eBiltegia

    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   La Biblioteca recoge y difunde tus publicaciones

Con la colaboración de:

Euskara | Español | English
  • Contacto
  • Ciencia Abierta
  • Acerca de eBiltegia
  • Login
Ver ítem 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Producción científica - Congresos
  • Congresos - Ingeniería
  • Ver ítem
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Producción científica - Congresos
  • Congresos - Ingeniería
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ver/Abrir
Towards Robust Defect Detection in Casting Using Contrastive Learning.pdf (1.608Mb)
Registro completo
Impacto

Web of Science   

Google Scholar
Compartir
EmailLinkedinFacebookTwitter
Guarda la referencia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Título
Towards robust defect detection in casting using contrastive learning
Autor-a
Intxausti Arbaiza, Eneko
Zugasti, Ekhi
Cernuda, Carlos
Autor-a (de otra institución)
Leibar, Ane Miren
Elizondo, Estibaliz
Fecha de publicación
2023
Grupo de investigación
Análisis de datos y ciberseguridad
Otras instituciones
Fagor Ederlan, S. Coop.
Edertek S. Coop.
Versión
Postprint
Tipo de documento
Contribución a congresoContribución a congreso
Idioma
Inglés
Derechos
© 2023 Springer
Acceso
Acceso embargado
Fin de la fecha de embargo
2025-11-30
URI
https://hdl.handle.net/20.500.11984/6291
Versión de la editorial
https://doi.org/10.1007/978-3-031-49018-7_43
Publicado en
26th Iberoamerican Congress on Pattern Recognition (CIARP 2023). Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Lecture Notes in Computer Science  Vol. 14469. Pp. 605-616.
Editorial
Springer
Palabras clave
Defect detection
contrastive learning
casting
optical quality control ... [+]
Defect detection
contrastive learning
casting
optical quality control
deep learning [-]
Resumen
Defect detection plays a vital role in ensuring product quality and safety within industrial casting processes. In these dynamic environments, the occasional emergence of new defects in the production ... [+]
Defect detection plays a vital role in ensuring product quality and safety within industrial casting processes. In these dynamic environments, the occasional emergence of new defects in the production line poses a significant challenge for supervised methods. We present a defect detection framework to effectively detect novel defect patterns without prior exposure during training. Our method is based on contrastive learning applied to the Faster R-CNN model, enhanced with a contrastive head to obtain discriminative representations of different defects. By training on an diverse and comprehensive labeled dataset, our method achieves comparable performance to the supervised baseline model, showcasing commendable defect detection capabilities. To evaluate the robustness of our approach, we authentically replicate a real-world use case by deliberately excluding several defect types from the training data. Remarkably, in this new context, our proposed method significantly improves detection performance of the baseline model, particularly in situations with very limited training data, showcasing a remarkable 34.7% enhancement. Our research highlights the potential of the proposed method in real-world environments where the number of available images may be limited or inexistent. By providing valuable insights into defect detection in challenging scenarios, our framework could contribute to ensuring efficient and reliable product quality and safety in industrial manufacturing processes. [-]
Sponsorship
Gobierno Vasco
Colecciones
  • Congresos - Ingeniería [435]

Listar

Todo eBiltegiaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado enEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado en

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace
 

 

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace