Erregistro soila

dc.rights.licenseAttribution 4.0 International*
dc.contributor.authorAyuso, Mikel
dc.contributor.authorMuniategui, Ander
dc.contributor.authorAguirre, Aitor
dc.contributor.authorEzpeleta, Enaitz
dc.date.accessioned2025-05-15T07:25:49Z
dc.date.available2025-05-15T07:25:49Z
dc.date.issued2025
dc.identifier.isbn978-3-031-86489-6en
dc.identifier.issn2195-4364en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=187551en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/7006
dc.description.abstractMetal Additive Manufacturing (AM) allows producing geometrically complex metal components, unlocking new design possibilities and making it suitable to sectors such as healthcare, automotive and aerospace. AM processes are complex and require the use of many sensors to extract relevant process information for its monitoring and control. In the last years, many studies have applied advanced Deep Learning methods to extract knowledge from AM processes. However, these developments are specific to a particular setup, problem or defectology. Furthermore, they lack frameworks and pipelines to guide throughout their development, and do not include AI-related tools for data labelling, visualization, and AI model development and deployment. With the aim of simplifying the development and deployment of AM process monitoring systems, a dashboard-based framework that makes use of AI for anomaly detection and for feature extraction is presented in this study. The framework helps with development and deployment of monitoring systems by easing the incorporation of new sensors and the extraction of new features from captured data by end users. In this study, a Laser Metal Deposition (LMD) process is considered as the use case to show the usefulness of the developed framework.en
dc.language.isoengen
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2025en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectLaser metal depositionen
dc.subjectProcess optimizationen
dc.subject3D visualizationen
dc.subjectanomaly detectionen
dc.titleLaser Metal Deposition (LMD) Process Monitoring: From 3D Visualization of Sensor Data Towards Anomaly Detectionen
dcterms.accessRightshttp://purl.org/coar/access_right/c_abf2en
dcterms.sourceEuropean Symposium on Artificial Intelligence in Manufacturingen
local.contributor.groupAnálisis de datos y ciberseguridades
local.description.peerreviewedtrueen
local.description.publicationfirstpage31en
local.description.publicationlastpage39en
local.identifier.doihttps://doi.org/10.1007/978-3-031-86489-6_4en
local.contributor.otherinstitutionhttps://ror.org/04z0p3077es
local.source.details2. Atenas, 16 octubre 2024en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94fen
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en
dc.unesco.tesaurohttp://vocabularies.unesco.org/thesaurus/concept2214en
dc.unesco.clasificacionhttp://skos.um.es/unesco6/120903en


Item honetako fitxategiak

Thumbnail
Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Erregistro soila

Attribution 4.0 International
Bestelakorik adierazi ezean, itemaren baimena horrela deskribatzen da: Attribution 4.0 International