility of identifying several implementation possibilities

for each function. This way the probability of finding a common operator is increased.

Function Operator
I‘l‘l Standard Layer I‘.‘" Function /| Basic ;.'f Coarse ‘.‘"‘ Fine
uMTS Appiication HMI function grain grain
GSM 2 Source coding Screen gestion FFT A
1 ; E
1595 Transport Channel coding / Correfator // Cordic =
el i Access Eikes ;4/ FIR cellular Butterfly
Bluetooth Link Synchro Mapping /
Physical Modulateur >< Carmier synchro /

Figure 19: Multi-level organization of possible common operators

Considering the common operators technique just as an evolution of the common functions one, the
approach they use to identify or create possible commonalities can be extended to both of them.
Ultimately, this technique uses a graph model for the identification of these commonalities and an

optimization process in order to find the most relevant ones.

2.1. Graph model

The process of successive function or operator breakdown is carried out, with a graphical approach
by hand. A graph, with several layers depending on the granularity of the considered
function/operator, is gradually generated. The graph is made up of "nodes" (representing the
processing elements) and "hyperarcs" (showing the dependencies between the "nodes" within the
different levels). These dependencies between the so called "parent nodes" and the nodes placed in
underlying levels ("descendant nodes") are arranged in two ways. On the one hand, the OR hyperarc
(represented by a direct arrow) indicates that only one of the descendant nodes is necessary for the
implementation of the parent node. On the other hand the AND hyperarc (represented by an inverted
Y) means that all the descendant nodes are necessary. It should be noted that a certain node may

have both AND an OR dependencies.

The graph generation starts with the placement of the highest-level nodes, i.e. the communication
standards to be implemented. Then, each of the nodes can either be directly implemented in the
system or split into the several lower-level nodes that make up its functionality. Note that the
functionality of a certain node may not only be achieved in a single way (this circumstance is

precisely represented by the OR hyperarcs). Then, the development of the graph continues

68

4. 'COMMON FUNCTIONS / COMMON OPERATORS' TECHNIQUE AND PARAMETERIZATION

[Standard 81] [Standard S2] [Standard 831

Figure 20: Graph of a generic tri-standard SDR

progressively splitting each node into simpler functional modules until nodes with indivisible

operators are reached.

Figure 20 gives an overview of the generated graph of a generic, tri-standard, SDR implementation.
The multi-level organization of the nodes and the AND and OR hyperarcs can be easily observed.
Regarding the hyperarcs and by way of example, Standard S1 could be implemented through any of
the nodes Al, B1 or A2. However, S3 requires both A4 and A5 for achieving its functionality. In turn,

S2 could be implemented either via A2 and A3, or simply through A4.

2.2. Optimization process

Once the graph is completely generated and the possible common operators identified, the
technique aims to select the optimal ones. The optimization problem that arises is to be solved in
terms of "monetary cost" and "computational cost". Due to the generic nature of this technique, it is
not oriented towards any concrete implementation technology. Consequently, the definition of both
the monetary and computational cost is a complex task. The authors propose a generic cost function
that evaluates these two factors. A certain common operator is intended to be "installed" (in form of
HW accelerator for a DSP, hard macro for a FPGA... and so on) only once in the final
implementation. However, it can be called as many times as necessary by the higher level modules
or functions. Consequently, the monetary cost (e.g. FPGA resources or ASIC development cost) is
computed only once by the cost function while the computational cost is affected by the number of

calls to the operator under scope.

3. TECHNIQUE ADAPTATION TO THE CURRENT DESIGN FRAMEWORK

As it can be observed, the research area that the above presented technique covers has several
similarities with the objectives that our design methodology pursues. Unfortunately there are two
characteristics that make it unsuitable for our design framework. On the one hand there is the

69

4. 'COMMON FUNCTIONS / COMMON OPERATORS' TECHNIQUE AND PARAMETERIZATION

general nature of the technique, in terms of implementation technologies. The technique would need
further development to fit with the particularities of FPGA dynamic partial reconfiguration and rapid
prototyping tools. On the other hand, the software-like orientation towards a single implementation
and multiple executions of the common operators is totally opposite to the pipelined orientation
achieved by rapid prototyping tools. In this respect, the fine grain granularity achieved by the
common operators technigue, addressing basic operators such as shift registers or multiply-
accumulate units, seems also excessive and inefficient for our approach. In other words, due to the
characteristics of our proposed design framework, the granularity addressed by the original common

functions technique is the one that most closely resembles our approach.

Consequently, only certain characteristics of these techniques are ported to our SDR design
framework and design methodology. Namely: the graphical approach for the determination of the
possible commonalities, and the concept of multiple possible implementations of a certain function.
This last concept is the one addressed by the AND and OR hyperarcs. Besides, although the fine
granularity achieved by the original common operators technique is not considered in our approach,
the division of a certain function into lower-level nodes is harnessed in the parameterization of

functions. This fact will be covered in the next section.

Definitively, the first step in the proposed design methodology, i.e. the waveform analysis step, firstly
generates the aforementioned graph. This step, in the non-automated version of the methodology is
carried out by hand, that is, the designer has to generate the graph based on its experience or in a
search within the state of the art. However, in other to avoid the use of paper and in order to obtain a
clear representation, generic drawing applications (e.g. Microsoft Visio) can be used to draw the
graph. Moreover, the graphical interface that most rapid prototyping tools have can also be
harnessed on this purpose, hence avoiding the use of more programs. Nevertheless, it should be
remarked that just the drawing possibilities (boxes, arrows, text... etc.) of these tools are to be used

on this step.

As in the original technique, the graph generation starts with the placement of the standards to be
implemented in the SDR. Subsequently, the progressive function simplification procedure is carried
out. In our approach, the functions present in the libraries of the concrete rapid prototyping tool to be
used, are the lowest level ones to be considered. This leads to final nodes still representing quite
high-level functions. It also should be noted that, generally, this is an experience-based process. The
knowledge on the different possibilities of implementing a certain function or the "descendant nodes"
that make up the functionally of a "parent node" have to be identified in literature or obtained from

personal experience.

Once the graph is completed, the commonalities are identified by seeking the nodes (i.e. functions)
used by at least two waveforms. Besides, also the stand-alone functions that are only present within
a single waveform are indentified. With this information, the "function commonality list" presented in
Chapter 3 and available in Annex 1 can start being filled. First of all, just the names of all the
functions or operators identified in the design are listed. Afterwards, each function is labelled as

"common" if it is present in more than one waveform or "reconfigurable” if it is used only once and

70

4. 'COMMON FUNCTIONS / COMMON OPERATORS' TECHNIQUE AND PARAMETERIZATION

hence has to be implemented in a reconfigurable area. Finally, in other to ease the parameterization
step presented later in Section 4, the "function commonality list" is completed with the concrete
functional characteristics of each function (e.g. input-output interfaces, number of coefficients,
generation polynomials... and so on). It should be noted that if a certain "common" function has
different characteristics in each waveform, a piece of information per each different set of

characteristics has to be filled.

If the methodology is automated as explained in Section 4 of Chapter 3, the advantages of rapid
prototyping tools can be harnessed in order to ease the deployment of the common
functions/operators technique. Briefly, taking advantage of the possibility of storing already
implemented functions in the libraries of the rapid prototyping tools, the automated methodology
uses this information in order to identify the commonalities. In this way, the graph generation is
automatically carried out, based on the information stored beforehand. Just introducing the names of
the high level functions present in each waveform, the tool makes a search within its libraries looking
for already used implementation possibilities. This implementations contain the information or both,
the lower-level functions needed (AND hyperarcs for the graph) and the different implementation
possibilities (OR hyperarc). In case there is not a previous implementation of a certain function, the

tool requests this information from the designer.

4. FUNCTION PARAMETERIZATION

As already explained in Chapter 3, the functions identified as "common" in the previous design step
still need to be analyzed to decide whether they are suitable for being reused among different
waveforms or not. This is due to the change of internal characteristics that a certain function has
when compared across different communication standards. In order to be reused, that is, in order to
be implemented statically, the target function has to permit the change of certain parameters on
runtime. The process of providing a certain function with this possibility is known as
"parameterization”. At this design step, the "function commonality list" already has the necessary
information on the functional characteristics required by each function in each standard. Therefore,
the function parameterization design steps aims to analyze this information and design each function
so that it admits the necessary changes in its characteristics. Besides, and regarding the ultimate
target of deciding if a certain function has to be implemented statically or in a reconfigurable area,

this design step is also in charge of designing the reconfigurable version of each function.

Consequently, in case the function design has to start from scratch, that is, in case there are no
previous implementations from other designs, the non-parameterized versions of each function are
designed firstly. These designs (one per each different set of characteristics) are carried out
harnessing all the possibilities offered by rapid prototyping tools. Bearing in mind the reconfigurable
character of these implementations, the designs should look for the smallest possible form-factor.
Information on the different implementation possibilities can be extracted from the graph generated in

the previous design step. Once the designs are completed, the information on FPGA resources used

71

4. 'COMMON FUNCTIONS / COMMON OPERATORS' TECHNIQUE AND PARAMETERIZATION

and reconfiguration time has to be generated (or estimated) and added to the "Function commonality

list".

The design flow continues then with the design of the parameterized version of each function. This is
usually an experience-based step. However, the information compiled both in the "Function
commonality list" and in the function graph is highly valuable. On the one hand the "function
commonality list" provides data on the type of characteristics that have to be parameterized.
Consequently, the designer can start evaluating the best implementation structure so as to ease this
procedure. On the other hand, the function graph, if we focus on a particular function, offers
information on the operators or sub-functions that make it up. Although this methodology does not
consider further action with these operators, the required change of characteristics usually only
affects one of the operators while the rest remain unchanged. Therefore, the design of the function
can be developed from this point of view. That is, the designer can identify the operator that needs to
be changed and generate an appropriate implementation to support it. The multiplexing based

parameterization presented later in Section 4.1 is an example of this approach.

To conclude, just as in the design of the non-parameterized versions of the functions, once the
design of the parameterized versions is finished, the corresponding information on the factors that
describe their performance have to be added to the "Function commonality list". It should be also
noted that the function parameterization step considers two exceptions to the above explained
procedure: the direct use of the common function and the impossibility of carrying out the
parameterization. On the one hand two waveforms may use exactly the same function. In that case,
parameterization is not necessary and the function can be directly used. On the other hand, certain
functions may not be parameterized. Due to their implementation structure, or due to design
limitations of rapid prototyping tools, the parameterization of this type of functions would imply a
complete change of the function. Consequently, the benefits achieved in terms of reconfiguration
time would not be enough compared with the increase suffered by resource utilization. In such a
context, the designer can directly change function's status in the "Function commonality list" to
"Reconfigurable” or may continue the design process and leave to subsequent design steps the

rejection of the static implementation.

4.1. Parameterization techniques

During the development of this research work, three main parameterization techniques have been
identified:

« Direct parameterization on rapid prototyping tools' functions. Several functions available in
the libraries of rapid prototyping tools already provide the possibility of changing certain
parameters on runtime. Focusing on System Generator [XILINX'12c], and by way of
example, both the Fast Fourier Transform block and the FIR Compiler provide this
possibility. On the one hand it is possible to change the transform length of the FFT block.
On the other hand the filter coefficients of the FIR compiler can be reloaded on runtime.

Subsection 4.3 will later show concrete examples of these implementations.

72

4. 'COMMON FUNCTIONS / COMMON OPERATORS' TECHNIQUE AND PARAMETERIZATION

Multiplexing based parameterization. As stated before, it is usual that the required change of
characteristic within a function is restricted to one of the operators that make it up.
Therefore, a simple functional way of achieving the parameterization consists on the
multiplexing of that operator. That is, two different implementations of the changing part of
the function to be parameterized are implemented and multiplexed, while the rest maintains
its original structure. This dual implementation and multiplexing is one of the responsible for

the size increment of the parameterized functions explained in Section 6 of Chapter 2.

Direct ICAP access parameterization. In order to lessen the aforementioned size increment,
FPGA dynamic partial reconfiguration can be harnessed in certain functions. Although
function parameterization aims to maintain common functions implemented statically, hence
reducing reconfiguration time, it is possible to avoid the use of multiplexers at very low cost
by using localized dynamic partial reconfiguration. In some functions, the characteristic that
changes from one waveform to another is stored in resources that are directly accessible via
ICAP. Consequently, instead of multiplexing the different versions of the target
characteristic, it can be overwritten by the ICAP. By way of example, and further explained
in the next subsection, the interleaving pattern within an interleaver is usually stored in a
BRAM. BRAMs' content being one of the resources easily accessible via ICAP, it is not
necessary to multiplex two BRAMSs in order to have two different interleaving patterns. Just
overwriting the BRAM content with the new pattern the goal is achieved. Besides, due to the
small amount of data to be transferred, the reconfiguration time is minimum. Figure 21
shows the addressable resources within the FPGA and the way of generating the FAR
(Frame Address Register) addresses [XILINX'09] needed to perform this direct access. In
regards to the usual, time consuming, design flow of dynamic partial reconfiguration, note
that this parameterization technique does not modify any of the routes of the design.
Consequently it is not necessary to follow this design flow and the implementation is

straightforward.

£ £
ROW/='1] S
i o -4 e -3
- 3 5 V] 5]
5 ’ 2 : 2 : 3
o & m 8 @ @ & o & & &
F 6d d8gd dg3 38 g &
ROW=0 — 1 B
Block
<z lo|o o|lo|o|o oflo|o oo 1 1 2 2
¥ Type
L
] E" o1 1213|1415 1819 20 27| 28 0 2 0 2 |Major
ROWEG | 5 : ; Address
i J E oo o|o oo o|lo|o oo o o o 0 | Minor
. 1 E | to| to to|to|to| to to| to | to to| to to to to to
P 3 |a2g] 2029|220 21| 20] 21 21| 29 19 19 63 63 | Address
.8
ROW=1 —1 L1 N .
i

Figure 21: Virtex-4 frame addressing scheme (XC4VFX12 part)

73

4. 'COMMON FUNCTIONS / COMMON OPERATORS' TECHNIQUE AND PARAMETERIZATION

4.2. Sample time parameterization

In another design level, another characteristic that is susceptible to be parameterized and that needs
a detailed analysis is the sample time. Due to the pipelined architecture generated by rapid
prototyping tools, multi-rate designs are very common. In these designs, each function in the
processing chain may work with a different sample time depending on the data flow generated by its
surrounding functions. Consequently, although a certain function is common to several waveforms, it
may use a different sample time in each of them, hence also requiring the parameterization of this

feature.

Bearing in mind that clock management is essential in any synchronous logic design, FPGAs are
provided with dedicated clock nets. These nets deliver clock signal properly along the whole device.
Therefore, carrying out a manual multiplexing of the different clocks needed by a certain function it is
not a good design practice. The introduction of a logic element such as a multiplexor makes clock
routing use the normal routes within the FPGA, hence suffering a performance loss. The ideal
solution for achieving sample time parameterization lies in the use of Digital Clock Managers (DCM).
These resources are able to manage a proper generation of clock signals with different frequencies.
Unfortunately DCMs are neither partially reconfigurable, nor directly parametrizable in some FPGA
families [He'12]. Therefore, for those families in which direct runtime parameterization is not possible

an alternative solution is needed.

To achieve this, the particular way of addressing multi-rate designs by System Generator has been
harnessed. In order to avoid an excessive use of the dedicated clock nets in this type of designs,
System Generator bases multi-rate design in the use of clock enable signals. This design practice
uses a single clock signal with a frequency that is the greatest common divisor of the different
frequencies present in the system. Besides, a clock enable signal is also delivered to each element
indicating when the general clock is valid. These signals are precisely the ones that generate a
virtual multi-rate system. Taking into account that these clock enable signals are implemented
through the normal routes of the FPGA multiplexing them does not generate any further drawback.

Figure 22 shows a functional diagram of the proposed solution for sample time parameterization:

clk
System ce_1
Generator ce_2 = ce Parameterized
clock C function
ce_ 3 <
manager
sel

Figure 22: Solution for sample time parameterization

74

4. 'COMMON FUNCTIONS / COMMON OPERATORS' TECHNIQUE AND PARAMETERIZATION

Clock management is usually a hidden characteristic in rapid prototyping tools. Therefore, the
proposed sample time parameterization procedure considers a local modification of the generated

VHDL code in order to achieve the pretended objectives.

Finally, it should be noted that dynamic partial reconfiguration can also be harnessed in order to
change the sample rate of a certain function. The use of regional clocking resources (BUFR) can be
used on this purpose as has been presented in [Iturbe'12b]. Unfortunately this approach, originally
developed for the R3TOS operating system that will be presented in Section 3.2 of Chapter 7 needs

further research in order to be fully compatible with our design framework.

4.3. Developed SDR parameterized blocks: examples an d characteristics

Some examples on real parameterized functions developed during the multi-standard modulator

presented in Chapter 6 will be displayed below to illustrate the information introduced in this chapter.

P|xn_re ouT I
xk_im -
In P xn_im)
_1 start xk_index P ouT_Q
SELECTOR I nfft rfd |>
1F—» nfft_we busy P
B dv >
0—{ fwd_inv
— edone [
1—P» fwd_inv_we
| done >
Fast Fourier Transform 6.0 1

Figure 23: Parameterized IFFT function

Figure 23 shows the parameterized version of the Inverse Fast Fourier Transform function. As
already stated, the IFFT block provided by System Generator permits the direct parameterization of
the transform length. This length is indicated via the 'nfft' port in the format of log,(IFFT length). That
is, the shown implementation can perform a 64 tap or 256 tap IFFT. As can be observed the election
of the IFFT length is carried out multiplexing the corresponding constants in this case. However, the
direct ICAP access could also be used to overwrite the content of a single constant (usually
implemented in LUTs) and therefore suppress the use of a multiplexer.

75

4. 'COMMON FUNCTIONS / COMMON OPERATORS' TECHNIQUE AND PARAMETERIZATION

In P el
SELECT ++ } P d0 N
) a1 addra
Counter_in_WiFi yJ
Counter_in_WIiMAX H_> P|dina Ap
Counter_in_UMTS ~ Mux |
>| In -b wea
IN
P addrb
) - a1
C_out WiFi ROM_WiFi | |E|+ web out
addry”
C_out_WiMAX ROM WIMAX Mux1 Dual Port RAM
- addrz!
C_out_UMTS gom uMTS

Figure 24: Parameterized interleaver function

As an example of the multiplexing based parameterization, Figure 24 shows the implementation of a
parameterizable interleaver. In this case, both the interleaving pattern and the interleaver length are
parameterized in order to fulfil with the requirements of the WiFi, WIMAX and UMTS communication
standards. As can be observed, the operator common to all the standards is the dual port RAM while
a pair of multiplexers selects the input and output counters and the interleaving patters stored in
ROM memories. It should be noted that the dual port RAM must be as big as the biggest needed
implementation. Regarding the three ROM memories that store the interleaving pattern, a second
possible implementation of this function is possible. Harnessing again the direct ICAP access, a
single ROM whose content is updated with this method could be used, hence removing two out of
three memories (usually a limited resource in the FPGA). This new implementation can be observed

in Figure 25.

h[In sel
SELECT ++ # Pl

Counter_in_UMTS

P addra
Counter_in_WiFi i I
Counter_in_WiMAX H_. P dina Ap

Mux l

.
P sel

'wea

P addrb

do -
a1 addr

i

G-B

L

ourt

C_out_WiFi
RON
C_out_WiMAX Mux Dual Port RAM
C_out_UMTS
ICAP
access

Figure 25: Parameterized interleaver (direct ICAP access version)

Further function parameterization examples are given in Chapter 6.

5. SUMMARY

The present chapter has covered two important design steps within the design methodology
proposed by this research work, namely: the waveform analysis via the common functions / common

operators technique and function parameterization. These two steps aim to identify and properly

76

4. 'COMMON FUNCTIONS / COMMON OPERATORS' TECHNIQUE AND PARAMETERIZATION

design the common parts between the several waveforms to be implemented in a SDR, hence
enabling their static implementation. It has been demonstrated that the original common functions /
common operators technique is not suitable for our design framework due to dissimilarities in both
the target granularity and the way the functions aim to be executed. Consequently, this techniques'
port to our design methodology has been explained. Later, function parameterization, has been
defined and explained. This procedure makes the functions identified as common in the previous
design step suitable for a static implementation. At this step, the first real implementations of these
functions are carried out with rapid prototyping tools and the necessary information for subsequent

design steps is generated.

77

Chapter 5

Cost Function

5. COST FUNCTION

5. Cost Function

1. INTRODUCTION

The present chapter will introduce the cost function that quantitatively evaluates the optimality of
each of the partitions generated in the "Design partitioning” step of the design methodology. As has
been mentioned several times before, three main factors describe the performance of a certain
system; namely: resource utilization, reconfiguration time, and maximum clock frequency.
Consequently, the proposed cost function takes into account these three factors. Depending on the
selected design flow, some of these factors may have not been generated when the cost function
has to be applied. Therefore, this chapter will also present other auxiliary functions that make an

estimation of them.

2. GENERAL COST FUNCTION

In order to evaluate and compare the performance of the design partitions generated in the "Design
Partitioning" step of the design methodology, a cost function has been designed. This function
quantitatively evaluates the three factors that have been identified as most relevant on the Software
Defined Radios implemented with the proposed design methodology. These factors that have
already been presented in Section 6 of Chapter 2 are: design size, reconfiguration time and
maximum clock frequency. The design size, represented by the number of resources occupied within
the FPGA, is the factor that aims to be reduced with the introduction of FPGA dynamic partial
reconfiguration. Reconfiguration time is the main drawback that partial reconfiguration introduces.
Finally, maximum clock frequency is affected by both dynamic partial reconfiguration and rapid

prototyping tools; hence it also needs to be evaluated.

Initially, the general, complete cost function will be presented. This cost function evaluates the
aforementioned three factors. It has to be taken into account that depending on whether the final
physical implementation of each of the partitions has been carried out or not, some of these factors
may not be available at the time of applying the cost function. Consequently, these factors may be
neglected or estimated from any of the remaining available factors. On this purpose, Section 3 will
later present some estimation functions that have been generated from the experience gained during

this research work.

The general cost function for a concrete partition "p" is defined as follows (3):

Resourcesygy. (p) 5. TRECONF.Avg.(p) . TeLk MIN pygy (P)

Cost(p) =a- 3

Resourcesyqy. TRECONF.Avg_ Terk min Max.

79

5. COST FUNCTION

Please note that as it was previously introduced in Section 3.5 of Chapter 3, the maximum clock
frequency has been substituted in the cost function by its inverse, i.e. the minimum clock period, as it

is mathematically more coherent.

Besides, it should be noted that parameters a, and y multiplying each of the factors are weighting
parameters that permit the adjustment of the optimization goal of the methodology. Further details

will be explained in Section 2.4.

Further explanation on the diverse parameters and sub-equations present in the cost function will be

explained below:

2.1. Normalized design size calculation

The first term (4) in cost function (3) calculates the relative value of the resources occupied by a

certain partition "p":

Resources
Term 1: Normalized Resources(p) = max.(P) @
Resourcesygy.

It should be noted that in order to properly add the different factors present in the cost function, they
have to be normalized beforehand. This normalization is carried out with the average value obtained
from the whole set of partitions ("P"). Consequently, each term does not evaluate the absolute value
of the corresponding factor but the relative one. In this way, a cost value of 1 indicates that a certain
partition falls within the average value. A bigger than one value represents the relative increase in

relation to the average, and a less than one value, a decrease.

Subscript "Max.” indicates that the value that needs to be used for this computation is the maximum
number of occupied resources. We note that each partition "p" is made up of "N" configurations.
Each configuration "n" corresponding to one of the waveforms present in the SDR. That is, an SDR
like the one presented in Chapter 6, which implement the WiMAX, WiFi and UMTS standards, has N
equal to 3. Although the complexity of each standard is different, hence occupying different number
of resources, the most complex one establishes the minimum number of resources needed in the
FPGA. This is way the number of resources of the configuration with higher number of resources is

used in the evaluation of the design size.

Consequently sub-function (5) describes the aforementioned maximum resources of a certain

partition, "p":

Resourcesy . (p) = Max {Resources(p,n)} , n=12,..,N (5)

It has to be taken into account that the number of resources occupied by each waveform "n" of a
certain partition "p" is the result of adding the resources of all the individual functions that make up

the whole waveform. That is, the resources occupied by both the functions implemented statically

80

5. COST FUNCTION

and in a reconfigurable way have to be added. Furthermore, in order to properly evaluate the
resource consumption of the whole system, the resource overhead introduced by the infrastructure
that enables the dynamic partial reconfiguration (ICAP controller, a microprocessor or reconfiguration
manager, memory controllers...) also has to be added. Section 3.2 will later address this issue.

Sub-function (6) shown the way of computing the average value of the resources occupied by the

different partitions:

P

1

Resourcesy g, = —Z Resourcesy g, (p) (6)
p=1

P

"P", already introduced in the previous paragraph, represents the number of different possible
partitions. That is, the number of partitions to be evaluated with the cost function. Therefore, equation

(6) computes the arithmetic mean of the occupied resources.

The presented equations use the generic word "Resources" in order to represent the partition size. In
order to carry out the cost calculation, this generic representation has to be substituted by an
appropriate design parameter that represents the size. The generic nomenclature is used in the cost
function to generalize its use to any FPGA manufacturer. Although the FPGA structure is similar in all
the manufacturers, the way of naming the resources is different (e.g SLICE in Xilinx, LE - Logic
element- in Altera), therefore, the generic word "Resources" is the one that best represents the factor
that intend to be evaluated. FPGA manufacturers used to provide the "equivalent gate count" or
"system gate count" to represent the design size, as it is a common parameter in the ASIC design
world. Unfortunately, with the complexity increase suffered by FPGAs the estimation of "equivalent
gate count" become also more complex and started not to be reliable. Therefore, most of the FPGA

manufacturers no longer provide it [Maxfield'10].

In the specific case of this research work, we have established the number of occupied SLICEs as
the number that represents the size of the design. SLICEs are the elementary programmable logic
block in Xilinx FPGAs. Therefore, SLICEs including other resources such as LUTs or Flip-Flops, they
give an overall overview of FPGA usage rate. Current FPGAs are provided with other hardware
resources such as BRAMs or embedded DSP48 elements that also need to be taken into account.

Section 2.5 will later address this issue.

2.2. Normalized reconfiguration time calculation

The second term (7) within the general cost function is in charge of evaluating the reconfiguration
time of a certain partition "p".

. . .) Treconr. Avg. (»
Term 2: Normalized reconfiguration time(p) = ———=— @)

TrEcoNF. Avg.

81

5. COST FUNCTION

Similarly to the computation of the design size, the reconfiguration time is also normalized with the
average value obtained from the whole partition set "P". However, the way of calculating this average
value, and the value selected to represent the reconfiguration time of a certain partition "p" differ
slightly from the ones used with the design size. Unlike the design size, in which the biggest design
represents the size of all the set of configurations N, the value selected to represent the
reconfiguration time of each partition "p" is the average value of the reconfiguration times. Sub-
function (8) carries out this computation:

Treconr. Avg. () = N(N D Z Z Treconr. (nun],P) @)

ni= 1 Tl]
n]#:nl

It can be observed that for a certain partition "p", the average value of the reconfiguration times for all
the possible transitions between its waveforms (n; being the initial waveform and n; the target
waveform) is calculated. That is, for a SDR with 3 waveforms A, B and C (therefore N = 3), the
average value of the reconfiguration time of the 6 possible transitions (A ->B, B -> A, A->C, C -> A,
B -> C and C -> B) is calculated. Besides, the reconfiguration time of each waveform is made up of
the addition of the reconfiguration times of all the reconfigurable areas that change within it. It should
be noted that if more than two waveforms are present in a SDR, a transition between two of them
may not require reconfiguring all the reconfigurable functions. Some of the functions may remain
unchanged if they are related with a third waveform. Further discussion on this issue will be carried
out in Section 4. Taking into account that an individual partial bitstream is generated per
reconfigurable area, the overall reconfiguration time is the addition of the necessary time to
download the appropriate bitstreams through the ICAP port.

The average value of the reconfiguration time has been chosen to represent this factor (instead of its
maximum value) because in this case it does not establish a design limitation. Section 2.5 will later
present the additional checks on design requirements that are applied to each of the partitions. The
maximum acceptable reconfiguration time is one of them. However, if this requirement is met, the

average reconfiguration time is a better indicator of the quality of the partition on this particular factor.

Consequently, the way of calculating the overall average reconfiguration time for the complete set of
partitions P has also changed. The sub-function that carries out this computation is presented below

9) :
TRECONF. g Avg. = z Treconr. Avg. (») C))

This equation shows that the arithmetic mean of the reconfiguration times is now carried out using

the average reconfiguration time of each partition "p", that is, using the value obtained from sub-

function (8).

82

5. COST FUNCTION

2.3. Normalized minimum clock period calculation

The third and last term (10) of cost function (3) evaluates the minimum clock period applicable to
each of the partitions "p". Please note that it is a mathematical representation of the usual maximum

clock frequency factor (2):

TCLK MIN pgy. (D)

Term 3: Normalized minimum clock period (p) = (10)

TcLK MIN pmax.

Dealing with minimum clock period, the value chosen to represent this factor for a certain partition "p
with N configurations of waveforms, is the biggest value among them. Similarly to what happens with
the design size and the necessity of considering the biggest waveform, in this case the biggest value
of the different minimum clock periods applicable to the waveforms has to be used. It fixes the
minimum period even if some of the waveforms support a lower one. In order to represent this issue
and in accordance with the nomenclature used with the design size, the subscript "Max." has been

included in the equation.

Sub-function (11) carries out this calculation:
Terk MIN gy @) = Max {Terg iy (0,m)} , n=12,..,N (11)

We would like to remind the reader that each partition "p" is made up of "N" configurations. Each

configuration "n" corresponding to one of the waveforms present in the SDR.

Once the definition of the maximum value of the minimum applicable clock period has been carried
out, sub-function (12) calculates its average value for the complete set of partitions P. This average

value is the one used in order to perform the normalization.

TeLk MIN yay, Max. — Z TeLk MIN prgy. (D) (12)

2.4. Weighting parameters

One of the objectives of the proposed design methodology is the election of the optimal
static/reconfigurable partition in terms of design size, reconfiguration time and minimum clock period.
However, it is an interesting feature to have the possibility of prioritizing the optimization of one of the
factors. That is, letting the methodology select as optimum a partition that, even if does not have the
overall minimum cost, has a significant low cost on the factor that has been prioritized. On this
purpose, each of the factors present in the general cost function (3) is weighted by parameters a,
and y respectively. Setting the appropriate value of these parameters the optimization goal of the
design methodology can be modified. Besides, these parameters can also be used (setting them to

zero) in order to disable any of the factors evaluated by the cost function. That is, reducing the

83

5. COST FUNCTION

number of factors to be evaluated in the optimization (e.g. if there is evidence that a certain

estimated data does not have the necessary accuracy).

Different sets of weighting parameters have been predefined in order be easily used during the
methodology application. They are presented in Table 3 below. However, they can be modified if

necessary.

Table 3: Predefined sets of weighting parameters

Weighting parameters

Optimization goal o B ¥
MNeutral 1 1 1
Design Size (hard) 10 1 1
Reconfiguration speed (hard) 1 10 1
Max. Clock Frequency (hard) 1 1 10
Design Size (soft) 2 1 1
Reconfiguration speed (soft) 1 2 1
Max. Clock Frequency [soft) 1 1 2

The presented sets can be divided into three groups. The first set, named “Neutral” is the default
one, in which the three factors evaluated by the cost function are weighted equally. This way, the
methodology is free to select the overall optimum partition. The next three sets, labelled “hard”
strongly prioritize the optimization of one of the factors. The number 10 present in the coefficient of
prioritized factor indicates that the cost of the corresponding factor is penalized with a factor of ten.
That is, the factor’'s cost has to be ten times smaller than the other two factors in order to result in an
overall same cost. Finally, the last three sets, labelled “soft” also prioritize one of the factors but is a
softer way. In this case, the correction is made with a factor of 2. Examples on the influence of the
different sets of weighting parameter can be seen in the validation presented in Chapter 6. Please
note that maximum clock frequency appears in the table instead of minimum clock period as it is the

most usual way of addressing this factor.

2.5. Design requirement check

The presented cost function is in charge of quantitatively evaluating the performance of each of the
partitions in order to choose the optimal one. However, the election of the best partition based just on
the results obtained from the cost function is not enough. Additional checks must be carried out in
order to determine if a partition meets other design requirements. For example, it is feasible that the
partition with less cost has an unacceptable reconfiguration time, hence being necessary to select
another partition or to carry out a re-design. This type of issue is particularly enhanced if the weight

of a certain factor is reduced and therefore considered less important in the optimization.

Consequently, it is necessary to check if every partition (made up of N different waveforms) meets
with the design requirements listed in the "Requirement sheet" that was generated in the first step

84

5. COST FUNCTION

(Waveform analysis step) of the design methodology. If this fast checks are carried out initially, those
partitions that do not meet any of the requirements can be directly rejected. Therefore the number of
partitions to be evaluated with the cost function is reduced. Checks on the three factors addressed
by the cost function have to be carried out.

On the one hand, if a target FPGA has been defined, it is necessary to check that all the waveforms
within a certain partition fit in the available resources. The number of occupied SLICEs has been
established as the indicator of the design size. Moreover, this value is the one used in order to
evaluate a partition's performance in terms of design size. However, it is not enough to check only
the SLICE availability in the FPGA to decide if a waveform fits in it or not. As has been stated before,
FPGAs nowadays provide several hardware-implemented resources such as BRAMs, DSP48, or
DCMs that are not contained in the SLICEs. Consequently, their availability has to be checked too. If
these checks are to be performed based on estimated data, information on all of these resources
may not be available. However, based on the experience obtained within this research work, the
usage of BRAMs and DSP48 is usually the critical factor. Fortunately, data on these two resources is
usually provided by the resource estimators available in rapid prototyping tools. Continuing with the
problems of using estimated data, it is advisable to use a 10 - 15% safety margin to decide if a
waveform fits in the FPGA or not. As it was introduced in Section 3.2 of Chapter 3, a 15% difference
between the estimated and real resources can be given (mainly in the SLICE estimation). Although
this difference is usually given because the final implementation optimizes resource occupation,
hence achieving a resource reduction, the use of the safety margin is still advisable. To conclude
with the checks on design size, we would like to remark that the overhead of the reconfiguration
infrastructure has to be computed.

On the other hand, checks on the maximum acceptable reconfiguration time and on the maximum
clock frequency also need to be performed. These checks are simpler, so both of them will be
addressed in this paragraph. The maximum acceptable reconfiguration time is established by the
SDR application itself; hence no further discussion is needed. Any partition with a waveform that has
a reconfiguration time higher than the threshold has to be discarded or re-designed. Similarly, the
clock frequency to be provided to the FPGA is usually also a predefined factor. This way, those
partitions with a maximum clock frequency lower than the one established should also be discarded.

To sum up it should be noted that all the checks carried out within this design step are related to
implementation factors. Other functional requirement checks such as maximum data throughput,
BER tests or communication range are to be carried out once the final SDR is implemented and
therefore they are out of the scope of this research work.

3. ESTIMATION FUNCTIONS

During the explanation of the design methodology in Chapter 3, two alternatives for reaching the
design cost analysis have been presented. On the one hand, the final physical implementation of the
partitions can be carried out. This way, real information on all the design factors considered by the

cost function is fully available. Unfortunately, the implementation process is a time-consuming task

85

5. COST FUNCTION

that can considerably slow down the design process. Therefore, this possibility is not advisable when
an initial selection of the best partitions is to be done. This is why on the other hand the design
methodology foresees the possibility of carrying out the initial optimization process based on
estimated data. That is, with data obtained prior to any design synthesis.

Estimated data can usually be obtained from rapid prototyping tools. These tools usually provide a
block (e.g. "Resource Estimation” block in Xilinx's System Generator) able to make this estimation.
However, this block may not estimate all the necessary data or may take too long to estimate it.
Consequently, this section will present some functions that have been designed in order to carry out
this estimation. Unfortunately, maximum clock frequency (or its inverse, minimum clock period, used
in the cost function) can neither be estimated by the resource estimation block in rapid prototyping
tools, nor be calculated by hand. Therefore, this factor is eliminated in the cost function when dealing
with estimated data and it is only considered once the final implementation of certain partitions has

been performed.

3.1. Reconfiguration time estimation

One of the factors that is not estimated by rapid prototyping tools is reconfiguration time. Moreover,
this factor is not provided by synthesis tools either once the complete implementation has been
carried out. The real information on reconfiguration time has to be measured once the design has
been downloaded into the target FPGA. On this purpose, internal timers or external measurements
on signals prepared to that end can be used. In order to have access to the reconfiguration time

earlier in the design flow two estimation functions have been designed.

In order to avoid the aforementioned measurements on the reconfiguration time, the first function
(13) estimates the reconfiguration time based on the size of the generated partial bitstreams. The
function intends to be used in case the complete implementation of the partitions has been carried
out, that is, once the partial bitstreams has been generated. The estimation (noted by the caret ~ in

the name) is carried out for the transition from waveform "n;” to waveform "n;" of a certain partition

o
A(ninj,p)
2.63 Z Sizepi:(a,p), ICAP speed = 380 MBps
Treconr. (i, 1 p) = 4 A(,ijllj,p) (13)
222.22 Size ;e (a,p), ICAP speed = 4.5 MBps
\ a=1

We introduce the parameter "A(n;, n;, p)" as the number of different partially reconfigurable areas
(PRA) within the FPGA that change from waveform "n;” to waveform "n;" for partition "p". In turn
"Size ,i(a,p)" denotes the size in Kilobytes of the reconfigurable area "a" of the partition "p". This
value is obtained from the partial bitstream. We note again that, as will be later explained in Section

4.3, not all the reconfigurable areas have to be reconfigured in a waveform change. Function (13)

86

5. COST FUNCTION

adds the sizes in Kilobytes (KB) of the partial bitstreams that need to be downloaded to perform the

waveform change and calculates the reconfiguration time in microseconds (us).

Taking into account that the reconfiguration time is also dependent on the ICAP speed, the function
considers the speeds of the two ICAP controllers used during this research work. On the one hand
the 380 MBps achievable by the ICAP controller of R3TOS (that will be later presented in Section
3.2.1 of Chapter 7) and on the other hand the 4.5 MBps reached by the standard ICAP controller
provided by Xilinx. Data from Xilinx's ICAP controller has been obtained from the implementation
presented in Section 2 of Chapter 7. We note that in both cases the maximum speed does not reach
the theoretical maximum speed of 400 MBps of the ICAP port. The values that multiply the

summations in function (13) have been directly calculated from these speeds.

The presented estimation function uses the final partial bitstreams for its calculations. In order to
avoid this drawback we have defined a second function for estimating reconfiguration time that is
intended for earlier design steps. Consequently, the reconfiguration time has to be obtained based
on the available information. In this case, the estimation function uses as input the number of
occupied SLICEs. As explained before, the number of occupied SLICEs is part of the information that
the resource estimators available in rapid prototyping tools provide. Taking into account that function
(13) is valid to calculate the reconfiguration time from the partial bitstream sizes, it is enough to
estimate these bitstream sizes to obtain the complete estimation of the reconfiguration time. Function

(14) is in charge of this calculation:
Size p,:(a,p) = 0.163 - SLICEs(a, p) (14)

This function estimates the partial bitstream size in Kilobytes (KB) for a certain partially
reconfigurable area (PRA) "a" for partition "p". The complete development of the function is available
in Annex 1. We would like to note that the function is valid for a PRA with a height of a complete
clock region (i.e. 16 CLBs in Virtex 4 FPGAs) and a resource occupation of a 70%. This PRA size
and shape is the optimal one in order to reduce reconfiguration time. The height of a clock region is
the minimum reconfigurable height and higher resource occupations may lead to the impossibility of
implementing the design. However, if other shapes or occupations are needed the function can be

re-defined following the steps in Annex 1.

Once function (14) is substituted in (13) the complete function for estimating the reconfiguration time

based on the occupied SLICEs is obtained:

(A(ninj,p)

0.429 SLICEs(a,p), ICAP speed = 380 MBps
Treconr. (M Myp) = 3 A(,Z_:nlj_p) (15)

36.22 2 SLICEs(a,p), ICAP speed = 4.5 MBps

a=1

87

5. COST FUNCTION

Dealing with the accuracy of the proposed estimation functions, function (13) is generated based on
the real reconfiguration speed that has been measured for the two presented architectures.
Consequently, this speed being a fixed parameter, the obtained reconfiguration time should be exact.
Only the MicroBlaze's access to the system's bus adds some uncertainties to this calculation (less
that 1%). In turn, functions (14) and (15) have been obtained based on certain simplifications on
FPGA's internal structure. Besides, these functions use estimated data on design size as input for
the estimation of the reconfiguration time. Therefore, deviations may exist between the estimated
values and the real ones. However, during the tests carried out in the multi-standard modulator that
will be presented in Chapter 6, a maximum error of a 15% has been detected. Taking into account
that the methodology foresees the final physical implementation of certain partitions, hence obtaining
real data to be applied to the cost function, we consider this error acceptable.

3.2. Reconfiguration overhead estimation

Another factor that has to be taken into account when dealing with dynamic partial reconfiguration is
the overhead that this technology introduces. In order to manage the reconfiguration process, certain
logic is needed. This logic is in charge of several functions such as the control of the access port to
the configuration memory of the FPGA or the control of the memories that store the partial
bitstreams. Therefore, although the main benefit of partial reconfiguration is the reduction on the
number of needed resources that it achieves, the resources occupied by this control logic have to be
added to the cost function of every partition. This addition has no effect on the election of the best
partition as a constant value is added to all the partitions, however, it is necessary for determining
the maximum size of the design.

Later, in the implementations presented in Chapter 7, two different architectures for managing
dynamic partial reconfiguration will be exposed. Both of them have the ICAP port as the final access
point to FPGA's configuration memory, however, the logic needed to control this port is different. On
the one hand a small form factor controller based on a PicoBlaze processor and a finite state
machine is used. This is the control logic used by R3TOS [lturbe'10]. On the other hand, the

standard controller provided by Xilinx and based on a MicroBlaze processor is also used.

Taking into account that the design flow for generating these architectures is out of the scope of
rapid prototyping tools, it is not possible to estimate the number of resources they need. That is, the
complete implementation (synthesis, mapping, place and routing) of the system has to be carried out
in order to know the resource occupation. However, since a similar architecture is used in all the
designs, the obtained results for a certain SDR can be extrapolated to any other. Consequently, the
information on the above mentioned two infrastructures for partial reconfiguration, which has been
obtained in the implementations of Chapter 7, will be presented here as a reference for future
designs. Table 4 sums up this information.

88

5. COST FUNCTION

Table 4: Overhead of the infrastructure for partial reconfiguration

Resource utilization Speed
Option SLICES Flip-Flop LUT BRAM DSP -
uBlaze ICAP cntrlr. 3074 3004 3943 33 3 4,5 MBps
R3TOS ICAP cntrir. 1793 1157 2778 6 0 380 MBps

There is a noticeable difference both in design size and in the achievable speed. R3TOS' ICAP
controller, being significantly smaller, has an access speed to the configuration memory nearly 85
times higher. Unfortunately, the PicoBlaze-based architecture (programmed in assembler to speed
up the execution) is difficult to program and to tune up. In turn, the MicroBlaze-based ICAP controller
is much more versatile. On the one hand, the C/C++ programming enables an easier use of the
ICAP port. On the other hand, the characteristic that a 32-bit microprocessor such as MicroBlaze
offers can be harnessed in order to carry out other system tasks. Unluckily, this versatility penalizes
design size and extremely reduces reconfiguration speed. Nevertheless, both architectures are valid,

so data is presented here so that it can be used to estimate design size and reconfiguration time.

4. ADDITIONAL REMARKS

We note that due to the complexity of Software Defined Radios and to the flexibility that FPGAs offer,
the presented cost function may have considered the evaluation of other design factors, or the
application of different evaluation strategies to the actual factors. Consequently, in order to better

justify the presented cost function, additional remarks are detailed below:

4.1. Maximum execution frequency

Chapter 3 has already introduced the fact that the maximum clock frequency (or minimum clock
period, its inverse used in the cost fucntion) is a difficult factor to estimate as it is highly dependent
on the final implementation of the design. Therefore it is necessary to carry out the final physical
implementation of the SDR (step 6 of the design methodology - Section 3.6 of Chapter 3) in order to
have access to this information. Consequently, the corresponding term in the cost function has to be
eliminated or set equal to zero when the cost function is used with estimated data. The complete cost
function will be used once certain number of partitions have been physically implemented.

We would like to note that limits for, on the one hand, maximum clock frequency and, on the other
hand, design size and reconfiguration times have a priori different natures. Design size and
reconfiguration time are factors that are usually constrained by an upper limit. That is, any design
with values below the limit is acceptable. In turn, the maximum clock frequency is usually a fixed
factor. That is, the design has to be able to work at the established frequency, but even if it can work
at a higher frequency, the design is clocked at the predefined one. This fact initially faces with the
performance evaluation intended with the cost function and could suggest the removal of the
maximum clock frequency from it. However, we consider that this limitation only happens in stand-

alone systems where a continuous and fixed data throughput is needed. Novel architectures

89

5. COST FUNCTION

including FPGAs such as R3TOS (presented below in Section 3 of Chapter 7), or architectures
where the FPGA acts as a co-processor, require data to be processed as fast as possible.
Consequently, a partition with a higher maximum clock frequency could be clocked to a higher clock
(e.g. harnessing the sample time parameterization presented in Section 4.4.2 of Chapter 4) hence
achieving a faster processing. Definitively, the maximum clock frequency being one of the factors
affected by the use of dynamic partial reconfiguration and rapid prototyping tools, and regarding this

new point of view, its inclusion in the cost function is completely justified.

On this basis, the check on the maximum clock frequency presented in Section 2.5 has to be
completed with the set of appropriate timing constrains in the synthesis tools. This way, on the one
hand a double check is performed on the lower limit acceptable by this factor and on the other hand
the synthesis tool is aware of the target frequency and can optimize the implementation accordingly.

4.2. Power consumption evaluation in the cost funct ion

Power consumption has been one of the traditional drawbacks of FPGAs compared to other devices
such as DSPs or ASICs. Moreover, during the state of the art presented in Chapter 2, the reduction
of the power consumption has been introduced as one of the benefits that the use of dynamic partial
reconfiguration offers. Consequently, the inclusion of this design factor in the cost function seems a
reasonable proposal. Unfortunately, collecting data on this factor, both in a real and in an estimated
way is a complicated task. In order to obtain real data on power consumption, the design has to be
tested on the target FPGA and certain infrastructure has had to be prepared on this purpose.
Definitively, it is a complex and time consuming procedure so as to carry out for every possible
partition. Dealing with estimated data, synthesis tools usually provide a power estimation tool.
Unfortunately, in order to be used, the complete physical implementation flow needs to be executed.
Furthermore, at the best of author's knowledge, in order to obtain an acceptable accuracy, an
exhaustive work on providing appropriate stimulus to the system has to be carried out. In conclusion,

the generation of estimated data on power consumption is also a time consuming task.

In turn, it should be noted that, in general terms, the power consumption of a certain design is related
to the complexity of that design. Besides, the more complex a design is the more resources it is
supposed to consume. That is, broadly, a bigger design will have higher power consumption that a
smaller one. On this basis, we assume that the design size evaluated in the cost function also serves

to represent in relative terms the power consumption of a partition.

Nonetheless, the inclusion of the power consumption into the cost function is considered as future

work provided the power estimation tools speed up and ease their operation.

4.3. Reconfigurable functions remaining static

Section 2.2 has introduced a new concept that had not been addressed up to now: reconfigurable
functions remaining static. During the design methodology definition, the functions have been

presented as "reconfigurable” if they were not common to any waveform and therefore had to be

90

5. COST FUNCTION

implemented in a reconfigurable area or "common" if they were shared between several waveforms.
These "common" functions could then be either parameterized and implemented statically, or
implemented in a reconfigurable area. This classification is valid for a simple SDR with just two
waveforms. However, as SDR complexity increases and more waveforms mean to be implemented

some special cases appear.

In any SDR with at least 3 waveforms, a certain function may be common to two of the waveforms
but not be part of the third one. In this case, the function has to be implemented in a reconfigurable
area as it has to be removed from the SDR in certain configurations. However, if a transition happens
between the two waveforms which the function belongs to, it may not be necessary to reconfigure it.
That is, in the particular case of this transition, the function may have been parameterized, hence
being considered as "static" (although it is implemented in a reconfigurable area). Consequently,
during the execution of step 3 of the design methodology - Establishment of the common parts- the
function is considered as "common”. Therefore the design flow for this type of function has to be
followed no matter if it will not be implemented in a purely static region. In turn, when the cost
analysis has to be carried out, in particular when the reconfiguration time has to be evaluated, the
aforementioned especial case has to be distinguished. Although the function is implemented in a
reconfigurable area, if a certain transition between waveforms does not need the function to be
reconfigured, no reconfiguration time has to be added as presented in function (13).

5. SUMMARY

This chapter has presented the procedures that the proposed design methodology foresees in order
to quantitatively evaluate the different partitions generated along it. The key point of this evaluation is
a cost function that calculates the relative cost of each partition's size, reconfiguration time and
minimum clock period. Besides, in order to enable the use of the cost function prior to the final
implementation of the partitions, several estimation functions have been presented. These functions
generate data needed by the general cost function based on the available information. The chapter
concludes with a discussion on several issues related with the factors present in the cost function.

This discussion intends to support the cost function definition that has been chosen.

91

Chapter 6

Methodology verification: Multi-standard modulator

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

6. Methodology verification: Multi-standard modulator

1. INTRODUCTION

Once all the steps of the design methodology have been detailed, this chapter will present a use
case in which the methodology has been applied in order to achieve an optimal implementation. This
practical use of the methodology is intended for a better understanding of the application of the
different steps and, definitively, for validating it. The selected implementation is a multi-standard
modulator implemented over an FPGA and in which the change of the standard is, of course, carried
out via dynamic partial reconfiguration. The three standards selected to be implemented in the multi-
standard modulator are WiFi, WiMAX and UMTS as they are three of the most used communication
standards nowadays [Chechi'l1]. Besides, due to the particular characteristics and use cases each
of the standards has, it is not common to use more than one of them at the same time (particularly in
user devices such as smart phones). Therefore, the use of FPGA dynamic partial reconfiguration to
switch from one standard to another, reusing hardware resources and hence achieving a device size
(and power consumption) reduction seems a promising opportunity. However, it should be taken into
account the possibility of needing a standard change without an interruption in the service. That is,
the reconfiguration time should also be the smaller, the better. Definitively, the use of the design
methodology in order to fulfil the aforementioned requisites seems interesting.

2. METHODOLOGY APPLICATION

The following sections will present the application of all the steps that make up the complete design
flow of the methodology (presented in Section 3 of Chapter 3) for the implementation of the multi-
standard modulator. In order to better locate each of the steps, the corresponding subsections have
been named in the same way as the ones in Chapter 3. Besides, it should be noted that a manual
application of the methodology has been carried out, that is, the automation procedure explained to
conclude Chapter 3 has not been used. This way, a better understanding of all the steps that make

up the methodology is achieved; unfortunately, at the expense of a longer design time.

2.1. Analysis of the waveforms to be implemented: "C ommon functions/common

operators" technique

This first step is initially in charge of gathering all the necessary information on the application to be
implemented. Later, being the existence of common parts in the waveforms to be implemented the
keystone of the methodology, it is necessary to determine the possible candidates to be reused. The

two sub-sections below carry out these two tasks.

2.1.1. Multi-standard modulator and WiFi, WiMAX and UMTS overview

The selected application considers the implementation of a multi-standard SDR modulator as proof-

of-concept of the design methodology. A more realistic and functional application (e.g. for the

93

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

integration in a smart-phone) would require the presence of both the modulator and the receiver.
However, the implementation and especially the tuning of the reception algorithms, which are
significantly more complex than the ones in transmission, would require a time consuming design
process that is out of the scope of this research work. Consequently, only the transmission process
is addressed. Nevertheless, the system is complex enough so as to harness the benefits of the

design methodology and to validate it.

The three standards selected to be part of the multi-standard modulator (WiFi, WiMAX and UMTS)
have different application ranges; therefore, it is not common to use them at the same time, so the
use of dynamic partial reconfiguration is possible. Besides, they may require the possibility of
changing between different standards without losing the communication link (e.g. reception of an IP-
based call in the street with UMTS and entrance into a building with a better WiFi coverage), hence
needing a reconfiguration time as small as possible. In the same way than the implementation of the
reception algorithms, the implementation of the full version of the abovementioned standards entails
an important complexity. Not being their accurate implementation one of the main objectives of the
present work, simplified versions have been used. These versions contain the main data processing
functions that make up the standards but do not implement all the possibilities and variations
included in them. A short description of the main characteristics of the standards is presented below:

a) WiFi

WiFi [IEEE'97] is a popular technology that allows an electronic device to exchange data wirelessly
over a computer network, including high-speed Internet connections. It is the trademark given to
networks operating under 802.11 standards. The latest standard, IEEE80.2.11n, working at 2.4 GHz,
achieves a theoretical maximum data rate of 300 Mbps and a range of about 70 meters indoor. This
range rises up to 250 metres outdoors. WiFi's physical layer uses single carrier DSSS (Direct
Sequence Spread Spectrum) or multi carrier OFDM (Orthogonal Frequency Division Multiplexing)
technology depending on 802.11 standard's version. A high level block diagram with the main

functional blocks of a typical 802.11n standard transmitter is depicted in Figure 26:
Convolutional . Matrix/general QPSK OFDM symbol
Puncturing) .
encoder interleaver mapper builder
. Cyclic prefix
-)[Tralnlng]—)[IFFT]—)[inserter RF front-end

Figure 26: Functional blocks of a WiFi transmitter

94

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

b) WiMAX

WIMAX [IEEE'04] (Worldwide Interoperability for Microwave Access) is the commercial name of IEEE
802.16 family of wireless communications standards. In theory in can provide around 70 Mbps with a
range of 50 Km, what gives WIMAX a significant advantage over other alternative last mile
technologies like Wi-Fi. WiMAX's physical layer uses Scalable Orthogonal Frequency-Division
Multiple Access (SOFDMA) transmission mode. Figure 27 shows the diverse functional blocks that
make up a WiMAX modulator.

' ' .
[Randomization -)[Reed-Solomon -)[Convolutions|]—)[Puncturing]—)[Interleaver]—|
) encoder) encoder
V r
QPSK OFDM symbol Cyclic prefix
IFFT -
L[mapper]_)L builder L inserter RF front-end

Figure 27: Functional blocks of a WiMAX transmitter

c) UMTS

Universal Mobile Telecommunications System (UMTS) [3GPP'08] is a third generation mobile
cellular system for networks based on the GSM standard. UMTS supports a theoretical maximum
data rate of 42 Mbps and achieves a range of tenths of kilometres. UMTS uses Code Division
Multiple Access (CDMA) as channel access method. The functional blocks present in the simplified

UMTS transmitter used in this implementation can be observed in Figure 28:

Convolutional Rate matching 1st 2nd
encoder (Puncturing) Interleaver Interleaver

W-CDMA

UMTS QPSK generation
slot builder H mapper (scrambling & »

spreading)

Figure 28: Functional blocks of a UMTS transmitter

2.1.2. Application of the "Common functions/common operators™ technique

Once this brief description of the three standards to be implemented in the multi-standard modulator
has been presented, the "common functions/common operators" technique can be applied. We
would like to remind the reader that an adapted version of the original technique is used in the

95

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

proposed design methodology. This version uses only those characteristics of the original technique
that fit within the proposed SDR design framework. Namely: the graphical modelling of the
application and the concept of different implementation possibilities for each function. Besides, it
should be noted that the objective of this technique is to detect the function commonalities between

the different standards in order to later reuse them.

a) Graph model of the multi-standard modulator

As it was presented in Chapter 4, the first step in the application of the "common functions/common
operators" technique is the graphical modelling of the application. Figure 29 below shows the
generated graphic for the multi-standard modulator. Data on Figure 26, Figure 27 and Figure 28 has
been harnessed in order to generate the first levels of the graph. In turn knowledge on the available
blocks in System Generator has been used to breakdown, if possible, each function into its lower

level operators hence continuing with the generation of the graph.

Multi-standard
modulator

Interleaver [Interleaver

— ™ RS UMTS WCDMA
Training RAND] | encoder [builder] generation
P

Custom Custom
care Logic Logic

Custom
Logic

[Du::;?rt J [Addressing]

Fiaure 29: Granh model of the multi-standard modulator

96

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

Please note that it has been necessary to reduce and simplify certain parts of the graph in order to
make it fit in the figure. Even so, the graph may still result confusing. All the first level functions (e.g.
Puncturing, Interleaver... etc., identified by a thick border in the block) are present in the graph
although divided into two rows. However, second level functions (e.g. IP core, dual port RAM... etc.,
identified by a thin border in the corresponding block) have not been further developed. It can be
observed that many top level functions have a second level function labelled "Custom logic". This
block represents all the sub-functions that make up the parent function. In the original graph that has
been used in the development of this implementation, the "Custom logic" blocks are later divided into
these sub-functions. An example of this third level granularity has been left on purpose in the
Randomization function (labelled "RAND") and in the custom logic (coloured in blue) made up of a
dual port RAM and an addressing function that is shared between several top level function. This
same structure is used in all the "Custom logic" blocks in the complete graph. Besides, certain
function names have been replaced by their acronym in order to reduce its size. Namely: Cyclic
Prefix Inserter (CPI), Randomization (RAND), Reed-Solomon encoder (RS encoder) and Pseudo
Random Binary Sequence (PRBS). Finally, it should be noted that the blocks labelled "IP core"
represent the presence in the corresponding rapid prototyping tool (System Generator in this case) of
a concrete block that carries out the parent function. For example, System Generator has a block
that performs the Inverse Fast Fourier Transform (IFFT) hence it can be used for this purpose. The
IP core block may also represent the use of third party designed functions although they are not

present in the rapid prototyping tool and have to be added as a black box.

In order to ease the subsequent design steps, the functions in the graph have been coloured
depending on whether they are common to more than one standard or not. Besides, different colours
have been used depending on the number of commonalities. The functions coloured in green are
common to the three standards, while the ones coloured in yellow are only common to two of them.
As it was explained in Section 4.3 of Chapter 5, all these functions will be labelled as "common" in
the function commonality list that will be filled in the next subsection. However, those functions only
common to two waveforms will be implemented in a reconfigurable area (as it is not possible to

implement them statically), but with the possibility of remaining static for certain waveform transitions.

It is also necessary to explain the presence of a "Custom logic" block coloured in blue. Analysing the
graph, it can be observed that the custom logic made up by a dual port RAM and an address
generation logic is common for at least 5 top level functions (puncturing, two interleavers, training
sequence generator and cyclic prefix inserter). According to the definition present in the original
"Common functions / common operators" technique, this custom logic could be considered as a
common operator. However, taking into account that our approach does not consider further action
with this type of operator, this information is only useful in order to properly design the corresponding
parent functions.

b) Function commonality list

Once the graph has been generated and analyzed, the function commonality list can be filled out.

97

o
O
T
<
-
)
&)
o
b=
a)
04
<
)
Z
<
T
@
=
-
)
=
=
O
T
<
o)
L
74
w
>
>
]
o
Q
o
T
T
w
b=
©

Table 5: Function commonality list (characteristics)

TTIT°ST 51 ddDE Ul paguasap sialaweled Jo 153y "0c7 10106} Buipealds S1INN ajqeingyuoiay uonelsuad yiINaIMm T
uoluasul lopd T S1INN 3|geingipuooay 13pIng 10|15 SLINN Fa i
[eez'csz)={3"u) XTI 3|gesndiyuoiay JzpoJus sy 1t
T + tTvX + ST X fRlIwouhjod uonelauag WA ajqeingyuoiay 137IWopuURy ot
xiyaad phouiod paf xwINIA
LOWILoD Jauasu ¥iyald Ao &
xiyaad 21pha quiod a1 I
1441 deragy KFINIM
uowo) 1441 g
1441 de1 0 1HIM
auanbas Suluien quiod ocz 14IM 3|qeindipuoaay Buruiea] I
(uonewuojul ZeT) sl2LED 052 XYINIM
oW Isp(ing NA40 9
(uonewuoyul gv) S1314182 9 HIMm
SpAepUEls 23Ul || 40} Jaddew ¥54D awes nw oo 1addew ¥sd40 g
"TIT'ST 51 dd9E Ul paguasap waled Sulaepuaiu) ssiulod Bulaeaialul 0y SLIAIN
UOWILoD JIABBIB1UI PUT t
1duas gepiey e ydnoayl palessuad waned Suinepiaiu) ssuulod ulaesaa1Ul OZ6T 14100
"ZTZ°C7 51 ddOE Ul paguasap waned Suinepaaiu) ssiulod Sulaea|ia1ul 989 SLAN
1duas gejie B YSnoayl palessuas uisnied Suiaepiaiu) ssiulod Bulnes a1ul #RE KNI LHOWILG JBABDIBIUI 15T €
siutod Bulnes|da1ul 0Z6T "J2ABD|IS1UI XLI1B 1HIM
[0TT] 401020 ‘g7 to1lRY SLINN
[TTOT] 10103 /€ tonney KNI WO Bunnioung z
[TOOTTT] :10303A ‘gz ro11ey 1HIM
TT/ pue £99 76 sjeiwoukjod uoiielauad ‘g :y1dua SLIAIN
£ET pue T/T :s|eiwoudjod uonetauad ‘7 (y18ua KT NI UOWILoD 13p02IUa [EUCIIN|OALDD 1
£ET pue T/ T :s|enwoudjod uonelauad ‘7 1y18ua [ET
S2115U31IBIEYD LLLIOLSABM, 120E1 ALWEU UDIIIUNS N

151 AlljEUOWIWOD UoKIUN4

98

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

It should be noted that just as with the application graph, the function commonality list presented in
Table 5 has been simplified in order to fit in this document. On the one hand just the basic
characteristics of each function have been presented. The original function commonality list contains
all the necessary information so as to implement each of the functions. On the other hand, some
rows and columns of the complete list are not being displayed at this time. Columns to be filled with
information on resource occupation and reconfiguration time, or the rows corresponding to the
parameterized version of the functions labelled as common have been removed at this time and will

be presented later in Table 7.

¢) Requirement sheet

The final action to be carried out in this first step of the methodology is the filling out of the
requirement sheet. This document compiles certain overall requirements applicable to the complete
system such as maximum available resources (i.e. selection of the FPGA to be used), maximum
acceptable reconfiguration time or maximum acceptable power consumption. Taking into account
that this implementation does not aim to create a completely functional system but a proof -of-
concept application of the design methodology, the establishment of some of these parameters
makes no sense. Nevertheless, the characteristics of the FPGA that has been used for this
implementation and a maximum acceptable reconfiguration time inferred from the video streaming
application that will be presented in the next chapter have been set.

Consequently, the requirement sheet is filled out as follows (Table 6):

Table 6: Requirement sheet

Requirement sheet

Nr. Requirement Description
- Target FPGA: XCVA45X35
- Available resources:

- SLICEs: 15360
Maximum available - LUTs: 30720

resources - Flip-Flops: 30720

- BRAMs: 192
- D5P48: 192
- 10Bs: 448

Maximum acceptable
2]] i ams
reconfiguration time

2.2. Establishment of common parts: Parameterizatio n

With the first step in the design methodology completed, all the necessary information on the
functions candidate to be reused is available and compiled in the function commonality list.
Therefore, the second step of the methodology can be executed. This second step, based on real

implementation possibilities, is in charge of determining which of these common functions are really

99

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

suitable for being shared between the three waveforms in the SDR. On this purpose, the

characteristics of the functions labelled as "common" are analyzed and, if necessary, the functions

are parameterized to support the change of characteristics on-the-fly. Finally the implementation (at

"rapid prototyping tool level", that is, without carrying out the HDL code generation) of both, the non-

parameterized and parameterized version of each function is carried out and the estimated results on

occupied resources and reconfiguration time added to the function commonality list.

In the current implementation 8 functions have been labelled as "common”. The conclusions

obtained from the analysis of their characteristics and from the implementation possibilities for each

of them are presented below:

The "OFDM builder" function cannot be parameterized. The big existing differences both in
the number of carriers and in the pilot generation would require a multiplexing based
parameterization in which the two complete implementation possibilities would be
implemented in parallel. Taking into account that this function is not common to the three
waveforms, hence will be implemented in a reconfigurable area, this type of
parameterization does not offer any type of benefit. Consequently, the "OFDM builder" will
be re-labelled as "reconfigurable” and each waveform will have its own non-parameterized
implementation. Figure 30 shows an example of the implementation of the OFDM builder
function for WiFi:

) n
= Elice1
ot N R
wow Y o —
Ehea?
[reiemE |
| " P JL_ste=s o
: g - 1 e e T et N3
i s S g BT,
Sarial o Faraliel T SeEseoer araliel m Sertal oum
fin ———iny
B I
Slced
[reltemnet
Slicet
}J -
..I Ejl—hhl
SlcaT
0 w [|+
Sl
[rerEmmrEt |
" " Slioed N
- z P L
-
Sartal o Paraliel [ET— SRSasmerd Paraliel w Sarial ouTz
[reivemEl |
Elice1l
LT relrRarprat
Slice12
<]

Figure 30: OFDM builder for WiFi

100

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

In turn, the "QPSK mapper" function appears to have the same characteristics in the three
standards. Therefore, no parameterization is needed and the function can be used as is, if
implemented statically. As the static implementation does not generate any drawback (i.e.
does not require more resources) there is no reason for not implementing the function in

this way. The selected implementation can be seen in Figure 31 below:

s o o sEE s o)

N Slice1 ROMA1 ouUT_|

—— [a:b]|—>+adqf1 }—p{ Dutb

Slice2 ROMZ ouT_Q

Serial to Parallel

Figure 31: Implementation of the QPSK mapper

In the graph model can be observed that the Inverse Fast Fourier Transform (IFFT)
function, present both in WiFi and WiMAX, can be implemented via an IP core or with
custom logic. This function requires the parameterization of the number of IFFT taps;
fortunately, the IP core provided with System Generator offers this possibility.
Consequently this is the selected implementation for the parameterized version of the
function. In turn, the non-parameterized version just does not make use of this possibility.
This type of parameterization has already been explained in Sections 4.1 and 4.3 of
Chapter 4 and there, in Figure 23, an implementation example is shown. It should be noted
that this function, not being common to the three standards, will be implemented in a
reconfigurable area. The possibility of using the parameterized version just permits not
having to completely reconfigure it when a transition from WiFi to WiMAX or viceversa is

needed.

The "convolutional encoder" function, common to the three standards, can also be
implemented with an IP core or with custom logic. However, in this case, the provided IP
core does not support the required on-the-fly generation polynomial change.
Consequently, although the original IP core is used for the implementation of the non-
reconfigurable version of the function, it has been necessary to modify it in order to add
this possibility and use it in the parameterized version. The developed implementation is
depicted in Figure 32. The subsystems labelled as "Poly", which carry out the
implementation of the different generation polynomial, have been reused from the original
IP. The input and output multiplexers have been added in order to generate the
parameterized version. Please note that the characteristic of these function are equal for
WiFi and WiMAX and they change in UMTS. This fact should be taken into account when
generating this function's cost as any transition from WiFi to WiMAX or viceversa does not

require any action.

101

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

>| In
IN
-
o B >
SELECT IEI—' rst >
Jout
> Ll g ot > outp
-1
267 E;l:__—J] i il cuT
* Somt Parallel to Serial1 M2
Mux1 v
-
»
st
Jout
ol o vin
192 »
do 1] ini
235 gLr_J
FolyZ
) e
Concatz
- Parallel to Serisl?
L] =t
jout
o vin
457 Ini
Paly2

Figure 32: Implementation of the parameterized convolutional encoder

- It can be checked in the graph model that the remaining "common" functions in the
function commonality list (namely: Puncturing, Interleavers and Cyclic Prefix Inserter)
share the same implementation, made up of a dual port RAM and an address generating
logic. All these functions require a parameterization; however, once a parameterization
method has been developed for the aforementioned type of implementation, it can be
replicated by all of them with minor changes. The designed parameterization, based on
multiplexing, was already presented in Section 4.3 of Chapter 4. Figure 24 and Figure 25
in that chapter show an example of it applied to the "1st interleaver" function. We would
like to note that although all this functions have a similar implementation, not all of them
are common to the three waveforms, hence being implemented in a reconfigurable way.
Consequently, the necessary precautions have to be taken when estimating the factors

that describe these functions.

Once this analysis is finished, data on resource consumption and on reconfiguration time for these
functions (both for parameterized and non-parameterized versions) can be estimated and added to
the function commonality list. The estimation is carried out with the resource estimation block

provided by System Generator and with the estimation functions presented in Section 3 of Chapter 5.

Additionally it is necessary to clarify that those parameterized functions based on multiplexing does
not make use of the "Direct ICAP access parameterization" presented in Section 4.1 of Chapter 4.
This technique has been developed and tested in the last part of this research work and was not
available at the moment of carrying out this implementation. Its inclusion and validation in this kind of
implementation will be proposed as a future work in Chapter 8. Consequently, the reconfiguration
time of the parameterized version of the functions will be set to 0, disregarding at this moment the
expected time needed to drive, for example from an microcontroller, the control pins of the
multiplexers. Besides, the ICAP control architecture has to be also determined at this point so that
the reconfigurable time is estimated in the most accurate way. For this implementation, R3TOS'

102

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

ICAP controller (presented in Section 3.2.1 of Chapter 7) is used in order to harness the real 380

MBps access bandwidth to the configuration memory that it provides.

In order not to show a figure of the function commonality list each time it is updated, please refer to
the complete version of the list (Table 7) presented in the next sub-section where information on all

the functions ("common" and "reconfigurable") has been filled.

2.3. Reconfigurable function implementation

A procedure, similar to the one carried out for the functions labelled as "common”, has to be
performed for the "reconfigurable" functions. These functions, only present in one of the waveforms,
are implemented in a reconfigurable area so that they can be removed when the other waveforms
are configured. The function commonality list shows that 5 functions have been labelled in this way.
Therefore, the implementation of these functions has been carried out with System Generator and

the corresponding information added to the function commonality list.

A brief description on the implementation used for each of the functions is presented below:

- The training sequence inserter, named "training" in the graph model, is also implemented
with the aforementioned custom logic made up of a dual port RAM and an address
generation logic. Consequently, no further explanation is needed as this architecture has
already been presented.

- For the implementation of the Reed-Solomon encoder an IP core provided by Xilinx has
been used. It should be noted that this IP core, unlike the one that implements the
convolutional encoder, does not support the change, on-the-fly, of the code generation
polynomials. As this function is only present in one of the waveforms this issue does not
have further importance and can be used. However, in case the function had to be

parameterized an alternative implementation would be necessary.

- The randomization function, as can be seen in the graph model, is made up of a Pseudo
Random Bit Sequence (PSBS) generator and an XOR operator. These two sub-functions
have been implemented using basic blocks available in System Generator. Figure 33

depicts this implementation.

Fiaure 33: Impnlementation of the randomization function

103

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

Finally, both the UMTS slot builder and the WCDMA generation, in charge of data

scrambling and spreading in UMTS, have also been implemented using custom logic as

can be seen in Figure 34 and Figure 35 respectively.

[a:b]
N 127 "
e I T

¥a

Serial to Parallel [a:b] T
- " ouT
; addro™ lo
Slicet FH:' Parallel to Serial
Counter ROM

Figure 34: Implementation of the UMTS slot builder function

oma

WCDMA Soramming
nerzior

Figure 35: Implementation of the WCDMA generation

Once all the functions have been implemented, the information on resource utilization and on
reconfiguration time is estimated and added to the function commonality list. Table 7 shows this list.

Please note that the column containing each function's characteristics has been removed in order to

reduce table's size.

104

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

Table 7: Function commonality list (estimated resources and reconfiguration time)

Function Commonality List

Mr. Function name Label Waveform fesources Reconf. Time (us)

SLICE LUT |FLIP-FLOF| BRAM | DSP43
WiFi 39 13 59 o o 16,73
1 Convolutional encoder Common WiMAX 3 L 3 g g 16,73
UMTS 42 14 62 o o 18,02
Parameterizable 44 21 53 0 1] 0|
WiFi 32 36 32 2 o 13,73
2 Puncturing Common WINLAX 32 26 36 2 o 13,73
UMTS 30 28 32 2 1] 12,87
Parameterizable 34 36 34 2 0 0|
WiFi 1192 1419 1406 4 0 511,37
3 1st interleaver Commaon WIMAX 280 300 304 Z 0 120,12
UMTS 489 502 506 2 o 209,78
Parameterizable 1294 1586 1380 7 0 0|
WiFi 1192 1419 1406 4 o 511,37
4 2nd interleaver Common UmTS 268 277 282 2 0 114,97
Parameterizable 1294 1586 1380 7 1] 555,13
5 QOPSK mapper Common All 169 168 173 2 0 0|
6 OFDM builder Reconfigurable WIFI 209 448 985 L 0 218,36
WilMAX 1946 1739 3865 1 1] 834,83
7 Training Reconfigurable WiFi 1138 2116 2142 10 0 488,20
WiFi 1420 2003 1706 3 26 609,18
8 IFFT Common WiINMAX 2394 3062 3440 2 46 1027,03
Parameterizable 2896 3799 3529 3 46 1242,38]
WiFi 148 134 206 3 o 63,49
9 Cyclic Prefix Inserter Common WiMAX 466 460 558 3 0 199,91
Parameterizable 570 740 344 5 1] 244,53
10 Randomizer Reconfigurable WiMAX 34 4 30] 1] 14,59
11 RS encoder Reconfigurable WiMAX 153 71 51 0 0 65,64
12 UMTS slot builder Reconfigurable umTs 65 73 127 1 1] 27,89
13 WCDMA generation Reconfigurable UMTS 3011 3998 3149 74 67 1291,72]
= ICAP controller - - 1793| 2778 1157 6 0 0|

It can be observed that, apart from the columns that hold the information on resource consumption
and reconfiguration time, a row for the parameterized version of the "common" functions has been
added to the list. It should be noted that the reconfiguration time of the parameterized version of
those functions common to the three waveforms is zero as the function is implemented statically. In
turn, if the function is only common to two waveforms, there is a reconfiguration time, as the function
is implemented in a reconfigurable area even though it is not reconfigured for certain waveform
transitions. Besides, functions 5 and 6 also represent special cases. The QPSK mapper, being equal
in the three waveforms, does not need a parameterized version. Moreover, it will be implemented
statically; therefore the reconfiguration time is zero. Regarding the OFDM builder, it was determined
in Section 2.2 that this function could not be parameterized. Consequently, only the non-
parameterized versions of this function appear in the list. Finally, although it is not a function involved

in the methodology, information on the ICAP controller has also been added to the list.

