eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
View/Open
Predicting the effect of voids generated during RTM on the low-velocity impact behaviour by machine learning-based surrogate models.pdf (2.244Mb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
Predicting the effect of voids generated during RTM on the low-velocity impact behaviour by machine learning-based surrogate models
Author
Mendikute, Julen
Baskaran, Maider
Llavori, Inigo
Zugasti, Ekhi
Aretxabaleta, Laurentzi
Aurrekoetxea, Jon
Research Group
Tecnología de plásticos y compuestos
Version
Published version
Rights
© 2023 Elsevier
Access
Embargoed access
URI
https://hdl.handle.net/20.500.11984/6215
Publisher’s version
https://doi.org/10.1016/j.compositesb.2023.110790
Published at
Composites Part B: Engineering  Vol. 260. N. art. 110790
Publisher
Elsevier
Keywords
Polymer-matrix composites (PMCs)
Impact behaviour
Surrogate model
Resin transfer moulding (RTM)
Abstract
The main objective of the present paper is to demonstrate the feasibility of machine-learning-based surrogate models for predicting low-velocity impact behaviour considering void content and location ... [+]
The main objective of the present paper is to demonstrate the feasibility of machine-learning-based surrogate models for predicting low-velocity impact behaviour considering void content and location generated during the resin transfer moulding process. Generating reliable experimental datasets for training those models is almost impossible, therefore an adapted finite element model was implemented providing reliable results to generate the synthetic datasets. The optimum hyperparameter combination for training the Random Forest model was found based on the grid search technique. The accuracy of the classification, single-output regression and multi-output regression models was sufficient. It was concluded that the multi-output regression model, which predicts the force-time, displacement-time, and energy-time curves, provides the best information, and is sufficiently accurate (R2 > 0.995) and fast (5 s per sample) as an online structural performance monitoring tool. [-]
Funder
Eusko Jaurlaritza = Gobierno Vasco
Eusko Jaurlaritza = Gobierno Vasco
Eusko Jaurlaritza = Gobierno Vasco
Program
Programa predoctoral de formación del personal investigador no doctor 2018-2019
Ikertalde Convocatoria 2022-2025
Elkartek 2017
Number
PRE_2018_1_0338
IT1613-22
KK-2017-00062
Award URI
Sin información
Sin información
Sin información
Project
Sin información
Fabricación avanzada de composites
Composites para automoción fabricados mediante RTM adaptada a filosofía Industry 4.0 (RTM4.0)
Collections
  • Articles - Engineering [743]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace