eBiltegia

    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
    • Euskara
    • Español
    • English

xmlui.dri2xhtml.structural.fecyt

  • Contact Us
  • English 
    • Euskara
    • Español
    • English
  • About eBiltegia  
    • What is eBiltegia? 
    •   About eBiltegia
    •   Publish your research in open access
    • Open Access at MU 
    •   What is Open Science?
    •   Mondragon Unibertsitatea's Institutional Policy on Open Access to scientific documents and teaching materials
    •   Mondragon Unibertsitatea's Institutional Open Access Policy for Research Data
    •   eBiltegia Digital Preservation Guidelines
    •   The Library compiles and disseminates your publications
  • Login
View Item 
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • View Item
  •   eBiltegia MONDRAGON UNIBERTSITATEA
  • Ikerketa-Kongresuak
  • Kongresuak-Ingeniaritza
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
Thumbnail
View/Open
Uncertainty Analysis of Two Gas Measurement DGA Ratios for Improved Diagnostics Applications.pdf (956.2Kb)
Full record
Impact

Web of Science   

Google Scholar
Share
EmailLinkedinFacebookTwitter
Save the reference
Mendely

Zotero

untranslated

Mets

Mods

Rdf

Marc

Exportar a BibTeX
Title
Uncertainty Analysis of Two Gas Measurement DGA Ratios for Improved Diagnostics Applications
Author
Aizpurua Unanue, Jose Ignacio
Author (from another institution)
Stewart, Brian G.
Research Group
Teoría de la señal y comunicaciones
Other institutions
University of Strathclyde
Version
Postprint
Rights
© 2022 IEEE
Access
Open access
URI
https://hdl.handle.net/20.500.11984/5954
Publisher’s version
https://doi.org/10.1109/ICHVE53725.2022.9961491
Published at
2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE) 
Publisher
IEEE
Keywords
Measurement errors
Maximum likelihood estimation
uncertainty
Density measurement ... [+]
Measurement errors
Maximum likelihood estimation
uncertainty
Density measurement
Measurement uncertainty
High-voltage techniques
Probability density function [-]
Abstract
This paper formulates the exact analytical probability density function (PDF) for the ratio of two independent dissolved gas analysis (DGA) measurements that include individual gas measurement errors. ... [+]
This paper formulates the exact analytical probability density function (PDF) for the ratio of two independent dissolved gas analysis (DGA) measurements that include individual gas measurement errors. It is demonstrated that for small DGA gas measurement errors, the correct two-gas ratio PDF approaches a conventional Gaussian distribution. As the measurement accuracy decreases, the ratio PDF becomes non-Gaussian with the maximum likelihood value of the PDF deviating from the true underlying value. For larger errors, the maximum likelihood estimate of the gas ratio deviates significantly from presumed Gaussian statistics. A method for debiasing measured gas ratio values is presented and a simple application is used to demonstrate the proposed approach. [-]
Collections
  • Conferences - Engineering [423]

Browse

All of eBiltegiaCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished atThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch groupsPublished at

My Account

LoginRegister

Statistics

View Usage Statistics

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace
 

 

Harvested by:

OpenAIREBASERecolecta

Validated by:

OpenAIRERebiun
MONDRAGON UNIBERTSITATEA | Library
Contact Us | Send Feedback
DSpace