2.4. Design partitioning (granularity selection)

At this point, the design methodology is in the state that Figure 16 (presented in Chapter 3)
describes. Consequently, the optimization loop made up of steps 4, 5 and 6 can start. As it was

105

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

explained in the presentation of the design methodology, it is possible to carry out this process both
with estimated or with real data from the waveforms. In order this process to be as fast as possible,
initially, the estimated data that has been compiled in the function commonality list will be used in the
cost function. Later, once certain partitions have been chosen as optimal, their final physical
implementation will be carried out and the best partition will be selected based on the evaluation of

real data.

The first step in this optimization loop, (i.e. step 4 of the design methodology) is in charge of
generating the design partitioning. In the current design, three functions (Convolutional encoder
(function number 1), Puncturing (2) and 1st interleaver (3)) can be implemented either statically
(using the parameterized version of the function) or in a reconfigurable way (using the waveform-
linked non-parameterized versions of the function). Besides, three more functions (2nd interleaver
(4), IFFT (8) and Cyclic Prefix Inserter (9)) although implemented in a reconfigurable area, also have
two implementation possibilities. They can be implemented either using a parameterized version
(hence not being necessary to reconfigure them in certain waveform transitions) or in a waveform-
linked version (being reconfigured in every transition). Finally, one function (QPSK mapper (5)) can
only be implemented statically and six functions (OFDM builder (6), Training (7), Randomizer (10),
RS encoder (11), UMTS slot builder (12) and WCDMA generation (13)) are implemented in a
reconfigurable way and only have an implementation possibility.

To sum up, there are six functions that have more than one implementation possibilities (functions 1,
2, 3, 4, 8 and 9 in the function commonality list), consequently 2° = 64 different partitions can be

generated. Table 8 shows all the possibilities:

Table 8: Partition table

Partition table Partition table
Function Function
Nr| 1 2 3 4 5 6 7 8 9 10 [11 | 12 | 13 Nr| 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13
1 s s s RP s R R RP | RP R R R R 33| R s s RP s R R RP | RP R R R R
2| s s s RP s R R RP |[RNP| R R R R 34| R s s RP s R R RP |[RNP| R R R R
3| s s s RP s R R _|RNP| RP R R R R 35| R s s RP s R R _|RNP| RP R R R R
4 s s s RP s R R |RNP|RNP| R R R R 36| R s s RP s R R |RNP|RNP| R R R R
5 S S S |[RNP| S5 R R RP | RP R R R R 37| R S S |[RNP| S5 R R RP | RP R R R R
Bl S S S |[RNP| S5 R R RP |[RNP| R R R R 38| R S S |[RNP| S5 R R RP |[RNP| R R R R
7l s S S |[RNP| S5 R R |RNP| RP R R R R 39 R S S |[RNP| S5 R R |RNP| RP R R R R
8 s S S |[RNP| S5 R R |RNP|RNP| R R R R 40| R S S |[RNP| S5 R R |RNP|RNP| R R R R
9] s s R RP s R R RP | RP R R R R 41| R s R RP s R R RP | RP R R R R
10| s S R RP s R R RP |[RNP| R R R R 42| R S R RP s R R RP |[RNP| R R R R
11| 5 S R RP s R R |RNP| RP R R R R 43| R S R RP s R R |RNP| RP R R R R
12| 5 S R RP s R R |RNP|RNP| R R R R 44| R S R RP s R R |RNP|RNP| R R R R
13| 5 S R |[RNP| S R R RP | RP R R R R 45| R S R |[RNP| S R R RP | RP R R R R
14| 5 5 R _|RNP| 5 R R | RP |[RNP| R R R R 46| R 5 R _|RNP| 5 R R | RP |[RNP| R R R R
15| 5 5 R _|RNP| 5 R R _|RNP|RP | R R R R 47| R 5 R _|RNP| 5 R R _|RNP|RP | R R R R
16| 5 5 R _|RNP| 5 R R _|RNPRNP| R R R R 48| R 5 R _|RNP| 5 R R _|RNPRNP| R R R R
17| 5 R 5 |RP| 5 R R |RP|RP| R R R R 49| R R 5 |RP| 5 R R |RP|RP| R R R R
18| 5 R 5 |RP| 5 R R | RP |[RNP| R R R R 50| R R 5 |RP| 5 R R | RP |[RNP| R R R R
19| s R S |RP| 5 R R |RNP|RP | R R R R 51 R R S |RP| 5 R R |RNP|RP | R R R R
20 s R S |RP| 5 R R _|RNPRNP| R R R R 52| R R S |RP| 5 R R _|RNPRNP| R R R R
21| s R S5 |[RNP| 5 R R |RP|RP| R R R R 53| R R S5 |[RNP| 5 R R |RP|RP| R R R R
22| 5 R S5 |[RNP| 5 R R | RP |[RNP| R R R R 54| R R S5 |[RNP| 5 R R | RP |[RNP| R R R R
23| 5 R S5 |[RNP| 5 R R |RNP|RP | R R R R 55| R R S5 |[RNP| 5 R R |RNP|RP | R R R R
24| 5 R S5 |[RNP| S R R _|RNP|RNP[R R R R 56| R R S |[RNP| S5 R R _|RNP|RNP| R R R R
25| s R R RP s R R RP | RP R R R R 57| R R R RP s R R RP | RP R R R R
26| S R R RP s R R RP |[RNP| R R R R 58| R R R RP s R R RP |[RNP| R R R R
27| s R R RP s R R _|RNP| RP R R R R 59 R R R RP s R R _|RNP| RP R R R R
28| s R R RP s R R |RNP|RNP| R R R R 60| R R R RP s R R |RNP|RNP| R R R R
29| s R R |[RNP| S R R RP | RP R R R R 61| R R R |[RNP| S R R RP | RP R R R R
300 s R R |[RNP| S R R RP |[RNP| R R R R 62| R R R |[RNP| S R R RP |[RNP| R R R R
31] s R R |[RNP| S R R |RNP| RP R R R R 83| R R R |[RNP| S R R |RNP| RP R R R R
32| s R R |RNP| S R R |RNP|RNP| R R R R 64 R R R |RNP| S R R |RNP|RNP| R R R R

106

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

Certain explanations are needed in order to properly understand this table:

- Function numbers 1 to 13 correspond to the numbers present in the function commonality

list. Function names are avoided in order to simplify the table.

- Columns coloured in grey (which correspond to functions 5, 6, 7, 10, 11, 12 and 13) do not
change their status in any partition. Therefore, they only have one implementation

possibility.

- The status of those functions common to the three waveforms (functions 1 to 3) is denoted

as follows:

= S: The function is implemented statically. That is, the parameterized

version of the function is used.

= R: The function is implemented in a reconfigurable area. Therefore, the

waveform-linked, non-parameterized versions of the function are used.

- The status of those functions only common to two of the waveforms (functions 4, 8 and 9)

is denoted as follows:

= RP: The function is implemented in a reconfigurable area and uses the

parameterized version of the function

= RNP: The function is also implemented in a reconfigurable area but the
non-parameterized versions of the function are used.

As it was explained during the presentation of the methodology, the first partition looks for the
minimum reconfiguration time. Therefore, the functions common to the three waveforms are
implemented statically and the functions only common to two of them use their parameterized
version. Sequentially, each function's status is changed either to their reconfigurable version or to the
non-parameterized version until the last partition is reached. This partition has the minimum area at

the expense of a high reconfiguration time.

2.5. Design cost analysis via cost function

Once the partition table has been generated and the status of each function in every partition is
known, each partition's cost has to be evaluated. This evaluation is performed with the cost function
(3) that was presented in Chapter 5. Prior to the application of the cost function some of the

parameters used in it have to be defined. Those parameters are:

- N =3. There are three different waveforms in the SDR.

- P =64. The total number of partitions

107

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

- o, B, vl

=[1, 1, 1]. Initially a neutral optimization strategy is used.

In order to present the obtained results as clear as possible, avoiding the use of high amounts of data,
information will be presented within two sub-sections. Initially, the fulfilment of the design requirements will

be checked. Afterward the cost of each partition will be displayed in a graphical way.

2.5.1. Design requirement check

The requirement sheet (Table 6) of this design gathers two design requirements: a maximum
reconfiguration time of 3 ms and a maximum resource occupation linked to the available resources in
the XCV4SX35 Virtex 4 FPGA from Xilinx. Figure 36 shows the resource occupation (in number of

SLICES) of each of the patrtitions in order to check the fulfilment of the corresponding requirement.

I B B A A O A

10400

10300 -+ -

10200

10100

10000

9900

9800

.....

Resource occupation (SLICEs)

9700

9500

- } ‘ ‘ ‘ } }
9400 1 2%

2 4 6 8 1012 14 16 18 20 22 2

28 30 32 34 36 38
Partition number

Figure 36: Data on resource occupation

We would like to note that the saw-tooth like evolution of the graphic is related to the sequential
generation of the partitions. The X axis just contains the index of each partition, that is, does not
represent a progressive evolution of any design parameter. Consequently, the abrupt change of the
resource occupation between two close partitions corresponds to the status change (static to

reconfigurable or viceversa) of several function at the same time.

Regardless of the above explanation, it can be observed that the maximum resource consumption
(achieved by partition 1, in which all the functions are implemented in their parameterized version)
occupies 10441 SLICES. Therefore, it is below the maximum number of available SLICES (15360).
Besides, as it was explained during the presentation of the cost function in Chapter 5, apart from the
maximum number of SLICEs, it is necessary to check the use of other FPGA resources such as

108

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

BRAMs or DSP48. The maximum use of these resources, 103 BRAMs and 67 DSP48s, also fits
within the 192 BRAMs and 192 DSP48s available in the used FPGA.

Regarding reconfiguration time, Figure 37 shows information on this factor:

o e e N I L B R R

g

]
8

o IR

Maximum reconfiguration time (us)
s

g

1800 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Partition number

Figure 37: Data on maximum reconfiguration time

In this case the maximum reconfiguration time corresponds, as expected, to partition number 64 as it
has all the functions implemented in a reconfigurable way. However, the 2.365 ms that takes to
reconfigure this partition (transitioning from UMTS to WiFi as it is the worst case), are still below the
3 ms that have been set as maximum acceptable reconfiguration time. Please note that the saw-
tooth like evolution of this factor is also related with the aforementioned procedure for the generation
of the different partitions.

I conclusion, all the generated partitions meet the design requirements that have been established,;
hence the optimal partition can be evaluated and selected.

2.5.2. Optimality analysis

The cost of both the resource consumption and the reconfiguration time has been calculated,
normalized, weighted and added in order to carry out the optimality analysis. Figure 38 (individual
analysis) and Figure 39 (overall cost) show this information:

109

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

T /T
Dol bbb bbb | Trecont cost
1| I Resource cost

Cost

O 4 6 B 10 12 14 16 18 20 22 24 26 26 30 32 34 3 38 40 42 4 4 48 50 52 54 5 5 60 62 64
Partition number
Figure 38: Individual design cost analysis (neutral)
A
X | E— 1 Lo JJJ _______________ LLL ______ L.AJ i

% | | ‘ ‘

2 |

2 : :

?E) A O SO i ; ded :L

0 ! : !

Z : :

o] m | ‘ ‘
1951 : ‘ ‘
19
185 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Partition number

Figure 39: Overall design cost analysis (neutral)

110

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

Despite the saw-tooth like evolution of the graphics, it can be observed that in the current
implementation the relative cost of the reconfiguration time is higher than the cost of the resource
consumption. That is, there are bigger variations, in regard to the average value, in the
reconfiguration time that in the number of occupied resources. Consequently, with the weighting
parameters set to a neutral optimization goal, the most optimal partitions are those with a minimum

reconfiguration time is spite of a bigger design size.

If the optimization goal is changed, e.g. using the weighting parameter set named "Design size (soft)"
of Table 3 (with [a, B, y] =[2, 1, 1]), the cost representation changes as can be seen in Figure 40 and
Figure 41. This set looks for a soft optimization of the design size; therefore, the cost of the
corresponding factor is penalized, making it more important in the overall cost. Consequently, with
this new optimization strategy, those partitions with less resource consumption are considered more

optimal.

22 | 1 T 1 T T
: | [Treconf cost
| I Resource cost

A H[

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 43 50 52 54 56 58 60
Partition number

ma L

Figure 40: Individual design cost analysis (area optimization)

111

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

Overall cost

Partition number

Figure 41: Overall design cost analysis (area optimization)

Considering again the neutral optimization strategy (Figure 38 and Figure 39), (there is no design
requirement that recommends the use of another strategy), and based on estimated data, the
optimal partition is partition number 2, with an overall cost of 1,915. However, taking into account that
several partitions have a similar cost, their final physical implementation has been carried out and the
real implementation data has been obtained. With this data, that includes the maximum execution

frequency, the real cost of each partition can be calculated and the real optimal partition selected.

2.6. Physical implementation

The five partitions with less estimated cost have been selected for this physical implementation. They
are partitions number 1, 2, 18, 33 and 34. Analyzing the implementation status of each function in
these partitions, it can be observed that the selected partitions correspond to those in which the
functions with higher reconfiguration times (namely: 1st and 2nd interleavers and IFFT) are
implemented either statically or in their parameterized version. Taking into account the relative
importance that the reconfiguration time has in this implementation, the obtained results are

completely coherent.

The obtained data after the physical implementation is shown in Table 9:

112

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

Table 9: Partition data obtained from physical implementation

Partition data based on physical implementation
Resources (SLICEs) Avg. Reconf. Time (us) Fmax. (MHz)

Partition WiFi | WIMAX | UMTS = WiFi WINMAX UMTS

1 9793 8932 7711 1703 113 105,35 115,3

2 9293 8759 7791 1764 112,5 105,5 115,2

18 9261 8801 2811 1813 118,2 101,2 110,9

33 9705 8909 7779 1769 109,1 105,2 110

34 9392 8744 7798 1794 109,9 104,2 110,5

Highlighted values represent the worst-case configurations, that is, the values that have to be taken
into account when calculating each patrtition's cost. Besides, it should be noted that information on
both, resource occupation and maximum achievable clock frequency have been obtained from the
reports that Plan Ahead generates after carrying out the implementation. In turn, the average
reconfiguration time has been calculated using the estimation function (13) that was introduced in
Section 3.1 of Chapter 5. This function is initially applied to the size of the generated patrtial
bitstreams obtaining the reconfiguration time for each PRA. Afterwards, this reconfiguration times are
appropriately added depending on the waveform transition to be performed, and finally averaged to
obtain the presented data.

Once the cost function is applied to data on Table 9 the result below are obtained (Table 10). Please
note that the maximum clock frequency present in Table 9 has been replaced by its inverse, the
minimum clock period in order fit the cost function.

Table 10: Partition cost based on physical implementation

Partition cost based on physical implementation
Max. Resources Avg. Reconf. Time Max. Tclk_min Overall cost

Partition | Absolute (SLICEs) Cost Absolute{us) Cost Absolute(ns) Cost -

1 9793 1,032 1703 0,963 9,48 0,989 2,983

A 9293 0,979 1764 0,993 9,43 0,989 2,966

18 9261 0,976 1813 1,025 9,88 1,031 3,032

33 9705 1,023 1769 1,000 9,51 0,991 3,014

34 9392 0,990 1794 1,014 9,60 1,001 3,005
Average 9488,8 - 1768,622 - 9,59 - -

Highlighted in yellow the partial costs corresponding to each of the design factors (design area,
reconfiguration time and minimum clock period) are presented. Besides, in the column presenting the
overall cost, the optimal partition has been highlighted in green. After the final physical
implementation, certain changes in the absolute data can be appreciated. This will be later

addressed in Section 3. Nevertheless, partition number 2 is still the optimal one.

Regarding the application of the cost function, it should be noted that the average values that have
been used correspond only to the five partitions under scope. Consequently, the obtained costs
cannot be compared to the ones previously calculated with estimated data. Besides, the neutral

optimization strategy ([a, B, v] = [1, 1, 1]) has been used in order to weight each factor. With this

113

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

strategy, it can be seen that the variations in regard to the average values are quite similar in the
three factors. Consequently, unlike the analysis carried out with the estimated data where
reconfiguration time had a predominant position, in this case none of the factors have a significant
higher weight in regard to the other two.

3. ANALYSIS OF THE OBTAINED RESULTS

Apart from the ultimate election of the optimal partition, there are certain aspects related with the
presented data that have to be explained in order to obtain a better understanding of the optimization

process.

It should be noted that costs obtained by the different generated partitions are relatively small.
Attending to the information presented in Figure 38, where the individual design size costs are
presented, it can seen that all the costs are between 0,85 and 1,15. That is, the highest variation of a
factor from its average value (1) is less than a 15%. This value, which is directly proportional to the
optimization capacity achievable by the design methodology, may seem quite small. The main
reason for this issue is the election that has been carried out of the waveforms to be implemented.
The presence of UMTS, which has a completely different implementation nature in comparison with
WiFi or WiIMAX, does not permit the existence of more common functions that can be implemented
statically. Therefore, the optimization capacity of the methodology gets reduced. The proposed

design methodology gets better results when the waveforms to be implemented have similar nature.

In regards to the presented results in Table 9, obtained from the physical implementation of certain
partitions, it can be observed that they have suffered some changes in comparison with their
estimated data. Table 11 details these results:

Table 11: Comparison between estimated and real data

Estimated data vs. Real data
Resources (SLICEs) Avg. Reconf. Time [us)
Partition | Estimated Real Error Estimated Real Error
1 10441 9793 -6,6% 1871 1703 -9,9%
2 10337 9293 -11,2% 1877 1764 -6,4%
18 10335 92601 -11,6% 1889 1813 -4,2%
33 10439 9705 -7,6% 1882 1769 -6,4%
34 10335 9392 -10,0% 1888 1794 -5,3%

A reduction in both, resource utilization and reconfiguration time can be observed. As it was stated
during the presentation of the methodology, implementation tools can carry out certain low grain
optimization procedures such as SLICE packaging, equivalent register removal or unused logic
trimming that generate these differences. However, they are smaller that a 12%, hence the estimated
values are significant and can continue being used.

114

6. METHODOLOGY VERIFICATION: MULTI-STANDARD MODULATOR

Finally, it should be noted that quite a small design like the one presented has generated 64 different
partitions to be evaluated. Moreover, some simplifications have been necessary to present the
generated data appropriately. Consequently, the use of an automation procedure like the one
proposed in Section 4 of Chapter 3 is highly advisable.

4. SUMMARY

This chapter has presented a case study of the application of the proposed design methodology and
design framework. All the steps within the methodology have been applied and explained in order to
find the optimal implementation of a multi-standard modulator. This modulator is made up of the
transmission functions of three communication standards, namely: WiFi, WiMAX and UMTS. Once
the complete procedure has been carried out an optimal design has been selected. Being the
reconfiguration time a predominant factor in this system, the optimal partition is the one in which the
functions with higher reconfiguration times are implemented either statically or in their parameterized
version. However, due to the particular characteristics of the selected standards, the obtained
improvement is not as big as it could be expected. The selection of standards with different
implementation natures such as WiFl and WiMAX (based in OFDM) on the one hand, and UMTS

(based on spread-spectrum techniques) on the other hand, reduces methodology's efficiency.

115

Chapter 7

Implementations

7. IMPLEMENTATIONS

7. Implementations

1. INTRODUCTION

In this chapter two additional implementations, carried out with the proposed design framework, are
presented. These implementations, unlike the multi-standard modulator, are not completely focused
on the design methodology as their reconfiguration possibilities are quite delimited. However, they
provide a tangible demonstration of the feasibility of the proposed work with fully functional
applications. Besides, the results and the information obtained during the design process have been
a key point in the definition and development of both the design framework and the
static/reconfigurable partitioning methodology. The first implementation is a small form factor
cognitive video transmission system. This system is able to change its Intermediate Frequency (IF) if
the transmission channel is occupied, hence achieving a secure communication. The frequency
change is carried out via dynamic partial reconfiguration. In the second implementation several data
coding functions, usually used in Software Defined Radios, have been designed and executed over
R3TOS, a Reliable, Reconfigurable and Real-time hardware Operating System developed by the
SLIG group of University of Edinburgh. This operation system harnesses dynamic partial

reconfiguration to enable hardware tasks to behave like software ones.
2. SMALL FORM FACTOR COGNITIVE VIDEO TRANSMISSION SYSTEM

2.1. Introduction

The reduction, or at least the no-inclusion, of new wires is a common trend nowadays both in the
consumer and in the industrial environments. Particularly in industrial environments, or in places
such as airplanes, trains or vertical transport devices, where the weight and the installation ease are
appreciated characteristics, the search of technologies that allow a reduction in the number of wires
is an ongoing research topic. Software Defined Radios or Cognitive Radios are good candidates to
carry out this task as the ability they have to get adapted to their surrounding environment allows
them to work into harsh environments and perform secure communications.

On the basis of the above arguments, a cognitive video streaming transmission system has been
implemented over the proposed design framework. The signal processing algorithms that take part in
the system have been designed using Xilinx's rapid prototyping tool: System Generator. Besides, the
frequency change that the system is able to perform is carried out via FPGA dynamic partial
reconfiguration. As will be explained later, due to the simplicity of the system, it has not been
necessary to apply the partitioning methodology. However, certain tests with different sizes of the
reconfigurable area have been carried out in order to evaluate the relation between the size of the

reconfigurable area, the size of the partial bitstreams and the reconfiguration time.

117

7. IMPLEMENTATIONS

The designed system removes the RS232 wire over which a video streaming is transmitted between
two computers, and substitutes it with a cognitive wireless link. The system would emulate a real-
world application such as closed-circuit television (CCTV) surveillance. With the digital part fully
FPGA implemented, the transmission system is made up of a modulator, an RF section and a
demodulator. It implements an OQPSK modulation scheme, used in the IEEE 802.15.4 wireless
standard on which other industrial wireless standards such as WirelessHART are based [HART'07].
Both the transmitter and the receiver are completed with an embedded MicroBlaze soft-processor in
charge of managing the end-point communications via the RS232 wire that has been replaced and

carrying out the whole system’s control.

2.2. Environment description and system setup

Wireless link
1.92 Mbps

RF24-245CGHz

D)

@

! \i
TR

FLASH RAM CONVERTER

R5232 CONTROLLER CONTROLLER CONTROLLER

115200 bps

-
®—
v

=

uBlaze A'Eﬁ — Li
8

CONVERTER

f I FEREE, o
RAM FLASH
CONTROLLER| | CONTROLLER CONTROLLER RS5232
115200 bps

Figure 42: Cognitive video streaming transmission system

Figure 42 gives an overview of the implemented system. It is made up of:

e The end-point PCs that generate the video streaming from a Webcam, transmit and receive

it through the RS232 interface and reproduce it on a screen. Further details on section 2.2.1

e The cognitive transmitter. Fully FPGA implemented, receives the video streaming from the
source PC, modulates the data with an OQPSK modulation scheme and up-converts it to a
5 or 10 MHz Intermediate Frequency (IF).The choice of this frequency is made based on the
availability of the transmission channel. Besides, the implementation of this frequency

change is carried out via FPGA dynamic partial reconfiguration. (Section 2.3.1)

e The RF front-end. Up/Down converts the modulated signal in IF to the 2.4 GHz RF band and
transmits/receives it to/from the air. (Section 2.2.3)

e The cognitive receiver. Looks for the signal in the predefined frequencies (5 or 10 MHz),
reconfigures itself to the target frequency, performs a frequency and phase synchronization,

demodulates the input signal and outputs data over the RS232 interface. (Section 2.3.2)

The RS232 standard is neither the typical one, nor the most suitable one for a video transmission.

However, it has been chosen for this implementation due to its simplicity. Nevertheless, the proposed

118

7. IMPLEMENTATIONS

implementation serves as a proof-of-concept for future developments where more complex wired

transmission systems such as Ethernet could be replaced.

A description of the hardware platforms and specific software programs used for this implementation
is presented below.

2.2.1. Software for streaming video over RS232

Freeware software has been used in order to transmit the video stream generated by the webcam
over the RS232 interface. The AV RS232 Sender developed by Olds [Olds'12] uses unreal media
server, live server and player [UNREAL'12] on this purpose. These programs allow the configuration

of certain parameters such as the video resolution and frame rate or RS232 baud rate.

The current configuration generates a raw capture of 208x170 pixels and 3 frames-per-second from
the webcam (generating an overall throughput of 828 kbps) that is later compressed, with the VC1
(WMV9) codec to 90 kbps in order to fit the maximum available rate of 115200 bauds in the AV
RS232 Sender. It should be noted that both the RS232 controller present in the FPGA (921600
bauds maximum) and the radio link itself (1.92 MBps as will be seen later in section 2.3.1) are able to
work at higher data rates. Unfortunately, the used software limits the transmission to the

aforementioned 115200 bauds.

2.2.2. Hardware platform

Two SMT8096 boards [SUNDANCE'05] have been used to implement the digital part of the
presented cognitive transmission system. This hardware platform is a PCI system, based on three
main modules that can be seen on Figure 43. The SMT310Q PCI carrier board holds the SMT368 +
SMT350 FPGA module with ADC/DAC converters and the SMT395 DSP module containing a TI
C6416T DSP. The current implementation only uses the FPGA module and its associated ADC/DAC

converters.

ute

SMT368+SMT350

V) TIP3 SMT10Q

Figure 43: SMT8096

119

7. IMPLEMENTATIONS

A Virtex 4-SX (XCV4SX35) FPGA is the core of the FPGA module. Complementing it, two 8 Mbyte
banks of high speed RAM and a XCF32 Flash PROM are attached to the FPGA. This PROM is in
charge of both, configuring the FPGA on start-up and storing the partial bitstreams for the dynamic
partial reconfiguration.

Two 14-bit, 125 MHz sampling rate, TI ADS5500 analog-to-digital converters and a dual 16-bit, 500
MHz, DAC5686 digital-to-analog converter make up the SMT350 ADC/DAC expansion board.
Additionally, a CDCM7005 programmable clock synchronizer is also present in this board providing
low-jitter clock both to the ADC/DAC converters and to the FPGA.

Bearing in mind the IF and data requirements set up for the transmission system, a system clock of
61.44 MHz has been established. This clock is common to the ADC/DAC converters and to the
signal processing algorithms implemented in the FPGA. Besides, a 100 MHz clock is also available
in the FPGA for auxiliary tasks such as the microblaze system in charge of the RS232 interface and

dynamic partial reconfiguration.

2.2.3. RF Front-end

A Radio Frequency (RF) front-end has also been designed and connected to each of the SMT8096
boards so as to achieve an over-the-air transmission. The front-end up/down converts the IF
frequency output from the ADC/DAC converters to a 2.4 GHz RF frequency. It is completed with a
pair of self-designed antennas that look for the best performance when working into metallic
environments. In terms of frequency reconfiguration, the design and use of reconfigurable antennas,
and reconfigurable matching networks and front-ends has been widely covered in the literature as it
is usually a necessary characteristic. However, it is out of the scope of this work. Due to the small
frequency hopping that the proposed transmissions system carries out (5 MHz wide) it can be

performed by conventional elements.

2.3. Implementation

The following sections describe the implementation of the transmitter and receiver that has been

carried out in System Generator.

2.3.1. Transmitter

The transmitter is divided into three main data processing tasks: the data acquisition task, the
OQPSK modulator itself and the Power Spectral Density (PSD) estimator in charge of the analysis of
the transmission channel's availability. Figure 44 shows the implementation of these tasks. The
system is designed to achieve an overall data rate of 1.92 Mega bits per second, high enough to fulfil
with the 115200 bps required by the RS232 link.

a) Data acquisition task

Taking up the bottom line of the graph, the data acquisition task receives the data from the

MicroBlaze processor that monitors the whole system and prepares it for the modulation. In this step,

120

7. IMPLEMENTATIONS

& L

System dout »
Genardtor FDATool b

Ei:i addr pfdin map MULT1

L
EI-’ Cl rdyp

O_MAFFER RAISED_COSINET

ADDER MULT3

cosine

OSCILLATOR

Tl »lo
addrz! din - map MULTZ

rdyp
RAISED_COSINE2

ri
In L P L Outt
DATA_ENABLE F_EDGE DET 1
sel
o
2779098485 a0 P 3 addrz

DIFF_EMNCODER

I_MAPPER

a1 Parallel to Setial

=
In L B8 WU

DATA_IN

Figure 44: Data acquisition and OQPSK modulator

first of all a 3 byte header is attached to the data in order to help its demodulation in the receiver.
Subsequently, data passes through a differential encoder that suppresses the phase ambiguity
present in OQPSK modulation schemes.

b) OQPSK modulator

In the top line of the figure the OQPSK modulator is implemented. It is mainly composed of the
numerically controlled oscillator (NCO) that generates the sine and cosine signals needed for the
modulation, the mapper and the 64-tap, 0.25 roll-off raised-cosine filter that generate the | and Q

baseband signals and the final multipliers and adder that perform the frequency up-conversion.

As stated before, the system is able to work in two IF frequencies depending on channel's
availability, 5 or 10 MHz. An ideal cognitive design would require the transmitter to work in any IF
frequency within the limits of the DAC converter, however, looking for simplicity it has been limited to
the aforementioned two frequencies. The frequency change is carried out changing the oscillator's
settings. With the aim of reducing the amount of resources used by the design and as a
demonstration of the feasibility of this technology, this change of settings is performed using dynamic

partial reconfiguration.

c) PSD Estimator

The PSD estimator shown in Figure 45 is responsible of analyzing the transmission channel. It is
present both in the transmitter and the receiver and offers them the necessary information about the
signal power presence in the target frequencies. It is implemented with a 64-tap Fast Fourier
Transform (FFT) attached to a power detector. The FFT carries out a real time analysis of the power
presence in the spectrum. It delivers a 64 byte array that represents the spectral power distribution.
Bearing in mind that the ADC converters work at 61.44 MHz, the FFT is able to discern a 1 MHz
approximate bandwidth. Subsequently, this data, that is received every millisecond, is averaged to

reduce the background noise and passed to the power detector. In the current implementation, this

121

7. IMPLEMENTATIONS

3 aly -
DATA_IN ’ z »
el I—b b a+h
b
E—. Hh_im =h_index]» MULT1
ADDER1
xk_index] &
start elf> 2% (@)
b
Ausit> MULT2
fwvd_in duls
edongfs
=2 g & i 1
T cl_irv_we dongl» a=b a=bh
54— b b 10M
64 -TAP FFT
COMP1 COMP3
s
a
System
Generstor Ll
a=b . asb
COMP2 COMP4

Figure 45: PSD Estimator

power detector only checks the state of the 5 and 10 MHz frequency bands, although the whole span
is available. In case the power presence in any of the frequencies is higher than the maximum

assumable by the communication, the corresponding signal is asserted.

2.3.2. Receiver

The cognitive OQPSK receiver carries out a power search in the available spectrum and dynamically
reconfigures itself to receive the transmitted signal in the corresponding frequency. Afterwards, fine
grain frequency and phase synchronization are performed and data is demodulated and submitted to
the MicroBlaze that, among other tasks, converts it to the final RS232 interface. The power search is
performed with the aforementioned PSD estimator, while the rest of signal processing functions are

detailed below. An overview of the receiver is shown in Figure 46.

a) Costas Loop

The core of the receiver is a Costas Loop [Shah'09]. This algorithm is a digital PLL used for carrier
phase recovery from suppressed-carrier modulation signals. It is made up of an oscillator, a complex
multiplier, a phase detector and a loop filter. It takes up the left half of Figure 46. The algorithm tunes
the oscillator until it is phase and frequency locked to the carrier signal. Besides, it also carries out
the demodulation of the input signal giving out the baseband In-phase (I) and Quadrature (Q) data

components.

Although the Costas Loop is able to track differences between the default frequency of the oscillator
and the real incoming carrier frequency, the 5 MHz jump between the two possible IF frequencies is
too large. Consequently, in order the Costas Loop to work properly it is necessary to reconfigure the
default frequency of the oscillator and adjust certain filtering parameters in the complex multiplier. In
the same way as the transmitter, this reconfiguration is carried out using FPGA dynamic patrtial
reconfiguration.

122

7. IMPLEMENTATIONS

&

Fystem

Generator

DATA_IN

FDATaol

direfel|>
relyf>

ANTIALIASING
FILTER

cos

Q f—

-sin

CMPLY_MULT

PLL_LOOP_FILTER

yn phase_det_in

FYry

EARLY-LATE GATE
TING RECOWVERY

MULT1

MULT2

DATA

P_EDGE_DET

In 0

OGPSK
DECODER

Data_in

DATA
EXTRACTION

— e Data_

an2

ot

_in Data_out

Data_ualid

N_EDGE_DET

DATA_OUT

DATA_VALID

OSCILLATOR

o ol
g

S6h_a

Figure 46: OQPSK demodulator

b) Early-late gate timing recovery

Due to the structure of the receiver and to the relation between the ADC sampling rate (61.44 MHz)
and symbol rate (960 kilo-bauds), a 64x oversampling ratio is present in the demodulated data.
Therefore, it is necessary to implement a timing recovery algorithm in order to choose the optimal
sampling point. The implemented algorithm is the well known Early-late gate [Zicari'08]. This
algorithm tunes the clock that synchronizes the data to its optimal point with a loop filter. The error
signal that drives this loop filter is generated using samples that are early and late compared to the
ideal sampling point. When the sampling point is not optimal the early and late samples are at
different amplitudes, hence the error signal is generated. Once the timing recovery loop converges,
the early and late samples are at equal amplitudes and the sample to be used for later processing is
the sample that lies in the middle of them.

c) Data recovery

Once the received data is optimally sampled, the source data has to be recovered. As stated in the
description of the transmitter, in order to solve certain problems that OQPSK modulation introduces
(i.e. phase ambiguity), some data transformations have been carried out. Consequently, the receiver
has to undo these transformations. The “OQPSK decoder” and “Data extraction” blocks are in charge
of this operation. The first block is a differential decoder that regenerates the original data analyzing,
not only the current received symbol, but also the previous one. Later, the “Data extraction” block
looks for the header bytes introduced in the transmitter, removes them and outputs the original data

and a data enable signal.

d) Anti-aliasing filter

Data digitalized by the ADC converter at 61.44 MHz is firstly filtered by a 25-tap anti-aliasing filter
when it arrives to the receiver. This filter, which rejects the out of band power in order to improve the

performance of the Costas Loop, is quite simple but requites special attention in the proposed

123

7. IMPLEMENTATIONS

implementation. Due to the cognitive characteristic of the system, the pass and stop-band of the filter
have to be reconfigured depending on the used IF frequency. Just in the same way as the rest of the
reconfigurable components in the system, the reconfiguration of this filter is also carried out with

dynamic partial reconfiguration.

2.3.3. Infrastructure for dynamic partial reconfiguration

Both the transmitter and the receiver include a MicroBlaze processor as key device for the
management of dynamic partial reconfiguration. This processor is mainly connected to the ICAP port
that enables access to the configuration memory, and to the controllers of the several memories that
hold the partial bitstreams. Besides, other peripherals like the RS232 controller, the memory
controllers and the aforementioned signal processing algorithms that carry out the radio features are
also connected to this processor. Figure 47 offers a detailed view of the implemented infrastructure.
It should be noted that the use of a complex microprocessor like MicroBlaze responds to the facility it
offers to be programmed and debugged, hence simplifying whole system's set up. As will be
discussed in section 2.4 the system could be simplified by substituting the MicroBlaze processor by a

simpler architecture.

ICAP f----

RECONFIGURABLE

AREA

uBlaze

o e

M COMNVERTER
CONTROLLER COMNTROLLER CONTROLLER

$

FLASH RAM

ZEZSH

2va/oav

Figure 47: Detailed scheme of the internal organisation of the FPGA

When the algorithm running in the MicroBlaze decides that a frequency change is needed, the new
configuration data is downloaded from one of the memories of the system to the configuration
memory of the FPGA via the ICAP port. The configuration data source can be ‘any’ of the memories
in the system because the storage place of these files depends on their size. When working with
small partial bitstream they are stored in the FPGA’s internal BRAM memories. These limited

resources provide very high speed data access so that the reconfiguration time is minimum. When

124

7. IMPLEMENTATIONS

dealing with bigger partial bitstreams they have to be stored in the external RAM memory that offers
a poorer performance. Nevertheless, in either case all the bitstreams are stored in the non-volatile

FLASH memory on startup and later copied by MicroBlaze to their final location.

2.3.4. Software tasks

Figure 48 shows an execution diagram of the different software tasks present in the MicroBlaze

processor of both the transmitter and the receiver.

FPGA power up
and configuration
+ [P core initialization (ICAP, R8232,

—— ADC/DAC..)
Initialization + Partial bitstream copy from FLASH to
RAMBRAM
L4 + Transmitter: Video data from

R5232 to “Data aquisition” HW task
+ Receiver: Video data from “Data
recovery’ HW task to R§232

> RS232receivefsend &

i

{ Read channel data from PSD

Estimator

Channel monitoring

+ Copv new partial bitstream from

FPGAreconfiguration |~ RAMBRAM 1o ICAP

Figure 48: Software tasks’ execution flow

Once the FPGA's initial configuration is automatically loaded on power-up and the MicroBlaze wakes
up, the code execution starts. The initialization task first initializes all device drivers (ICAP, memory
controllers, RS232, ACD/DAC controllers... and so on) and later copies the partial bitstreams from
the FLASH memory to their final storage place. Then, the execution loop starts. This loop is made up
of two tasks: the RS232 receive/send task (depending on whether it is the transmitter or the receiver)
and the channel monitoring task. The first task is in charge of the communication between the RS232
controller and the signal processing algorithms, sending/receiving data to/from them. The channel
monitoring task in turn, receives information from the PSD estimator and decides whether an IF
change is necessary or not. In case it is necessary, the relevant actions in order to perform the

dynamic partial reconfiguration of the device are carried out.

125

7. IMPLEMENTATIONS

2.4. Measurements

This section will provide an overview of the most relevant measurements made on the proposed
implementation. The design partitioning methodology has not been used in this implementation as
the resources that need to be reconfigured in order to perform the IF frequency change are highly
localized. However, measurements on the three main factors addressed by the methodology
(resource utilization, reconfiguration time and maximum clock frequency) have been made. Besides,
and in order to obtain an estimated value of the reconfiguration time that a wider functionality change
would take (e.g. a constellation change), measurements on a complete reconfiguration of the

transmitter have also been carried out.

Regarding the performance of the communication link, a 1.92 Mbps wireless link has been achieved.
This data rate is high enough so as to properly transmit the video streaming at 115.2 Kbps generated
by the webcam and the AV RS232 sender. Furthermore, avoiding the limitation of the RS232

interface, the achieved wireless bandwidth could be better utilized.

Table 12: Transmitter resource utilization

Transmitter FPGA resource utilization

SLICE | Flip-Flop LuT BRAM | DSP4g
0QPSK Modulator 548 (4%)| 644(2%)| 813 (3%} 3(2%)}| 70(36%)
Oscillator 51(<1%)| 61(<1%)| 79(<1%)| 1(<1%)| 0(0%)
PSD estimatar 1547 (10%)| 1955 (6%)| 2089 (7%} 3(2%)| 32(17%)
uBlaze system 3074 (20%})| 3004 (10%})| 3943 (13%}| 33 (17%}| 3 (2%)
Full design 5432 (35%)| 5679 (18%)| 6881 (22%)| 40 (21%)| 105 (55%)
NR design 5531 (36%) | 5772 (19%) | 6988 (23%) |41 (21%) |105 (55%)

Table 13: Receiver resource utilization

Receiver FPGA resource utilization

SLICE Flip-Flop LUT BRAM |D5P43
Filter + oscillator | 2183 (14%)| 3158 (10%)| 1928 (6%)| 1(<1%]}| 41(21%]
Static receiver 1037 (7%)| 1201 (4%) 982 (3%)| 1(<1%]) 3(2%)
P5D estimator 1547 (10%)| 1955(6%)| 2089 (7%)| 3(2%)| 32(17%)
uBlaze system 3074 (20%)| 3004 (10%)| 3943 (13%)]33 (17%) 3(2%)
Full design 8091 (53%)| 9544 (31%)| 9390 (31%)|38 (20%)| 79(41%)
NR design 10324 (67%) | 13224 (43%)| 11365 (37%]|39 (20%) |120 (83%)

Table 12 and Table 13 sum up the FPGA resource utilization of the implemented transmitter and
receiver respectively. At a first glance the transmitter occupies 5432 SLICES, while the receiver
occupies 8091. These values correspond to a 35 % and 53% of the XC4VSX35 Virtex-4 FPGAs in
which they have been implemented. Taking into account that this FPGA could be considered as
“small”, (the biggest FPGA in the Virtex-4 family is nearly six times bigger) the small form factor and
simplicity of the presented system is demonstrated. Analyzing the different parts that make up the
transmission system, the MicroBlaze constitutes the biggest part of it (20% of the FPGA). This
processor, mainly in charge of the management of the dynamic partial reconfiguration, could be

considered as an important overhead in relation to the size of the signal processing functions.

126

7. IMPLEMENTATIONS

Table 14: Reconfiguration times

Reconfiguration time

Partial bitstream size | Bitstream storage
Design = BAM BRAM
Transmitter [oscillator) 24 KBytes 4.5 ms 3ms
Transmitter {whole) 267 KBytes 60 ms -
Receiver (Filter and osc.) 763 Kbytes 171.5 ms -

However, this overhead can be reduced or played down. On the one hand, in a more complex design
the presence of a powerful processor like MicroBlaze could be exploited to execute complex
software implemented tasks. On the other hand, and targeting small size designs, the management
of partial reconfiguration could be ported to a more simple element like a state machine or a

PicoBlaze processor hence reducing this overhead.

The bottom rows of the tables present the resource utilization of a Non-Reconfigurable (NR)
implementation of the designs. In the case of the transmitter, due to its simplicity and to the only
reconfiguration of the oscillator, the use of dynamic partial reconfiguration only reduces the design
size by a 2%. In turn, in the receiver, this reduction reaches a 21%, what justifies its use. The above

mentioned simplification of the reconfiguration management system would also improve these ratios.

In Table 14 the reconfiguration times of the different designs are shown. As can be observed, two
different reconfiguration granularities have been tested for the transmitter in order to evaluate the
relation between the size of the reconfigurable area, the size of the partial bitstreams and the
reconfiguration time. On the one hand (named, “Transmitter (oscillator)”), only the oscillator is
reconfigured in order to carry out the IF frequency change. On the other hand (named “Transmitter
(whole)”), although it is not necessary, the whole OQPSK modulator is erased and reconfigured to
achieve the IF change. As already explained, the measurements obtained from this configuration
provide a reference on how long it would take to perform a bigger reconfiguration (i.e. a constellation
change or a full communication standard change). The minimum reconfiguration time (3 ms) is
achieved when only the oscillator is reconfigured and when the partial bitstream is stored in the
internal BRAMSs. As stated before, this bitstream location is only possible for small partial bitstreams.
With this bitstream stored in a RAM memory, the reconfiguration time rises to 4.5 ms. The
reconfiguration of the whole transmitter takes 60 ms and the reconfiguration of the receiver, the
longest one, reaches the 171.5 ms. These values are good enough for a video streaming application

but may not be sufficient for many other applications.

Calculating the reconfiguration speed from the above data, 8 MBps are achieved when the partial
bitstream is stored in BRAM and 4.5 MBps when it is in RAM. This performance is very poor
compared to the theoretical maximum writing speed reachable by the ICAP port in Virtex-4 devices
of 400 MBps. The responsible of this performance loss is the standard ICAP controller provided with
the MicroBlaze processor, which is not as optimized as possible. An enhanced implementation of this
controller like the one presented within the next implementation (SDR over R3TOS - Subsection

3.2.1) would offer reconfiguration times around the millisecond.

127

7. IMPLEMENTATIONS

Table 15: Achievable maximum frequency

Maximum clock frequency
Transmitter {oscillator) 62,35 MHz
Transmitter {(whole) 63,88 MHz
Receiver 69,06 MHz

Finally, Table 15 sums up the maximum achievable clock frequencies in the designs. Measurements
on the receiver and on the two implementation possibilities of the transmitter have been carried out.
On the one hand it should be noted that all the designs meet with the 61.44 MHz frequency
requirement established for the system. On the other hand, attending to the maximum clock
frequencies achieved for the two different implementation possibilities of the transmitter it can be
seen that the implementation in which the whole transmitter is reconfigured obtains a higher clock
frequency. In this implementation there is only a big reconfigurable area that holds the whole
transmitter. Therefore, as explained in previous chapters, the restrictions for the implementation tools
are softer than the ones in a design in which a small reconfigurable area inside the design fixes the

routing of several signals.

3. SOFTWARE DEFINED RADIO OVER R3TOS

3.1. Introduction

Heretofore, the presented implementations have involved a straightforward, stand-alone use of the
design framework formed by the FPGA rapid prototyping tools and dynamic partial reconfiguration.
That is, the designed systems carry out a fully parallel, pipelined implementation of all the SDR
tasks/functions that make up a concrete waveform, using dynamic partial reconfiguration only when a
waveform change or an adjustment of a certain parameter is needed. However, dynamic partial
reconfiguration enables the development of other implementation strategies, also compatible with

SDR applications, such as proposed by the R3TOS project.

Harnessing dynamic partial reconfiguration, R3TOS, a Reliable, Reconfigurable and Real-Time
Operating System [lturbe'10], exploits FPGA resources efficiently over time, depending on functional
requirements and existing resources, using classical software operating system-like support. Tasks
are swapped in and out of the FPGA'’s reconfigurable area depending on computation requirements
over the execution time. Furthermore, R3TOS is completed with several scrubbing functions that
ensure safe operation even in harsh environments such as aeronautics and space [lturbe'llal].
Considering all of the above, the use of R3TOS for the implementation of Software Defined Radios is
an appealing proposition. Their joint leads to a system in which SDR takes care of a secure

communication while R3TOS guarantees efficient and reliable hardware utilization.

As previously mentioned, the use of a hardware operating system in the implementation of a SDR
slightly differs from the implementation strategy used up to now. The task-oriented strategy utilized

128

7. IMPLEMENTATIONS

by R3TOS makes it necessary to redefine the implementation of the SDR waveforms, being
necessary to partition them into former tasks, whose execution is scheduled individually. However, in
the same way that the fully pipelined implementation strategy, the different granularities in which a
waveform can be partitioned also generate different implementation issues that can be optimised.
Although due to the nature of the hardware operating system the existence of static functions makes
no sense, the use of a modified version of the proposed partitioning methodology to determine the
best partitioning granularity can achieve this optimisation. The necessary modifications in the
partitioning methodology, explained in sub-section 7.3.3, mainly consist of including the new design

factors (e.g. execution time) in the cost function.

Therefore, this implementation is a proof-of-concept of both, the sustainability of using R3TOS in the
implementation of Software Defined Radios and the possibility of harnessing the proposed
partitioning methodology in the election of the best granularity for the tasks to be executed. In short,
the first tasks (the data coding functions in a modulator) of a SDR have been implemented in
R3TOS. Apart from the typical function design procedures, several developments have been carried
out in order to achieve a fully functional implementation. The adaptation of the communication
interface generated by System Generator to R3TOS communication interface and the development

of a task context saving and restoration procedure are two of them.

3.2. Overview of R3TOS

The R3TOS project [lturbe'l0] aims to develop a fault-tolerant, real-time operating system for
FPGAs. R3TOS puts the versatile resources embedded in a reconfigurable chip at the service of
computation in a reliable way. Unlike the classical way of implementing data processing tasks on
FPGAs, R3TOS enables hardware tasks to behave like software tasks. Tasks are swapped in and
out of the FPGA'’s reconfigurable area depending on computation requirements over the execution
time. This way, FPGA resources can be efficiently shared over time, which allows for the execution
of very large applications on small devices, increasing performance per area and reducing power
consumption. Other main characteristics of R3TOS are real-time performance thanks to a real time
scheduler and fault-tolerance as tasks can be placed around emerging and permanent faults on-chip.
Indeed, hardware tasks are scheduled based on their deadlines and placed on non-damaged
resources, which are detected through regular scrubbing, keeping the system fault-free at all times. A
simplified illustration of R3TOS is presented in Figure 49 [lturbe'11b] [Hong'11hb].

A description of the R3TOS architecture and the several processing modules that take part in it is

presented below.

129

7. IMPLEMENTATIONS

Damaged Resources

User Application ™
8,,0,6,6,6,.8)

HW Task Queues

Figure 49: Scheduling, allocating and executing hardware tasks onto a partially damaged FPGA in R3TOS

3.2.1. ICAP controller

Many of the operations and possibilities R3TOS offers lie in the use of dynamic partial
reconfiguration of FPGAs. R3TOS makes use of the ICAP port provided by Xilinx FPGAs as it offers
the maximum configuration bandwidth (400 MBps) and in order to remove the need for external
devices to control this reconfiguration procedure. Nevertheless, an efficient control of this port is

necessary to harness its maximum bandwidth.

R3TOS implements a custom-made ICAP controller composed of a finite state machine and a
PicoBlaze microcontroller, which offers several high level functions for the ICAP port. The basic
functions are: task loading, task blanking, data feeding and collection to/from tasks, and scrubbing.
All these functions are executed exploiting the maximum bandwidth of the ICAP port, accessing 32
bit words at 100 MHz. Although the final access to the ICAP port is carried out at 400 MBps, if the
overhead and delays introduced by PicoBlaze and finite state machine are taken into account, the

effective bandwidth obtained falls to 380 MBps.

3.2.2. R3TOS scheduler

The scheduler is the part of R3TOS in charge of deciding the order in which different hardware tasks
have to be executed. It is implemented on a PicoBlaze processor that executes a port of the well-
known Earliest Deadline First (EDF) scheduling algorithm. Unlike the classical implementation of this
algorithm in software operating systems, where usually only a single task can be executed at a time,
the R3TOS approach considers the possibility of executing tasks in a true parallel way. This way the
scheduler has a higher degree of freedom to accomplish its work while the placement of the different
tasks becomes more complicated. The allocator, discussed in the next sub-section, is in charge of
dealing with this issue. Consequently, the scheduler shares information with the allocator as well as

the processor that that issues the tasks.

