eBiltegia

    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
    • Euskara
    • Español
    • English

Con la colaboración de:

  • Contacto
  • Español 
    • Euskara
    • Español
    • English
  • Sobre eBiltegia  
    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
  • Login
Ver ítem 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ver ítem
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ver/Abrir
A novel methodology for the characterization of cutting conditions in turning processes using ML_final.pdf (1.021Mb)
Registro completo
Impacto

Web of Science   

Google Scholar
Compartir
EmailLinkedinFacebookTwitter
Guarda la referencia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Título
A novel methodology for the characterization of cutting conditions in turning processes using Machine Learning models and Acoustic Emission Signals
Autor-a
Fernandez de Barrena, Telmo
Ferrando, Juan Luis
García Gangoiti, Ander
ARRAZOLA, PEDRO JOSE
Abete, J.M.
Herrero Villalibre, Diego
Grupo de investigación
Mecanizado de alto rendimiento
Otras instituciones
Vicomtech
Sidenor I+D
Versión
Postprint
Derechos
© 2022 The Author(s)
Acceso
Acceso abierto
URI
https://hdl.handle.net/20.500.11984/7144
Versión del editor
https://doi.org/10.1007/978-3-030-87869-6_53
Publicado en
International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO)  16. Bilbao-Online, 22-24 septiembre 2021
Editor
Springer Nature
Palabras clave
Machine learning
acoustic emission
Cutting characterization
Wavelet transform ... [+]
Machine learning
acoustic emission
Cutting characterization
Wavelet transform
Recursive feature elimination [-]
Resumen
In the last few years, the industry requires to know in real-time the condition of their assets. Acoustic Emission (AE) technique has been widely used to understand the real-time condition of manufact ... [+]
In the last few years, the industry requires to know in real-time the condition of their assets. Acoustic Emission (AE) technique has been widely used to understand the real-time condition of manufacturing processes such as the degree of tool wear or tool breakage. Traditionally, to fulfil that goal, the information extracted from the signal sensors of the machines has been processed with mathematical models. This methodology is changing, and instead of developing complex physical models (where an in-depth knowledge of the system being modelled is required), the current trend is to use Machine Learning (ML) models which are based on previous data . Signal pre-processing and feature extraction is a complex task that usually generates a high amount of predicting variables. Therefore, this paper proposes a methodology to identify the best pre-processing tools, AE features and ML models to characterize cutting condition processes. This methodology is validated identifying cutting conditions in a turning process based on AE signals. To classify the cutting condition with the highest accuracy, several techniques are applied, (including wavelet transform for multiresolution analysis, Recursive Feature Elimination (RFE) technique, different classifiers (Decision Tree (DT), Random Forests (RF), Support Vector Machine (SVM), Gaussian Process (GP), K-Nearest Neighbor (KNN) and Multilayer Perceptron (MLP) classifiers) and different signal segmentation lengths. These techniques were evaluated using the data captured in a turning process when cutting a 19NiMoCr6 steel under pre-established cutting conditions. The best accuracy of predicting the cutting conditions based on AE signals was 99.7%, and it was achieved combining the wavelet packet transform (WPT) with RFE, with a segmentation time of 0.05 s and RF as classifier. [-]
Financiador
Gobierno Vasco.
Programa
Elkartek 2020
Número
KK-2020-00099
URI de la ayuda
Sin información
Proyecto
Materiales magnetoactivos multifuncionales para fabricación avanzada e industria inteligente (MMMfavIN)
Colecciones
  • Congresos - Ingeniería [423]

Listar

Todo eBiltegiaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado enEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado en

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace
 

 

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace