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Abstract

Labor induction is defined as the artificial stimulation of uterine con-

tractions for the purpose of vaginal birth. Induction is prescribed for

medical and elective reasons. Success in labor induction procedures is

related to vaginal delivery. Cesarean section is one of the potential risks

of labor induction as it occurs in about 20% of the inductions. A ripe

cervix (soft and distensible) is needed for a successful labor. During the

ripening cervical, tissues experiencemicro structural changes: collagen

becomes disorganized and water content increases. These changes will

affect the interaction between cervical tissues and sound waves during

ultrasound transvaginal scanning and will be perceived as gray level

intensity variations in the echographic image. Texture analysis can be

used to analyze these variations and provide a means to evaluate cervi-

cal ripening in a non-invasive way.
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Chapter 1

Introduction

Labor induction is defined as the artificial stimulation of uterine contractions for

the purpose of vaginal birth. It is one of the most commonly practiced procedures

in obstetrics, occurring in over 20% of pregnancies [25].

Approximately 135,000 out of 450,000 deliveries occurred in Spain in 2012

were induced, and the rate is increasing compared to the last decade. This trend is

not particular to Spain but worldwide.

Labor induction is indicated when the maternal or fetal benefits from delivery

outweigh the risks of prolonging the pregnancy. Indications for induction vary in

seriousness and may be for medical, obstetrical or elective reasons.

Labor induction carries various risks, including: cesarean section, premature

birth, fetal low heart rate, infections, umbilical cord problems and bleeding after

delivery. Nowadays in Spain about 30% of deliveries are induced and 18% end in

cesarean section [4].

It is likely that some of these unwanted outcomes result from intervening when

the uterus and cervix are not ready for labor. For this reason, the evaluation of

cervical ripening is a crucial step when planning a labor induction procedure.

Currently digital examination (examination of the cervix with the hand) is the

only standard method to assess spontaneous cervical ripening, usually indicated

by the Bishop score. This method being manual is more or less subjective and

prone to errors and inter observer variability.

A more accurate evaluation of cervical ripening is desirable before labor induc-

tion process is started. It is known that the cervix tissues goes through remarkable

changes along pregnancy. Collagen, the most abundant element in the cervical mi-

cro structure (about 85 %), is aligned and organized in the cervix of non-pregnant

women and becomes progressively more disorganized during remodeling of the

cervix as the pregnancy progresses in preparation for the delivery [7]. Besides
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collagen changes, water content of the cervical tissues is also increased.

The aforementioned changes in cervical microstructrure and tissue hydration

are expected to be reflected in changes in the image obtained from transvaginal

ultrasound since the consistency of tissues affect their interaction with the sound

waves.

The importance of developing tools that help in the cervical evaluation is high

and of the interest for our health-care system providers. In this research work,

we aim to develop image processing algorithms capable to assess cervical changes

based on transvaginal ultrasound B-mode images. The importance of these tools

lies in the fact that they could influence the reduction in the cesarean rate along

with the associated hospitalization costs.

In this chapter, our goal is to present several concepts that are important in

the problem formulation. We are going to review the labor induction process, the

reasons, the risks and the problems associated with it. One important step before

starting an induction is to assess the state of the cervix. A ripe cervix (soft and dis-

tensible) is needed for a successful labor. We are going to describe the cervix and

its different stages and transformations along pregnancy. We also review current

methods for assessing cervical status and agents to promote cervical ripening.

1.1 Labor induction

Induction of labor is common in obstetric practice. According to the most cur-

rent studies, the rate varies from 9.5 to 33.7 percent of all pregnancies annually

[21]. The decision to start a labor induction procedure can be based on medical

conditions of the mother and fetus, or sometimes influenced by other factors apart

from obstetrical ones. Some important medical reasons occur when the mother is

post term (42 weeks of pregnancy), suffering from renal disease, hypertension or

diabetes.

A fetus with problems of growth restriction, or infection could also constitute

a serious condition motivating labor induction, in these cases we talk about indi-
cated labor induction. Motivations for labor induction apart from the obstetrical

ones (e.g. for matter of preference or convenience) are termed elective. Among

elective reasons, we canmention for example specialist services availability or psy-

chosocial indications. Table 1.1 shows a summary of common reasons for labor

induction.

A factor having a major influence on the success of a labor induction procedure
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Table 1.1: Commonly quoted indications for inducing labor. Reproduced from refer-
ence [14]

Fetal reasons Maternal reasons Non MedicalReasons
Clinically Evident Deteriorating health Specialist services availability
Growth restriction -renal x-matched blood
Abruptio placentae -hypertension anaesthesia
Polyhydramnios -psychological fetal surgery
Red-cell alloimmunisation -malignancy Partners availability
Diabetes mellitus -autoimmune diseases
Unstable fetal lie Diabetic fragility
Fetal infection Coagulopathy
Macrosomia Intra-uterine infection

Antepartum haemorrhage
Polyhydramnios
Discomfort

Statistically anticipated
Growth restriction Hypertension
Prolonged pregnancy Feto-pelvic disproportion
Previous obstetric history Short maternal height
Ruptured membranes Intra-uterine fetal death
Breech presentation Prior caesarean section
Diabetes mellitus Ruptured membranes
Antepartum haemorrhage
Multiple pregnancy
Red-cell alloimmunisation

is the state of the uterine cervix [14].

Once labor induction has been decided, the next step is to evaluate the degree

of readiness of the woman’s uterus for labor. If the cervix is not ripe then the

probability of a successful labor is small. In this context, successful means vaginal

delivery and when it is not achieved despite the application of ripening agents, we

talk about labor induction failure.

1.2 Cervical Ripening and Labor Induction

In this section we are going to review some concepts related to cervix, its ripening

process and the methods currently in use to induce such a condition for improving

outcomes from labor induction.

1.2.1 The Cervix.

The cervix or uterine cervix is the lower fibromuscular portion of the uterus that

projects into the vagina (Figure 1.1) and is a unique part of the female anatomy of

mammals. This opening or hole lets the blood out of the uterus during menstrua-
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tion. Also let sperm enter the uterus and fallopian tubes

There are two main portions of the cervix: The part of the cervix that can be

seen from inside the vagina during a gynecologic examination is known as the

ectocervix. An opening in the center of the ectocervix, known as the external Ostium
or os , opens to allow passage between the uterus and vagina.

The endocervix, or endocervical canal, is a tunnel through the cervix, from the

external os into the uterus. The cervix also produces cervical mucus that changes

in consistency during the menstrual cycle to prevent or promote pregnancy.

When childbirth is approaching, the cervix begins to thin or stretch (efface) and
open (dilate) in preparation for the passage of the baby through the birth canal or

vagina (Figure 1.2).

1.2.2 Cervical Ripening

Cervical ripening is the term used to describe the transformation in tissue mi-

crostructure of the cervix occurring during pregnancy that leads to its progressive

softening and distensibility. From a state of alignment and organization (collagen

the most abundant component of cervical microstructure) goes to a progressively

more disorganized state as pregnancy progress.

At the end of pregnancy the hyaluronic acid content is incremented in the

cervix. As a result an increase in water molecules that intercalate among the col-

lagen fibers occurs. The amount of dermatan sulfate decreases, leading to reduced

bridging among the collagen fibers and a corresponding decrease in cervical firm-

ness.

During the first month of pregnancy, a slow but progressive collagen reorga-

nization phase begins. Near birth, a second phase includes a rapid and marked

reorganization of the micro-structure [7] causing macro structural changes (in-

cluding cervical shortening). The active dilatation during labor is the third phase

Figure 1.1: Female reproductive organs, showing the cervix.
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Figure 1.2: Cervical Effacement. Left: Cervix without effacement and right with ef-
facement.

and the fourth includes micro-structure recovery. Cervical remodeling in short,

consists of four overlapping phases [13]:

1. Softening alone. Reorganization of collagen.

2. Ripening (Softening with effacement, dilation and change in position)

3. Dilation in response to the contractions

4. Postpartum repair.

The microstructure of the human cervix during pregnancy is not known in

depth due to the difficulty of performing invasive studies. There are however some

works like [12, 22] in which using high resolution images of the micro-structure

obtained by second harmonic generation imaging (SHG), has confirmed that the

cervix possesses 3 layers of collagen, including a circumferential layer and two

flanking longitudinal layers. It has been further discovered that cervix collagen

(especially in non-pregnant state) behaves anisotropically (this means that tissue

properties are not the same along different directions).
In summary the two main characteristics of cervical ripening are the increase

in water content of the tissues and the disorganization of collagen both leading to

an overall softening of the cervix.

1.3 Cervical ripening agents

To favor cervical changes needed for successful labor, several tools have been de-

veloped. Both pharmacological and mechanical methods are in use today as a part

of clinical protocols for labor induction.
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Figure 1.3: Atomic force microscopy cervical tissue images of a non pregnant rat (left),
showing packages highly organized collagen bundles and a cervix on day 21 of preg-
nancy (right), showing disorganized collagen fibril spacing. The packages bundle
shown in the images are < 0.1 microns. Rats typically give birth at day 21. From
reference [15]

1.3.1 Mechanical Methods

Membrane Sweeping In this technique the physician insert his or her finger (wear-

ing gloves) beyond the os and rotates it. This movement is aimed to separate

the amniotic sac from the uterus wall.

It is known that this procedure promote the production of local prostaglandins

which help in the ripening process of the cervix and have the potential to ini-

tiate labor and reduce pregnancy duration.

Intracervical balloon catheter placement Another procedure adopted for routine

induction of labour involves transcervical application of a balloon catheter

(Foley, Cook type). The balloon-tipped catheter is inserted beyond the cer-

vical opening (figure 1.4) . Saline injected through the catheter expands

the balloon, causing the cervix to widen. Such a catheter appears to induce

labor not only through direct mechanical dilation of the cervix but also by

stimulating endogenous release of prostaglandins

1.3.2 Pharmacological Agents

Prostaglandins Prostaglandins are hormones that helps to ripe the cervix, they

are normally used when the cervix is not favorable. They offer the advan-

tage to also promote myometrial conctractility. The most commonly em-

ployed prostaglandin in obstectrics is Dinoprostone (PGE2). Administra-

tion of prostaglandins can be done via intravaginal or intracervical. Some

reported complications observed in patients treated with PGE2 have been
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tachysystole and hyperstimulation of the uterus

Oxytocin Oxytocin is an agent that induce uterine contractions and must be ad-

ministrated with care. It is administered when the cervix is favorable (Bishop

Score > 6). Some risk associated wit Oxytocin are uterine hyper stimulation

and fetal heart rate increase therefore monitoring of fetus state is always rec-

ommended.

1.4 Methods for Cervix Evaluation

For the purpose of determining whether cervix is ready for labor several methods

have been developed. Directly or indirectly, these methods attempt to quantify the

various changes that occur in the cervix during pregnancy: shortening, dilatation

and softening.

1.4.1 Digital Examination

Digital examination is one of the oldest techniques, being the Bishop’s score the

most well known. The Bishop score is a quantitaive means to determine the in-

ductibility or status of the uterine cervix in a pregnant woman, based on five pa-

rameters: dilatation, effacement, station, cervical consistency and position (see

table 1.2).

A drawback of physical examination is that it suffers from a large variation

between different examiners, do not provide information about internal os and

has some risks such as infections due to its invasive nature. Several studies have

also reported that the Bishop score could be a poor predictor of outcome of labor

induction when the cervix is unfavorable [23].

Most authors defines an unfavorable cervix as having a Bishop score between

Figure 1.4: Catheter placement.
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4 and 6, here we adopt BS < 6 as threshold. A Bishop score < 6 indicates an unfa-

vorable cervix which may require a prelabor cervical ripening agent. According to

the Modified Bishop’s pre-induction cervical scoring system, effacement has been

replaced by cervical length in cm, with scores as follows: 0 > 3cm, 1>2c m, 2>

1cm, 3 > 0cm.

Table 1.2: Bishop Score. A score > 6 indicates a good chance of vaginal delivery.

0 1 2 3
Dilation (cm) 0 1-2 3-4 5-6
Effacement (%) 0-30 40-50 60-70 80
Station -3 -2 -1 to 0 +1 to +2
Cervical Consistency Firm Medium Soft
Position of Cervix Posterior Mid Anterior

1.4.2 Chemical Markers

Fetal fibronectin Fetal fibronectine (FFN) is a glycoprotein that binds the amnio-

chorion to the decidua (i.e fetal sac to the uterine lining) and is released

into cervicovaginal fluid in response to inflammation or separation of am-

niochorion from the decidua.

The concentration of fetal fibronectin in cervical transudate correlates with

the result of the induction of labor in concentrations of more than 50 mg/ml

associated with a favorable cervix [14].

The presence of fetal fibronectin in vaginal secretion of women undergoing

labor induction has been associated with a lower cesarean rate. The absence

of this protein in cervicovaginal secretions predicts prolongation of preg-

nancy.

1.4.3 Ultrasound Evaluation

Several studies involving cervix evaluation by means of clinical ultrasound de-

rived parameters have been published. Metrics derived from ultrasound scanning

analyses the different aspects of ripening, i.e softening, shortening and dilation.

There is however controversy about the utility of such parameters. Some stud-

ies claim that cervical length is useful in predicting the likelihood of vaginal de-

livery within 24 hours of induction [18] and that it was related to type of delivery

in women with Bishop score ≤ 5, [10] however in [6], it is concluded that neither
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fetal fibronectine nor transvaginal ultrasound examination has been shown to be

superior to Bishop score. More recently, in [9] it is stated that for cervical ripeness

assessment cervical length showed higher reliability than the Bishop score. This

incongruence is probably due to a lack of consensus regarding definitions like in-

duction failure, or patient inclusion criteria.

1.4.3.1 Transvaginal Ultrasound

Cervix assessment by ultrasound is usually performed by means of transvaginal

ultrasound (TVU). A transvaginal ultrasound transducer is cylindrical in shape

(see Figure 1.5) and is inserted through the vaginal canal. This type of ultrasound

provides better images with higher quality and more detail and is often used to

confirm the diagnosis of lesions found with conventional abdominal ultrasound.

Transvaginal ultrasound allows clearly and consistently the visualization of the

cervix and the internal os (internal Ostium or Os) providing an advantage over

transabdominal ultrasound evaluation. This last method may not be reliable due

to the mother habitus (constitution or body build), cervix position, degree of full-

ness of the bladder and the darkening effect of the fetus.

Figure 1.5: Left: Examination with transvaginal ultrasound, right: B-mode image of a
normal cervix showing an internal T-shaped closed os.

1.4.3.2 Ultrasound Parameters to Assess Cervical ripening

Cervical length The most commonly used parameter is the measurement of cer-

vical length. This method first described in 1996 [2] showed an inverse rela-

tionship between cervical length measured by ultrasound during pregnancy

and the frequency of preterm birth.

It has been shown that measurement of cervical length by ultrasound (usu-

ally transvaginal) is more effective than digital examination of the cervix

[24] for predicting preterm birth. The length is measured from the internal
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os along the endocervical canal until the external os and is the most repro-

ducible and reliable measurements. If the channel is curved, cervical length

can be measured in a straight line between the inner and outer os or as the

sum of two straight lines that follow the curve.

Dilation of internal os (Funneling) The dilation of internal os in the uterine cervix

has been also proposed as a indicator of uterus being prepared for labor, al-

though mostly used in preterm birth risk analysis [3]. The funneling per-

centage (figure 1.6) is defined as:

%F =
A

A+B
(1.1)

Where A is the funnel length and B is the functional length of the cervix.

Figure 1.6: Measuring of funneling. Left: US image showing a dilated internal os
(arrows). To the right (A) is the funnel length (B) is the functional cervix length and
(C) is the funnel width.

Cervical gland area (CGA) As pregnancy progresses the cervical tissue becomes

full of mucus producing glands. This mucus block the external os (known

as mucus plug) and is useful in the prevention of infections. The gland area

has been described as the sonographically hyperechoic or hypoechoic zone

surrounding the cervical canal.

The presence of these glands andmucus has been introduced as a newmarker.

In [1] it was shown that the decrease or absence of glandular area (figure 1.7)

may be an early indicator of cervical insufficiency.

Cervical Consistency Index The cervical consistency index (CCI) described in [19]

is another parameter designed recently to evaluate the ripening of the cervix.

For the calculation of the index, the length of the cervix is measured in the

10



Figure 1.7: The presence of cervical glands is a normal finding during pregnancy;
their absence may constitute a predictive sign of preterm birth. The glandular area is
the region pointed by arrows. Reproduced from [13]

usual way (distance AP) and then is measured after applying gently pressure

with the transducer up to the point where the cervix is not shorter (AP’ ),

the ratio of two lengths, multiplied by one hundred is the value of the CCI

(equation 1.2).

CCI =
AP ′

AP
100. (1.2)

The CCI according to its authors, has a high sensitivity for the prediction of

spontaneous preterm birth before 34 weeks and can be easily determined,

showing a high level of repeatability

1.4.3.3 Additional US based Methods

There exist several methods that are in use for cervical evaluation purposes but

not in the context of labor induction and are mostly experimental. Most of these

methods have been proposed for the diagnosis of cervical incompetence or insuf-

ficiency ,which is a condition that happens when the uterine cervix ripes too early

and can be cause for prematurity.

Elastography Elastography is an ultrasound-based technique used to evaluate the

consistency of soft tissues by means of compression applied in vivo using

conventional ultrasound systems with specialized software. It is a nonin-

vasive method in which stiffness images of soft tissue are used to detect or

classify mass. The main issue with elastography of the cervix is the lack of

reference tissue for comparison, also elastographic image is sensitive to pres-

sure changes. Some studies have reported the use of elastography for cervix

evaluation but it is acknowledged that this method is still in its infancy [17].
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Quantitative Ultrasound The need to develop measurable parameters or numer-

ical descriptors for characterization of body tissue by ultrasound has led to

what is known as quantitative ultrasound (QUS). The QUS parameters are

proposed to characterize the conditions of tissue based on the assumption

that such a disease changes the acoustic properties of the medium (tissue).

The most common parameters in the literature are the speed of sound prop-

agation, attenuation coefficients and scattering, the average spacing of scat-

terers (periodicity) and the size of the scatterers.

In [16] an increase in collagen content of the cervix, is reported as pregnancy

progress in a experiment with rats. While collagen increases, the concentra-

tion decreased as fibers disorganized and more space was created between

the collagen fibers.

In their study it was concluded that scatterer diameter varied little during

pregnancy whereas acoustic concentration decreased what suggest that the

scattering size did not markedly change, but the concentration of the scat-

terers in the cervix tissue do so as pregnancy progressed.

Recently there have been several experiments to study the changes in cervi-

cal tissues to ultrasound, for example in [15], 40 women were treated with

ultrasound cervical recognition for the purpose of developing a method for

evaluating the attenuation of ultrasound in the cervix during pregnancy us-

ing a clinical ultrasound system.

Summarizing this section we can say that evaluation of cervical ripening by

ultrasound is focused on the various changes experienced by the cervix during

pregnancy. Cervical ripening can be described as a 3-step process that should

occur in sequence: softening, effacement and dilation of the cervix. The different
methods can be sorted according to the parameter evaluated:

• Cervical shortening: Cervical length.

• Glands and cervical mucus plug: Glandular area (CGA)

• Softening: CCI, attenuation coefficient, QUS parameters, elastography.

• Dilation: Funneling.
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1.5 Predictive Value of Bishop score and Ultrasound
derived methods.

Bishop’s score (BS) remains, according to our review, as the standard method for

cervix evaluation. A predictive value outperforming that of BS is required for

this tool to be useful for clinical use. Making a comparison regarding error per-

formance of the different methods for cervix evaluation is difficult because the

research works reviewed so far do not use exactly the same settings, same popu-

lation, objectives and definitions. Usually, in medical application, to express the

ability of a classifying scheme researchers use parameters like sensitivity, speci-

ficity, accuracy, positive predictive value, etc.

FP
False Positive

TP
True Positive

TN
True Negative

FN
False Negative

Predicted Class

A
ct
u
al

C
la
ss

Figure 1.8: Confusion matrix: TP is also known as hit, TN as correct rejection, FP as
false alarm or Type I error and FN miss or Type II error. PP V stands for Positive Pre-
dictive Value (also Precision), TP R True Positive Rate (Sensitivity) TNR , True Negative
Rate (Specificity)and Negative Predictive Value (False Positive Rate)

The definition of these parameters depends upon the different entries of what

is known as a confusion matrix in predictive analysis. That matrix is an array with

two rows and two columns (see figure 1.8) that reports the number of false posi-

tives, false negatives, true positives, and true negatives regarding to a classification

task where the goal is to predict an outcome from a process. For example in the

screening process for a disease, the test outcome can be positive (predicting that

the person has the disease) or negative (predicting that the person does not have

the disease).

Receiver operating characteristic (ROC) curves are also frequently used in al-

gorithm performance evaluation. These are 2D plots where sensitivity is plotted

against 1-specificity (False Positive Rate). When we require a unique value the F-

score can be used as a single measure of performance of the test. The F-score is

the harmonic mean of precision (also called PPV or Positive Predictive Value) and
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Precision
P P V =

TP
TP +FP

Sensitivity

TP R =
TP

TP +FN

Neg.Pred. Value

NPV =
TN

TN +FN

Specificity

TNR =
TN

TN +FP

Fals. Pos. Rate
FPR =

FP
FP + TN

Accuracy

ACC =
TP + TN
P +N

Figure 1.9: The different parameters used to describe error performance. PP V stands
for Positive Predictive Value (same as Precision), True Positive Rate TP R (Sensitivity),
True Negative Rate TNR (same as Specificity), Negative Predictive Value NP V (False
Positive Rate)

Table 1.3: Successful induction predictive values reported in several works.

Method Condition Sensitivity Specificity PPV NPV
Bishop score [8] >5 0.66 0.49
Cervical length >26mm 0.62 0.61 –
Bishop score [18] >3 0.58 0.77 –
Cervical length >28mm 0.87 0.71 —
Bishop score [23] >4 0.87 0.45 –
Cervical length[11] < 20mm 0.64 0.70 0.57 0.76
Cervical Area < 100mm2 0.64 0.70 0.57 0.76
Bishop score > 5 0.62 0.57 0.46 0.71
Mean elastographic index < 100 0.76 0.56 0.51 0.79
Cervical hard area < 200mm2 0.86 0.60 0.51 0.87

recall (Sensitivity,TPR):

F = 2 ∗ P P V ∗ T PR
P P V + T PR

. (1.3)

The current prediction capabilities of clinical ultrasound parameters and Bishop’s

score (BS) have been studied in several articles. In [8] a study of 179 women,

BS is compared to cervical length (CL) they concluded that the Bishop score was

not predictive of the delivery mode, but cervical length was. ROC curves were

also constructed showing optimal values for BS (BS >5) and CL>25mm. Cervi-

cal elastography and several other parameters are compared to BS in [11] cervical

length, cervical area, mean elastographic index, and cervical hard area using de-

livery within 24 hours to predict successful labor induction.

A study involving [10], 177 women who underwent induced labor, compared

Bishop score to CL. The total cesarean rate was significantly lower in the group

of women with short cervical length, and BS did not predict the type of deliv-
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ery. In a similar study [20] transvaginal sonography examination at 37 weeks in

1571 singleton low-risk pregnancies was carried out. It was observed that in the

pregnancies requiring induction for post-term the incidence of cesarean section

for failed induction or failure to progress increased with cervical length.

In [18], 240 women participated in a study to examine the measured cervical

length and the Bishop score and to compare the two measurements in the predic-

tion of successful vaginal delivery within 24 h of induction. Examination of the

different components of the Bishop score showed that only cervical length pro-

vided a significant contribution in the prediction of the likelihood of vaginal de-

livery.

To compare transvaginal ultrasound and digital cervical examination in pre-

dicting successful induction in posterm pregnancies, a group of 122 women at

41 or more weeks’ gestation, immediately before labor were examined with ul-

trasound to measure cervical length, dilatation and cervical funneling in [5]. The

study conclusion is that no ultrasound characteristic predicted outcomes, this con-

clusion agrees with the one in [23] that states that no improvement in outcome

prediction is gained by ultrasound features.

The values of the different parameters for the abovementioned research studies

are summarized in table 1.3. A comparison is presented regarding to the predic-

tive value of the various parameters from ultrasound and Bishop Score as reported

in references. For an easy interpretation in figure 1.10 a scatter plot using the

reported specificity and sensitivity values is shown. The triangular shaded area,

represents the target predictive performance aimed at in this thesis work.

1.6 Chapter Summary

In this chapter a review of the labor induction procedure is presented along with

complication that may arise and the current methods used to evaluate the cervix

status prior to labor. Several findings have shown that tissues can be evaluated by

parameters calculated from B-Mode ultrasound images. The echogenicity (related

to gray level intensities) of tissues may vary in response to structural changes.

These variations of gray level can convey important information about tissues and

can be used as a classification tool for diagnosis. The texture concept is related

to intensity variations and patterns in an image. Cervix maturation process is

susceptible to be evaluated by texture analysis that could help to build a tool for

non-invasive, quantitative evaluation of the cervix.
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Figure 1.10: Scatter plot of sensitivity vs specificity for the various works discussed
above for labor induction outcome prediction. Legend: BS: Bishop Score, CL: cervical
length, CA: cervical area ,CHA: cervical hard area, andMEI: mean elastographic index.

References

[1] Nargess Afzali et al. “Cervical gland area: A new sonographic marker in
predicting preterm delivery”. In: Archives of Gynecology and Obstetrics 285.1
(2012), pp. 255–258.

[2] J A Y D I Ams et al. “the Length of the Cervix and the Risk of Spontaneous
Premature Delivery”. In: The New England Journal of Medicine 334.9 (1996),
pp. 567–572.

[3] V. Berghella et al. Cervical funneling: Sonographic criteria predictive of preterm
delivery. 1997.

[4] Jorge Burgos et al. “Induction at 41 weeks increases the risk of caesarean
section in a hospital with a low rate of caesarean sections.” In: The Journal of
Maternal-Fetal & Neonatal Medicine 25.9 (2012), pp. 1716–8.

[5] S Chandra and JMG Crane. “Transvaginal ultrasound and digital examina-
tion in predicting successful labor induction”. In: Obstetrics & . . . (2001).

[6] Joan M G Crane. “Factors predicting labor induction success: a critical ana-
lysis.” In: Clin Obstet Gynecol 49.3 (2006), pp. 573–584.

[7] Helen Feltovich, Kibo Nam, and Timothy J Hall. “Quantitative ultrasound
assessment of cervical microstructure.” In: Ultrasonic imaging 32.3 (2010),
pp. 131–142.

[8] R. Gabriel et al. “Transvaginal sonography of the uterine cervix prior to labor
induction”. In: Ultrasound in Obstetrics and Gynecology 19.3 (2002), pp. 254–
257.

[9] Raquel Garcia-Simon et al. “Cervix assessment for the management of la-
bor induction: Reliability of cervical length and Bishop score determined

16



by residents”. In: Journal of Obstetrics and Gynaecology Research 41.3 (2015),
pp. 377–382.

[10] Ana Maria Gomez-Laencina et al. “Sonographic cervical length as a predic-
tor of type of delivery after induced labor”. In: Archives of Gynecology and
Obstetrics 285.6 (2012), pp. 1523–1528.

[11] H S Hwang, I S Sohn, and H S Kwon. “Imaging analysis of cervical elastogra-
phy for prediction of successful induction of labor at term”. In: J Ultrasound
Med 32.6 (2013), pp. 937–946.

[12] Tassilo Johannes Klein. “Statistical Image Processing of Medical Ultrasound
Radio Frequency Data”. PhD thesis. Technische Universitat Munchen, 2012.

[13] A Kurjak and FA Chervenak. Donald School Textbook of Ultrasound in Obstet-
rics and Gynecology. Ed. by Jaypee Brothers Medical Publishers. 2011.

[14] I. Z. MacKenzie. “Induction of labour at the start fo the new millennium”.
In: Reproduction 131.6 (2006), pp. 989–998.

[15] B. L.McFarlin et al. “Ultrasonic attenuation estimation of the pregnant cervix:
A preliminary report”. In:Ultrasound in Obstetrics and Gynecology 36.2 (2010),
pp. 218–225.

[16] Barbara L McFarlin et al. “Quantitative ultrasound assessment of the rat
cervix.” In: Journal of ultrasound in medicine : official journal of the American
Institute of Ultrasound in Medicine 25.8 (2006), pp. 1031–40.

[17] F. S. Molina et al. “Quantification of cervical elastography: A reproducibility
study”. In: Ultrasound in Obstetrics and Gynecology 39.6 (2012), pp. 685–689.

[18] G. K. Pandis et al. “Preinduction sonographicmeasurement of cervical length
in the prediction of successful induction of labor”. In: Ultrasound in Obstet-
rics and Gynecology 18.6 (2001), pp. 623–628.

[19] M. Parra-Saavedra et al. “Prediction of preterm birth using the cervical con-
sistency index”. In:Ultrasound in Obstetrics and Gynecology 38.1 (2011), pp. 44–
51.

[20] G. Ramanathan et al. “Ultrasound examination at 37 weeks’ gestation in
the prediction of pregnancy outcome: The value of cervical assessment”. In:
Ultrasound in Obstetrics and Gynecology 22.6 (2003), pp. 598–603.

[21] Larry MD Rand et al. “Post Term Induction of Labor Revisited”. In: Journal
of Obstetrics & Gynecology 9.5 (2000), pp. 779–783.

[22] Lisa M Reusch et al. “Nonlinear optical microscopy and ultrasound imag-
ing of human cervical structure.” In: Journal of biomedical optics 18.3 (2013),
p. 031110.

[23] H. Roman et al. “Does ultrasound examination when the cervix is unfavor-
able improve the prediction of failed labor induction”. In: Ultrasound in Ob-
stetrics and Gynecology 23.4 (2004), pp. 357–362.

17



[24] I Tekesin, L Hellmeyer, and GHeller. “Evaluation of quantitative ultrasound
tissue characterization of the cervix and cervical length in the prediction of
premature delivery for patients with spontaneous preterm labor”. In: Amer-
ican Journal of Obstetrics and Gynecology 189.2 (2003), pp. 532–539.

[25] DAWing. “Induction of labor”. In: Protocols for High-Risk Pregnancies (2010).

18



Chapter 2

Theoretical framework for cervical
evaluation.

2.1 Ultrasound Systems

Ultrasound is the term used to describe sound above 20,000 Hertz (Hz), beyond

the human hearing frequency range. Ultrasonography or ultrasound is an imag-

ing technique based on ultrasound. In this modality the image depends on the

computer analysis of waves that in a noninvasive manner create images of internal

body structures.

TheWorld Health Organization (WHO) recognizes the ultrasound as an impor-

tant form of medical imaging [14]. Its appeal comes from a variety of important

reasons: It is non-ionizing, non-invasive, produce real time images and is available

in most clinics and hospitals. The low cost of an US scanner (compared with other

imaging modalities), makes it one of the preferred tools for monitoring, tracking

and medical diagnosis.

In addition to the traditional fields of cardiology and obstetrics, in which has

been widely used for a long time, it has also become very useful in the diagnosis

of diseases of the prostate, liver, and atherosclerosis of the coronary and carotid

arteries (deposits of yellowish plaques of cholesterol lipids and cellular debris in

the inner layers of the arterial walls of medium and large diameter).

2.1.1 Image construction.

For imaging, an ultrasound scanner goes through a three-step procedure: first pro-

duces sound waves, then receives the echoes and finally processes that information

to create a 2D gray scale image. The transmission and reception of ultrasound

waves is usually accomplished by use of a piezoelectric transducer enclosed in a
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Figure 2.1: Two types of ultrasound scanners and a 2D sonographic image showing a
fetus.

housing of a variety of shapes, (see figure 2.2).

Transducers usually contain a large number of piezoelectric elements aligned

next to each other along the transducer face to perform 2D scanning or arranged

in a matrix for 3D scanning. These elements are generally made of thin wafers of

artificial ceramic material such as lead zirconate titanate. The thickness (usually

0.1-1 mm) determines the frequency of ultrasound.

Typically up to five of these elements firing simultaneously generate a short

pulse of ultrasound that travels in a narrow column away the probe. The transmit-

ters then act as receivers and record the intensity of the reflected sound.

The process is repeated sequentially along the length of the probe. The time

taken for an echo to return is used to determine the distance from the probe and

is calculated assuming a constant sound speed of 1,540 m/s. This value is the

average of the measurements obtained from normal tissues. The choice of the

optimum ultrasonic frequency is determined by the resolution and the required

penetration depth. The strength of returning echoes from any point is represented

by the brightness of that point on the screen.

Figure 2.2: Different types of transducers used in diagnostic ultrasound.
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2.1.2 Ultrasound -Tissue Interaction

As US waves travel through tissues, they are partly transmitted to deeper struc-

tures, partly reflected back to the transducer as echoes, partly scattered, and partly

transformed to heat. The amount of echo returned after hitting a tissue interface

is determined by a tissue property called acoustic impedance. This is a measure

of the degree to which the medium opposes to the movement constituting the

sound wave. Acoustic impedance z depends on the density ρ of the medium and

the speed of sound c as expressed in the following equation z = ρc . The sound

speed in turn depends on medium properties compressibility κ and density ρ as

c =

√
1
κ ∗ ρ

Table 2.1: Acoustic impedance of different body tissues organs.

Body Tissue Acoustic impedance (106 Rayls)
Air 0.0004
Lung 0.18
Fat 1.34
Liver 1.65
Blood 1.65
Kidney 1.63
Muscle 1.71
Bone 7.8

2.1.2.1 Attenuation

Sound energy is attenuated or weakened as it passes through tissue because parts

of it are reflected, scattered, absorbed, refracted or diffracted. Attenuation and

sound speed in tissues are important parameters related to the consistency of body

parts. Both has been proposed in the literature to assess the state of the cervix as

described in the following sections. In an early work [17] the authors studied

the feasibility of using sound velocity to predict the cervical changes that could

diagnose the structural development of cervical incompetence.

Sources of attenuation

Absortion Tissue absorption of sound energy contributes the most to the attenu-

ation of an ultrasound wave in tissues.

Refractions Refraction is the change of direction experienced by the sound beam

21



being incident upon a tissue interface at an oblique angle. Angles of the

incident wave and transmitted wave obeys Snell’s law.

Reflections Organs containing gas (such as the lung or intestines) have the lowest

acoustic impedance, while dense organs such as bone have very high acoustic

impedance. The intensity of a reflected echo is proportional to the difference
(mismatch) in acoustic impedance between two mediums. No echo is gene-

rated if two tissues have identical acoustic impedance.

Scattering Scattering occurs when echoes are scattered in all directions in a non-

uniform manner. This is especially true when the sound wave hits an ob-

ject whose size is much smaller than the sound wavelength. The part of

the scattering that goes back to the transducer and generate images is called

backscatter. The scattering phenomenon gives raise to the typical speckle
noise present in sonographic images. The location, number and size of the

objects being scanned in a particular region influence the statistical distribu-

tion of the speckle noise.

Resolution and Attenuation. The achievable resolution is greater with shorter

wave lengths, being the wavelength inversely proportional to frequency. The prop-

agation speed of sound c is related to the frequency f and wavelength λ by the

equation c = f λ :

Table 2.2: Attenuation coefficients and propagation velocities of sound waves. From
reference [6]

Tissue Average attenuation
coefficient in dB/cm

Propagation velocity
of sound in m/s

Average acous-
tic impedance in
(g/cm2/s) x 105

Fat 0.6 1450 1.38
Soft Tissue 0.7-1.7 1540 1.7
Liver 0.8 1549 1.65
Kidney 0.95 1561 1.62
Brain 0.85 1541 1.58
Blood 0.18 1570 1.61
Skull and bone 3-10 and higher 3500-4080 7.8
Air 10 331 0.0004

However, the use of high frequencies is limited by its greater attenuation in

the tissue and therefore shorter penetration depth. The ultrasonic waves are at-

tenuated in human tissues, typically by 0.2 -0,5 dB/cm/MHz. Thus the reflected

echoes must be amplified by a factor which depends on the transversal depth, pro-
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Figure 2.3: Array focusing showing delays for close focus (a) and far focus (b)

cess denoted as time-gain compensation (TGC). For this reason, different frequency
ranges are used for the examination of various body parts:

• 3-5 MHz for abdominal area.

• 5-10 MHz for superficial and small parts and

• 10 to 30 MHz for the skin and eyes.

2.1.2.2 Array Beamforming

Beamforming is the process of providing the resulting wave from the elements be-

ing fired in a transducer array at certain time, with direction and focusing. Steer-

ing and focusing of the ultrasonic beam is nowadays achieved by careful electronic

gating of the elements for both, transmission and reception of the resulting echoes.

An example illustrating the kind of delays used for focusing is shown in figure 2.3.

2.1.2.3 Artifacts

Artifacts in ultrasound imaging are structures appearing in the image that have

the following conditions:

• They are not really present.

• They are missing

• Represented in the screen with improper brightness
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• Represented with improper shape or size

The origin of artifacts is diverse, some have origin in the scanner user (e.g not

operating the equipment properly, wrong settings) and some are inherent of the

ultrasound physics (e.g. shadowing). Commonly encountered artifacts include:

1. Reverberation

2. Shadowing

3. Mirror artifacts

4. Range Distortion

5. Side lobe Artifacts

6. Partial Volume

Figure 2.4: Ultrasound artifacts. To the left, mirroring artifact pointed by an arrow
and right, shadowing.

2.2 Image Texture Analysis and its Applications
in Medicine

Texture is an important tool for the analysis of many types of image features, in-

cluding natural scenes and medical images. Although not yet defined, texture is

an important spatial property related to patterns and changes on brightness in im-

ages. It has been used in many topics of image analysis such as segmentation tasks

or classification.
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2.3 Approaches to Texture Analysis

According to the methods used to evaluate the interrelationships between pixels

(picture elements) or voxels (volume elements) methods for texture analysis have

been classified in various ways. In [6] three main approaches are presented to

represent the texture: statistical, structural and spectral. A more widely shown in

[1] where different methods are classified as.

1. Structural Methods Texture is represented by the use of well defined prim-

itives or texels (from Texture Elements), providing a good image symbolic

description

2. Model based methods Mathematical models are used to represent the texture

(stochastic (Markov Random Fields), fractal models).

3. Spectral Methods The properties of the image are analyzed in a different space
as frequency or scale. These methods are based on some type of transform

such as Fourier, Gabor and Wavelets, the latter being the most used.

4. Statistical Methods These are based on the representation of the texture using

the properties that govern the interrelation and distribution of gray levels in

the image. This distribution is analyzed by computing local features at each

point in the image.

Depending on the number of pixels defining the local feature, statistical

methods can be further classified into first order (one pixel), second order

(two pixels) and higher-order (three or more pixels) statistics.

2.3.1 Texture Attributes Derived from pixel statistics.

2.3.1.1 First Order Statistics

These statistics are calculated on one pixel which attribute is the gray level. i.e

relationship with neighboring pixels are not considered. The gray level can be

described by first order statistics such as mean, variance, dispersion, average en-

ergy, entropy , skewness and kurtosis estimated from a histogram computed from

this distribution. For an image with n pixels, its histogram can be calculated as

P (i) =
h(i)
n

, where h(i) represents the number of occurrences of the ith gray level

and P (i) is the probability of finding that particular gray level value. Some impor-

tant first order statistic derived parameters are the following:
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Mean µ =
1
N

L∑
i=0

h(i) (2.1)

Variance σ2 =
1

N − 1

L∑
i=0

(h(i)−µ) (2.2)

Skewness s =
1
nσ3

L∑
i=0

(h(i)−µ)3 (2.3)

Kurtosis k =
1
nσ4

L∑
i=0

(h(i)−µ)4 − 3 (2.4)

Energy E =
L∑
i=0

(P (i))2 (2.5)

Entropy H = −
L∑
i=0

P (i) log(P (i)) (2.6)

Where L is the highest of gray levels present in the image and N is the number

of pixels in the image.

2.3.1.2 Second order statistics

Second order statistic consider relationship among pixels or groups of pixels (usu-

allly two). Among the most well known second order methods for texture analysis

we can mention:

Gray level co-ocurrence matrix In the work of Haralick (1973) [9], he proposed

the use of a gray level co-ocurrence matrix (GLCM) which has since then become a

very popular method for texture analysis. In the GLCM each entryGLCM(δx.δy )(i, j)

represent a probability estimate of the co-ocurrence of the gray levels i and j at

two arbitrary locations separated by the displacement (δx.δy). Different matrices

are obtained by modifying the spatial relationship, orientation (angle) or distance

between pixels. The number of rows and columns of the GLCM thus, depends

only on the gray levels in the texture and not on the image size.

In figure 2.5 an 3x3 image and its co-ocurrence matrix is shown. The angle θ

in this example is 0o , or the pixel to the right of the considered pixel (d = 1). The

2 in the GLCM indicates that there are two occurrences of a pixel with gray level 3

immediately to the right of pixel with gray level 1.
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Figure 2.5: Original image and Co-ocurrence matrix. Here we assume only 4 gray
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Several parameters are computed from GLCM entries. Haralick proposed a

total of 14 statistical measures: angular second moment, contrast, correlation, en-

tropy, energy are among the most used. The defining equations for these texture

features are:

Energy =
∑
i

∑
j

Nd(i, j)
2 (2.7)

Entropy = −
∑
i

∑
j

Nd(i, j)log2Nd(i, j) (2.8)

Contrast =
∑
i

∑
j

(i − j)2Nd(i, j) (2.9)

Homogeneity =
∑
i

∑
j

Nd(i, j)
1 + |i − j |

(2.10)

Correlation =

∑
i
∑
j(i −µi)(j −µj)Nd(i, j)

σiσj
(2.11)

Where µi and µj are the means and σi and σj are the standard deviations of

the row and column sums. These summations are denoted Nd(i) and Nd(j) and are

defined by,

Nd(i) =
∑
j

N(i,j) (2.12)

Nd(j) =
∑
i

N(i,j) (2.13)

Local Binary Patterns In general, LBP measures the local structure at a given

pixel using P samples on a circle of radius R around the pixel and summarizes this
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Figure 2.6: Different resolution LBPs using a circular neighborhood. Left P = 8,R = 1,
Center: P = 12,R = 1.5 and right P = 16,R = 4

information with a unique code for each local structure or pattern, some examples

are shown in figure 2.6. To calculate the code, gP the intensity of neighboring

samples is compared with the intensity of the center pixel (gC) and a sign function

is applied using this value as a threshold. A sample are thus assigned one if its gray

value is larger than the threshold or zero when the opposite is true. By choosing

a fixed sample position on the circle as the leading bit, the samples can be turned

into a binary number. Thus each pattern has an associated unique binary number

calculated using equation 2.14.

LBPP ,R =
P−1∑
p=0

t(gp − gc)2−p (2.14)

where t(.) represents a thresholding operation.

Sample position not on pixel location requires interpolation. The LBP his-

togram thus combines structural and statistical information of an image. A com-

plementary contrast measure VARP ,R was also developed in [7] that together with

LBP can describe an image by their pattern and contrast aspects. The VAR opera-

tor is calculated according to equation 2.15. Contrast measure has a continuous-

valued output; hence, quantization of its feature space is needed.

VARP ,R =
1
P

P−1∑
p0

(gp −µ)2 where µ =
1
P

P−1∑
p=0

gp (2.15)

Local Binary Pattern Mappings Since the original LBP was not rotation invari-

ant, some especial coding strategies have been introduced. The rotation invariant
LBPmapping consist on performing bit shifting so that image rotation do not alter

the calculated binary code. The rotation invariant LBP (LBP riP ,R) is defined as,
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LBP riP ,R =min{ROR
(
LBPP ,Ri

)
| i = 0,1, .., P − 1} (2.16)

where ROR(x, i) is a circular bit-wise shift on the P-bit number. Uniform pat-

terns were also developed to reduce the number of possible bins. An LBP code

is called uniform if the binary pattern consists of at most two bitwise transitions

from 0 to 1 or vice versa. This coding scheme reduces the number of bins of a LBP

histogram. In a neighborhood of P bits there are by definition P +1 uniform codes

, the remaining non-uniform codes are included in an additional bin so that the

complete histogram consist of P + 2 bins. The rotation invariance with uniform

patterns LBP riu2P ,R is defined as follows:

LBP riP ,R =


P−1∑
p=0

sign(gp − gc) if U
(
LBPP ,R

)
≤ 2

p+1, Otherwise

(2.17)

where,

U
(
LBPP ,R

)
= |s(gP−1 − gc)− s(g0 − gc)| (2.18)

+
P−1∑
p=1

|s(gP − gc − s(gp−1 − gc)|

The U value of an LBP pattern is defined as the number of spatial transitions

(bitwise 0/1 changes) in that pattern. It was verified that only "uniform" patterns

are fundamental patterns of local image texture.

Gray LevelDifferenceMethod TheGray Level DifferenceMethod (GLDM) is based

on the occurrence of two pixels which have a given absolute difference in gray level

and which are separated by a specific displacement δ = (∆x,∆y).

If I is a intensity image, for a given displacement δ, let Iδ(x,y) = |I(x,y)− I(x +
∆x,y +∆y)| and f (i|δ) be the estimated probability-density of Iδ(x,y). The value of

f (i|δ) is obtained from the number of times Iδ(x,y) occurs for a given δ , i.e

f (i|δ) = P rob[Iδ(x,y) = i] (2.19)

Other well known methods are the Autocorrelation function and the Gray Level
Run Length (GLRL) method.
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2.4 Image Texture for Classification

Medical applications often require the automatic extraction of features for image

classification tasks, such as to distinguish between normal and abnormal tissues

schemes for detection of tumors. When analyzing images, radiologists usually not

only observe brightness variations but the patterns present in the images. Features

derived from texture analysis can provide useful information not only for locating

an organ (i.e segmentation) in an image but to evaluate tissue state for classifica-

tion.

Texture analysis has been used in the diagnosis tissues like white matter dam-

age in [16] to analyze the neonatal brain by Transcranial ultrasound (TUS). To

distinguish between injuries plaques of different composition (calcified,fibrous

and necrotic) in intravascular ultrasound images (IVUS), several texture analysis

techniques were tested in [19]. Attributes such as first order statistics, Haralick

method, Law’s Energy method, Gray Level Difference Matrix method and Texture

Spectrum were tested on 27 coronary plaques using discriminant analysis.

The average gray level, the standard deviation and the width of the histogram

of fetal lung sonograms were used in [15] to predict fetal maturity. The liver was

taken as a reference due to its stability. They concluded that the fetal lung is ma-

ture when pulmonary echogenicity (gray level intensity) is greater than that of the

liver.

For the analysis of breast US images, the Self-Invariant Feature Transform (SIFT)

has been proposed in the work of [13], authors argued that SIFT descriptors pro-

vide invariability to scale, rotation and minor affine transformations along with

robustness to illumination changes which are currently issues in US imaging. In

the same vein, fractal analysis [3] and [3], Wavelets transform derived parameters;

variance contrast, autocorrelation contrast and distribution distortion of wavelet

coefficients help to differentiate the benign and malignant breast tumors in sono-

grams. In figure 2.7 we can observe the textural difference in normal and diseased

tissues.

Multi scale approaches for lung tissue analysis bases on texture have been pub-

lished, using the Riesz wavelet transform [5], Wavelets frames [4] for high resolu-

tion digital computed tomography (HRDCT) images.

A statistical generalized texture analysis technique to characterize and recog-

nize the most important diagnostically typical vascular patterns relating to cervi-

cal lesions in colposcopy images is developed in [10].
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Figure 2.7: Breast Tumor images, left benign and right malignant.From reference [2]

Table 2.3: Summary of texture based US image processing approaches.

Application Modality Algorithm / Features
Atherosclerotic plaque IVUS Haralick’s method
Cervical evaluation (cancer lesions) Colposcopy im-

ages
Vascular patterns.

Fetal gray matter diagnosis TUS Texture modelled as a MRF
Cervical ripening evaluation TA,TVU Gray level first order statistics, co-ocurrence ma-

trix

Breast tumor classification
BUS Wavelets coefficients derived: variance contrast,

autocorrelation contrast and distribution distor-
tion

BUS Self-Invariant Feature Transform (SIFT)
BUS Fractal Analysis

Lung tissue classification HRDCT Riesz wavelet transform
Fetal lung maturity TA (Trans. abd). Mean gray level, Histogram width

For the evaluation of cervical ripening, there are some works that explore tex-

tural features of ultrasound images [8, 11, 12, 20]. These works are described in

greater detail in the following section.

To improve performance of the algorithms, hybrid approaches have also been

proposed in the literature calculate, e.g. calculating co-ocurrence matrices or his-

togram of wavelets coefficients at different scales.

Texture Analysis on Ultrasound Images The dominating methods in US image

processing are those related to statistical approaches: Co-ocurrence matrix param-

eters (GLCM), width of gray level histograms (GLH), run-length matrix (RLE) pa-

rameters are among the most used. For cervical evaluation only statistical methods

have been used so far.

Investigating about the application of model based, multi-resolution or multi-

scale approaches on similar contexts of US imaging can shed some light concerning

the choice of a particular method of analysis.

We are referring to US modalities using similar frequencies and transducer

type. A logical choice to include is prostate evaluation by trans-rectal ultrasound

(TRUS). Prostate examination by TRUS share similar probes, frequencies and an

alternative digital examination. Applications on segmentation and classification
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will be compared to gain insight about possible alternatives to current texture

based methods for cervical assessment.

2.5 Cervical Assessment by Texture Analysis

Literature review has shown that among the methods using image processing for

cervical evaluation only 4 studies are supported on texture analysis. These works

however are concerning preterm birth, no previous work related to labor induction

was found so far.

1. In his work, Wischnik [20] proposes the use of a parameter called texture

score (TS) derived bymultiple regression of various attributes such as texture

co-occurrence matrix, gray level first order statistics and gradients. In this

study participated 112 patients with normal pregnancies (14-41 weeks) and

57 patients admitted because of cervical insufficiency (20-35 weeks), rep-

resentative regions of the image were analyzed using statistical software to

find the best discriminatory parameters (entropy, contrast and co-occurrence

matrix correlation). The study claims that his method can replace digital

evaluation of the cervix.

2. Jörn [11] conducted a study to assess: 1) Changes in the cervix from non-

pregnant women, and early and late pregnancy and (2) the differences be-

tween the cervices of pregnancies complicated by preterm labor and normal

term pregnancy. 4 patients nonpregnant and pregnant women with the same

number of first and second trimester of pregnancy were examined, and 5 pa-

tients with complications of premature birth by transvaginal ultrasound.

In the study of regions of interest (ROI) within the images of TVU mean

value of gray levels histogram was calculated, contrast and homogeneity of

the co-occurrence matrix. ROIs were placed in the inner and external os and

the anterior and posterior lips. The brightness of the texture decreases in

the area of the external os from the state of non-pregnancy to early and late

pregnancy. In the area of the inner os the contrast increases and homogene-

ity decreases; in the external os area texture changes are the opposite. The

textures in the area of the internal os of pregnancies complicated by preterm

labor were dark, showed more contrast and less homogeneity compared to

term pregnancies.
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3. In order to evaluate the echogenicity of the area surrounding the cervical

canal (or Glandular Area CGA), Furtado [8] used the gray level histogram

of transvaginal ultrasound (TVU) images in pregnancies between 20 and 25

weeks of gestation. The purpose was to objectively determine the absence of

glandular area that has high variability between observers. In this study 149

patients in the second trimester were involved, the middle portion of the

cervix was selected as the ROI because it is less influenced by the cervical

length or position during the ultrasound examination. The results indicated

that between 20 and 25 weeks the region surrounding the cervical canal is

predominantly hypo-echoic (low gray level intensity). The mean, minimum

and maximum value of the histogram were obtained for the glandular area

and for the surrounding area and cervical tissue (stroma). The CGA/stroma

ratio according to the authors could be considered a better indicator than

the CGA only because this relationship is normally distributed with a mean

value with less dispersion and a narrower standard deviation.

4. The mean gray value (MGL) was measured in the midsection of anterior and

posterior cervical walls in the study realized by [12]. The difference in MGL

between anterior and posterior (AP difference) was related to the Bishop sub-

score for cervical consistency (0, 1, or 2). They found that a more echogenic

anterior than posterior cervix indicates a hard cervix; the greater the dif-

ference in echogenicity between anterior and posterior walls the harder the

cervix

Regarding the image processing of B-mode images of the cervix, studies have

been limited mainly to statistical approaches. We think that by implementing

multi-scale , multi-resolution schemes (using some kind of transform) of appropri-

ate texture descriptors we can improve the classification performance of texture-

based methods.

As mentioned in [18]: “Texture description is highly scale dependent. To decrease
scale sensitivity, a texture may be described in multiple resolutions and an appropriate
scale may be chosen to achieve the maximum discrimination ”.

Transform based techniques are appealing for texture analysis for several rea-

sons:

• They possess zooming capabilities to arbitrary scales in the analysis, thus

allowing examination of textures at their appropriate scales. To success-

fully characterize textures, it is equally important to describe both their local
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Table 2.4: Summary of texture based image processing methods applied to TVU im-
ages in cervical evaluation.

Year Data Features Results
1999 [20] 112 normal pregnancy

patients (14-41 weeks)
scanned with TVU,TUS

125 parameters derived
from several image fea-
tures: gray level first or-
der statistics, gradients
and co-ocurrence ma-
trix

Able to reproduce Digi-
tal examination

2008 [11] 4 non-pregnant patients
of each first and third
trimester and 5 with
complication of preterm
birth .

Gray level histogram
mean value, homo-
geneity and contrast of
co-ocurrence matrix

Dark an low contrast
textures are developed
during pregnancy and
are also characteristic of
preterm birth.

2010 [8] 149 patients on their
second trimester
of pregnancy were
scanned with TVU

Mean value, standard
deviation , minimum
and maximum values
of the Gray Level His-
togram of the glandular
area(CGA) and stroma.

The ratio CGA/stroma
allows the objective of
the presence or absence
of CGA

2010 [12] 214 women with
low-risk singleton
pregnancy during
27-30(th) pregnancy
week scanned by TVU

Mean Gray Value His-
togram

A more echogenic an-
terior than posterior
cervix indicates a hard
cervix

(loosely referred to as micro-textures) and global (macro-textures) proper-

ties. Multi-scale methodsmimic the human vision system (HVS) that analyze

images at several levels of detail.

• They are computationally efficient, they can be calculated in a fraction of the

time a model-based counterpart uses.

• They may provide rotation and translation invariant texture attributes.

2.6 Chapter Summary

Summarizing we can say that methods developed so far for cervical evaluation by

texture analysis are based mainly on statistical local texture descriptors. Their use

have been mostly as a Bishop sub- score category replacement (consistency), i.e,

they replace digital examination of consistency by assessing firmness through im-

age processing. They are also not use alone but combined with other ultrasound

parameters such as cervical length. Implementing multi-resolution schemes for

texture analysis of US cervical images or by combining statistical and multiresolu-

tion approaches may result in an increase in classification accuracy by analyzing

texture at different scales not only locally.
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Chapter 3

Texture Analysis of B-Mode cervical
images

Extracting useful information from Ultrasound (US) B-mode images is a challeng-

ing task. US images are low contrast, contain blurred edges and they are normally

contaminated with speckle noise. Despite these drawbacks a lot of effort has been
made on processing US images.

In this chapter we present some image processingmethods applied to the trans-

vaginal ultrasound images collected during the duration of this research work. We

also present results obtained from classification experiments, where the objective

is to study the feasibility of constructing texture-based reliable algorithms for pre-

dicting labor induction outcome. One important aspect of texture is scale. It is

known that the human visual system processes images in a multi-scale way. There

are many neurophysiological and psychophysical data indicating the multi-scale

analysis by the human visual front-end system [20]. The visual cortex has separate

cells that respond to different frequencies and orientations. Analyzing texture at

several resolutions is required when dealing with non-stationary textures as those

obtained in medical imaging. We resort to several multi-resolution texture analy-

sis schemes to analyse the images in our database.

3.1 Image Database

The database used in this thesis consist of images from patients admitted for labor

induction procedures at the Obstetrics and Gynecology Service, Biocruces Health

research Institute (Bilbao,Spain) during a period of one year. The inclusion criteria

were singleton pregnancies, and = 37 weeks of gestation. Pregnancies of fetus

suffering from infections and abnormalities were not included.
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Figure 3.1: Labor induction stages. First 24 hours ripening stage and additional 12
hours stimulation stage. Curve legend: 1. Vaginal delivery and ripening success, 2.
Vaginal delivery and ripening failure, 3. Vaginal delivery, stimulation success, 4. Ce-
sarean section, stimulation failure, 5. Failure in both ripening and induction.

Annotations about weeks of pregnancy, labor induction indication and out-

come were also attached to the collected images. Settings for the ultrasound scan-

ner were defined in a protocol and practiced for all obstetricians participating in

this study. Images were acquired during routine patient transvaginal scanning

prior to labor induction. All images were acquired as DICOM files but pixel infor-

mation was extracted as bitmaps for further processing. Both, images and annota-

tion data were stored in a MYSQL database.

The labor induction process has been divided into two stages: A 24 hours ripen-
ing stage where prostaglandins are administered, followed by an additional 12

hours stimulation stage where the treatment is changed to oxytocin in case cervical

ripening is not achieved. The whole procedure is illustrated in figure 3.1.

A successful ripening is thus defined when a vaginal delivery was obtained

within 24 hours after induction is started. Labor induction failure is considered

when after 36 hours the cervix still has a Bishop Score ≤ 6.
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Table 3.1: Summary of cesarean section cases.

Cesarean section cause Relation to Cerv. Ripening
Null Low medium High

Breech presentation X
Failure to descend X
Failure to progress in labor X
Fetal distress X
Secondary arrest of dilatation X
Induction failure X

ImageAcquisition All images were acquiredwith a Voluson E8Ultrasound scan-

ner fromGeneral Electric. A total of 82 DICOMfiles were acquired, and from these

60 belong to patients with a vaginal delivery and 22 to cesarean section. These lat-

ter were further classified according to their relation to cervical ripening. Four

categories were established for this purpose, namely: null, low, medium and high

as summarized in table 3.1.

In the experiments we only took into account cesarean sections corresponding

to categories medium and high. Also we excluded from analysis low quality im-

ages. The cases fulfilling those criteria were 54, divided as follows: 44 vaginal

deliveries and 9 cesarean section.

Regions of Interest (ROI) All images in the database included up to eight ROIs.

These ROIs were manually delineated by an expert obstetrician and defined sev-

eral regions in the cervix lips as described in figure 3.2. The motivation for includ-

ing all these ROIs was to study if there is an optimal lip region for texture analysis

as it has been found in similar texture analysis.

Image resizing. Images in the database are rather big (975 x375 pixels) and some

areas do not contain relevant information such as annotations and dark areas re-

Figure 3.2: A sample TVU image show-
ing the eight ROIS.

ROI Region
ANT Anterior lip
POST Posterior lip
A1 Left anterior lip region
B1 Center anterior lip region
C1 Right anterior lip region
A2 Left posterior lip region
B2 Center posterior lip region
C2 Right posterior lip region

Table 3.2: ROI names and de-
scriptions.
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sulting from scan conversion and not corresponding to sector scanning. For this

reason a squared area of 600 x 600 containing our regions of interest were cropped

from every image and the ROI coordinates were also transformed for their use in

the smaller images.

3.2 Texture operators.

To analyze the micro texture in the US images, we chose texture operators suscep-

tible to be applied to region of interest of arbitrary shape, not necessarily squared,

this include for example, histogram-based features.

Texture operators to be used in the experiments are the Local Binary Patterns

(LBP), Gray Level co-occurrence matrix (GLCM), Gray Level Difference Matrix

(GLDM) and First Order statistics (FOS).

3.3 Multiresolution methods.

For themultiscale andmultiresolution analysis of the images in our database, some

of the most popular transform for image texture processing were used. The pur-

pose was to find out if the orientation, scale or frequency were important aspects

during the classification of the images. The selected transforms were:

1. Wavelets.

2. Pyramidal directional filter banks, a.k.a Contourlets.

3. Conventional Gabor filter.

4. Circular Gabor filters.

3.3.1 Wavelets.

The wavelet transform decompose a signal by means of a series of elementary

functions, created from dilations and translations of a basis function ψ known

as mother wavelet. The basis functions of a discrete wavelet transform, ψj,k(t) , of

time independent variable t, can be expressed as

ψj,k(t) = 2−
j
2ψ(2−jt − k) (3.1)

where j and k are integers that guide the dilations and translations of the func-
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tion ψ to generate a family of wavelets, such as Haar and Daubechies. Wavelet

transforms provide simultaneous time and frequency localization and thus are

useful for analyzing time-variant, non-stationary signals.

Wavelets have been used extensively since its development. In image process-

ing wavelets have become popular tools for denoising, compression and enhance-

ment.

3.3.2 Pyramidal Directional Filter Banks

One way to assess the way orientation influences image classification is to study

the image at several orientations, for this purpose the pyramidal filter banks is a

good tool to be used.

Pyramidal Directional Filter Bank (Contourlets) is a 2D directional multiscale

image decomposition developed to efficiently approximate imagesmade of smooth

regions separated by smooth boundaries. The Contourlet transform has a fast

implementation based on a Laplacian Pyramid decomposition followed by direc-

tional filterbanks applied on each bandpass subband (see figure 3.3 )

The Contourlet transform has properties of multiresolution, localization, di-

rectionality, almost critical sampling and anisotropy (important for finding dom-

inant or preferred orientations) . Its basic functions are multiscale and multidi-

mensional. The contours of original images, which are the dominant features in

natural images, can be captured effectively with a few coefficients by using Con-

tourlet transform.

Contourlet transform since its conception has found numerous applications in

image processing: image retrieval [1], texture analysis of US images for thyroid

nodules detection [12], brain image segmentation of MRI images [11], small bowel

tumors detection in capsule endoscopy [2] to mention some. Is has been proposed

also for tissue classification on cervical ultrasound images [17].

3.3.3 The Gabor Filter.

Gabor filters are constructed by combining oriented complex sinusoidal modu-

lated by Gaussians functions. Gabor filtering has emerged as one of the leading

approaches. The capability of texture discrimination of Gabor functions seems to

be related both to their optimal joint resolution in space and frequency, and to

their aptitude of modeling the response of cortical cells (simple cells) devoted to

the processing of visual signals. The link between Gabor functions and the visual
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Figure 3.3: The contourlet filter bank: first, a multiscale decomposition into octave
bands by the Laplacian pyramid is computed, and then a directional filter bank is
applied to each bandpass channel.

system of mammals has been investigated and discussed by various authors.

Although Gabor filters are widely adopted, they suffer from certain limitations,

mainly because they depend on various parameters that need to be set properly.

This problem, sometimes referred to as filter bank design, involves the selection of

a suitable number of filters at different orientations and frequencies.

These filters have been used extensively in image processing applications such

as texture segmentation [4, 6, 23], image retrieval [24] and texture classification [8,

10]. It performs a localized and oriented frequency analysis of a two-dimensional

signal. The formulation in the spatial domain is as follows:

g(x,y) =
1

2πσxσy
exp

−12
 x̃2σ2

x
+
ỹ2

σ2
y

exp(2πjW x̃) (3.2)x̃ = xcosθ + y sinθ
ỹ = −x sinθ + y cosθ

(3.3)

Where σx and σy characterize the spatial extent and bandwidth of the filter,

and wX is the modulation frequency. θ (θ ∈ [0,π)) specifies the orientation of the

filter. W is is the radial frequency of the sinusoid. The Fourier transform of the

Gabor function en equation 3.2 is given by:

G(u,v) = exp
[
−π

2

F2

(
γ2(ũ −W )2 + η2ṽ2

)]
(3.4)ũ = u cosθ + v sinθ

ṽ = −u sinθ + v cosθ
(3.5)
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Figure 3.4: Gabor filter responses in frequency domain (left) and spatial domain

(right). Parameters of the filter are as follows: θ =
π
4
, σx = 20,σy = 40 and F = 0.4.

where γ = 2πσx , η = 2πσy . The Fourier representation in equation 3.4 specifies

the amount by which the filter modifies each frequency component of the input

image.

3.3.4 The Circular Gabor Filter

Amodified version of Gabor filters termed circular Gabor filter [25] is used here in

order to study TVU images at different frequency scales. In these filters the sinu-

soid varies along all orientations, leading to a circular symmetric response. These

filters have been found particularly useful in rotation invariant texture analysis

[5], [14]. The circular Gabor filter is defined as follows:

g(x,y) =
1

2πσ2 e
−(x2+y2)

2σ2 e2πiF
(√
x2+y2

)
(3.6)

F(u,v) =

√
2π
2
αe
−

(√
u2+v2−F

)2
2α2 (3.7)

In equation 3.7, we define, α =
1

2πσ
. Equations 3.6 and 3.7describe the filter in

the spatial and frequency domain respectively.

For the parameter selection, we make use of the following relationships (see

figure 3.5)
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Figure 3.5: Frequency response of a circular Gabor filter bank using 4 scales and a
section showing parameters used in the design process

Fk = fo2 ∗Bk (3.8)

Fck =
1
2
Fk

(
2B +1

)
(3.9)

σk =
λ(

Fk −Fc(k−1)
) (3.10)

where λ =

√
(2ln2)
2π

, B is the bandwidth in octaves, Fk is the central frequency

of the filter, Fckis the frequency of half bandwidth and f0is the lower limit of the

frequency range under consideration. The frequency is usually normalized by the

image size N giving a maximum frequency of 0.5.

3.4 Classifiers.

When choosing a classifier for a particular task one has to have in mind the type

of data at hand. Aspects like the available amount of data for training, the di-

mensionality (number of features) of the sample data, or the nature of the labeled

outputs (i.e numerical or categorical) are to be considered .
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Usually a high dimensional feature space is generated when working with mul-

tiresolution techniques for texture analysis. This is due to the concatenation of the

feature subsets obtained from different scales to be submitted to a classifier. The

classifier suffers from the curse of dimensionality due to the high dimensional

feature space, i.e. many data samples are required to train the classifier with a

reasonable performance.

In medical applications, one usually face the problem of having only a limited

amount do data. Classifiers performing well with high dimensional feature space

and modest amount of data are desirable. So this is equivalent to say that a low

variance estimator is needed in this case. The most frequently used classifiers in

medicine are:

1. Support Vector Machine (SVM).

2. Multilayer Perceptron (MLP).

3. K-nearest neighbors (KNN).

K-Nearest neighbors. In pattern recognition, the k-nearest neighbors algorithm

(k-NN) is a non-parametric method used for classification and regression. In both

cases, the input consists of the k closest training examples in the feature space.

The output depends on whether k-NN is used for classification or regression. In

k-NN classification, the output is a class membership. An object is classified by

a majority vote of its neighbors, with the object being assigned to the class most

common among its k nearest neighbors (k is a positive integer, typically small).

KNN has some nice properties: it can be used for linear and nonlinear distributed

data, it tends to performwell with a lot of data samples. Increasing the parameter k

will decrease variance and increase bias. While decreasing k will increase variance

and decrease bias.

Support Vector Machines. SVM can be used in linear or non-linear ways with

the use of a Kernel, when you have a limited set of points in many dimensions

SVM tends to be very good because it should be able to find the linear separation

that should exist. SVM is good with outliers as it will only use the most relevant

points to find a linear separation (support vectors). SVM needs to be tuned, the

cost C and the use of a kernel and its parameters are critical hyper-parameters

to the algorithm. Some common kernels are the linear kernel and the Gaussian

kernel.
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The multilayer Perceptron. The multilayer perceptron (MLP) is a type of feed-

forward network model that maps a set of inputs onto a set of outputs. Feedfor-

ward is a term used to describe networks where calculations are performed from

input to output direction. A MLP is constituted by several layers of nodes in a di-

rected graph, with each layer fully connected to the neighboring nodes in the next

layer. Each connection can have an adjustable value or weight.

All nodes (except from the input layer) are activated by a nonlinear activation

function (see figure 5.2) . The process to obtain appropriate values for the weights

in each layer is termed training. MLP utilizes a supervised learning technique

called backpropagation for training the network.

In back propagation an input training sample is propagated through the net-

work. At the output the obtained values are compared to the target values by

means of an error function (usually mean squared error or MSE). The network er-

ror is then minimized using a method called stochastic gradient descent although
other methods are also available. The optimal value for each weight is that at

which the error achieves a global minimum.

3.5 Estimation methods.

To evaluate the performance of a classifier algorithm on a data set with respect

to a specific score (usually accuracy) is good idea to keep a fraction of the avail-

able data for testing purposes after the training step. Training and testing on the

same data would make the classifier fail to predict anything useful on data not

previously seen. This situation is called overfitting and prevent the classifier from

generalizing properly on new data sets. To overcome this problem when a limited

amount of samples is available we have at our disposal several techniques:

• Hold-out

• Cross-validation

• Random subsampling

• Bootstrapping.

Hold-out. In the holdout (train-test split) method, we randomly assign data points

to two sets, usually called the training set and the test set, respectively. The size

of each of the sets is arbitrary although typically the test set is smaller than the

training set. We then train on the train set and test on the test set.
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Cross-Validation. In cross-validation, we divide the available data into K equal

sized parts. We leave one part k and fit the model to the remaining k − 1 parts

combined. Then we obtain predictions on the left-out part. This procedure is done

for each part k = 1,2, ..K and then the results are combined. If k = n where n is

the number of data samples or examples then the leave-one-out cross-validation is

obtained.

Bootstrapping. The bootstrap approach allow us to obtain distinct data sets by

repeatedly sampling observations from the original data with replacement. Each

of these bootstrap data sets is created by sampling with replacement , and is the

same size as our original dataset. As a result some observations may appear more

than once in a given bootstrap data set and some not at all.

Random subsampling. Thismethod, also known asMonte Carlo cross-validation,

randomly splits the dataset into training and validation data. For each such split,

the model is fit to the training data, and predictive accuracy is assessed using the

validation data. The results are then averaged over the splits. The advantage of this

method (over k-fold cross validation) is that the proportion of the training/valida-

tion split is not dependent on the number of iterations (folds). The disadvantage

of this method is that some observations may never be selected in the validation

subsample, whereas others may be selected more than once. In other words, val-

idation subsets may overlap. This method also exhibits Monte Carlo variation,

meaning that the results will vary if the analysis is repeated with different random
splits.

As the number of random splits approaches infinity, the result of repeated ran-

dom sub-sampling validation tends towards that of leave-p-out cross-validation.

In our experiments we always relied mainly on cross-validation for assessing

the performance of the different classifiers used in the classification experiments.

3.6 Multiresolution approaches.

In the following sections we are going to present experiments carried out using

texture operators applied in the analysis of cervical images. The images are going

to be studied from different aspects such as scale, frequency and orientation.

The common steps we follow in a typical multi-resolution scheme for texture

analysis is as follows:
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1. Pre-processing. Images need to be normalized in some sense for better com-

parison or classification. Denoising algorithms (despeckling) are applied in

this stage.