130

7. IMPLEMENTATIONS

Moreover, as already mentioned in the introduction, the aim of R3TOS is to make hardware tasks
behave like software ones. Therefore, tasks in R3TOS meet the typical states in any operating
system: Waiting, Ready, Preempted and Executing, plus two hardware-centric additional states:
Allocating and Allocated [Hong'l1la]. Due to concrete restrictions of partial reconfiguration, task

preemption is not straightforward and needs special care as will be seen later.

3.2.3. R3TOS allocator

Once the scheduler has decided that a particular task has to be executed, it is the allocator’s job to
look for an appropriate site within the reconfigurable area of the FPGA. For this purpose there are
three main parameters it has to take into account: the damaged sites where it is not possible to
allocate any resource, the sites already under utilization by other tasks and the resources the
scheduled task needs for its execution. Due to the non-homogeneous distribution of resources on
modern FPGAs, e.g. DSP Blocks or BRAMSs, the use of this type or resources by any task may be
very restrictive and a bottleneck for the allocator’s performance. Therefore this has to be taken into
account when dealing with task design for R3TOS. The allocator implementation is based on a third
PicoBlaze that executes the Empty Area Compaction (EAC) allocation algorithm [Hong'11b]. The
algorithm gets task information from the scheduler and information about the damaged sites from the
ICAP controller.

3.2.4. ICAP-based Inter-Task Communication Infrastructure (I12CI)

One of the main peculiarities of R3TOS lies in the data communication of the tasks. In order to obtain
the highest area performance and a total freedom for the allocator to avoid hardware failures, the
classical inter-task ‘wired’ communication systems have been replaced with a new inter-task
communication mechanism. Indeed, systems such as Network on Chip (NoC) or point-to-point
communications between tasks and host, force tasks to be placed into certain places. Furthermore,
this kind of solutions requires the use of static lines that make the management of partial

reconfiguration more difficult.

For this reason, R3TOS takes advantage of the capabilities of ICAP and implements a novel ICAP-
based Inter-task Communication Infrastructure (12Cl) mechanism [lturbe'11b]. In it, data stored in
diverse resources across the FPGA like BRAMs or LUTs configured as RAM, is accessible for tasks
that need it via ICAP. Considering this, 12Cl uses ICAP to move data to/from tasks from/to other
tasks or the host. In the current implementation, each task has an input and an output buffer
implemented by a BRAM, and so does the MicroBlaze host interface processor. The ICAP controller
is responsible for copying input data to the task from the MicroBlaze processor or other tasks, and
once data is processed, copying it back. I12Cl also adds some synchronization features for controlling
the execution as can been seen in Figure 50. These features are based on a Hardware-oriented
Semaphore (HWS), implemented on a LUT. This HWS acts as task reset signal before execution

and as ‘DONE’ signal when it has finished computation.

131

7. IMPLEMENTATIONS

Input Operands Delivery Output Results Retrieval
(ch:A.P) (ICAP)

results
BUFFER

glue logic
glue logic

o HARDWARE CORE

COUNTER

CLK -

rd_addr wr_addr

CTRL. FSM wr_en
start end

=
=]
Start/End Computation
(ICAP)

rd_en

Communication
Interface (CIF)

Figure 50: ICAP-based inter-task communication infrastructure detail

3.2.5. Miscellaneous

The full version of R3TOS completes with a MicroBlaze processor which is in charge of several
control tasks of the whole system such as task bitstream management on start-up, and generation of
the list of tasks to be executed. It also eases the connection with the external world via standard
communication IPs such as Ethernet or RS232, carries out the control of the diverse memories in the

system and is also available for the execution of any software task if and when needed.

Other IPs within R3TOS are: a recovery unit that can reconfigure any of the aforementioned parts of
R3TOS in case of failure; a Configuration Guardian (CG) that is independent from the allocator
ensuring that a task does not accidentally overwrite any existing part of the system; and a
communication monitor that guards the communications between the different processors in the

system and reports any malfunction.

Figure 51 shows a schematic diagram of the implementation of R3TOS in an FPGA.

The tasks present in the execution area have been drawn faded to represent their reconfigurability,
that is, neither their execution, nor their physical location are fixed features. Besides, in order to ease
the representation, the reconfigurable area has been drawn smaller than it really is. Finally, a
simplified representation of the BRAM based 12CI communication interface can be observed both in

the tasks and in the host MicroBlaze processor.

132

7. IMPLEMENTATIONS

DATA IN-OUT
FPGA

v

A

|
]
SRR

[—
'y
v

EXECUTION AREA > D

Figure 51: R3TOS implementation

3.3. Design issues in R3TOS and modified cost functio n

The software-like task execution proposed by R3TOS leads to the appearance of new design
implications that need to be analyzed and solved if necessary. Up to this point the designs
implemented in a fully pipelined and parallel way have been characterized by three main factors:
reconfiguration time, FPGA resource consumption and maximum clock frequency. These factors are
still important for the tasks executed in R3TOS; however, a new factor needs to be addressed: the

execution time.

Parallel, pipelined architectures process data in a sequential way. In these architectures data is fed
serially, and after some time, determined by system's latency, output data is generated and delivered
also serially. Therefore the "execution time" concept is quite vague and is usually replaced by the
measurement of system's latency and throughput. In contrast, task execution time is an important
factor that highly affects real-time operating systems such as R3TOS. Consequently, although each
hardware task for R3TOS is a standalone parallel, pipelined system, the execution time has to be

measured and taken into account.

Due to R3TOS' particular architecture, task execution time is composed of function programming,

data feeding, data processing, data collect and function unloading:

- Function loading time: This time is directly related with the reconfiguration time used up to
now. It comprises the necessary time to download via ICAP the partial bitstream that
contains the target task. As always, this time is dependent on task size and ICAP access

speed. In case the task context has to be recovered from a previous execution (feature

133

7. IMPLEMENTATIONS

explained in section 3.4.3), the time that this process takes has to be also included in

function loading time.

Data feeding time: Regarding the task communication interface proposed by R3TOS, data
needs to be fed into the input buffers of 12CI prior to task execution. This operation is also
carried out via ICAP so its access speed and the amount of data to be processed are the
factors that determine its duration. In regards to this last factor some considerations related
to the type of buffer to be used need to be explained. Due to FPGA restrictions, the use of
BRAM based buffers requires the programming of the 4 BRAMs present per clock region
and column. Taking into account that 64 frames (1312 bits each) are needed in order to
program their content, 10.25 KBytes (1312 bits x 64 frames) have to be transferred, no
matter which the size of the needed real data is. In turn, RAM LUT based buffers can be
frame addressed, hence achieving a minimum data transfer of the 1312 bits (164 Bytes) that
make up a frame. Besides, it should be noted that not all the transferred data is effective
data. Just 4x2KBytes in the BRAMs and 64x2Bytes in the RAM LUTs can be used for
processing, what leads to 78% efficiency. Figure 57 and Figure 58 in Annex 1, which have
been extracted from [lturbe'l12a], show the configuration memory organization of BRAM and

RAM LUTs in order to support the data above.

Data processing time: This time is the period between the activation of the Hardware
Semaphore that enables task execution and the pull in of the "DONE" indication in this same
resource. This time comprises the data read from the input buffer, the pipelined data
processing and the writing into the output buffer. Consequently, it depends on the clock
frequency used by the task, in its achievable throughput, in the amount of data to be

processed and in the latency.

Data collecting time: In a similar way as the data feeding process, once a task execution has
finished it is necessary to collect the produced data. Therefore, the factors that need to be
taken into account in order to measure or estimate this time are the same as in the data
feeding time. However, it should be noted that both times need not necessarily be equal as

some functions may modify the data input/output ratio (e.g. a data puncturer).

Function unloading time: If task context needs to be saved for a future execution (feature
explained in section 3.4.3), the partial bitstream that describes the task has to be updated
with the current state and stored in RAM. Consequently the corresponding time has to be

also taken into account.

In order to harness the proposed design methodology in the election of the best task size, it is

necessary to add the abovementioned execution time to the cost function. Besides, certain

considerations must be taken into account in regards to the particularities of the way R3TOS

executes tasks. R3TOS, being a hybrid between a hardware and a software operating system, has

characteristics of both of them, namely: data dependencies among tasks and task parallelization.

Consequently, at the time of calculating overall task execution time it is necessary to consider that

134

7. IMPLEMENTATIONS

certain operations can be parallelized (e.g. task processing) while others are not (e.g., function
programming, task data feeding/collecting or any operation in which the ICAP is involved). Moreover,

dead times waiting for a certain data to arrive have to be also measured.

Consequently, the modified version of the cost function for evaluating a certain task partition "p" is

described as follows:

Resources T
Cost(p) =a- Max.(P) +s- exec.(D)
Resourcesyqy. TexEc,

(16)

At first sight it can be observed that the main difference with the former cost function (3) is the
presence of only two terms in this new function: the first term evaluating the design size (which has
been maintained from the original cost function) and a second term evaluating execution time. The
above presented definition of execution time has shown that both, task reconfiguration time and
minimum clock period, that is, the two terms that are not present in R3TOS' cost function, have
influence on task execution time. Consequently, these two terms have been replaced by a new one
just evaluating overall execution time. Please note that this overall execution time refers to the
required time to execute all the tasks of a certain application. Similarly to any other term present in
the cost function, the execution time is normalized so that it can be properly added to the rest of the

terms. Besides, it also has the weighting parameter § in order to weight the term if necessary.

Sub-function (17) details the computation of the execution time:

T(p)
Tgxpc.(p) = Z [TLoap @, t) + Teeep (0, t) + Teor,. 0, 1) + Tynroap @,)] + Tproc. (P) 7)

t=1

"T(p)" is defined as the number of different tasks that exist in a certain partition "p". Please note that
the finer grain the task partition granularity is, the higher the number of tasks will be. In turn "t" is the

way of addressing each individual task.

It can be observed that the overall execution time is divided into two terms. On the one hand the
summation, for all the individual tasks "T(p)", of the times of those procedures related with the ICAP
port is carried out. These procedures cannot be parallelized as they require an individual resource
such as ICAP, hence their addition is straightforward. On the other hand, a second term representing
the overall data processing time is present. Data processing can be parallelized between different
tasks, depending on the available resources in the FPGA and on data dependencies between tasks;
therefore, it has to be represented with a generic term. Unfortunately, the measurement or estimation
of the dead times and the possibility of applying parallelization is not straightforward. Therefore, a
deep analysis and the use of timing diagrams are usually necessary in order to correctly measure

data processing time.

135

7. IMPLEMENTATIONS

Furthermore, as has been explained before, data processing time is dependent on the maximum
clock frequency achievable by each of the tasks. Consequently, it is necessary to carry out the
complete implementation flow in order to obtain this information. As well as in the original cost
function presentation, maximum clock frequency may be unavailable in certain design steps and
cannot be estimated. In the original cost function this factor was omitted to solve this issue, however,
this cannot be done for R3TOS' cost function as data processing time is a representative factor. In
this case the data processing time should be estimated using the predefined clock frequency as the
maximum clock frequency. That is, using the default clock frequency selected when the definition of
the application was carried out to perform the estimation of the required time for a task to process all
its corresponding data. This way the over-clocking considered by the design methodology is not
harnessed but the cost function can be applied before the complete physical implementation of the

whole design.

Finally, sub-function (18) calculates the normalization term for the execution time. Please note that it

carries out the arithmetic mean of the execution times of all the different possible partitions:

P
1
Texec. = P z Texec.(P) (18)
p=1

In addition to the election of the best task partition, R3TOS considers several implementation

strategies that look for the reduction of the execution time:

- Task preservation: In order to reduce function loading/unloading times, a certain task is not
unloaded until the area or resources that it occupies are needed. In this way, if the task is to
be executed in a short period of time, function loading/unloading is not needed and that time

is saved.

Task parameterization: This technique proposed in the design methodology can also be
harnessed in R3TOS if linked to the aforementioned task preservation technique. Task
parameterization reduces task programming time both when a standard change is needed
(i.e. continuing with the use proposed up to now) and when a certain function/task is
executed more than once in a certain waveform (e.g. the two different interleavers present in
WiFi or UMTS). That way, just the interleaver pattern needs to be reconfigured prior to the

new task execution (provided task area has not been required).

Snake strategy: Focusing on data feeding and data collecting times, the Snake BRAM reuse
strategy aims to reduce them. Provided that output data from a function becomes directly the
input of the next task, it is possible to improve ICAP bandwidth utilization by reusing BRAM
content. In the Snake strategy, the output buffer BRAM of a task is not blanked after
execution and it is reused as input buffer for the next task. This way, there is no need for
data transfer through the ICAP port.

136

7. IMPLEMENTATIONS

- BRAM size optimization: This feature is more a design recommendation that a design
strategy. Taking into account that it is not possible to individually program data into a single
BRAM (they are arranged in a vertical 4 BRAM structure), it is advisable to use data slots
with a size as similar to the 4x2048 bits available in the BRAMs as possible. In this way

ICAP transfer bandwidth is harnessed more efficiently.

3.4. Implementation

As stated in the introduction, the present implementation considers the design and execution of
several data coding functions on R3TOS. Besides, it also presents the adaptation of System
Generator's communication interface to 12Cl and the development of a task context saving and
restoration procedure. The whole system has been implemented on a Virtex 4 XC4VLX160 FPGA

from Xilinx.

3.4.1. Data coding functions

The data coding functions from the communication standards implemented in the aforementioned
multi-standard modulator (WiMAX, WiFi and UMTS) have been used. These functions are: data
randomizer, data puncturer, Reed-Solomon encoder, convolutional encoder and data interleaver. As
usual, the design of these functions has been carried out with Xilinx's rapid prototyping tool: System

Generator.

The use of a modified version of the partitioning methodology has been presented as a possibility for
electing the best waveform partition granularity. Unfortunately, due to the necessity of delimiting the
duration of this research work, it has not been possible to fully deploy the application of the
methodology. Consequently, only certain measurements on the main design factors and some tests
involving several function granularities have been carried out. Regarding function granularity, two
different approaches have been tested. On the one hand an individual partition of the functions has
been carried out. This motivates a function-by-function execution whereby every coding function is

scheduled and executed in an individual task in R3TOS. On the other hand, a coarse grained

Randomizer

RS Encoder Convolutional Encoder

[++] Interleaver
By
data_out e == din oot Counterd e

Parallel to Serial2 Puncturer

-
i dout1 | 4 s
- Parallel to Serisl 1, dina A

-4 |
. H [FER Down Sample Wea
b woutp

Counter2 .

=
=

info

P
Convolutional Encoder vE_1 2
wea |
dlinky
Reed-Solomon Encoder 7.1 [++] B
[++] Hwfader =7 ‘ DATA_CUT
Counters ROM?2

Courter3 FROM1 ol cliny

B—b el

Dual Port RAM

Redational

B Duisl Port RAMZ

Figure 52: “Full-standard” task implementation for WiMAX

137

7. IMPLEMENTATIONS

partition has also been tested. In this partition, named "full-standard”, every single task embraces the
necessary functions for a concrete communication standard. This way the task scheduling only
happens when a change of standard is required. Figure 52 shows the implementation in System
Generator of the "full-standard” WiMAX task. It can be observed that the task contains all the

aforementioned coding tasks.

3.4.2.12CI connection to System Generator interface

System Generator automatically generates a predefined communication interface for its designs. It is
made up of the data input and data output ports (which are directly inferred from the Gateway_in and
Gateway_out blocks placed by the user in the design), plus the clock management signals. These
signals are: the clock input itself (clk), and the ‘clock enable' input (ce) and 'clock enable clear'
(ce_clr) input signals in charge of controlling tasks’ internal clocking and multi-rate synchronization.
In order to make this interface suitable for R3TOS, a joint infrastructure including the 12CI and the
aforementioned communication interface has been implemented. This infrastructure extracts data
stored in the BRAMs of 12CI and delivers it serially to the input port of task's interface with the
appropriate format and data-rate. Similarly, data obtained from the task is adapted and written into
I12Cl's output BRAM. Regarding task's synchronization, the developed infrastructure generates the ce
and ce_clr clear signal from 12CI's HWS resource. To sum up, the developed infrastructure can be
observed in Figure 50. It is made up of the glue logic, the address generating counters and control
FSM.

3.4.3. Task context saving and restoration procedure

Functions like Data randomizer are not time invariant. The Pseudo Random Binary Sequence
(PRBS) block that generates the randomization data has to start from the point of the last execution
in order to ensure coherent data recovery in the receiver. The same happens with other signal
processing functions like Infinite Impulse Response (lIR) filters or with any task that has been pre-
empted. This feature, similar to context saving and restoration performed in software processors, has
been extensively covered in [Simmler'00], [Kalte'05] and [Jozwik'10]. However, some issues related
with the behaviour of the Flip-Flops have been discovered, which, at the best of the authors’
knowledge, are not covered by these previous works, at least not for the Virtex 4/Virtex 5 FPGAs

considered in our approach.

When dealing with context saving, it has to be noted that the information that can be read-back via
ICAP, if no previous action is performed, contains the initial values of the Flip-Flops, not the current
ones. It is precisely the current state of the Flip-Flops the one that holds the context of the task.
Moreover, programming a partially reconfigurable area configures everything but the state of the Flip-
Flops that maintain their previous state. Therefore, in case another task is placed in the same area
and updates the state of these Flip Flops, the context recovery would fail. This way the straight
procedure for context saving and recovery, would fail. A first approach to solve this issue could
consist in designing tasks so that no Flip-Flops are used. Instead, SRL16 shift registers or LUTs
configured as RAM are used. This approach, although functional, can lead to very poor performance

in terms of resource utilization and is unfeasible in case the designer does not have control over task

138

7. IMPLEMENTATIONS

implementation (i.e. third party tasks or tasks designed with rapid prototyping tools in which code is

generated automatically). Consequently, another approach should be considered.

Further research has found that Flip-Flop state saving and restoration is responsibility of two ICAP
commands: GCAPTURE and GRESTORE [XILINX'09, XILINX'11a]. GCAPTURE copies the current
value of the Flip-Flops into the configuration memory so that they can be read back. More precisely,
the current Flip-Flop states are stored in the INIT/VALUE bits of the frame that stores the Flip-Flops’
configuration of each CLB column (frame with minor address 20 of a certain CLB column). Similarly,
the GRESTORE command performs the inverse operation. It initializes the value of the Flip-Flop with
the value stored in the INIT/VALUE bits of the configuration memory. GRESTORE is precisely one of
the last commands present in the "normal” bitstreams (i.e. non reconfigurable bitstreams), leaving
the FPGA initialized and ready for running.

These two commands seem to solve the context saving and restoration problem. Unfortunately, their
application range makes them unsuitable for this purpose, at least if no further action is carried out.
Both commands are applied to the whole FPGA, that is, when any of them is sent to the ICAP all the
Flip-Flops in the FPGA are affected. This issue could be assumable in the case of the GCAPTURE
command as normal operation is not affected although the initial state of the system is lost. However,
in the case of the GRESTORE command the effect is determinant. When the command is executed
looking for the initialization of a certain task, the Flip-Flops of the whole FPGA are initialized. This
would lead to a corruption of the R3TOS system and of other tasks being executed at the same time.
For this reason the GRESTORE command is not present in the partial bitstreams and therefore the

Flip-Flops in the reconfigurable area are not initialized with the values coded in VHDL.

In order to solve these problems two approaches for achieving a correct task context saving and

restoration have been developed.

a) Local reset approach

The local reset approach harnesses GCAPTURE in order to perform the context save and develops
a local, direct-access, Flip-Flop initialization procedure for context restoration. As already explained,
the use of GCAPTURE in this approach has to deal with the loss of the initial configuration of the
system. In the current task execution flow implemented by R3TOS this issue has not further
influence, however, it should be taken into account in future developments. In order to restore the
state of Flip-Flops within just one task, it is necessary to perform a local initialization of those Flip-
Flops via a local reset. The key points for this reset are the SR pin of each Flip-Flop and the
SRMODE bits in the configuration memory. Driving the SR pin high, the Flip-Flop is initialized with
the value stored in the SRMODE bit. Therefore, a manual update of SRMODE bits via ICAP,
followed by a reset, enables the load of user-defined values into the Flip-Flops. Access to the SR pin
is granted with a proper coding in VHDL or Verilog, or through certain parameters in System
Generator or other rapid prototyping tools. In the particular case of this implementation, all the SR
signals obtained are connected together to the Hardware-Oriented Semaphore so that an automatic

reset is performed prior to the execution of a task. A detailed view of Flip-Flop connections is given in

139

7. IMPLEMENTATIONS

Figure 53. There, both the aforementioned Flip-Flop physical ports and configuration memory bits

can be observed.

L
] LATCH

[]INIT1

| INTo

[srRHIGH
M srLowW
SR REV

Figure 53: SLICE Flip Flop representation in FPGA editor

Overall, the procedure for context saving and restoration includes the following steps:

1. Execute the GCAPTURE command

2. Read-back the frames that make up the task. The INIT/VALUE pins are already

updated with the current values of the Flip-Flops in the partial area.

3. Store the partial bitstream in R3TOS’ RAM memory.

When the task needs to be restored:

1. Recover the task’s partial bitstream from RAM.

2. Copy the values of INIT/VALUE bits to SRMODE bits.

3. Program-back the task into the reconfigurable area using the modified partial

bitstream.

4. Force a local reset prior to task execution

b) Area protection approach

The area protection approach aims to use the GCAPTURE and GRESTORE commands in order to
achieve the task context saving and restoration. On this purpose it has been necessary to develop a
protection procedure that makes a certain Flip-Flop or group of Flip-Flops immune to these

commands. This way a localized application of the commands can be carried out without disturbing

Top_Bottom | Block Type | Row Address | Column Address | Minor Address
Index 22 21:19 18:14 13:6 5:0

Figure 54: Frame addressing (FAR address)

140

7. IMPLEMENTATIONS

the normal operation of both the R3TOS kernel and the rest of the tasks under execution.

This protection can be achieved by setting up bit number 13 in the so called "Block Special Frame" of
every CLB column within the FPGA. This special frame is accessed setting up a FAR address with
"minor address" 0 and a "block type" 3 for Virtex 4 FPGAs or 2 for Virtex 5 FPGAs. In order to clarify
the generation of this address, Figure 54 shows the organization of the FAR register. "Top_Bottom",
"Row Address" and "Columnn_Address" select the target CLB group (1 clock region height, 1 CLB
width), while "Block Type" and "Minor Address" select the type of frame to be accessed.

Focusing on the "Block Special Frame", Figure 55, extracted from the Virtex 5 FPGA configuration

user guide [XILINX'11a], shows the use of some of its bits.

Bit Numbers Use
=15 Unused
<14z Gates GTS_CFG_B in IOB column only
<13= Gates GCAP and GRESTORE in all columns
8 Gates GHIGH B and GWE in all columns
<1140 12 ECC bits (assumes that all other bits are ()

Figure 55: Block Special Frame bits

It can be observed that bit 13 is in charge of the control of the GCAPTURE and GRESTORE
commands. Setting up this bit, the Flip-Flops within the CLB group controlled by this frame are not
affected by the execution of neither the GCAPTURE nor the GRESTORE commands. Consequently,
setting up this protection bit in all the frames of the FPGA and clearing it just for the area of the task
to be saved/restored enables the direct use of the GCAPTURE and GRESTORE commands.

To sum up, the area protection approach completes as follows:

1. Access all the CLB groups in the FPGA and protect them by setting up bit number 13 in
the Block Special Frame.

2. Unprotect the area occupied by the task to be saved.

3. Execute the GCAPTURE command.

4. Read-back the frames that make up the task. The INIT/VALUE pins are already updated
with the current values of the Flip-Flops in the partial area.

5. Store the partial bitstream in R3TOS’ RAM memory.

6. Protect again the area occupied by the task.

141

7. IMPLEMENTATIONS

At this point the aforementioned area can be blanked and used for the execution of another task.

Whenever the saved configuration has to be recovered, the procedure continues as follows:
1. Recover the task’s partial bitstream from RAM.
2. Program-back the task into the reconfigurable area.
3. Unprotect the area occupied by the task.
4. Execute the GRESTORE command.
5. Protect again the area occupied by the task.
6. Enable task execution.

Figure 56 shows graphically this concept.

Original
implementation FPGA protection Taskdelimit

GCAPTURE o
GRESTORE
execution

Figure 56: Task context saving and restoration procedure

The proposed procedure addresses both the task context saving and restoration as it is a
characteristic needed by R3TOS. However, just the FPGA protection and the local use of the
GRESTORE command can and should be used in order to carry out Flip-Flop initialization whenever
dynamic partial reconfiguration is used.

Besides, it should be noted that due to technical limitations, the granularity achieved by the
protection procedure is restricted to a height of a single clock region (16 CLBs in Virtex 4 and 20
CLBs in Virtex 5) and to a width of a single CLB. Therefore, in case smaller tasks were to be targeted
(i.e. placing vertically two tasks within a single clock region) the local reset approach needs to be

used in order to achieve a proper initialization.

3.5. Measurements

This section sums up the results obtained from the implementation of the aforementioned data
coding function on R3TOS. As already mentioned two implementation strategies have been tested: a
"function-by-function" implementation whereby every coding function is scheduled and executed in

142

7. IMPLEMENTATIONS

an individual task and a "full-standard” implementation where every single task embraces the

necessary functions for a concrete communication standard.

Table 16: Task resource utilization

Resource utilization
Function SLICEs LUTs FLIP FLOPs BRAMS
Randomization 58 71 45 2
RS encoder 176 311 202 2
Conv. Encader 80 74 55 2
Puncturing 39 47 41 4
Interleaver 483 503 425 4
Full-standard 798 831 724 6
R3TOS (full) 5571 7383 4157 16
R3TOS (stand-alone) 1793 2778 1157 i

Table 16 shows the FPGA resource utilization of the implemented functions as well as R3TOS’
overhead. It can be observed that a minimal of 2 BRAMs per task corresponding to the input/output
buffers has been used. According to the BRAM size optimization strategy introduced before, the use
of 4 BRAMs per buffer increases the efficiency of the ICAP transfers, however, in this case and
looking just for simplicity a single BRAM per buffer is used. It is also noticeable that the Full-standard
design occupies fewer resources than the sum of the individual functions. This is due to the removal
of the glue logic that connects the input/output buffers to each task. In the full-standard
implementation this glue logic is only used once. The size of this glue logic is dependent on the size
of the buffer and on the data width to be accessed. In the presented implementation about 10
SLICES of the number shown in Table 16 for each function correspond to the glue logic.
Consequently, the Full-standard implementation achieves a 5% size reduction compared to the sum

of the individual functions.

Concerning R3TOS’ overhead two different data sets are presented, one with a full version of
R3TOS with all the components mentioned in Section 3.2 implemented and another, named ‘Stand-
alone’, in which just the minimum components needed by the SDR implementation are present (i.e.
the MicroBlaze processor is not preset). Taking into account the small size of the SDR data coding
tasks, the overhead of the full version of R3TOS is quite high in this case. However, it has to be
stated that this version includes a MicroBlaze processor that cannot be considered as an overhead
as it offers the possibility of executing complex software tasks on it if needed. The overhead of the

stand-alone version, on its side, is more acceptable in relation with the functions it offers.

143

7. IMPLEMENTATIONS

Table 17: Task execution time comparison

Execution time of a single iteration
Implementation Task loading | Data feeding | Processing | Datarecovery |Taskunloading| Total
Randomization 90 us 58,4 us 164,8 us 58,4 us 90 us 461,6 us
RS encoder 207,7 us 58,4 us 164,8 us 58,4 us 207,7 us 697 us
Conv. Encoder 104,2 us 58,4 us 164,8 us 58,4 us 104,2 us 490 us
Puncturing 90 us 58,4 us 164,8 us 58,4 us 90 us 461,6 us
Interleaver 536,24 us 58,4 us 168,3 us 58,4 us 536,24 us 1357,9 us
Total funct. by funct. 1028,3 us 350,4 us 827,5us 350,4 us 1028,3 us 3,58 ms
Total funct. by funct. (Snake) 1028,3 us 116,58 us 827,5 us 116,8 us 1028,3 us 3,12 ms
Full-standard design 879,2 us 116,8 us 227 us 116,83 us 879,2 us 2,22 ms

Table 17 compares the total execution time of the different approaches that have been used: the
function-by-function execution (in both the default version and using the Snake strategy) and the full-
standard one, in which all the coding functions are implemented in parallel. The total execution time
is divided into task loading time (made up of task transfer time from RAM to ICAP and task context
restoration time), data feeding and recovery times, processing time and task unloading time (made

up of task context saving time and task transfer from ICAP to RAM)

We note that these timing measurements have been carried out with a timer/counter within
MicroBlaze. A 100 MHz clock is connected to the processor; therefore, the theoretical resolution of
this timer is 10 ns. However, due to the delay introduced by processor's bus the effective resolution

rises to 0.1 us. Consequently, the obtained measurements have been rounded to this resolution.

At first sight it can be observed that the full-standard execution is the fastest one (2.22 ms). This kind
of implementation, closer to the traditional way of programming FPGAs, takes advantage of the
parallelization potential that the device offers to execute tasks in a pipelined way. However, it has to
be noted that the measured times for the function-by-function execution correspond to the worst
scenario possible. The scheduler has been restricted to execute a single task at a time (although the
FPGA has enough free area for executing more tasks in parallel). Besides, only a single iteration has
been measured, that is, once the five tasks have been executed, the system stops. In a cyclic
execution where the functions have to be implemented once again, and where more than one task is
executed in parallel, a virtual pipeline would be obtained leading to a further reduction in the
execution time (i.e. a recursive execution with resources for the execution of two tasks in parallel
leads to an execution time per cycle of 2.9 ms). When the scheduler is free to optimize the execution,
it harnesses the free times of the ICAP port, for example during the processing of a task, in order to
prepare (i.e. download and initialize) the next tasks to be executed. This way the task loading time
overlaps with the processing time and the next execution is instantaneous. This is known as

"Configuration prefetching".

Comparing the function-by-function implementations, the effect of the Snake strategy can be seen.

Removing the data copy from task to task, a 15% reduction in task execution time is achieved (3.12

144

7. IMPLEMENTATIONS

Table 18: Task loading/unloading times

Task loading/unloading time
Function Protection/unprotection time | Task transfer time
Randomization 7.5 us 75 us
RS encoder 22,4 us 162,9 us
Conv. Encoder 9,4 us 85,4 us
Puncturing 7.5 us 75 us
Interleaver 61,7 us 413 us
Full-standard 102,83 us 673,06 us
Initial protection 2,15 ms -

ms with the Snake strategy vs. 3.58 ms with data copy).The concatenation of longer task sets would

make this reduction more pronounced.

Finally, in order to better appreciate the task context saving and restoration procedure, some
measurements on this process have been carried out. It is made up the task transfer process (both
from RAM to ICAP or from ICAP to RAM), the task protection/unprotection process and the execution
of the GCAPTURE/GRESTORE commands. The execution of these commands takes a single clock
cycle and therefore it can be considered a negligible amount. In turn Table 18 shows the duration of

task protection/unprotection process and task transfer process.

On the one hand the initial time needed to carry out the complete protection of the whole FPGA can
be observed. These 2.15 milliseconds, in which the Flip-Flop protection bit of all the special frames
within the FPGA is activated, are spent only once in the start-up of the system. Consequently, they
are not included in the cost function and can be considered just as an initial delay. Besides, it should
be noted that this time is completely proportional to size of FPGA to be used. In this case, being the
XC4VLX160 FPGA one of the biggest in its family, offers quite a big protection time. On the other
hand Table 18 also shows the protection/unprotection time of the different tasks (time for both
processes is equal). The number of special frames to be modified depends on the number of CLB
columns used by each of the tasks. Consequently, assuming a 70% area utilization, the obtained
times are proportional to the task resource utilization presented in Table 16. As an exception,
Randomization and Puncturing tasks have the same protection time. This is because a minimum size
of 4 CLB columns has been established in order to maintain a task structure in which BRAM buffers
are placed on the sides of the CLB-based area. In regard to the relation with the task transfer time it
can be observed that task protection/unprotection adds a 10-15% to task transfer time. Taking into
account that both protection and unprotection processes are required for saving or restoring a task's
context, the total overhead added by this process represents a 20-30% of the overall task loading
unloading time. Although it is a high overhead, the task context saving and restoration procedure is

compulsory for certain tasks hence it cannot be suppressed.

145

7. IMPLEMENTATIONS

4. SUMMARY

The current chapter has presented two implementations that serve as proof-of-concept of the use of
FPGA dynamic partial reconfiguration and rapid prototyping tools in the implementation of Software
Defined Radios. On the one hand a simple cognitive radio has been used for replacing a wired video
transmission system. The use of this type of radios into industrial environments is highly interesting
as they are able to adapt to the harsh conditions present in them. The implemented possibility of
changing the transmission frequency if an interference is detected, is a first step in towards
demonstrating this sustainability. On the other hand, the feasibility of using this design framework
together with the R3TOS hardware operating system has been proved; leading to a system in which
SDR takes care of a secure communication while R3TOS guarantees efficient and reliable hardware
utilization. The measurements that have been carried out have shown that, as expected, the
reconfiguration time (or task execution time in R3TOS) is one of the main disadvantages of dynamic
partial reconfiguration when used in communication systems. Nonetheless, the diverse general
strategies presented during this research work and the particular solutions proposed for R3TOS are
able to reduce it.

146

147

Chapter 8

Summary and conclusions

8. SUMMARY AND CONCLUSIONS

8. Summary and conclusions

1. INTRODUCTION

This chapter concludes this thesis. It summarizes the work developed during this PhD thesis, along

with its main contributions, providing also some possible directions for the future work.

2. SUMMARY OF THESIS AND FINAL CONCLUSIONS

In this PhD dissertation, the optimization of Software Defined Radio (SDR) implementation over a
novel design framework, made up of FPGA dynamic partial reconfiguration and rapid prototyping
tools, has been addressed. This optimization intends to be carried out by the developed design
methodology, in charge of the static/reconfigurable partitioning of the SDR. Besides, the feasibility
demonstration of both the proposed design framework and design methodology has been
demonstrated via their use in three real and functional implementations. Namely: A multi-standard
modulator implementing WiFi, WiMAX and UMTS, a small-form-factor cognitive video transmission
system and the implementation of several data coding functions over R3TOS, a hardware operating

system developed by the University of Edinburgh.

Chapter 2 has provided some insight into the background and existing literature on the three main
aspects that take part in this research work: Software Defined Radios, FPGA dynamic partial
reconfiguration and rapid prototyping tools. The benefits and drawbacks of this design framework
have been analyzed and the key points obtained. Reconfiguration time, design size increment, timing
degradation and some issues related with Flip-Flop initialization have been established as the most
important factors that need to be addressed in order to achieve a successful implementation. On this

basis, the need of a design methodology has been determined and its fundaments set up.

Chapters 3, 4 and 5 have thoroughly described the proposed design methodology. Once the degree
of freedom over which the methodology has to act has been described, all the steps involved have
been widely explained. Special focus has been set into the two most relevant steps: the
establishment of the common parts of the SDR and the design of the cost function used to
guantitatively evaluate the performance of each partition.

The defined design methodology has demonstrated to be suitable for optimizing the implementation
of SDRs in the proposed design framework. The guidelines considered by the methodology ensure a
proper design flow that leads to the election of the optimal design partition. Besides, the use of rapid
prototyping tools during the design process permits the reuse of implementations carried out
previously, hence easing and reducing design time. Unfortunately, certain limitations of this design
methodology have also been detected. On the one hand the optimization capacity achievable by the
methodology is dependent on the characteristics of the waveforms to be implemented in the SDR. If
the nature of the waveforms is completely different, there will not be many common functions and

therefore the optimization possibility will be reduced. On the other hand, when dealing with complex

149

8. SUMMARY AND CONCLUSIONS

designs, the amount of data generated by the design methodology grows enormously, making it
unfeasible to be applied by hand. In order to solve this issue, the basics of an automation procedure
have also been proposed. This way, data management would be carried out automatically, which
would also lead to a reduction in the design time.

It should also be noted that although the proposed design methodology and design framework have
been oriented towards its use with SDRs, they are not limited to this field. The use of FPGA dynamic
partial reconfiguration and rapid prototyping tool can be applied to any other field that requires data
processing or on-the-fly change of parameters. Their use in control electronics could be a good
example. In turn, the design methodology can also be used in other fields regardless the fact that
commonalities are needed between the parts to be reconfigured in order to achieve a significant
optimization capacity. Nevertheless, certain parts of the methodology, such as the proposed

parameterization techniques can be directly harnessed in many designs.

Chapters 6 and 7 have presented three real and functional implementations that aim to demonstrate
that the proposed design framework and design methodology are valid for the implementation and
optimization of SDRs. The design process of the multi-standard modulator presented in Chapter 6,
has directly applied all the steps considered in the design methodology, hence validating it. In turn,
the small-form-factor cognitive video transmission system and the implementation of data coding
functions over R3TOS, do not strictly apply the design methodology but aim to explore other design
possibilities. In that regard, the use of SDRs into industrial environments has demonstrated to be
highly interesting as they are able to adapt to the harsh conditions present in them, hence securing
reliable communications. Besides, their joint with a hardware operating system such as R3TOS
reinforces the reliability of the communication, leading to a system in which SDR takes care of a

secure communication while R3TOS guarantees efficient and reliable hardware utilization.

Finally, the encountered issue around Flip-Flop initialization and that has motivated the design of a
task context saving and restoration procedure, appears to be an important problem that, at the best

of author's knowledge, is not sufficiently covered in the literature.

3. SUMMARY OF ACHIEVEMENTS

The main achievements of this research work and the associated scientific publications are the

following:

1. A novel design framework for the implementation of Software Defined Radios has been
proposed and tested. This design framework is made up of FPGA dynamic partial
reconfiguration and rapid prototyping tools. The drawbacks and design implications of this
framework have been analyzed and evaluated, coming to the conclusion that, despite the
multiple benefits that it offers, a design methodology is needed in order to optimize the obtained
implementations. [Torrego'09] and [Torrego'10]

150

8. SUMMARY AND CONCLUSIONS

2. A complete design methodology that addresses static/reconfigurable partitioning for optimizing
the SDR implementation through the aforementioned design framework has been designed.
The methodology selects which parts of the SDR are to be implemented statically and which in

a reconfigurable way in order to minimize system's cost. [Torrego'12c]

3. A cost function has been developed in order to quantitatively evaluate a certain partition's
optimality. The function evaluates those design factors that have been determined as most
important in the performance of a design. Namely: design size, reconfiguration time and

maximum applicable clock frequency.

4. A multi-standard modulator implementing three of the most used communication standards
nowadays (WiFi, WIMAX and UMT) has been designed and implemented using the proposed
design framework and design methodology. This implementation serves as a proof-of-concept

and as a validation of the first and second contributions. [Torrego'12c]

5. A small-form-factor cognitive video transmission system has been implemented using the
proposed design framework. This system is able to change its Intermediate Frequency (IF) if the
transmission channel is occupied, hence achieving a secure communication. The frequency
change is carried out via dynamic partial reconfiguration. It provides a tangible demonstration of
the feasibility of the proposed framework with a fully functional application.[Torrego'11] and

[Torrego'l2a]

6. The implementation of several data coding functions used in SDRs has been carried out over
R3TOS, a Reliable, Reconfigurable and Real-Time hardware Operating System developed by
the University of Edinburgh. The design of the functions has been carried out using rapid
prototyping tools and applying some of the guidelines proposed by the design methodology.
Therefore the possibility of using this methodology in other reconfigurable architectures is

demonstrated. [Torrego'12b]

7. A novel task context saving and restoration procedure has been designed for its use with
R3TOS. This feature, similar to context saving and restoration performed in software
processors, requires special care when dealing with FPGA dynamic partial reconfiguration as

some issues related with Flip-Flop initialization appear. [Torrego'12b] and [Torrego'12c]

4. FUTURE WORK

A number of additional issues, between the ones presented in this PhD dissertation, can be explored
in the future as an improvement and extension of the current work. These are some of the directions

for a possible extension of the presented results:

- Complete development of the basics of the automation procedure for the design methodology

that have been introduced in Section 4 of Chapter 3. As has been shown, the manual

151

8. SUMMARY AND CONCLUSIONS

management of the design methodology is unfeasible when dealing with complex designs.

Therefore, the automation of the methodology would add a great value to it.

- Inclusion in the design methodology of optimization algorithms. In regards to the simplification of
the design methodology, the inclusion of certain optimization algorithms that could reduce the

number of partitions to be evaluated, would further speed up and ease the design flow.

- Inclusion of the power consumption factor in the cost function. Power consumption is an
important characteristic to be considered in any application. It has not been directly addressed
in this research work as both its estimation and real measurement are complex tasks so as to
be carried out for every partition. Nonetheless, provided the power estimation tools speed up

and ease their operation, the inclusion of this factor would be really interesting.

- Generation of estimating functions to be used with R3TOS. Section 3.3 of Chapter 7 has
presented a custom cost function for R3TOS. This function includes a new term for the
evaluation of the execution time. Although part of this time is related with the maximum clock
frequency, hence not being possible to estimate it, the rest of factors that make up this
execution time can be estimated. Therefore, the generation of the corresponding estimating

function would enable a better evaluation of the system at early design steps.

- Re-implementation of the multi-standard modulator harnessing direct ICAP parameterization.
This parameterization technique presented in Section 4.1 of Chapter 4 uses direct ICAP access
to certain parts of the parameterized version in order to change its functionality. This
parameterization technique reduces the typical design size increment that happens with
parameterization at the expense of a small reconfiguration time. The evaluation of the effect that
this technigue has in the design methodology would be highly valuable.

152

LIST OF PUBLICATIONS

1. Torrego, Val, I, Muxika, E., Berrizbeitia, A.: 'Partial reconfiguration in FPGA rapid prototyping
tools'. Proc. IP-Embedded Systems Conference (IP09), Grenoble (France), Year 2009

2. Torrego, R., Val, I, Muxika, E., Berrizbeitia, A.: 'A step by step methodological approach for
merging FPGA dynamic reconfiguration and algorithm rapid designing tools'. Proc. Smart

Systems Integration European Conference & Exhibition (SS12010), Como (ltaly), Year 2010

3. Torrego, R., Val, I, Muxika, E.: 'OQPSK cognitive modulator fully FPGA implemented via
dynamic partial reconfiguration and rapid prototyping tools'. Proc. Wireless Innovation Forum
European Conference on Communication Technologies and Software Defined Radio (SDR’'11 —

WInnComm — Europe), Brussels (Belgium), Year 2011

4. Torrego, R., Val, I., Muxika, E., lturbe, X., Benkrid, K.: 'Data Coding Functions for Software
Defined Radios implemented on R3TOS'. Proc. Field Programmable Logic and Applications

(FPL'12), International Conference on, pp. 33-40, Oslo (Norway), Year 2012

5. Torrego, R., Val, I, Muxika, E., lturbe, X., Benkrid, K.: 'Implicaciones del uso de la
reconfiguracién parcial dinamica de las FPGAs en la implementacion de Radios Definidas por
Software'. Proc. 11l Jornadas de Computacion Empotrada (JCE2012), Elche (Spain), Year 2012

6. Torrego, R., Val, I., Muxika, E.: 'Small form factor Cognitive Radio implemented via FPGA
partial reconfiguration replacing a wired video transmission systems'. Proc. Wireless Innovation
Forum Conference on Communications Technologies and Software Defined Radio (SDR-
WInnComm'12) , Washington (US), Year 2012

7. lturbe, X., Benkrid, K., Arslan, T., Torrego, R., and Martinez, I.: ‘Methods and Mechanisms for
Hardware Multitasking: Executing and Synchronizing Fully Relocatable Hardware Tasks in
Xilinx FPGAs'. Proc. Field Programmable Logic and Applications (FPL'11), International
Conference on, pp. 295-300, Milano (Italy), Year 2011

8. lturbe, X., Benkrid, K., Torrego, R., Ebrahim, A., Arslan, T.: 'Online Clock Routing in Xilinx
FPGAs for High-Performance and Reliability'. NASA/ESA Conference on Adaptive Hardware
and Systems (AHS'12), Erlangen (Germany), Year 2012.

9. lturbe, X., Benkrid, K., Torrego, R., Hong, C., Ebrahim, A., Martinez, I., Arslan, T., Perez, J.:
"R3TOS: A Novel Reliable Reconfigurable Real-Time Operating System for Highly Adaptive,
Efficient and Dependable Computing on FPGAs". Submitted to IEEE Transactions on

Computers (under review)

153

REFERENCES

[3GPP'08]
[3L'05]

[ACCELLERA'12]

[ACTEL'04]

[ACTEL'12]
[AGILENT'12a]

[AGILENT'12b]

[Alaus'09]

[ALTERA'08]
[ALTERA'09]
[ALTERA'10]

[ALTERA'12]
[Astarloa'05]

[Athalye'05]

[ATMEL]
[ATMEL'02]

[Bayar'08]

[Berthelot'08]

[Bobda'07]
[Boch'06]

[Bonamy'12]

[Cancare'07]

[Carmichael'99]

‘3GPP TS 25.212 version 7.8.0 Release 7’, 2008
3L: ‘Diamond User Guide Sundance Edition’, 2005, 3.0

http://www.accellera.org/downloads/standards/systemc/about _systemc/,
accessed 2012

ACTEL: ‘AC202 - ProASICPLUS PLL Dynamic Reconfiguration Using JTAG’,
2004, pp. 12

http://www.actel.com/company/about/default.aspx, accessed 2012

http://www.home.agilent.com/agilent/product.jspx?nid=-
34264.0&cc=US&Ic=eng&pageMode=0V, accessed 2012

http://www.home.agilent.com/agilent/product.jspx?nid=-
34264.870751.00&cc=ES&Ic=spa, accessed 2012

Alaus, L., Palicot, J., Roland, C., Louét, Y., and Noguet, D.: ‘Promising
Technigque of Parameterization For Reconfigurable Radio, the Common
Operators Technique. Fundamentals and Examples’, Journal of Signal
Processing Systems, 2009

ALTERA: ‘FPGA Run-Time Reconfiguration: Two Approaches’, 2008
ALTERA: ‘DSP Builder user guide’, 2009, 9 edn.

ALTERA: ‘Increasing Design Functionality with Partial and Dynamic
Reconfiguration in 28-nm FPGAs’, 2010

http://www.altera.com/corporate/crp-index.html, accessed 2012

Astarloa, A.: ‘Reconfiguracion dinamica de sistemas modulares multi-
procesador en dispositivos SoPC’, Universidad del Pais Vasco, 2005

Athalye, A., and Hong, S.: ‘Mapping of partial reconfigurable data flows to
Xilinx FPGAs'. Proc. SOC Conference, IEEE International, 2005, pp. 111-112

http://www.atmel.com/about/corporate/default.aspx, accessed 2012

ATMEL: ‘FPSLIC on-chip Partial Reconfiguration of the Embedded AT40K
FPGA', 2002

Bayar, S., and Yurdakul, A.: ‘Dynamic Partial Self-Reconfiguration on
Spartan-lll FPGAs via a Parallel Configuration Access Port (PCAP)'. Proc.
2nd HIPEAC Workshop on Reconfigurable Computing, 2008

Berthelot, F., Nouvel, F., and Houzet, D.: ‘A flexible system level design
methodology targeting run-time reconfigurable FPGAs’, Eurasip Journal on
Embedded Systems, 2008

Bobda, C.: ‘Introduction to Reconfigurable Computing’ (Springer, 2007)

Boch, A., Feletti, L.C., Laddomada, M., Mesiti, F., Mondin, M., Seoane, J.,
Borio, D., Calafato, A., Daneshgaran, F., Presti, L.L., Smolnikar, M., Javornik,
T., and Mohorcic, M.: ‘Report on signal processing implementation on a DSP
board’, 2006

Bonamy, R., Hung-Manh, P., Pillement, S., and Chillet, D.: ‘UPaRC—Ultra-
fast power-aware reconfiguration controller’. Proc. Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2012, pp. 1373-1378

Cancare, F.: ‘Modeling Methodologies for Dynamic Reconfigurable Systems’,
University of Illinois, 2007

Carmichael, C., Fuller, E., Blain, P., and Caffrey, M.: ‘SEU Mitigation
Techniques for Virtex FPGAs in Space Applications’. Proc. Military and
Aerospace Programmable Logic Devices International Conference(MAPLD)
1999

154

[Cofer'05]

[Custodio'07]

[Chechi'll]

[Delahaye'07]

[Donato'05]

[Donthi'03]

[Godard'07]

[Gohringer'10]

[Haessig'05]

[Haessig'06]

[Hansen]

[HART'07]

[He'12]

[Hong'1l1a]

[Hong'11b]

[IEEE'97]

[[EEE'04]

[lturbe'12a]

Cofer, R.C., and Harding, B.F.: ‘Rapid system prototyping with FPGAS’
(Elsevier, 2005)

Custodio, E., and Marsland, B.: ‘Self-Healing Partial Reconfiguration of an
FPGA', 2007

Chechi, R., and Khanna, R.: ‘QoS Support in Wi-Fi, WIiMAX & UMTS
Technologies’, International Journal on Electronics & Communication
Technology (IJECT), 2011, 2, (3), pp. 176-179

Delahaye, J.-P., Palicot, J., Moy, C., and Leray, P.: ‘Partial Reconfiguration of
FPGAs for Dynamical Reconfiguration of a Software Radio Platform’, 2007

Donato, A., Ferrandi, F., Redaelli, M., Santambrogio, M.D., and Sciuto, D.:
‘Caronte: a complete methodology for the implementation of partially
dynamically self-reconfiguring systems on FPGA platforms’. Proc. Field-
Programmable Custom Computing Machines (FCCM), 2005, pp. 321-322

Donthi, S., and Haggard, R.L.: ‘A survey of dynamically reconfigurable FPGA
devices'. Proc. 35 th Southeastern Symposium on System Theory, 2003, pp.
422-426

Godard, L., Wang, H., Moy, C., and Leray, P.: ‘COMMON OPERATORS
DESIGN ON DYNAMICALLY RECONFIGURABLE HARDWARE FOR SDR
SYSTEMS'. Proc. SDR Forum Technical Conference 2007 pp. Pages

Gohringer, D., Hibner, M., Benz, M., and Becker, J.: ‘A Design Methodology
for Application Partitioning and Architecture Development of Reconfigurable
Multiprocessor Systems-on-Chip’. Proc. 18th IEEE Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM),
2010, pp. 259-262

Haessig, D., Hwang, J., Gallagher, S., and Uhm, M.: ‘A case study of Xilinx
System Generator design flow for rapid development of SDR waveforms’.
Proc. SDR Forum Technical Conference, Orange County, 2005

Haessig, D., Regis, R., and Hermeling, M.: ‘A CASE STUDY COMPARING
TRADITION TO MODEL-BASED RAPID DEVELOPMENT OF SDR
WAVEFORMS — PART II'. Proc. SDR 06 Technical Conference and Product
Exposition, 2006

Hansen, S.G., Koch, D., and Torresen, J.: ‘High Speed Partial Run-Time
Reconfiguration Using Enhanced ICAP Hard Macro’. Proc. Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE
International Symposium on, pp. 174-180

HART: ‘HART Field Communication Protocol Specification, Revision 7.0’,
2007

He, K., Crockett, L., and Stewart, R.: ‘Dynamic reconfiguration technologies
based on FPGA in software defined radio system’, Journal of Signal
Processing Systems, 2012, 69, (1), pp. 75-85

Hong, C., Benkrid, K., Iturbe, X., Ebrahim, A., and Arslan, T.: ‘Efficient On-
Chip Task Scheduler and Allocator for Reconfigurable Operating Systems’,
IEEE Embedded Systems Letters, 2011, 3, (3), pp. 85-88

Hong, C., Benkrid, K., lturbe, X., Erdogan, A.T., and Arslan, T.. ‘An FPGA
task allocator with preliminary First-Fit 2D packing algorithms’. Proc. Adaptive
Hardware and Systems (AHS), 2011 NASA/ESA Conference on, 2011, pp.
264-270

‘[EEE 802.11-1997: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications.’, 1997

‘[EEE 802.16-2004: IEEE Standard for Local and Metropolitan Area
Networks’, 2004

Iturbe, X.: ‘Design and Implementation of a Reliable Reconfigurable Real-
Time Operating System’, University of Edinburgh, 2012

155

[lturbe'lla]

[lturbe'11b]

[lturbe'10]

[lturbe'12b]

[Jozwik'10]

[Kalte'05]

[Khawam'08]

[Kirkpatrick'83]

[Kuo'12]

[LATTICE'12]
[Lew'04]
[Lin'07]

[Liu'09]

[LYRTECH'12]
[Maxfield'10]
[Mecwan'11]

[MENTOR'12]
[Mernik'05]

[MICROSOFT'12]

Iturbe, X., Benkrid, K., Arslan, T., Chuan, H., Erdogan, A.T., and Martinez, I.:
‘Enabling FPGAs for future deep space exploration missions: Improving fault-
tolerance and computation density with R3TOS’. Proc. Adaptive Hardware
and Systems (AHS), 2011 NASA/ESA Conference on, 2011, pp. 104-112

Iturbe, X., Benkrid, K., Arslan, T., Torrego, R., and Matrtinez, I.: ‘Methods and
Mechanisms for Hardware Multitasking: Executing and Synchronizing Fully
Relocatable Hardware Tasks in Xilinx FPGAs'. Proc. Field Programmable
Logic and Applications (FPL'11), International Conference on, Milano (Italy),
2011, pp. 295-300

Iturbe, X., Benkrid, K., Erdogan, A.T., Arslan, T., Azkarate, M., Martinez, I.,
and Perez, A.: ‘R3TOS: A reliable reconfigurable real-time operating system’.
Proc. Adaptive Hardware and Systems (AHS), 2010 NASA/ESA Conference
on, 2010, pp. 99-104

Iturbe, X., Benkrid, K., Torrego, R., Ebrahim, A., and Arslan, T.: ‘Online Clock
Routing in Xilinx FPGAs for High-Performance and Reliability’. Proc.
NASA/ESA Conference on Adaptive Hardware and Systems (AHS'12),
Erlangen (Germany), 2012

Jozwik, K., Tomiyama, H., Honda, S., and Takada, H.: ‘A Novel Mechanism
for Effective Hardware Task Preemption in Dynamically Reconfigurable
Systems’. Proc. Field Programmable Logic and Applications (FPL), 2010
International Conference on, 2010, pp. 352-355

Kalte, H., and Porrmann, M.: ‘Context saving and restoring for multitasking in
reconfigurable systems’. Proc. Field Programmable Logic and Applications,
2005. International Conference on, 2005, pp. 223-228

Khawam, S., Nousias, I., Milward, M., Ying, Y., Muir, M., and Arslan, T.: ‘The
Reconfigurable Instruction Cell Array’, Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2008, 16, (1), pp. 75-85

Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P.: ‘Optimization by Simulated
Annealing’, Science, 1983, 220, (4598), pp. 671-680

Kuo, Y.-s., Schmid, T., and Dutta, P.: ‘A compact, inexpensive, and battery-
powered software-defined radio platform’. Proc. 11th international conference
on Information Processing in Sensor Networks (IPSN'12), Beijing (China),
2012, pp. 137-138

http://www.latticesemi.com/corporate/index.cfm?source=topnav, accessed 2012

Lew, J.K.: ‘Low Power System Design Techniques Using FPGAs’, 2004

Lin, Y., Lee, H., Woh, M., Harel, Y., Mahlke, S., Mudge, T., Chakrabarti, C.,
and Flautner, K.: ‘SODA: A High-Performance DSP Architecture for
Software-Defined Radio’, Micro, IEEE, 2007, 27, (1), pp. 114-123

Liu, M., Kuehn, W., Lu, Z., and Jantsch, A.: ‘Run-time partial reconfiguration
speed investigation and architectural design space exploration’. Proc. FPL
09: 19th International Conference on Field Programmable Logic and
Applications, Prague, 2009, pp. 498-502

http://lyrtechrd.com/en/products/view/+model-based-design-kits, accessed 2012

Maxfield, C.: ‘FPGAs: System gates or logic cells/elements?’, 2010.

Mecwan, A.l., and Gajjar, N.P.: ‘Implementation of Software Defined Radio
on FPGA'. Proc. Engineering (NUICONE), 2011 Nirma University
International Conference on, 2011

http://www.mentor.com/esl/catapult/overview//, accessed 2012

Mernik, M., Heering, J., and Sloane, A.M.: ‘When and how to develop
domain-specific languages’, ACM Computing Surveys (CSUR) 2005, 37, (4),
pp. 316 - 344

http://msdn.microsoft.com/library/xk24xdbe.aspx, accessed 2012

156

[Mitola'92]

[Mitola'95]

[Moy'06]

[Nicollet'03]

[Noguera'01]

[Olds'12]
[PENTEK'10]
[Rappaport'01]

[Rhiemeier'02]

[Saha'09]

[Schoenes'03]

[Shah'09]

[Simmler'00]

[SUNDANCE'05]
[SUNDANCE'09]

[Torrego'll]

[Torrego'12a]

[Torrego'09]

Mitola, J.: ‘Software radios-survey, critical evaluation and future directions’.
Proc. National Telesystems Conference, 1992, pp. 13/15-13/23

Mitola, J.: ‘The software radio architecture’, Communications Magazine,
IEEE, 1995, 33, (5), pp. 26-38

Moy, C., Palicot, J., Rodriguez, V., and Giri, D.: ‘Optimal determination of
common operators for multi-standards software defined radio’. Proc. 4th
Karlsruhe Workshop on Software Radios, Karlsruhe (Germany), 2006

Nicollet, E., and Demeure, C.: ‘DSP software architecture for Software
Defined Radio’. Proc. DSP enabled Radio, 2003 IEE Colloquium on, 2003

Noguera, J., and Badia, R.M.: ‘A HW/SW partitioning algorithm for
dynamically reconfigurable architectures’. Proc. Design, Automation and Test
in Europe, 2001. Conference and Exhibition 2001. Proceedings, 2001, pp.
729-734

http://homepages.paradise.net.nz/peterfr2/avrs232sender.htm, accessed 2012

PENTEK: ‘Software Defined Radio Handbook’, 2010

Rappaport, T.: ‘Wireless Communications: Principles and Practice’ (2001,
2nd edn. 2001)

Rhiemeier, A.: ‘Benefits and limits of parameterized channel coding for
software radio’. Proc. 2nd Karlsruhe Workshop on Software Radios,
Karlsruhe (Germany) 2002

Saha, A., and Sinha, A.: ‘An FPGA Based Architecture of a Novel
Reconfigurable Radio Processor for Software Defined Radio’. Proc.
Education Technology and Computer, 2009. ICETC '09. International
Conference on, 2009, pp. 45-49

Schoenes, M., Eberli, S., Burg, A., Perels, D., Haene, S., Felber, N., and
Fichtner, W.: ‘A novel SIMD DSP architecture for software defined radio’.
Proc. Circuits and Systems, 2003 IEEE 46th Midwest Symposium on, 2003,
pp. 1443-1446 Vol. 1443

Shah, S., and Sinha, V.: ‘GMSK Demodulator Using Costas Loop for
Software-Defined Radio’. Proc. ICACC '09. International Conference on
Advanced Computer Control., 2009, pp. 757-761

Simmler, H., Levinson, L., and Manner, R.: ‘Multitasking on FPGA
Coprocessors’. Proc. Field Programmable Logic and Applications (FPL),
2000 International Conference on, 2000.

SUNDANCE: ‘SMT8096 User Manual Version 1.2’, 2005.
SUNDANCE: ‘SMT6040 “Sundance Simulink Toolbox™, 2009

Torrego, R., Val, I., and Muxika, E.: ‘OQPSK cognitive modulator fully FPGA-
implemented via dynamic partial reconfiguration and rapid prototyping tools’.
Proc. Wireless Innovation Forum European Conference on Communications
Technologies and Software Defined Radio (SDR’'11 — WInnComm — Europe),
Brussels (Belgium), 2011, pp. 142-147

Torrego, R., Val, I, and Muxika, E.. ‘Small-form-factor cognitive radio,
implemented via FPGA partial reconfiguration, replacing a wired video
transmission system’. Proc. Wireless Innovation Forum European
Conference on Communications Technologies and Software Defined Radio
(SDR’12 — WInnComm), Washington, 2012.

Torrego, R., Val, I., Muxika, E., and Berrizbeitia, A.; ‘Partial reconfiguration in
FPGA rapid prototyping tools’. Proc. IP-Embedded Systems Conference
(IP09), Grenoble (France), 2009.

157

[Torrego'10]

[Torrego'12b]

[Torrego'l2c]

[UNREAL'12]
[Wang'02]

[Wenzel'99]

[Wichman'06]

[WIINN-FORUM'12]

[Wolf04]

[XILINX'00a]
[XILINX'00b]
[XILINX'01]
[XILINX'04]

[XILINX'06]

[XILINX'08a]
[XILINX'08b]
[XILINX'08c]

[XILINX'09]
[XILINX'10]
[XILINX'11a]
[XILINX'11b]

[XILINX'11c]
[XILINX'11d]

[XILINX'12a]
[XILINX'12b]
[XILINX'12c]
[XILINX'12d]

Torrego, R., Val, I, Muxika, E., and Berrizbeitia, A.: ‘A step by step
methodological approach for merging FPGA dynamic reconfiguration and
algorithm rapid designing tools’. Proc. Smart Systems Integration European
Conference & Exhibition (SS12010), Como (ltaly), 2010

Torrego, R., Val, I., Muxika, E., Iturbe, X., and Benkrid, K.: ‘Data Coding
Functions for Software Defined Radios implemented on R3TOS'. Proc. Field
Programmable Logic and Applications (FPL'12), International Conference on
Oslo (Norway), 2012.

Torrego, R., Val, I., Muxika, E., lturbe, X., and Benkrid, K.: ‘Implicaciones del
uso de la reconfiguracién parcial dinamica de las FPGAs en la
implementacién de Radios Definidas por Software’. Proc. Ill Jornadas de
Computacién Empotrada (JCE2012), Elche (Spain), 2012.

http://www.umediaserver.net/umediaserver/download.html, accessed 2012

Wang, J.J., Cronquist, B., McCollum, J., Katz, R., Kleyner, I., and Koga, R.:
‘Single Event Effects of a FLASH-based FPGA’, 2002

Wenzel, W., and Hamacher, K.: ‘A Stochastic tunneling approach for global
minimization’, Physical Review Letters, 1999, 82, pp. 3003-3007

Wichman, S., Adyha, S., Ahrens, S., Ambli, R., Alcorn, B., Connors, D.D.,
and Fay, D.: ‘Partial Reconfiguration Across FPGAs'. Proc. MAPLD
International Conference 2006

http://www.wirelessinnovation.org/page/Defining_CR_and_DSA, accessed
2012

Wolf, W.: ‘Architectures of FPGAs.’, in: ‘FPGA-Based System Design’ (2004),
pp. 105-164

XILINX: ‘Core Generator Guide’, 2000a, 3.1i edn.
XILINX: ‘FPGA Editor Guide 3.1i’, 2000b
XILINX: ‘XAPP404 - Xilinx Alliance 3.1i Modular Design’, 2001

XILINX: ‘XAPP 290 - Two Flows for Partial Reconfiguration: Module Based or
Difference Based’, 2004

XILINX: ‘AccelDSP Synthesis Tool Supported MATLAB Constructs and
Functions’, 2006, edn.

XILINX: ‘AccelDSP Synthesis Tool User Guide’, 2008, 10.1 edn.
XILINX: ‘System Generator for DSP User Guide’, 2008, 10.1.1 edn.

XILINX: ‘XAPP988-Correcting Single-Event Upsets in Virtex-4 Platform
FPGA Configuration Memory’, 2008

XILINX: ‘UG71 Virtex-4 FPGA Configuration User Guide’, 2009
XILINX: ‘SEU Strategies for Virtex-5 Devices’, 2010
XILINX: ‘UG191 - Virtex-5 FPGA Configuration User Guide’, 2011, V3.10 edn

XILINX: ‘UG628 - Command Line Tools User Guide’, 2011, 12.1 edn., pp.
219-248

XILINX: ‘UG702 - Partial Reconfiguration User Guide’, 2011, 13.3 edn

XILINX: ‘UG747 - Partial Reconfiguration Tutorial, PlanAhead software ',
2011

http://www.xilinx.com/tools/designpreservation.htm, accessed 2012
http://www.xilinx.com/tools/partial-reconfiguration.htm, accessed 2012
XILINX: ‘UG640 - System Generator for DSP User Guide’, 2012c, 14.3 edn.

http://www.xilinx.com/about/company-overview/index.htm, accessed 2012

158

[XILINX'12€]

[Young'03]

[Zicari'08]

[Zong'08]

http://www.xilinx.com/products/silicon-devices/epp/zyng-7000/index.htm,
accessed 2012

Young, S.A., P. Fewer, C. McMillan, S. Blodget, B. Levi, D. : ‘A high I/O
reconfigurable crossbar switch’. Proc. Field-Programmable Custom
Computing Machines, 2003. FCCM 2003. 11th Annual IEEE Symposium on,
2003, pp. 3-10

Zicari, P., Corsonello, P., and Perri, S.: ‘A high flexible Early-Late Gate bit
synchronizer in FPGA-based software defined radios’. Proc. Circuits and
Systems for Communications, 2008. ECCSC 2008. 4th European
Conference on, 2008, pp. 252-255

Zong, W., and Arslan, T..: ‘A low power reconfigurable heterogeneous
architecture for a mobile SDR system’. Proc. ICECE Technology, 2008. FPT
2008. International Conference on, 2008, pp. 313-316

159

160

ANNEX 1

1. XILINX FPGA PROGRAMMING FRAME FORMAT

BRAM Xc¥'r BRAM XcYr+1
Ward1 Word 11

o IR, [T [Tl
LI:nl";lllllllllllllllllllllllllllll)—‘ LI:riigllllIllllllllllllllllllllllll}—‘

L| Word3 Parily bils \-.| Worg ! Parity bits

O T I T T T }—‘ Illlllllllllllllllllllllllllllll }—‘

Wardd L- Wordd
L| llllllllllllllllllllllllllllllll}-‘ {ANENNENENENRERERNEERERNREREREEEE }-‘
Wardd o— Sevelata Word 15 — Sevalata

L h L e }—‘

L| [IINEENRENREREEER }—‘ L| TiT ENNRERNNENEREEER }—‘

L| :Dlmilllllllllllllllllllllllllllll }—‘ L| :;;illIlllllllllllllllllllllllll }—‘

Wardi Panty bis Word 18 Parity bits
L| LT LT T }-‘ L| T T T }-‘

L| 1';Ulmlalllllllllllllllllllllllllllll }—‘ |—| wl'hiuldlllllllllllllllllllllllllllll }—‘
L|I.lwl"iillllllllllllllllllllllllllll — L| ;ridlmllllIllllllllllllllllllllllll }-‘

L Ward21
| HCLK & Frame_ECC '—|
BRAM XcYr+2 BRAM XcYr+3
Word2z Word32
llllllllllllllllllllllll}—‘ — IEEERNENENENRERNENEEEEER }—‘

Ward2s L Word3d
L| AINEENRENEERNEENRENEENRNNRERNEED }—l (NNEREEREERERRNERERNRRNNRENRNEREE h

Word2d Parity bits Word g
L| IlllllIlllllllllllllllllllllllll}—‘ L| llllllIIllllllllllllllllllllllll }—‘

‘Word 25 Wordis
L| llllllllllllllllllllllllllllllll}—‘ L| ANEREENRENNEREENNRRNRNNEERERNNER }—‘
Word 26 £ Savelala Word 38 §— Savelala

NNNNNRRRRRNNNANRNRRRRNN H | [T .
BT M}, | LT LTTTTTTIe

Waord 28 Word 38
L| llllllllllllllllllllllllllllllll}-‘ L| ERENEENEENERNEENEERNERNNENENENER }-‘

Ward2g Parity bits L Word3g Parity bits
llllllllllllllllllllllllllllllll h | lllllllIllllllllllllllllllllllll h

L{“iidinl||||||||||||||||||||||||||||h |-|:’iﬁi||||||||||||||||||||||||||||h
L AN AR AR IR ARARAAIRRIANIAT— - NAANNRRARRNRANARARRRRARRARARRANN]

3it1anM

Figure 57: BRAM frame organization

The above image shows the internal structure of the bits present in a single BRAM content
configuration frame. Please note that 64 complete frames are needed in order to configure the whole

data in the BRAM. The image shows that each frame configures data into 4 BRAMS ("r" and

161

represent the row and column of the BRAM in the FPGA). Each BRAM in a Virtex 4 FPGA contains 2
KB of user data storage, therefore, once the 64 frames have been downloaded, 8 KB (4 BRAMs x 2
KB each) of data are available. The difference between the downloaded data: 10.25 KB (64 frames x
1312 bits each) and the available user data (8 KB) resides in the extra configuration bits in the frame.
To sum up the frame is comprised of: Real Data (bits coloured in black), Parity Bits (dark grey),
SaveData bit, HCLK and Frame_ECC bits and Reserved bits (light grey).

Word1 Word2 Waord3
| INNNEERRERRRREN IINRNEENRERENENR |
BitD F_LUT XeYr G_LUT XeYr E_LUT XeYr+1 G_LUT XcYr+1 —‘
LWUK!S (cant.) Word4 Words
(T (T T
F_LUT XcYr+2 G_LUT XcYrs2 F_LUT XcYr+3 G_LUT XcYr+3
Word18 (cont) Word19 ' Word20
[T [T T
F_LUT XcYr+14 G_LUT XcYr+14 F_LUT XeYr+15 G_LUT XcYr+15
Word21
HCLK & Frame ECC }—‘
Word22 Word23 Word24
LT IINRNEENRERENENR |
F_LUT XcYr+16 G_LUT XcYr+16 F_LUT XeYre17 G_LUT XeYr+17 j
Word3g (cont.) Word40 ' Wordd1
T [T T |
F_LUT XcYr+30 G_LUT XcYr+30 F_LUT XeYr+31 G_LUT XeYr+31 Bit 1311

Figure 58: RAM LUT organization

Figure 58 shows the internal frame organization of a RAM LUT. In this case each frame configures a
complete number of LUTs so it is possible to write just a single frame. Similarly to the BRAM frames,
"r" and "c" represent the row and column that indicates the placement of the CLB that contains the
LUTs within the FPGA. Taking into account that each CLB contains two LUTs they are noted "F" and
"G". Each LUT is able to store 16 bits of information and each frame configures 64 LUTs. The frame
is comprised of Real Data (bits coloured in black for F_LUT and dark grey for G_LUT), HCLK and
Frame_ECC bits and Reserved bits (light grey).

162

2. BITSTREAM SIZE ESTIMATION FROM SLICE OCCUPATION

This section will detail the steps that have been carried out in order to infer the size of a partial
bitstream from the number of occupied SLICEs of the corresponding reconfigurable area. That is, the
design process of estimation function (14) will be presented.

The basis of this estimation is the size and influence of a single frame. The previous section on this
annex has already introduced the size of a frame in a Virtex 4 FPGA: 1312 bits. Regarding the
influence, a frame is the smallest addressable element in a bitstream. It contains part of the
configuration data of the resources present on a certain column of the FPGA, covering a height of a
single clock region. That is, even if a reconfigurable area does not span the whole height of the clock
region, the complete frame needs to be downloaded. The full configuration of a certain resource
needs the download of several frames (e.g. IOB configuration: 30 frames, CLB configuration: 22
frames, BRAM data configuration: 64 frames...etc. [XILINX'08c]). On this basis, analysing the
number of resources that need to be configured within a reconfigurable area, the number of needed
frames can be inferred and finally the bitstream size calculated. However, taking into account that the
only available information is the number of occupied SLICEs, some simplifications are necessary.

Figure 59 shows a reconfigurable area defined in Plan Ahead in order to ease this explanation:

black_int_wingax_task_inst

Figure 59: Reconfigurable area in Plan Ahead

Initially, it should be noted that at the time of defining the size of a reconfigurable area, the minimum
addressable granularity is the CLB. That is, the small blue squares that can be observed in Figure

59. Besides, each CLB is made up of 4 SLICEs as can be observed in Figure 60.

163

Figure 60: CLB detail

Consequently, we first assume that dividing by 4 the number of SLICEs we can obtain the number of
CLBs. However, before carrying out this calculation it is necessary to establish the relation between
the number of occupied SLICEs and the number of SLICEs in the reconfigurable area. Bearing in
mind that we assume an occupation of the reconfigurable area of a 70%, the number of SLICEs in

the reconfigurable area is:

1
= Occupied SLICEs - — (19)

SLICEs in PRA = Occupied SLICEs - 07

Occupation
Substituting the aforementioned relation of 4 SLICEs per CLB, the number of CLB is:

SLICEs in PRA _ Occupied SLICEs
4 B 0.7 -4

CLBs in PRA = (20)

Considering that each CLB column requires 22 frames of data to be configured, it is necessary to
determine the number of CLB columns. Taking into account that the reconfigurable areas have a

rectangular shape:

CLB ; _ CLBs in PRA 1
S COMUMNS = "1 B height 1)

The optimum PRA shape has to have a height of a complete clock region, as that is the span of each
frame. Consequently, we assume that the PRAs have this shape. Virtex 4 FPGAs have clock regions
with a height of 16 CLBs. Then:

CLBs in PRA Occupied SLICEs

CLB l = = 22
s cotumns 16 0.7 -4-16 22)
Replacing the aforementioned relation of 22 frames per CLB column:
22 - Occupied SLICEs
CLBs frames = 22 - CLBs columns = (23)

0.7-4-16

164

However, as can be observed in Figure 59, there are other resources within the PRA that also need
to be reconfigured. Considering the type of functions to be implemented, these resources are usually
BRAMSs (64 configuration frames) or DSP blocks (21 configuration frames). Figure 59 shows that
there is one of these resources every 4 CLB columns. Consequently:

CLBs columns Occupied SLICEs

= (24)
4 0.7-4-16-4

Other resources =

Considering the worst case, that is, the presence of a BRAM, the corresponding frames need to be

calculated:

64 - Occupied SLICEs
Other resources’' frames = 64 - Other resources = 07 4.16.4 (25)

Adding both parts:

Frames = CLB frames + Other resources’frames

(26)
22 - Occupied SLICEs 64 - Occupied SLICEs

Frames = 07-2-16 + 07 4164 = 0,8482 - Occupied SLICEs

Besides, it is necessary to apply a correction factor of 1,2 in order to compensate the presence of
other type of frames such as clock frames or the inclusion of header information in the bitstream.
Definitely, including the correction factor and replacing the size of each frame, the estimation function
in Kilobytes (please note the 1/8 and 1/1024) is:

1 1 1
Size = 1312+ -+ —— - Frames - 1,2 = 0,8482 - Occupied SLICEs - 1312 - —- ——-1,2

(27)
Size = 0,163 - Occupied SLICEs

165

"FUNCTION COMMONALITY LIST" TEMPLATE

3.

Table 19: Function commonality list template

ENNEILAER]

8rdsa

NYHE

d04-dI'd

1

3015

§821n0say

SJ1sUa1IEIEY]

LLIOJIABA,

E

allieu uonaund

1517 AfeuoLwio] uoiaund

166

