eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
Application of Computer Vision and Deep Learning in the railway domain for autonomous train stop operation.pdf (405.6Kb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
Application of Computer Vision and Deep Learning in the railway domain for autonomous train stop operation
Author
Arana-Arexolaleiba, Nestor
Author (from another institution)
Etxeberria Garcia, Mikel
Labayen, Mikel
Zamalloa, Maider
Research Group
Robótica y automatización
Other institutions
Ikerlan
Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU)
Version
Postprint
Rights
© 2020 IEEE
Access
Open access
URI
https://hdl.handle.net/20.500.11984/6395
Publisher’s version
https://doi.org/10.1109/SII46433.2020.9026246
Published at
IEEE/SICE International Symposium on System Integration (SII) 
Publisher
IEEE
Keywords
Machine learning
Rail transportation
Cameras
Simultaneous localization and mapping ... [+]
Machine learning
Rail transportation
Cameras
Simultaneous localization and mapping
Visualization
Visual odometry [-]
Abstract
The purpose of this paper is to present the results of the analysis of the application of Deep Learning in the railway domain with a particular focus on a train stop operation. The paper proposes an a ... [+]
The purpose of this paper is to present the results of the analysis of the application of Deep Learning in the railway domain with a particular focus on a train stop operation. The paper proposes an approach consisting of monocular vision-based and Deep Learning architectures. Even the difficulties imposed by actual regulation, the findings show that Deep Learning architecture can offer promising results in railway localization using techniques like visual odometry, SLAM or pose estimation. Besides, in spite of the many datasets available in the literature needed to train the neural network, none of them have been created for indoor railway environments. Therefore, a new dataset should be created. Furthermore, the paper presents future research and development suggestions for railway applications which contribute to guiding the mid-term research and development. [-]
Collections
  • Conferences - Engineering [423]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace