eBiltegia

    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
    • Euskara
    • Español
    • English

Con la colaboración de:

  • Contacto
  • Español 
    • Euskara
    • Español
    • English
  • Sobre eBiltegia  
    • Qué es eBiltegia 
    •   Acerca de eBiltegia
    •   Te ayudamos a publicar en abierto
    • El acceso abierto en MU 
    •   ¿Qué es la Ciencia Abierta?
    •   Política institucional de Acceso Abierto a documentos científicos y materiales docentes de Mondragon Unibertsitatea
    •   Política institucional de Acceso Abierto para datos de Investigacion de Mondragon Unibertsitatea
    •   Pautas preservacion digital eBiltegia
    •   La Biblioteca recoge y difunde tus publicaciones
  • Login
Ver ítem 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ver ítem
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Artikuluak
  • Artikuluak-Ingeniaritza
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
Ver/Abrir
Integrated machine learning and probabilistic degradation approach for vessel electric motor prognostics.pdf (4.759Mb)
Registro completo
Impacto

Web of Science   

Google Scholar
Compartir
EmailLinkedinFacebookTwitter
Guarda la referencia
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Título
Integrated machine learning and probabilistic degradation approach for vessel electric motor prognostics
Autor-a
Aizpurua Unanue, Jose Ignacio
Autor-a (de otra institución)
Knutsen, Knut Erik
Heimdal, Markus
Vanem, Erik
Grupo de investigación
Teoría de la señal y comunicaciones
Otras instituciones
Ikerbasque
DNV
Kongsberg Maritime (Norway)
University of Oslo
Versión
Postprint
Derechos
© 2023 Elsevier
Acceso
Acceso embargado
URI
https://hdl.handle.net/20.500.11984/6065
Versión del editor
https://doi.org/10.1016/j.oceaneng.2023.114153
Publicado en
Ocean Engineering  Vol. 275. N. artículo 114153
Editor
Elsevier
Palabras clave
Prognostics
Degradation
Electric motor
Insulation ... [+]
Prognostics
Degradation
Electric motor
Insulation
uncertainty
Machine learning [-]
Resumen
In the transition towards more sustainable ships, electric motors (EM) are being used in ship propulsion systems to reduce emissions and increase efficiency. The safe operation of ships is crucial, an ... [+]
In the transition towards more sustainable ships, electric motors (EM) are being used in ship propulsion systems to reduce emissions and increase efficiency. The safe operation of ships is crucial, and prognostics and health management applications have emerged as effective solutions to transit towards monitored reliable systems. In this context, this paper presents a probabilistic EM prognostics model integrating data-driven operational models and physics-informed degradation models. Firstly, motor torque and winding temperature are estimated through connected machine learning models, which are based on operational and meteorological data. Operational and meteorological variables drive the EM degradation model and enable the analysis of EM degradation under different operational and environmental conditions. Subsequently, EM remaining useful life (RUL) is predicted within a probabilistic Monte-Carlo approach combining the thermal-stress model along with the associated uncertainties. The methodology is tested on a real case study of the OV Ryvingen vessel, with collected data during voyages along the Norwegian coast. Results confirm the validity of the designed RUL model showing that, under normal operation conditions, the degradation is mild, and the temperature measurement errors are important for RUL estimation. [-]
Sponsorship
Gobierno de España
ID Proyecto
MIDAS project (grant number 282202)
Colecciones
  • Artículos - Ingeniería [743]

Listar

Todo eBiltegiaComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado enEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupos de investigaciónPublicado en

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace
 

 

Recolectado por:

OpenAIREBASERecolecta

Validado por:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Biblioteca
Contacto | Sugerencias
DSpace