Registro sencillo

dc.contributor.authorOlaizola Alberdi, Jon
dc.contributor.authorIzagirre, Unai
dc.contributor.authorSerradilla Casado, Oscar
dc.contributor.authorZugasti, Ekhi
dc.contributor.authorMendicute, Mikel
dc.contributor.authorAizpurua Unanue, José Ignacio
dc.date.accessioned2025-04-16T14:48:54Z
dc.date.available2025-04-16T14:48:54Z
dc.date.issued2025
dc.identifier.issn1467-8667en
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=186800en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6973
dc.description.abstractEnsuring the safe, reliable, and cost-efficient operation of transportation systems such as elevators is critical for the maintenance of civil infrastructures. The ability to monitor the health state and classify different operational states (elevator moving up/down, stopped, doors opening/closing) may lead to the development of intelligent solutions, such as diagnostics and predictive maintenance. Accordingly, downtime and maintenance costs can be significantly reduced with an accurate monitoring of the operation parameters and dynamics. In this context, this paper presents a novel approach for the operational state classification of elevator systems based on a one-dimensional convolutional neural network, using exclusively a single axis (Z) of an accelerometer signal. The proposed model utilizes a single accelerometer and addresses the challenge of distinguishing overlapping signal patterns, such as those produced by vertical displacement and door movements. The approach includes an interpretability stage, which demonstrates the data processing involved in extracting features from the underlying physical phenomena captured in the acceleration signal. Obtained results have been validated with an on-site captured dataset which contains 250 elevator journeys and compared with three other classification methods that have been conventionally used: generalized likelihood ratio test (GLRT), barometer-assisted GLRT, and three conventional machine learning modelss. It has been shown that the proposed approach is very accurate, with 96% of the average F1 score and, importantly, includes the analytic relation of the classification model features.en
dc.language.isoengen
dc.publisherWileyen
dc.relationhttps://doi.org/10.48764/dwdv-gz94
dc.rights© The Authorsen
dc.titleAn interpretable operational state classification framework for elevators through Convolutional Neural Networksen
dcterms.accessRightshttp://purl.org/coar/access_right/c_f1cfen
dcterms.sourceComputer-Aided Civil and Infrastructure Engineeringen
local.contributor.groupAnálisis de datos y ciberseguridades
local.contributor.groupTeoría de la señal y comunicacioneses
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1111/mice.13479en
local.embargo.enddate2026-04-30
local.contributor.otherinstitutionLaboral Kutxaes
local.contributor.otherinstitutionhttps://ror.org/000xsnr85es
local.contributor.otherinstitutionhttps://ror.org/01cc3fy72es
local.source.detailsEarly Viewen
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaen
oaire.funderNameGobierno Vascoen
oaire.funderNameGobierno de Españaen
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.funderIdentifierhttps://ror.org/038jjxj40 / http://data.crossref.org/fundingdata/funder/10.13039/501100010198en
oaire.fundingStreamIkertalde Convocatoria 2022-2023en
oaire.fundingStreamRamon y Cajal. Convocatoria 2022en
oaire.awardNumberIT1451-22en
oaire.awardNumberRYC2022-037300-Ien
oaire.awardTitleTeoría de la Señal y Comunicaciones (IKERTALDE 2022-2023)en
oaire.awardTitleJose Ignacio Aizpurua Unanueen
oaire.awardURISin informaciónen
oaire.awardURISin informaciónen


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Registro sencillo