eBiltegia

    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
    • Euskara
    • Español
    • English

Laguntzailea:

  • Kontaktua
  • Euskara 
    • Euskara
    • Español
    • English
  • eBiltegia buruz  
    • Zer da eBiltegia? 
    •   eBiltegiari buruz
    •   Argitaratu irekian zure ikerketa
    • Sarbide Irekia MUn 
    •   Zer da Zientzia Irekia?
    •   Mondragon Unibertsitatearen dokumentu zientifikoetara eta irakaskuntza-materialetara Sarbide Irekia izateko politika instituzionala
    •   Mondragon Unibertsitatearen ikerketa-datuetara Sarbide Irekia izateko Politika instituzionala
    •   Babes digitalerako jarraibideak
    •   Zure argitalpenak jaso eta zabaldu egiten ditu Bibliotekak
  • Hasi saioa
Ikusi itema 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ikusi itema
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ikusi itema
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ikusi/Ireki
A novel methodology for the characterization of cutting conditions in turning processes using ML_final.pdf (1.021Mb)
Erregistro osoa
Eragina

Web of Science   

Google Scholar
Partekatu
EmailLinkedinFacebookTwitter
Gorde erreferentzia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Izenburua
A novel methodology for the characterization of cutting conditions in turning processes using Machine Learning models and Acoustic Emission Signals
Egilea
Fernandez de Barrena, Telmo
Ferrando, Juan Luis
García Gangoiti, Ander
ARRAZOLA, PEDRO JOSE
Abete, J.M.
Herrero Villalibre, Diego
Ikerketa taldea
Mecanizado de alto rendimiento
Beste instituzio
Vicomtech
Sidenor I+D
Bertsioa
Postprinta
Eskubideak
© 2022 The Author(s)
Sarbidea
Sarbide irekia
URI
https://hdl.handle.net/20.500.11984/7144
Argitaratzailearen bertsioa
https://doi.org/10.1007/978-3-030-87869-6_53
Non argitaratua
International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO)  16. Bilbao-Online, 22-24 septiembre 2021
Argitaratzailea
Springer Nature
Gako-hitzak
Machine learning
acoustic emission
Cutting characterization
Wavelet transform ... [+]
Machine learning
acoustic emission
Cutting characterization
Wavelet transform
Recursive feature elimination [-]
Laburpena
In the last few years, the industry requires to know in real-time the condition of their assets. Acoustic Emission (AE) technique has been widely used to understand the real-time condition of manufact ... [+]
In the last few years, the industry requires to know in real-time the condition of their assets. Acoustic Emission (AE) technique has been widely used to understand the real-time condition of manufacturing processes such as the degree of tool wear or tool breakage. Traditionally, to fulfil that goal, the information extracted from the signal sensors of the machines has been processed with mathematical models. This methodology is changing, and instead of developing complex physical models (where an in-depth knowledge of the system being modelled is required), the current trend is to use Machine Learning (ML) models which are based on previous data . Signal pre-processing and feature extraction is a complex task that usually generates a high amount of predicting variables. Therefore, this paper proposes a methodology to identify the best pre-processing tools, AE features and ML models to characterize cutting condition processes. This methodology is validated identifying cutting conditions in a turning process based on AE signals. To classify the cutting condition with the highest accuracy, several techniques are applied, (including wavelet transform for multiresolution analysis, Recursive Feature Elimination (RFE) technique, different classifiers (Decision Tree (DT), Random Forests (RF), Support Vector Machine (SVM), Gaussian Process (GP), K-Nearest Neighbor (KNN) and Multilayer Perceptron (MLP) classifiers) and different signal segmentation lengths. These techniques were evaluated using the data captured in a turning process when cutting a 19NiMoCr6 steel under pre-established cutting conditions. The best accuracy of predicting the cutting conditions based on AE signals was 99.7%, and it was achieved combining the wavelet packet transform (WPT) with RFE, with a segmentation time of 0.05 s and RF as classifier. [-]
Finantzatzailea
Gobierno Vasco.
Programa
Elkartek 2020
Zenbakia
KK-2020-00099
Laguntzaren URIa
Sin información
Proiektua
Materiales magnetoactivos multifuncionales para fabricación avanzada e industria inteligente (MMMfavIN)
Bildumak
  • Kongresuak - Ingeniaritza [423]

Zerrendatu honako honen arabera

eBiltegia osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratuaBilduma hauArgitalpen dataren araberaEgileakIzenburuakMateriakIkerketa taldeakNon argitaratua

Nire kontua

SartuErregistratu

Estatistikak

Ikusi erabilearen inguruko estatistikak

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace
 

 

Nork bildua:

OpenAIREBASERecolecta

Nork balioztatua:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteka
Kontaktua | Iradokizunak
DSpace