2. DecompositionA decomposition is performed with some suitable transform

( Wavelets, Fourier, Contourlets, Gabor).

3. Feature Extraction Texture features are calculated from the transformed im-

ages and combined. Feature selection can also be used if the dimensionality

is very large.

4. Classification A classifier is trained to perform predictions on new data.

More than one classifier can be tested and classification scores are compared.

3.6.1 Contourlet based image classification.

In this experiment we use the Contourlets transform to analyze the cervical images

at several scales and orientations. A set of texture features is then calculated from

the coefficient resulting from the image decomposition using this transform.

Preprocessing First, squared sections of size 512x512 containing both ROIs were

cropped from the original gray level images. This was done because all algorithms

required squared shaped inputs with power of two sizes. Regions outside ROIs

were assigned a gray value of 255 and not included in later calculations.

Images were also normalized to have zero mean and unit variance to mitigate

the effect of gain and contrast variations. We tried to include all cervix lips region

and not small patches to observe the documented variation in gray level during

cervical ripening.

In order to diminish the influence of speckle noise in our US images several

despeckling filters were tested: Linear, wavelet based and Non linear. The best

classification results were achieved by using the linear filter with a 5 x 5 pixels

sliding window.

Feature Extraction Contourlet decomposition was performed only to two levels

and 0, 2, and 4 orientations. We used the "9-7" pyramidal filter and the"pkva"
directional filter as shown in figure 3.6 . A total of 24 detail subimages per image

were obtained. For each detail coefficient matrix, first and second order statistics

were calculated. Settings for GLCM were d = 1, θ = 0°, 45°, 90°and 135° and
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Figure 3.6: An example of contourlets decomposition of an ultrasound image up to
three levels, using 0,2 and 4 orientations. For pyramidal decomposition the ’pkva’
filter was used,and a ’9/7’ as a directional filter.

Table 3.3: Features with the highest discrimination power

Operator Feature
FOS Mean, median, standard dev.

GLCM Energy,contrast, sum variance, sum entropy,correlation,
GLDM Constrast,energy,entropy,mean

orientations . Matrices resulting for these orientations were combined and mean

values and ranges of the measures were used.

Feature selection We used 4 first order statistic features, 14 features fromGLCM

along with their ranges, 5 features from GLDM. The application of these first and

second order statistical methods to the coefficient of both transforms produced a

large amount of features. This fact can be disadvantageous due to the high demand

in computing power to carry out calculations and can also be detrimental to the

overall algorithm performance due to presence of highly correlated features. In

order to reduce the amount of features used for classification, a feature selection

scheme was implemented. We used two methods: the Sequential Floating For-

ward Search algorithm (SFFSA), and the Sequential Backwards Search Algorithm

(SBSA). In this analysis we found the best combination of features for perform-

ing classification. A total of 50 features were selected. In our analysis we found

that the second order statistics features proved to be more helpful in the classifi-

cation task, followed by FOS features. The most useful features for classification

are summarized in table 3.3.
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Figure 3.7: ROC curve obatined .

Classification For the classification stage we used a multi-layer perceptron with

a hidden layer of 50 nodes. Crossvalidation using stratified k-fold (k=8) was per-

formed on the data. With these settings an accuracy of about 82 % was obtained.

ROC curves along with AUC values are shown in figure 3.7.

3.6.2 Multiscale Local Binary Patterns

The Local Binary Pattern texture descriptor is used here to analyze our images at

different scales [16]. This is done by decomposing the images using the Wavelets

transform and then using the LBP descriptor on every resultant (approximation)

image.

Pre processing As a first step, a normalization of the images was performed by

the 3-sigma method in which all pixels in an image are restricted to be within the

interval µ±σ where µ is the mean gray value and σ is the standard deviation. Then

we created binary masks from the provided ROI coordinates, a total of two ROIS

were processed during the mask creation. (see fig, 3.8). These mask were also

transformed by wavelets in such a way that they can be applied in every scale.

To allow for multi-resolution, the image is first decomposed in a pyramidal way

using the wavelets transform. The Daubachies IV wavelets was utilized during

decomposition. Only the approximation image was processed in this experiment.

The LBP operator is applied to the different scale version of the image, by using
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Table 3.4: Area under the curve (AUC) parameters obtained using the different map-
pings for the LBP.

Mapping P = 4 P = 6 P = 8
riu2 0.83333 0.87037 0.90741
u2 0.72222 0.72222 0.7037
ri 0.83333 0.7963 0.66667

the calculated mask the points inside each ROI are retrieved. LBP histograms are

then calculated for each ROI and from each resolution. Finally the histograms are

all concatenated to form a combined histogram that represent the image under

analysis.

Choosing the right mapping. In our implementation for the multi-resolution

LBP, we tested neighborhood size of P = 4, 6, 8 or 16. We let R = 1 for all calcu-

lations since the resolution is changed by down-sampling operations carried out

by the wavelets transform. We tried three different mappings (see section 2.3.1.2)

for the LBP, uniform (’u2’), rotation invariant (’ri’) and uniform-rotation invariant

(’riu2’) in a image subset to determine the most appropriate mapping for analysis.

In table 3.4 a summary of the AUC values obtained using the different mapping, as

shown, the best classification performance was achieved by using the ’riu2’ map-

ping. For the case P = 16 the performance decreases again, thus P = 8 is considered

optimum.

Classification The support vector machine classifier was used for classification.

A Gaussian kernel was set for the SVMwith a cost parameter of 0.8. It was found in

the experiments that the performance of the classifier improves if the histograms

were normalized to be zero mean and unit variance.

Two types of classifications were performed:

Figure 3.8: The different steps in the multiresolution methodology for LBP analysis of
TVU images.
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• One classification using four models, one for each cervical lip (L1 anterior ,

L2 posterior) of two classes (’Vaginal’,’Cesarean’) .i.e VL1, VL2,CL1,CL2

• Classification of the cervix image using twomodels, onemodel for each class.

The first classification scheme was intended to study if the anterior and pos-

terior lips show meaningful differences for each class because according to the

previous works there are differences in the echogenicity of both lips. For error

calculation we performed k-fold cross-validation on our dataset, with k = 8 folds.

A total of 54 files were used during classification experiments. The data set was

divided into two groups one containing the patients with delivery within 24 hours

(ripening success) and 36 hours, i.e those with stimulation stage and including

only cases from high and medium category. Results for the first group (43 images)

are summarized as follows:

1. For the individual lip models, we obtained 88.9%, 88,9%, 66.7% and 0%

of correct identification for VL1,VL2,CL1,CL2. This might suggest that the

anterior lip possesses more discriminant texture attributes.

2. For the global model, an accuracy of 80% is achieved (AUC 77%)

Results show that apparently the anterior lip of the cervix experience more

echogenicity changes through the ripening process. This is probably due to the

fact that the anterior lip is normally the first in the path of the ultrasound beam.

This causes the posterior lips to receive less ultrasound power when a hard cervix

is analyzed.

The percentage of good classification for the first group was 82%. When in-

cluding the cases of the second category the performance decreases to almost 77%.

3.6.3 Multiscale Center-Symmetric Local Binary Pattern usingGa-
bor filterbanks.

Another way of studying the texture of our images at different frequency scales

and orientation is by means of a Gabor filter bank. These filter banks have been

previously combined with some variants of LBP [3, 13, 26] for texture analysis.

Here we are going to use the center symmetric local binary pattern (CS-LBP) due

to its small feature size.
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Figure 3.9: ROC curve for the Multiscale LBPmethod and using all patients from both
groups.

The Center Symmetric Local Binary Pattern. The center symmetric local binary

pattern is another modification of the original LBP descriptor [9]. The original

implementation of LBP produced very long histograms and its feature is not robust

on flat images. In CS-LBP instead of comparing the gray level value of each pixel

with the center pixel, the center symmetric pairs of pixels are compared, see figure

3.10. CS-LBP is closely related to gradient operator. It considers the grey level

differences between pairs of opposite pixels in a neighborhood. So CS-LBP take

advantage of both LBP and gradient based features. It also captures the edges and

the salient textures and it is less affected by noise.

To increase the operator’s robustness in flat areas, the differences are thresh-

olded at a typically non-zero threshold T. The histogram of CS-LBP values for an

image I is stored as its feature. Three parameters have to be set during CS-LBP a-

nalysis: radius R, number of neighboring pixels N, and threshold on the gray level

difference T.

Gabor filter bank. The design of a filter bank consist of a proper set of values

for the filter parameters. Choosing optimum parameters for the filter bank is not

a trivial task. By optimum, it is meant the ones providing the highest texture dis-

criminating features. Due the many variables involved in the selection the search

space is usually big. For this reason a complete search it is not advisable and
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Figure 3.10: Example of CS-LBP feature calculation for a neighborhood P = 8 and
radius R = 1. The ni denotes the i

th neighbor and s() is a thresholding operation.

some heuristics are necessary. Some good methods to cope with this problem are

based on genetic algorithms [13] or simulated annealing (ISA) [21]. In this work

the artificial bee colony algorithm is used to find optimal or nearly optimal set of

parameters.

The design of the filter bank involves the use of the following expressions to

calculate the main parameters :F, η, γ , Bf , Bt.

γ =
1
π

(
2Bf +1

2Bf − 1

)√
Bf ln2 (3.11)

η =
1
π


√
Bf ln2

tan
(
Bt
2

)  (3.12)

Fi = 2iBf F0 (3.13)

where Bf is the filter bandwidth in octaves, Bt =
2π
N

is the angular spacing

between different filters (N is the number of different orientations) and F0 is the

minimum normalized frequency to be considered during analysis, the maximum

frequency is usually set as 0.4 or 0.5. Parameters η and γ are the same in equation

3.4. All of these parameters are chosen in such a way that the filter bank cover all

the frequency domain. An example of this frequency partitioning performed by a

filter bank can be observed in figure 3.11.

Artificial Bee Colony Algorithm (ABC). The artificial bee colony algorithm is

an example of the swarm intelligence algorithm class. It was proposed by Pham

[19] and try to imitate the food foraging behavior of swarms of honey bees. Ac-

cording to their authors ABC is applicable to both combinatorial and functional
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Figure 3.11: An example of a Gabor filter bank frequency partitioning. Parameters for
the filters are: N = 12, F0 = 0.05,Fmax = 0.5 and Bf = 1

optimization problems. In ABC there exist three types of bees: employed bees,

onlookers and scouts. ABC process requires cycle of four phases: initialization

phase, employed bees phase, onlooker bees phase and scout bee phase.

Employed bees search food in the vicinity of the food source stored in their

memory. They share food information with onlooker bees which tend to select

food sources from those found by the employed bees. The source with the highest

fitness (quality) is assigned a higher probability to be selected by the onlooker bees

than others with lower quality. Scout bees are translated from a few employed

bees, which abandoned their food sources after a predefined number of attempts

and search now ones.

In the ABC algorithm, the first half of the swarm consists of employed bees,

and the second half constitutes the onlooker bees. The number of employed bees

or the onlooker bees is equal to the number of solutions in the swarm

During initialization, a randomly distributed initial population of SN solutions

(food sources) is generated (equation 3.14), where SN denotes the swarm size. Each

solution xi(i = 1,2, ...,SN ) is a D-dimensional vector, where D is the number of

variables in the optimization problem and xi represents the
th food source in the

population.

x
j
i = x

j
min + rand(0,1)(x

j
max − x

j
min),∀j = 1,2..,D (3.14)

vi,j = xi,j +φi,j(xi,j − xk,j) (3.15)

pi =
f iti∑SN
i=1 f iti

(3.16)

x
j
i = x

j
min + rand[0,1](x

j
max − x

j
min),∀j = 1,2..,D (3.17)
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Each employed bee generates a new candidate solution in the neighborhood

of its present position (equation 3.15) where xk,j is a randomly selected candidate

(i , k) solution k, is a random dimension index selected from the set, and φi,j is a

random number within [-1,1].

After the new candidate solution vi,j is generated its fitness is checked, if its

value is higher than of its parent xji then update it with vi,j otherwise keep the

current value.

Once all employed bees complete the search process, they share the informa-

tion of their food sources with the onlooker bees. An onlooker bee evaluates the

nectar information taken from all employed bees and chooses a food source with

a probability related to its nectar amount. This probabilistic selection is really a

roulette wheel mechanism (equation 3.16), where f iti is the fitness value of the

ith solution in the swarm,we usef it = e
−ci
c̄ , with ci as the current cost and c̄ is the

average cost among all solutions.

As seen, the better the solution i, the higher the probability of the ith food

source selected. If a position cannot be improved over a predefined number (called

limit) of cycles, then the food source is abandoned. Assume that the abandoned

source is xi , then the scout bee discovers a new food source using equation 3.17

where and xjmin and xjmax are lower and upper boundaries of the jth dimension,

respectively.

Since the ABC algorithm was developed for optimization of continuous func-

tions it has been modified to work with discrete type values. In particular equa-

tions 3.14, 3.15, 3.17 have the form:

kj = randint(0,Nj) (3.18)

x
j
i = x[k

j] (3.19)

vi,j = xi,j + round(ajφi,j(xi,j − xk,j)) (3.20)

WhereNj is the number of different discrete values of each variable. aj controls

de displacement of the variable. If the displacement goes beyondmaximum values

in each variable range then the maximum value is used.

Optimum values for our filterbank . The modified ABC algorithm was used to

find optimal or nearly optimal set of parameters for our Gabor filter bank. The

search space is described in table 3.5.
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The cost function utilized was the distance between two model (vectors) rep-

resenting each category (cesarean, vaginal). These vectors are actually the aver-

age of histograms calculated using the concatenated CS-LBP texture descriptor

histograms at each scale and orientation and for each ROI (ANT,POST). The dis-

tance metric used in the calculation was histogram intersection. Vector aj was set

to aj = [1,0.5,0.0,0.5,0.2]. Using this methodology, the optimum values found are

summarized in table 3.6.

Pre-processing. The images were normalized to have zero mean and unit vari-

ance. This is needed since we don’t want the DC component to be present when

performing convolution. The images were of size 512x512 and included two ROIs

corresponding the anterior (ANT) and posterior (POST) regions.

Image decomposition. The filter bank with the optimal parameters was used for

decomposing the images into k ∗N different components where k =
1
Bf

log2

(
Fmax
F0

)
.

Every component is then processed using the CS-LBP.

A binary mask is applied to each processed component to select only the points

inside the ROIs. With the obtained pixels a histogram of 2np bins is created. np =
P
2

is the number of pixel pairs used.

Classification. Because obtained vectors were rather high-dimensional a feature

selection stepwas introduced before feeding data into classifiers. Only the best 200

features were selected and sent to a multilayer perceptron (MLP) with a hidden

layer of 100 nodes. The area under the curve (AUC) obtained was 0.79.

3.6.4 Multi-FrequencyResolutionGLCM-LBPVusing circularGa-
bor filters.

Local Binary Pattern despite being a powerful texture descriptor discard the spa-

tial relationship between LBP codes when generating the histograms. In this sec-

Table 3.5: Parameter search space.

Parameter Values
N 4 , 6, 8, 10, 12,14
Bf 0.5, 0.75, 1, 1.25, 1.5
F0 0.05, 0.10, 0.15, 0.2, 0.25
Fmax 0.35, 0.40, 0.45, 0.5
T 0.1, 0.2, 0.3, 0.5
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Table 3.6: Optimal values found using ABC.

N.Orient Bf F0 Fmax Threshold
14. 0.75 0.05 0.5 0.1

tion we analyze our dataset at different frequency scales obtained by passing the

image through a circular Gabor filter bank. Then the LBP descriptor and the co-

ocurrence matrix of the generated LBP images at each scale is calculated and used

as features for classification [22].

Co-ocurrence Local Binary Pattern Amethod that uses that information by cre-

ating a Gray Level Co-occurrence Matrix from LBP images is described in [15]. In

this experiment we investigate if the inclusion of the spatial relationship between

GLCM entries improve the classification rate of a LBP-based algorithm.

We do not use the auto correlation methodology proposed in the reference to

create the GLCM but calculate the codes in a pointwise manner using a sliding

windows of 3x3 pixels. This can be done because we only process points inside

predefined ROIs. Only four neighbors are considered in the calculation (north,

east, west and south) and a distance δ = 1. The GLCM is subsequently unfolded

into a histogram

Pre-processing Normalization of the images was performed again by the 3σ

method in which all pixels in an image are restricted to be within the interval

µ± 3σ , where µ is the mean gray value and σ is the standard deviation.

Image decomposition. After pre-processing, all images were filtered using a cir-

cular Gabor filter bank. For the filter bank we set f0 = 0.15 and fmax = 0.5, the

bandwidth B was set to one octave. This gives 3 different scales or frequency bands
for analysis as shown in table 3.7.

For each scale we calculate the Local Binary Pattern histogram andCo-occurrence

Local Binary Pattern histogram of the selected ROIs (we considered a total of 8

ROIs used in pairs). A neighborhood size of P = 8 and R = 2, were utilized as well

as a uniform-rotation invariant mapping which produces LBP histograms with

Table 3.7: Frequency scales used for filtering.

F Fc σ
1 0.15 0.112 5
2 0.3 0.225 2.5
3 0.6 0.450 1.25
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length 10.

The histogram corresponding to each image (with 2 ROIs each) are concate-

nated to form a single histogram that represent the image. In the case of GLCM-

LBP we concatenate the LBP histogram and the GLCM-LBP histogram together.

Features were further processes by normalizing each input vector individually to

have unit norm.

Previous to the classification stage we perform a feature selection step where

we retain only the 60/200 (LBP/GLCM+LBP) most informative features.

Classification: For classification we used two classifiers: a K-nearest neighbor

classifier with k = 2 and a Neural Network with 20 nodes hidden layer. For these

classifiers we use the implementation in the scikit-learn Python package [18] , as

we used Python to program all the functions used for analysis.

For the K-nearest network classifier we tried several distance metrics such as

Euclidean, CityBlock, Canberra and Minkowski. Best classification results were

achieved using the Canberra distance.

For the error calculation, we performed cross validation using a stratified K-

fold (K=8) scheme due to the unbalanced classes. ROC curves for the best region

of interest (ANT-POST) are shown in figure 3.12.

Among the different ROIs used in this study the one corresponding to the

whole cervical lips provides the best classification result followed by the center

ROI (B1, B2). The BPNN for this ROI selection provides a AUC score of 0.83.

Our results show that it is possible to differentiate by means of image process-

ing techniques a ripe cervix and therefore the type of outcome from labor induc-

tion, with an accuracy of about 92% (BPNN). This accuracy was obtained when

using the whole dataset. The spatial information of the LBP codes obtained from

the GLCM of the LBP image improve the classification rate as it was observed from

the ROC curves for both classifiers.

3.6.5 Including Contrast information using LBPV Analysis.

In LBP analysis an image is considered to be comprised of two aspects : the pattern

and the constrast. Until now we have used pattern information without paying

attention on contrast variations in the image. The LBP operator was designed to

be invariant to intensity, so it discards any contrast information. As we saw in

chapter 2 there is a complementary contrast measure in LBP analysis, the VARP ,R
operator (equation 2.15).
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Figure 3.12: ROC curves and area under the curve (AUC) for the LBP and GLCM-LBP
schemes using both classifiers.

It is known that contrast variations exist in the texture of cervical lips region

in response to ripening. In this section we analyze the images including a contrast

measure.

3.6.5.1 The Joint LBP/VAR distribution.

One way to include contrast information for classification, is just to concatenate

the VAR histogram to the LBP histogram to form a long vector. However a better

approach consist in calculating the joint LBP/VAR histogram which constitutes

an approximation to the joint probability density function (PDF) of both LBP and

VAR. To construct a LBP/VAR histogram at several scales we first decompose the

image by means of the wavelets transform. The LBP and VAR operators are then

applied to the different scaled versions of the image and then 2D histograms are

calculated at each resolution for every defined ROI. The bins for the VAR his-

tograms are calculated by taking evenly distributed sections in the cumulative dis-

tribution of gray levels of all images in the data set. Only those pixels contained

within each ROI were included in the histogram calculations. Histograms corre-

sponding to different ROIs were then concatenated to form a combined histogram

representing the image, a sample is shown in fig 3.13.

By using these models a classification scheme can be designed including some

sort of distance to compare a sample image to both models. Membership to one of

the classes can be assigned by selecting the shorter distance in a nearest neighbor
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Figure 3.13: Sample of 2D Histogram Models for the ANT/POST ROIS of both lips.
The histogram were obtained using the riu2 mapping and 12 bins for the VAR his-
togram at 3 decomposition levels.

fashion. A drawback of this method is that you have to train the algorithm with

all the images in order to calculate the bins in the VAR histogram.

A simpler solution is presented in [7] where an operator termed LBPV is de-

scribed. The LBPV includes contrast information using a weighting scheme dur-

ing the LBP histogram calculation, instead of simply counting the appearances of

a LBP code, the LBPV weigths the contribution of a determined code, by the value

of the VAR operator.

Let I and image of size MxN and a histogram of LPV values having K bins,

then for each k in K we calculate :

LBPVP ,R =
N∑
i=1

M∑
j=1

w
(
LBP riu2P ,R (i, j) , k

)
, k ∈ [0,K] (3.21)

w
(
LBP riu2P ,R (i, j)

)
=

VARP ,R LBP riu2P ,R (i, j) = k
0 Otherwise

(3.22)
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Figure 3.14: ROC curves comparing classification using LBP alone and after including
contrast information (LBPV). A good improvement (about 9 %) is obtained.

3.6.5.2 Classification using LPBV.

In order to verify the contribution of the contrast information for discrimination,

we performed an experiment using the same image set as before. The prepro-

cessing steps are as in section 3.6.2. Wavelets Daubachies type IV were used for

decompostion of the images at three levels, a neighborhood of P = 8 and a radius

R = 1 for LBP.

For classification we used again a multilayer perceptron with 25 hidden nodes,

and a stratified k-fold crossvalidation with k = 8. Using these settings an accu-

racy of 84.6% was obtained and an AUC of 83% (see figure 3.14 ) what is a good

improvement over the simple LBP.

3.7 Chapter Summary

In this chapter we tested several multi scale / multi resolution schemes to investi-

gate the utility of such tools in the problem of classifying cervical status and pre-

dicting the outcome of a labor induction process. Several aspects were considered:

scale, frequency and orientation. The results from our experiments suggest that

there is no a strong preferred orientation in cervical texture and that frequency

scale is a more important parameter as demonstrated using the circular gabor fil-
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ters. Additionally, including contrast information can increase the performance of

the proposed algorithms, nevertheless it is advisable to include some form of gray

level normalization prior to LBPV calculations.
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Chapter 4

Effects of illumination variations and
noise on cervical US image
classification.

In this chapter we study cervical ultrasound images from different aspects that are
relevant for the successful application of image processing algorithms. Particu-

larly we devote this chapter to describe what it has been found related to image

gray level statistics, noise and their relationship with cervical tissue transforma-

tion during pregnancy. We also tested several image normalization schemes in

order to find out if normalization plays a role in the accuracy obtained from LBP-

based methods.

4.1 Echogenicity changes of the cervix during preg-
nancy.

As it has beenmentioned in previous chapters, the chemical and structural changes

the cervix experiments during pregnancy have been found to give raise to changes

in gray level parameters of the US images. In studies [2, 3] analyzing cervix for

preterm birth prediction the observed changes on echogenicity from the state of

non-pregnancy to early and late pregnancy were:

1. The brightness of the texture decreases in the area of the external os (external

opening of the cervix).

2. In the area of the inner os (internal opening) the contrast increases and ho-

mogeneity decreases.

3. In the area of external os the contrast decreases and homogeneity increases.
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Figure 4.1: Echogenicity changes in the cervical tissue during pregnancy are depicted.
Left, a pregnant cervix, to the right a non pregnant cervix. Observe the difference in
gray levels between both lips. The difference in mean gray level is a measure of tissue
consistency.

4. The greater the difference in echogenicity between anterior and posterior lips

the harder the cervical tissue consistency.

In figure 4.1 a picture summarizing the abovementioned changes is presented.

Here we are interested in knowing if these conclusions are also valid in the case

of labor induction procedures. For this purpose we analyzed the 82 images in our

database. Because we divided each lip into three ROIs (A,B and C) which contains

the internal os (A), the external os (C) and the middle region (B) it is possible to

assess if this changes occur by looking at the mean gray level of each region as it is

done in next section.

4.2 Gray level statistics.

We calculated some statistical parameters of the gray levels corresponding to each

defined ROI to determine how these change in each condition (cesarean vs vagi-

nal delivery). We tested three parameters: mean, median and standard deviation

from the whole set of gray level histograms. After analyzing the results, it was con-

firmed that mean gray level of anterior lip is higher that the posterior and that this

difference is more accentuated in the case of cesarean section as shown in figure

4.2, they exhibit however high variability and it is frequent to encounter images

for which the opposite is true.
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Figure 4.2: Gray level statistics of the image dataset. The eight ROIS and the two
classes are shown.

It was also noticed that for both categories (vaginal vs cesarean) it is true that

the external os region (C) has always a smaller gray level mean value compared to

internal os (A).
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Figure 4.3: Distribution of gray levels by ROIs and category. The x axis corresponds
to the gray level intensity (0-255) and the y axis to the probability of a particular gray
level.
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From all the tested ROIs A1, A2 (those corresponding to the internal os region)

were found the ones that show more echogenicity differences (se also figure 4.3).

4.3 Image Normalization

Although care has been taken during image acquisition for using the same ultra-

sound scanner settings, this is not always possible. As it can be observed from

the previous section there changes in the gray levels of the images in the data set.

One way to reduce the impact of different settings, or acquisition conditions is by

means of image normalization (standardization) which aims to reduce these dif-

ferences and make the image gray level lay on the same range to ease comparison

and classification. Experiments were carried out with the following normalization

schemes:

1. Histogram equalization.

2. Histogram normalization.

3. Contrast strecth normalization.

4. Unitary variance and zero mean.

5. Linear scaling using two reference values.

6. Linear scaling using two reference values and predefined output range.

The first four normalization methods are very popular and we will not describe

them in detail, however the last two were specifically designed for our data set

and we will present them thoroughly.

Histogram of an image represents the relative frequency of occurrence of the

various gray levels in the image. The histogram gives primarily the global descrip-

tion of the image.

4.3.1 Histogram equalization.

Histogram equalization is a technique in which the gray scale of the image is ad-

justed so that the gray level histogram of the input image is mapped onto a uni-

form (flat) histogram, in which the percentage of pixels of every gray level is the

same. Commonly the transformation is performed using the cumulative distribu-

tion function of the gray levels of the input image as follows:
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hn(i) = round
(
C(i)−Cmin
1−Cmin

(L− 1)
)

(4.1)

Here, Cmin is the minimum value of the cumulative distribution function C(i) in

the image, i the bin index, L is the total number of gray level values (256) and hn(i)

is the equalized histogram.

4.3.2 Histogram normalization.

The original image histogram is stretched, and shifted in order to cover all the gray

scale levels in the image as follows:

In(i, j) =
Imax − Imin
hmax − hmin

∗ (I(i, j)− hmin) + Imin (4.2)

If the original histogram of the initial image starts at hmin and extends up to hmax
brightness levels, then we can scale up the image so that the pixels in the new

image, In(i, j) lie between a minimum level and a maximum level (0,L− 1).

4.3.3 Contrast stretch normalization.

Contrast stretching is used to increase the pixel value range by rescaling the pixel

values in the input image.

It(i, j) = Imax
I(i, j)− Ilow
Ihigh − Ilow

+ Ilow (4.3)

The values for Ilow and Ihigh are obtained by first searching for the minimum and

maximum gray level values in the image and then calculating the average inside a

small windows of 9x9 pixels centered on these values.

4.3.4 Unitary variance.

This normalization perform subtraction of the image mean gray value Ī and divi-

sion by the image standard deviation σi to make it zero mean and unitary variance.

In(i, j) =
I(i, j)− Ī
σI

(4.4)
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Sample images for experiments

N Code Labor outcome
1 0002 Vaginal delivery
2 0003 Vaginal delivery
3 0005 Vaginal delivery
4 0030 Cesarean section
5 0066 Cesarean section
6 0074 Cesarean section

Figure 4.4: Samples images showing the reference region (fetal head region) used dur-
ing image normalization. The other region used for reference is the anterior lip.

4.3.5 Linear scaling using two reference values.

The image gray values are forced to fit within a pair of predefined values. Two

regions that have potential to be used as reference gray levels are the fetal head

and the anterior lip. The first has always low gray values due to the amniotic liquid

present in the uterus. The anterior lips on the other hand is the most echogenic

of the cervix. The median gray level value of the fetal head region and that of

the anterior lip were used in our experiments as reference gray level values. The

scaling is performed as follows:

In(i, j) = Imax
I(i, j)− Ilow
Ihigh − Ilow

+ Ilow (4.5)

In last equation Ilow is the median gray level calculated from the fetal head region

and Ihigh the corresponding value of the anterior lip, I(i, j) the input image and

In(i, j) the normalized output image.

4.3.6 Linear scaling using two reference values and predefined
output range

A method for normalization that has been used for ultrasound images consist of

using two reference values [11],[5] . These reference values are used to linearly

transform the image in such a way that statistics of the ROIs after processing sat-

isfy some criteria. Usually they consist of mean or median gray values of selected

regions of interest in the image. These parameters are modified to lie around some

reference values. As in the last section the fetal head region and the anterior lip

region were used as references.
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Figure 4.5: Linear transform and ranges proposed for fetal head region and anterior
cervical lip. Here x1i represents the range of anterior lip (R1) values and x0i the corre-
sponding values for the fetal head region. y0i and y1i are the obtained output values.

The general idea with standardization is to reduce the variability of the gray

value statistics. For example, as it can be seen from figure 4.2 the median value

of R1 fluctuates between 40 and 90. A sample set of 6 images representative of

both classes were chosen to carry out experiments, see figure 4.4. For the selected

sample images, an interval of 70-80 was set for the anterior lip (R1) and 0-10 for the

fetal head. Most of the time this transformation is carried out manually, however

it is desirable that this transformation can be done automatically, when a large

amount of images is to be processed. A linear transformation of the form y =mx+b,

should provide such mapping as shown in figure 4.5.

In order to find appropriate values for m and b a grid search was performed

in the variable space. For the optimization a cost function based upon a quadratic

error is considered as in equation 4.6

e1 = (y0 − ȳ0)2

e2 = (y1 − ȳ1)2

etot = e1 + e2 (4.6)

where y0 and y1 represent the output of the linear transformation for the fetal

head and anterior lip regions respectively. On our tests we set y00 = 0, y01 = 10,

y10 = 70 and y11 = 80. This gives ȳ0 = 5 and ȳ1 = 75 for the averages. The results af-

ter applying the linear transformation to each of six sample images is summarized

in table 4.1.
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Table 4.1: Results from the linear transformation applied to the sample set.The sub-
script n stands for normalized.

H R1 Hn R1n
5.000 72.000 5.000 75.000
22.000 75.000 17.000 71.000
5.000 62.000 5.000 75.000
17.000 62.000 16.000 72.000
16.000 108.000 8.000 85.000

4.4 Noise in TVU images.

US images are usually contaminated with speckle noise. Speckle noise has a ran-

dom and deterministic nature as it is formed from backscattered echoes of ran-

domly or coherently distributed scatterers in the tissue. It can be classified into

four types depending on the scatterer density, the way they are organized within

the resolution cell, the existence of deterministic elements influenced by the rela-

tive size of scatterers when compared to the wavelength of the ultrasound signal,

result in four different types of speckle [6]:

1. Fully developed: large number of scatterers and non-existence of determinis-

tic components, modeled by Rayleigh distribution;

2. Fully resolved: large number of scatterers and presence of deterministic com-

ponents (for instance, specular reflection), modeled by Rician distribution;

3. Partially developed: small number of scatterers and non-existence of deter-

ministic components, modeled by K distribution.

4. Partially resolved: small number of scatterers and presence of deterministic

component, modeled by K-Homodyne distribution.

Although it is known that the cervix collagen fibrils are aligned in layers and that

during ripening this fibrils becomemisaligned, a recent study on echo signals from

ex-vivo cervix tissue [9] reported that this alignment could be possibly too weak

to produce coherent component is the backscattered image. The mean length of

collagen fibrils in the rat cervix is reported to be 2268 ± 77 nanometers [1] which

is much smaller than the typical wavelength of TVU probes (0.3 mm using a 6.5

Mhz transducer). They also found that much of the cervical tissue can be classified

as having sparse scattering sources yet specular reflections are expected.

In view of these facts a Rician distribution would better describe the cervical

tissue. There are however more general and simpler distribution that can be used

for modeling speckle, for instance the Nakagami distribution.
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4.5 Speckle Noise Reducing Algorithms.

Speckle reduction in ultrasound imaging is desired mainly for two reasons: An

improvement in image quality for visualization purposes to help human interpre-

tation and as preprocessing step before segmentation or registration. It has been

argued that speckle may contain diagnostic information and should be retained

[10]. On the other hand there is always a detail lose when despeckling is per-

formed. To investigate if image classification can benefit from speckle reducing

techniques we tried some of the most popular and effective noise reducing algo-

rithms. These are:

1. Anisotropic diffusion (AD).

2. Speckle Reducing Anisotropic Diffusion (SRAD)

3. Wavelets Bayesian shrinkage.

4. Linear filtering.

4.5.1 Anisotropic diffusion

The use of partial derivative equations in the context of noise removal started with

the work of Perona and Malik [7]. The authors designed a filter based on the diffu-
sion equation that apply smoothing depending on the image edges and their direc-

tions. Anisotropic diffusion is an efficient nonlinear technique for simultaneously

performing contrast enhancement and noise reduction. It smooths homogeneous

image regions, but retains image edges. Anisotropic diffusion is defined by the

following equation:

∂I
∂t

= div(c(‖∇‖).∇I) (4.7)

I(t=0) = I0

where I is an image, ∇ denotes the gradient, div is the divergence operator

and c(‖∇‖) is the diffusion coefficient that depends on the gradient magnitude

c(x,y, t) = g(I(x,y, t)). This coefficient controls the rate of diffusion and is designed

to preserve edges in the image.
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A discrete form of the former equation is,

I t+∆ts = I ts +
∆t
|η̄s|

∑
p∈η̄s

c
(
∇I ts,p

)
∇I ts,p (4.8)

where I ts is the sampled image, s denotes the current pixel position and ∆t is the

time step size, η̄s represent the spatial neighborhood. |η̄s| is the number of pixels

in the window.

The authors proposed two implementations of the g(.) function:

g(∇I) = e−(‖∇I‖/K)
2

(4.9)

g(∇I) = 1

1+
( ‖∇I‖
K

)2 (4.10)

The parameter K is a positive gradient threshold parameter, known as diffusion
or flow constant. In our implementation 8 neighbors were used and the discrete

derivatives were calculated by means of convolution kernels.

4.5.2 Speckle reducing anisotropic diffussion

In the SRAD filter the gradient-based edge detector is replaced by the so-called in-

stantaneous coefficient of variation [12]. For a four pixel neighborhood, the update

equation and the coefficcient of variation are:

I t+∆ti,j = I ti,j +
∆t
|η̄s|

div
[
c
(
Cti,j

)
∇I ti,j

]
(4.11)

C2
i,j =

1
2 |∇Ii,j |

2 − 1
16

(
∇2Ii,j

)2[
Ii,j +

1
4∇2Ii,j

]2 (4.12)

4.5.3 Wavelets Bayesian denoising.

Wavelets have been used extensively in denoising algorithms for images. The de-

noising algorithms usually perform thresholding of the wavelet coefficients, which

have been affected by noise. During thresholding only large coefficients are re-

tained and setting the remaining to zero. The way a threshold is chosen gives raise

to various solutions from fixed to adaptive. In [8] a method using the stationary

wavelets transform is presented. In this method the decomposition is performed

to L levels and with each detail image w = {w1,w2..wL} a binary mask is associated
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x = {x11, ..xL}. In the masks xl = 0 if wl represents mainly noise and xl = 1 if it

contains useful information.

To estimate the mask values, a threshold value is evaluated.

ˆxi,j =

0 |Wi,j || ˆyi,j+1| ≤ ˆσi,j
2

1 |Wi,j || ˆyi,j+1| ≥ ˆσi,j
2 (4.13)

where ˆσi,j is the estimate of the standard deviation of noise at the resolution

scale 2j . It is calculated as the median absolute deviation (MAD) of the coefficients

at a given detail image σ2
i,j =MADj /0.6745.

For denoising , wavelets shrinkage is applied to obtain an estimated of the true

coefficients ŷl = qlwl where 0 ≤ ql ≤ 1 is the shrinkage factor defined as

ql =
ξlηl

1+ ξlηl
(4.14)

In the last expression ξl is the likelihood ratio at the current position l and ηl
is related to the spatial neighborhood ∂(l).

ξl =
p(ml | 1)
p(ml | 0)

, ηl = exp

γ ∑
k∈∂(l)

(2x̂k − 1)

 (4.15)

(4.16)

The parameter γ controls the importance attributed to the local spatial neigh-

borhood. These calculations are to be performed in a coarse to fine direction along

the scales.

4.5.4 Linear Filtering.

This filter use local statistics ( variance and mean) calculated in a neighborhood

centered on the pixel of interest [4].

fi,j = ḡ + ki,j
(
gi,j − ḡ

)
(4.17)

where fi,j is the estimated noise-free pixel value, gi,j is the noisy pixels inside the

sliding window, ḡ is the local average of anN1xN2 region around gi,j , k is a weight-

ing factor , with k ∈ [0,1] and i, j are the pixel coordinates. The k factor depends

upon local statistics and can be calculated as,

76



Table 4.2: Summary of the different parameters used for the despeckling algorithms.

Filter Parameters
AD ∆t=1, iterations = 5,K=10
SRAD λ=2, iterations =5
WS l = 3 , wavelet type = Daubachies type 4, γ=0.2

Original image Anisotropic diffusion (type 1) SRAD Wavelets shrinkage

Despeckling algorithms

Figure 4.6: Comparison of resulting images after despeckling using three diffrent al-
gorithms.

ki,j =
σ2(

ḡ2σ2
n + σ2

) (4.18)

The parameters σ2 and σ2
n correspond to the variance of the sliding window

and the variance of the noise in the whole image respectively. This variance can be

approximated by the following expression:

σ2
n =

p∑
i=1

σ2
p

ḡp
(4.19)

where σp and gp are the variance and the mean of the noise in the selected win-

dows, respectively, and p is the index covering all windows in the whole image. If

the value of ki,j is 1 (in edge areas), this will result to an unchanged pixel, whereas

a value of 0 (in uniform areas) replaces the actual pixel by the local average ḡ over

a small region of interest.

A sample image (the one with code 002) was filtered using the algorithms pre-

sented in this section and the resulting images are shown in figure 4.6 The param-

eters used during the experiments are summarized in table 4.2.
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4.6 Effect of filtering and Normalization on Classifi-
cation.

In order to verify if filtering and /or standardization affects the classification re-

sults obtained using the methods described in the previous chapter, a dataset of 54

images was used. Two models representing both categories ,i.e. Vaginal Delivery

or Cesarean Section, were constructed from the histograms obtained after pro-

cessing the images using the multiscale circular Gabor filter Local Binary Pattern

method. The distance between these two model is a way to measure the influence

of the normalization methods on the classification accuracy; the larger the class

separation, the better classification obtained.

Model creation. The models were built as the average of all histogram vectors

belonging to each class. The LBPVmethodwas chosen among the different method

used so far as it is the one which is more sensitive to gray level intensity variations

and can therefore show performance changes due to normalization.

After model creation several histogram distance metrics were used to assess a

potential class separation. In our experiments we used Euclidean, Battachardya,

Chisquare and Histogram Intersection distance metrics. The results from the ana-

lysis of the image dataset is summarized in table 4.3. According to these results the

best normalization schemes are the histogram normalization and the normaliza-

tion with two reference points, the remaining schemes did not improve the class

separation significantly. Filtering does not seem to have too much impact in the

obtained distances, however the anisotropic diffusion (AD) and the Speckle re-

ducing anisotropic diffusion (SRAD) provided slightly better results than the no

filtering case.

4.7 Chapter summary.

In this chapter we analyzed the statistics of gray levels in our images. It was found

that the observations reported on cervical echogenicity changes regarding preterm

birth (section 4.1), also hold for the labor induction case. We also tested several

ways of image normalization and denoising. After evaluating these methods on

our image data set, one is able to see that they do affect class separation (and the

accuracy of classification) using LBP methods to some extent (see table 4.3). How-

ever this is not an exhaustive investigation using all the methods currently avail-
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Table 4.3: Results obtained using the different filters presented so far, the metrics with
the highest scores are shown along with the case of no normalization (None). For this
data the ANT and POST regions were analyzed.

Distance metric.

Normalization Bhat Chisq Euclid Hintersec
SRAD

HN -3.35 3.39 4.76 22.64
HE -3.67 1.04 3.67 35.17
None -3.02 5.37 4.95 14.22

AD

HN -15.03 257860.23 417236.55 2783020.85
N2ref -14.78 456507.08 490724.66 1968917.08
None -14.32 353849.55 367419.80 1207274.15

Linear

HN -14.24 60714.55 192465.20 1331104.92
N2ref -13.99 130087.42 248178.28 951440.93
None -13.54 108818.09 190765.50 582573.18

No filtering

HN -15.03 257860.23 417236.55 2783020.85
N2ref -14.78 456507.08 490724.66 1968917.08
None -14.32 353849.55 367419.80 1207274.15

able, so it is possible that exist normalization and denoising algorithm allowing an

improved classification performance.
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Chapter 5

Deep Learning for US image
classification

5.1 Introduction

Deep learning (DL) is a branch of machine learning based on a set of algorithms

that attempt to model high level abstractions in data by using hierarchical struc-

tures. These algorithms try to imitate the functioning and structure of the mam-

mal brain.

DL is nowadays an emergent technology which has received a lot of attention

in the research community. Applications of Deep Learning based methods are

numerous, from computer vision to natural language processing, automatic speech

recognition and semantic learning.

In this chapter experiments using Deep Convolutional Neural Networks are car-

ried out for the problem of image classification where these networks excel. It

is usually a hard task to find the appropriate features for image classification; in

previous chapters we have tested texture operators such as LPV or GLCM used in

a multi-scale fashion and tried to find the best combination of features to better

classify the images. In contrast these networks are good at "learning" automati-

cally good features for discrimination. In the following sections we test some DL

architectures on our image database and compared them with the results obtained

so far. Though these networks do not perform texture based classification only,

they process the images in a hierarchical way just as multi-resolution schemes do.
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Input Hidden layer Output

Figure 5.1: Amultilayer perceptron with three layers. Each circle represents a neuron
and the arrows represent connections between neurons.

5.2 Artificial Neural Networks.

Implementation of DL algorithms usually involves the use of artificial neural net-

works (ANN). One of the most employed ANNs is the multilayer perceptron.

The original linear perceptron is a type of ANN first conceived in the 1950s by

Rosenblatt which used a linear activation function. MLPs are modifications of the

standard linear perceptron and can distinguish data that are not linearly separable

unlike the original linear perceptron.

In MLPs there exist three types of layer: the input layer where data is fed into,

an output layer, and one or more hidden layers where intermediate calculations

are performed (see figure 5.1) .

Activation functions: The firing of a neuron (transition of output values) is driven

by an activation function. Activation functions try to mimic the firing of action

potentials of neurons in biological systems. Common activation functions are the

logistic, the hyperbolic tangent and the rectifier function as shown in figure 5.2.

Deep vs Shallow architectures. Not so long ago, MLPs with more than two hid-

den layers were rarely used. One of the reasons for this to happenwas the difficulty

of training such networks. A problem known as the vanishing gradient associated
with the backpropagation method, caused the error in classification increase when

addingmore layers. Artificial neural networks with less than two hidden layers are

termed shallow as opposed to multi-layered architectures which are now known

as deep nets.
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Figure 5.2: Some common activation functions. Here yi is the output of the ith node,
Wi are the weights associated to the input synapses andWi0 is a bias term.

Motivations for choosing deep architectures [27]:

• Brains have a deep architecture.

• Humans organize their ideas hierarchically, through composition of simpler

ideas.

• Insufficiently deep architectures can be exponentially inefficient.

• Distributed (possibly sparse) representations are necessary to achieve non-

local generalization.

• Intermediate representations allow sharing statistical strength.

In deep nets, the several layers are aimed to learn levels of data representation

and abstraction allowing the net to represent function of increasing complexity.

Before 2006 training deep architectures was unsuccessful except for convo-

lutional neural nets. In 2006 some key research works like [11] on Deep Belief

Networks demonstrated how multilayered feed forward neural networks could ef-

fectivley be pre-trained using a one-layer at a time strategy treating each layer as

Restricted Boltzmann Machine (RBM). Other seminal paper were written by [4].

This paper explores and compares RBMs and auto-encoders (neural network that

predicts its input, through a bottleneck internal layer of representation). In and
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[16] the author uses sparse auto-encoder (which is similar to sparse coding) in the

context of a convolutional architecture.

The following key principles are found in all three papers [4, 11, 16]:

• Unsupervised learning of representations is used to (pre-)train each layer.

• Unsupervised training of one layer at a time, on top of the previously trained

ones. The representation learned at each level is the input for the next layer.

• Use supervised training to fine-tune all the layers (in addition to one or more

additional layers that are dedicated to producing predictions)

5.3 Deep Learning Architectures

There are huge number of deep architectures variants. Most of them are branched

from some original parent architectures. It is not always possible to compare the

performance of multiple architectures all together, because they are not all evalu-

ated on the same data sets. Deep learning is a fast-growing field, and new archi-

tectures, variants, or algorithms appear every few weeks.

1. Auto encoders

2. Restricted Boltzmann Machines

3. Convolutional Neural Networkks

4. Recurrent Neural Networks

5. Deep Sparse coding.

5.3.1 Autoencoders

Autoencoders are typically feedforward networks trained to copy their input to

their outputs. They are commonly used to learn efficient encodings for data. The

hidden layer of an autoencoder has less neurons than the input and output layers.

In the hidden layer the network is forced to find the most important features of

the input data achieving in this way a compact representation.

As unsupervised learning algorithms they are used to pre-train (from labeled

or unlabeled data) features. These features can then be used as initialization for a

supervised Multi-Layer Perceptron (MLP)
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Input Hidden layer Output

Figure 5.3: An autoencoder with three layers. The hidden layer has less neurons forc-
ing the system to find a compressed representation of the input.

5.3.2 Restricted Boltzmann machines.

Restricted Boltzmann machines (RBM) are generative stochastic neural networks

that can learn a probability distribution over their set of inputs. RBMs are com-

posed of hidden and visible layers. The connections between the layers are undi-

rected (i.e, the values can be propagated in both directions) and fully connected (

each unit from a given layer is connected to eah other in the next)

Visible units Hidden units

Figure 5.4: A restricted Boltzmann machine. The absence of arrow heads means that
data calculation are performed in both directions.
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5.3.3 Recurrent Neural Nets.

Recurrent neural networks are networks where neurons have feedback connec-

tions. They are appropriate for learning sequential tasks not learnable for tradi-

tional machine learning methods.

5.3.4 Deep Sparse coding.

Deep Sparse-Coding Networks (DepSCNets) are not ANN based nets, these net-

works are based on sparse coding techniques. The Convolution layer of ConvNets

is reformulated to encode local patches using sparse coding. A DeepSCnet consists

of four types of layers: Sparse-coding layers, pooling layers, normalization layers

and map reduction layers [28].

5.3.5 Convolutional Neural Nets.

Convolutional Neural Nets (ConvNets) are special types of feed forward network

and has become a popular choice for image recognition and other two-dimensional

data. Building blocks for Convnets construction are convolutional layers, fully

connected layers and pooling layers. These networks are easier to train than other

regular deep feed forward nets and have fewer parameters to estimate.

convolution layer subsampling layer convolution layer subsampling layer fully connected MLP 

Input Feature maps Feature maps Feature maps Feature maps Output

Figure 5.5: Typical Convolutional Neural Net architecture.

Convolution layers. The Convolution layer is the core building block of a Con-

volutional Network. They do themost heavy calculations in the net. In these layers

a number of spatial filters are convolved with the image. They have usually small

size or footprint, 3x3,7x7 or 11x11 sizes are common. The result of one filter ap-

plied across the image is called feature map (FM) and the number feature maps is

equal to the number of filters. The spatial extent of the filter is a hyper-parameter

called the receptive field. By using convolutional layers the amount of parameters

to be learned or tuned is reduced.

86



Pooling (subsampling) layers. These layers reduce the size of the input. For

example, if the input consists of a 32x32 image and the layer has a subsampling

region of 2x2, the output value would be a 16x16 image, which means that 4 pixels

(each 2x2 square) of the input image are combined into a single output pixel. There

are multiple ways to subsample, but the most popular are max pooling, average

pooling, and stochastic pooling.

Fully connected layers. The last pooling (or convolutional) layer is usually con-

nected to one or more fully connected layers, the last of which represents the target

data.

Training is performed using modified back-propagation that takes the pooling

layers into account and updates the convolutional filter weights based on all values

to which that filter is applied.

All of these architectures posses their own area of application where they are

more appropriate, for instance to study systems changing over time a recurrent

neural net would be the most useful. For the image processing case convolutional

neural nets seem to be the right choice. These nets have been proven to be excellent

for image classification and object recognition tasks.

5.4 Medical Applications

Currently there is a number of applications of DL on medicine. Most of them

are related to computer vision and interpretation tasks. Medical diagnosis based

on radiology images are among the most common. Some examples are Magnetic

Resonance imaging (MRI) of brain white matter [29], cardiac MRI [1], breast mi-

cro calcification detection in mammography images [3], [14], invasive ductal car-

cinoma detection in whole side histopathology images [9], or pulmonary nodule

detection [24].

There is also applications on organ segmentation, for instance [29] on fetal

brain segmentation on computer tomography (CT) images, [18] automatically re-

trieve missing or noisy cardiac acquisition plane information from magnetic reso-

nance imaging (MRI) and predict the five most common cardiac views. An appli-

cation using multiscale deep networks for direct estimation of cardiac ventricular

volumes is presented in [30].

Big companies like Microsoft are developing automated tools like Inner Eye for

medical image diagnosis based on deep learning.
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Applications on ultrasound imaging. Although most of the applications of DL

on medical imaging are devoted to Computer Tomography or Magnetic Resonance

imaging, there exist however several application on ultrasound images or videos.

A new method for automatic detection and classification of suspected breast

cancer lesions using ultrasound images is proposed in [15] where authors use a

combination of convolutional neural network and Fuzzy support vector machines.

Automatic blood vessel detection is performed in [21] using a convolutional neural

net.

Classification of liver disease based on contrast - enhanced ultrasound (CEUS)

videod is proposed in [26]. The authors use a Deep Belief Network for classifi-

cation and sparse non-negative matrix factorization as preprocessing step. Fetal

Ultrasound plane detection is automatized by using a Recurrent Neural Net [6]. A

more or less comprehensive survey of medical applications of DL an be found in

[12].

5.5 Mitigating two common problems in Deep Lear-
ning models.

The appeal for deep learning based method is currently driven for the following

reasons [17]:

• DL networks learn both features and classifier in the same step. The need for

hand-crafted features is avoided.

• Outperforms other systems in multiple domains. This inludes speech, lan-

guage, vision and gaming by a considerable amount.

• Architectures that can be adapted to new problems relatively easy.

However this technology usually requires large amounts of data for training a

network, if the aim is to outperform traditional approaches. Nets can be extremely

computationally expensive to train. Depending on the size of the model can take

weeks for training.

Also, since there may be thousands or even millions of parameters to tune, we

can easily be affected by overfitting. To fullfil these two needs, dimensionality

reduction and overfitting prevention, several methods have been developed.
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5.5.1 Reducing overfitting.

Overfitting occurs when a model is tighly attached to a particular dataset, i.e the

classification error is very small in that dataset but is much bigger in any other.

Overfitting reduces the generalzition of a classification system and is therefore an

undesirable phenomenon.

Data augmentation. The easiest and most common method to reduce overfitting

on image data is to artificially enlarge the dataset using label-preserving transfor-

mations. Some of the most used are:

1. Image translations.

2. Horizontal reflections.

3. Changing RGB intensities.

4. Adding noise.

5. Image rotations.

Drop out. Drop out consist of randomly setting to zero the output of each neu-

ron with a predefined probability (usually 0.5). By doing in this way we prevent

these neurons to contribute to the forward pass and cancel their influence in back

propagation. So every time an input is presented, the neural network samples a

different architecture.

L1/L2 Regularization. Regularization works by penalizing large neuron weights

which helps in generalization. The objective function to be optimized is changed to

E(x)+λLp(W ) where Lp is a regularization function andW are the neuron weights.

1. L1 regularization:
m∑
i=1

|wi | also known as Lasso.

2. L2 regularization:
m∑
i=1

|w2
i | also known as ridge, or weight decay. This is the

most widely used.

3. L12 regularization: λ1L1 +λ2L2 also known as elastic net regularization.
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Early stopping. This method tries to find the parameters that give the best vali-

dation error. In early-stopping the training is stopped before overfitting.

