Simple record

dc.contributor.authorRojas Garcia, Clara
dc.contributor.authorOca, Laura
dc.contributor.authorLopetegi, Iker
dc.contributor.authorIRAOLA, UNAI
dc.contributor.authorCarrasco, Javier
dc.date.accessioned2025-04-15T08:40:44Z
dc.date.available2025-04-15T08:40:44Z
dc.date.issued2024
dc.identifier.issn2352-152Xen
dc.identifier.otherhttps://katalogoa.mondragon.edu/janium-bin/janium_login_opac.pl?find&ficha_no=174373en
dc.identifier.urihttps://hdl.handle.net/20.500.11984/6954
dc.description.abstractPhysics-Based Models (PBMs) offer a promising approach to develop advanced battery management systems that rely on information about the internal states of battery cells. The reliability of model predictions heavily depends on a proper parametrisation. However, the non-linear model structure, the high number of embedded parameters, and the experimental limitations, make the parametrisation procedure a difficult task. To tackle this issue, a myriad of approaches has been proposed in the research community, including physico-chemical characterisation techniques, non-invasive methodologies, or a combination of invasive- and non-invasive procedures, all aimed at maximising parameter identifiability. While a single solution may not exist, there is a recognised need to establish a systematic framework that can guarantee the correct estimation of model parameters. In this paper, we aim to review the key concepts and major challenges encountered in the field of parameter estimation of PBMs for the modelling of lithium-ion cells. Furthermore, the strengths and weaknesses of the current methodologies will be discussed based on previous attempts. Our analysis will lead to the conclusion that mixed methodologies, which combine invasive and non-invasive techniques, are promising approaches for a full-parametrisation of PBMs as they can maximise the identifiability of parameters. For the mixed methodology implementation, the essential steps that should be included are described: (1) parameter clustering, (2) design of optimal experiments, (3) sensitivity analysis, (4) selection of an optimisation algorithm for parameter fitting, and (5) the validation of the model. These steps must ensure, when possible, the convergence to a realistic parameter set and the model adaptability to multiple scenarios.en
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2024 Elsevier Ltd.en
dc.subjectParameter estimationen
dc.subjectPhysics-based model (PBM)en
dc.subjectParametrisationen
dc.subjectLi-ion batteryen
dc.subjectPseudo-two-dimensional modelen
dc.titleA critical look at efficient parameter estimation methodologies of electrochemical models for Lithium-Ion cellsen
dcterms.accessRightshttp://purl.org/coar/access_right/c_f1cfen
dcterms.sourceJournal of Energy Storageen
local.contributor.groupAlmacenamiento de energíaes
local.description.peerreviewedtrueen
local.identifier.doihttps://doi.org/10.1016/j.est.2023.110384en
local.embargo.enddate2144-12-31
local.contributor.otherinstitutionhttps://ror.org/03t0ryx68es
local.contributor.otherinstitutionhttps://ror.org/01cc3fy72es
local.source.detailsVol. 80. N. art. 110384, 2024en
oaire.format.mimetypeapplication/pdfen
oaire.file$DSPACE\assetstoreen
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501en
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85en
oaire.funderNameGobierno Vascoen
oaire.funderIdentifierhttps://ror.org/00pz2fp31 / http://data.crossref.org/fundingdata/funder/10.13039/501100003086en
oaire.fundingStreamElkartek 2021en
oaire.awardNumberKK-2021-00064en
oaire.awardTitleInvestigación en modelos materiales y componentes para la futura generación de baterías en movilidad (CICe2021)en
oaire.awardURISin informaciónen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Simple record