Batch normalization. During the training process the distribution of input of

each layer changes as the parameters of previous layers change. This increase the

training time and makes it difficult to train models with saturating non-linearities

(as softmax layers) . In batch normalization inputs layers are normalized. The

normalization is set as part of the model architecture and it is performed for each

batch. Batch Normalization allows to use much higher learning rates and be less

careful about initialization [13].

5.5.2 Dealing with dimensionality.

To reduce the amount of parameters to be learned by the network, clever tech-

niques has been designed. As mentioned in section 3.4 a high dimensional fea-

ture space is generated when working with images using multi-resolution tech-

niques.In image processing the dimensionality of the feature space has been al-

ways an issue.

Pooling A pooling layer is always placed after a convolution layer to perform a

sub-sampling action on the feature maps. A spatial window of a predefined size

without overlapping is applied to the feature map and a pooling function (e.g.

maximum selection) is calculated inside each window (max-pooling). Other types

of pooling like mean or median pooling are also used.

5.6 ExperimentswithConvolutionalNeuralNetworks
on Transvaginal Ultrasound Images.

5.6.1 A small ConvNet model architecture.

The code used for testing ConvNets was written in Python using the keras library

[7]. This library allows for easy development and testing of deep learning nets.

The first convolutional neural net used in our experiments, is based upon a

model described in the Keras blog 1 and it resembles the models proposed by Yann

LeCUn in the 1990s. The model consist of several layers:

1
https://blog.keras.io
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Figure 5.6: Extracting a squared region (in yellow) from an image. ANT and POST
region are shown in blue and red respectively. To the right, the extracted image.

1. Convolutional layer with 32 filters of 3 by 3 pixels window. The activation

used in this layer was the rectifying linear unit (ReLu).

2. Max Pooling layer with a 2 by 2 pixels window.

3. Convolutional layer with 32 filters of 3 by 3 pixels window with ’ReLu’ acti-

vation.

4. Max Pooling layer with a 2 by 2 pixels window.

5. Convolutional layer with 64 filters of 3 by 3 pixels window with ’ReLu’ acti-

vation.

6. Max Pooling layer with a 2 by 2 pixels window.

7. Dense layer with 64 hidden nodes. Activation ’Relu’. Used Drop Out with

0.5 for regularization.

8. Output dense layer with two unit (binary output) with sigmoid activation.

Preprocessing. To limit the size of the image to be processed, a square portion

of 256 × 256 pixels was cropped from every image in the data set. The extracted

region was chosen to be centered on the section containing the ROIs ANT and

POST, as shown in figure 5.6. Since the images were bitmaps our input images

were 256x256x3.

A re-scaling of the gray values (0-255) was also performed. The intensities of

the input images were set to be ranging from 0 to 1.
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Data augmentation. Since our image database is very small, artificial augmenta-

tion of the available amount of images for training and testing our net was neces-

sary. Several changes were made to the images in order to create new examples:

• Rotating the images by ± 20°

• Shifting horizontally the images by 20% of total width.

• Shifting vertically the images by 20% of total height.

• Flippingg the images horizontally.

• Flipping the images vertically

Model fitting. The network model was trained using the augmented data during

20 epochs. An epoch in the neural network terminology means one forward pass

and one backward pass of all the training examples in a dataset and the batch size

is eqyal to the number of training examples in one forward/backward pass. In each

epoch 2,000 samples, in batches of 16 samples are generated from the training set.

These images were used as inputs for the model during training. The model is

then tested in a set of 800 samples in batches of 16 samples generated now from

the validation set.

During the fitting process, the loss function was set to categorical cross-entropy
and the model was fitted using the stochastic gradient descent (SGD) method with a

learning rate of 0.01 and a momentum of 0.9. These parameters control the speed

of weight updates in every iteration. The total of model parameters that were

tuned was 3,714,593.

Results. The accuracy reached with this simple model was 93.5% on this dataset

which is better than previously achieved. In figure 5.7 the learning curves during

training and validation are shown and the feature maps corresponding to the first

convolution layer can be observed in figure 5.8

5.6.2 Transfer learning: Using pre-trained models.

When working on Deep Learning one come across very often with the models used

in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). The purpose

of this annual contest is to develop models that can correctly classify an input

image into one of the 1,000 existing categories in the database.
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Figure 5.7: Learning curves for the model. To the right training and validation lear-
ning curves, to the right the loss function for both cases.

To train models 1.2 million images are available for training, another 50,000

for validation and 150,000 images for testing. The kind of objects in the database

is diverse: cats, dogs, cars, vehicle types and many more.

The ILSVRC has become a vey important reference for computer vision classi-

fication algorithms,and since 2012 it has been dominated by convolutional neural

nets and Deep Learning techniques.

Currently a medical image data base with annotations comparable in size to

ImageNet is not available. However, several research works have shown that by

applying some modifications to a previously trained model and fine-tuning it, a

good classification can be achieved [2, 5, 19]. This is true even though the images

used for training in the model were rather different from the type of images to

be classified. This fact can be used as another way to overcome data scarcity; the

weights learned by a network trained in a much larger data set such as ImageNet

can be used in a new image classification problem.

Output features

Figure 5.8: 32 feature maps corresponding to the first layer
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Here we present some of the highest performing Convolutional Neural Net-

works on the ImageNet challenge over the past few years. These networks also

demonstrate a strong ability to generalize to images outside the ImageNet dataset

via transfer learning, such as feature extraction and fine-tuning.

1. AlexNet. AlexNet is a convnet designed by Alex Krizhevsky that partici-

pated in the ImageNet Large Scale Visual Recognition Challenge in 2012. It

has only 8 layers, first 5 layers were of convolutional type and the remaining

3 were fully connected layers. On the test data, the model achieved top-5

error rate of 17.0% which was considerably better than the previous state-of-

the-art at that time.

2. VGG16/19. VGG16 and VGG19 are 16/19-layers Convnets [20] used by the

Visual Geometry Group (VGG) at Oxford University in the 2014 ILSVRC

(ImageNet) competition. The VGG16/19 models achieved a 7.5% top 5 error

rate on the validation set and 7.4/ 7.3 % on the test set of ILSVRC-2012.

3. ResNet50. Residual networks [10] are easier to optimize, and can gain ac-

curacy from considerably increased depth. These networks were build up

to 152 layers in depth (ResNet50 has only 50 layers) but still having lower

complexity i.e. fewer parameters to be tuned, than previous models like

VGG nets. An ensemble of these residual nets achieves 3.57% error on the

ImageNet test set. This result won the first place on the ILSVRC 2015 classi-

fication task.

4. Inception V3. Inception-V3 achieved the second place in the 2015 ImageNet

competition with a 5.6% top 5 error rate on the validation set. The model is

characterized by the usage of the Inception Module [22], which is a concate-

nation of features maps generated by kernels of varying dimensions.

5. Xception. Xception is an extension of the Inception architecture which re-

places the standard Inception modules with depthwise separable convolu-

tions [8].

5.6.3 Transfer Learningwith Inception V3 and ResNet50 on TVU
images

.

Transfer learning is considered as the transfer of knowledge from one learned
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task to a new task in machine learning [25]. Regarding Neural Networks this

means the transferring of learned features from a trained network to be used in

a new problem. Transfer learning usually results in faster training times than

training a new convolutional neural network because you do not need to estimate

all the parameters in the new network.

The transferring can be performed in the following ways:

1. Feature extraction We can use a pre-trained model as a feature extraction

mechanism. What we can do is that we can remove the output layer( the one

which gives the probabilities for being in each of the 1,000 classes) and then

use the entire network as a fixed feature extractor for the new data set.

2. Use the Architecture of the pre-trained model. What we can do is that we

use architecture of the model while we initialize all the weights randomly

and train the model according to our dataset again.

3. Train some layers while freeze others. Another way to use a pre-trained

model is to train is partially. What we can do is we keep the weights of initial

layers of the model frozen while we retrain only the higher layers. We can

try and test as to how many layers to be frozen and how many to be trained.

The choice of using one of the mentioned approaches is dictated by the type of

our data, the amount of training examples and even computing resources at hand.

5.6.3.1 Fine Tuning AlexNet.

The ALexNet weights were loaded from 2. For the fine tuning, we used the strategy

delineated in [23] which essentially consist of performing the tuning in a layer-

wise manner. We used the same data set as before, but the images were 227x227x3

pixels since this is the image size used when training this model. The weights for

all layers are loaded except for the last one, this is our "base model". The fully

connected layer (usually termed the "bottleneck") is going to be substituted by our

own layer (the original one is for 1,000 classes and we use only two).

Once the new model is created, it is compiled. A very small learning rate is

used (usually about 10-4) using stochastic gradient descent (SGD) as optimizer.

We used a learning rate of 0.001 and a momentum of 0.9.

The training process is started with the base model layer "frozen" which means

2
http://files.heuritech.com/weights/alexnet_weights.h5

95

http://files.heuritech.com/weights/alexnet_weights.h5


0 10 20 30 40 50 60 70 80

Epoch

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

ur
ac

y

Model Accuracy

train
val

0 10 20 30 40 50 60 70 80

Epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Lo
ss

Model Loss

train
val

Figure 5.9: Learning curves (left) and loss function curves (right) for the AlexNet
mode for bth training and validation.

that their weights are not updated and only the last added layer weights. Addi-

tional layers from the base model can be unfrozen (set as trainable) and the cycle

is again started until an acceptable accuracy is achieved.

5.6.3.2 Inception V3

The goal of the inception module is to act as a multi-level feature extractor by

computing 1x1, 3x3, and 5x5 convolutions within the samemodule of the network

the output of these filters are then stacked along the channel dimension and before

being fed into the next layer in the network (figure 5.10 ).

The original incarnation of this architecture was called GoogLeNet, but sub-

sequent manifestations have simply been called Inception vN where N refers to

Previous
layer

1x1
Convolution

1x1
Convolution

3x3
Max.Pooling

3x3
Convolution

5x5
Convolution

1x1
Convolution

Filter
Concatenation

1x1
Convolution

Figure 5.10: The original Inception module with dimensionality reduction used in
GoogLeNet.
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Figure 5.11: Learning curve for the Inception v3 model. Right: Accuracy for training
and validation, Left: The loss function for both cases.

the version number put out by Google. For this model the input images should be

224x224 pixels.The images are re-scaled to have values in the range (0,1) before

being used as inputs to the convnet.

Model fine-tuning The model weights for the 27 layers in this convnet are pub-

licly available at Github. 3. The structure of the network is available in the keras

library. The size of the images to be used for this model were 224x224x3 pixels. As

pre-processing we normalize each image to have values in the range (0,1), but did

not subtract the mean as in the original method. We proceeded as before replacing

the last soft max layer for one with two classes. The model was compiled using

SGD with a learning rate of 0.001 and a momentum of 0.9.

5.6.3.3 ResNet50.

Unlike traditional sequential network architectures such as AlexNet and VGG,

ResNet is instead a form of exotic architecture that relies on micro-architecture

modules (also called network-in-network architectures).

The term micro-architecture refers to the set of building blocks used to con-

struct the network. A collection of micro-architecture building blocks (along with

your standard Conv, Pool, etc. layers) leads to the macro-architecture (i.e, the end

network itself).

First introduced in [10], the ResNet architecture has become a seminal work,

demonstrating that extremely deep networks can be trained using standard SGD

(and a reasonable initialization function) through the use of residual modules:

3
https://github.com/fchollet/deep-learning-models/releases/download/v0.5/

inception_v3_weights_tf_dim_ordering_tf_kernels.h5
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Figure 5.12: The residual module in ResNet as originally proposed by He et al. in
2015.

Model fine-tuning. The model weights are available from 4. The process is sim-

ilar to InceptionV3 tuning. Image for this model are 224x224x3 pixels. The pre-

processing is also similar to the one applied before.

Again we truncate and replace the softmax layer for transfer learning. The fine-

tuning process will take a while, depending on the available hardware resources.

After it is done, we use the model to make predictions on the validation set and

return the score. The accuracy obtained by the three networks is show in table 5.1.

5.7 Chapter summary.

The simple metric of accuracy was used as measure for easy comparison of the

performance of the different models used in this chapter. Due to the lengthy

simulations needed for the model to be trained, it was impractical to carry out

4
https://github.com/fchollet/deep-learning-models/releases/download/v0.2/

resnet50_weights_th_dim_ordering_th_kernels.h5

Table 5.1: Classification results obtained after fine-tuning networks. Accuracy is cal-
culated as defined in section 1.5

Model Accuracy
Model trained from scratch
Custom net 0.93

Pre-trained models
AlexNet 0.90
InceptionV3 0.99
ResNet50 0.96
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cross validation which implies several runs of the training and testing processes.

The accuracy values obtained in the experiments with convolutional neural nets

has shown the potential of these networks for US image classification. Training

the model from scratch although we obtained good accuracy is less effective than

taking advantage of a pre-trained model. By using the weights of a pre-trained

model we decrease the time used for the net to learn. This is so, because we keep

the weights of the bottom layers(layers closer to the input layer) which contains

very general information about the images to be analyzed and concentrate only on

training the top layers (closer to the output) where more specific features are to be

learned. For the transvaginal US images we tested, the best classification results

in terms of accuracy were obtained using the inceptionv3 model followed by the

ResNet50. These two nets outperform AlexNet presumably because they require

less parameters to train apart of being deeper which enable them to describe more

complex relationship.
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Chapter 6

Conclusions

In this chapter we summarize the findings made along this thesis work. Aspects

that were not sufficiently addressed are commented in the limitations section and

finally some possible directions that this research can have as continuation and

extension are pointed out is the future work section.

After analyzing our images in the various ways outlined in previous chapters,

we can summarize the main findings in this thesis:

1. The TVU images of the cervix show gray level variations as reported in the

reviewed literature (section 4.1) related mainly to preterm birth.

2. The texture of the images do not have a strong orientation. In spite of the

fact that , as mentioned in chapter one, it has been discovered that the cervix

collagen behaves anisotropically especially in the non-pregnant state.

3. The spatial frequency seems to have a higher discriminative potential than

scale alone. So , analyzing the images at different frequency scales proved

to be more successful. Including additional information as spatial distribu-

tion of local binary patterns or gray level variance can further increase the

obtained accuracy.

4. Image gray level normalization has more influence on the classification ac-

curacy than denoising, at least for the texture attributes used on our experi-

ments.

6.1 Addressing research question

Now, we return to some questions that needed to be addressed from chapter one :
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Table 6.1: Successful induction predictive values reported in several works.

Method Condition Sensitivity Specificity PPV NPV
Bishop score [1] >5 0.66 0.49
Cervical length >26mm 0.62 0.61 –
Bishop score [3] >3 0.58 0.77 –
Cervical length >28mm 0.87 0.71 —
Bishop score [4] >4 0.87 0.45 –
Cervical length[2] < 20mm 0.64 0.70 0.57 0.76
Cervical Area < 100mm2 0.64 0.70 0.57 0.76
Bishop score > 5 0.62 0.57 0.46 0.71
Mean elastographic index < 100 0.76 0.56 0.51 0.79
Cervical hard area < 200mm2 0.86 0.60 0.51 0.87

1. Is it feasible to predict the outcome from labor induction procedures by

means of texture analysis?.

2. If the answer to the first item is yes, how good is our predicting capability?.

3. Is the proposed algorithm a better alternative to digital examination using

the Bishop score?

To answer the first question we can say that the algorithms tried so far have

provided promising results that suggest that this is really the case. The accuracy

scores obtained until now are between 77 and 99 percent of correct classification.

It may be argued that since the distribution of the classes are not symmetric (

we have an asymmetric distribution for cesarean section) accuracy is not a good

parameter for reasonable comparisons.

To elucidate that problem we resort to the ROC curves obtained in the ex-

periments previously performed. From the ROC curve sensitivity and specificity

values which measure the system capability of correctly detecting positive and

negative classes, can be easily visualized. To compare with Bishop score we in-

cluded the sensitivity and specificity values for the Bishop score already presented

in chapter one, and we reproduce here for commodity in table 6.1.

From the figure is apparent that Bishop score prediction power is smaller than

those obtained by texture analysis.

6.2 Limitations:

Despite the good results obtained in this thesis work, we have to point out some

aspect that deserve to be mentioned:
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• Our data base was not big enough to provide statistically solid results. This

is specially true for the Deep Learning case. What it is even worse, for the

class to be detected (i.e. cesarean section) we have rather small amount of

samples. This essentially a problem of the current probability of a cesarean

section to occur during a labor induction which is close to 20%. We have been

collecting these images for a period of about two years a relatively short time

to acquire a significant number of samples.

• Images have been, during experiments, selected to have good visual quality

and excluded too-bad formed images. This probably will not be possible

in a practical application, so a more robust preprocessing stage have to be

designed. We did not care too much about preprocessing apart from some

simple methods.

• The design of a quality control scheme for the US images would be advisable

since, for the time being, the selection of good images is a manual task.

• A related issue is that the acquisition of the images have been performed fol-

lowing carefully a clinical protocol and even so, some artifacts were present

in the images, e.g. specular reflections, shadowing and some others. It is

known that specular reflection are dependent on insonation angle, i.e. there

is a degree of dependency on the operator.

• We experienced limitations in the test of deep learning algorithms imposed

by hardware requirements. The GPU used in the experiments was a modest

category one and we have little memory at our disposal which caused run

out of memory errors.

6.3 Future work

As a future work we may propose among other things to carry out experiments

with a larger set of images. The inclusion of more than one texture operator may

improve what have been achieved so far. Acquisition of images of the cervix using

second harmonic, would probably provide a better quality images which together

with elastography would serve as a comparison or control information.

Finally, based on the results attained with the experiments using Convolutional

Neural Nets, we believe that classification performance obtained being good, could

be further improved. If more data is available it would be worthy to continue
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Figure 6.1: ROC curves for the algorithm tested in this thesis and some reported val-
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trying the models used in this thesis and also to develop new ones.
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